1
|
Akita M, Girvan P, Spirek M, Novacek J, Rueda D, Prokop Z, Krejci L. Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA. Nucleic Acids Res 2024; 52:11738-11752. [PMID: 39268578 PMCID: PMC11514458 DOI: 10.1093/nar/gkae770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.
Collapse
Affiliation(s)
- Masaki Akita
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Paul Girvan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Mario Spirek
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Cryo-Electron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, Czech Republic
| | - David Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Xu J, Guo Y, Tan Z, Ban W, Tian J, Chen K, Xu H. Molecular cloning and expression analysis of rad51 gene associated with gametogenesis in Chinese soft-shell turtle (Pelodiscus sinensis). Gene 2023; 887:147729. [PMID: 37619650 DOI: 10.1016/j.gene.2023.147729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Rad51 is a recA-like recombinase that plays a crucial role in repairing DNA double-strand breaks through homologous recombination during mitosis and meiosis in mammals and other organisms. However, its role in reptiles remains largely unclear. In this study, we aimed to investigate the physiological role of the rad51 gene in reptiles, particularly in Pelodiscus sinensis. Firstly, the cDNA of rad51 gene was cloned and analyzed in P. sinensis. The cloned cDNA contained an open reading frame (ORF) of 1020 bp and encodeed a peptide of 339 amino acids. The multiple alignments and phylogenetic tree analysis of Rad51 showed that P. sinensis shares the high identity with Chelonia mydas (97.95%) and Mus musculus (95.89%). Secondly, reverse transcription-polymerase chain reaction (RT-PCR) and real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that rad51 mRNA was highly expressed in both ovary and testis, while being weak in the somatic tissues examined in this study. Furthermore, chemical in situ hybridization (CISH) was performed to examine the expression profile of rad51 mRNA in germ cells at different stages. In the testis, rad51 mRNA expression was found to be stronger in the germ cells at early stages, specifically in spermatogonia and spermatocytes, but it was undetectable in spermatids. In the ovary, rad51 mRNA exhibited a uniform distribution in the cytoplasm of oocytes at early stages. The signal intensity of rad51 mRNA was highest in primary oocytes and gradually declined during oogenesis as the oocytes developed. These results suggest that rad51 plays a vital role in the development of germ cells, particularly during the early stages of gametogenesis in P. sinensis. The dynamic expression pattern of rad51 mRNA provides insights into the mechanisms underlying germ cell development and differentiation into gametes in turtles, even in reptiles.
Collapse
Affiliation(s)
- Jianfei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Yonglin Guo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Zhimin Tan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Wenzhuo Ban
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Jiaming Tian
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Kaili Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Hongyan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China.
| |
Collapse
|
4
|
Rein HL, Bernstein KA. Finding significance: New perspectives in variant classification of the RAD51 regulators, BRCA2 and beyond. DNA Repair (Amst) 2023; 130:103563. [PMID: 37651978 PMCID: PMC10529980 DOI: 10.1016/j.dnarep.2023.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
For many individuals harboring a variant of uncertain functional significance (VUS) in a homologous recombination (HR) gene, their risk of developing breast and ovarian cancer is unknown. Integral to the process of HR are BRCA1 and regulators of the central HR protein, RAD51, including BRCA2, PALB2, RAD51C and RAD51D. Due to advancements in sequencing technology and the continued expansion of cancer screening panels, the number of VUS identified in these genes has risen significantly. Standard practices for variant classification utilize different types of predictive, population, phenotypic, allelic and functional evidence. While variant analysis is improving, there remains a struggle to keep up with demand. Understanding the effects of an HR variant can aid in preventative care and is critical for developing an effective cancer treatment plan. In this review, we discuss current perspectives in the classification of variants in the breast and ovarian cancer genes BRCA1, BRCA2, PALB2, RAD51C and RAD51D.
Collapse
Affiliation(s)
- Hayley L Rein
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Kara A Bernstein
- University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics, 421 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Anwaar A, Varma AK, Baruah R. In Silico-Based Structural Evaluation to Categorize the Pathogenicity of Mutations Identified in the RAD Class of Proteins. ACS OMEGA 2023; 8:10266-10277. [PMID: 36969410 PMCID: PMC10034773 DOI: 10.1021/acsomega.2c07802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
RAD genes, known as double-strand break repair proteins, play a major role in maintaining the genomic integrity of a cell by carrying out essential DNA repair functions via double-strand break repair pathways. Mutations in the RAD class of proteins show high susceptibility to breast and ovarian cancers; however, adequate research on the mutations identified in these genes has not been extensively reported for their deleterious effects. Changes in the folding pattern of RAD proteins play an important role in protein-protein interactions and also functions. Missense mutations identified from four cancer databases, cBioPortal, COSMIC, ClinVar, and gnomAD, cause aberrant conformations, which may lead to faulty DNA repair mechanisms. It is therefore necessary to evaluate the effects of pathogenic mutations of RAD proteins and their subsequent role in breast and ovarian cancers. In this study, we have used eight computational prediction servers to analyze pathogenic mutations and understand their effects on the protein structure and function. A total of 5122 missense mutations were identified from four different cancer databases, of which 1165 were predicted to be pathogenic using at least five pathogenicity prediction servers. These mutations were characterized as high-risk mutations based on their location in the conserved domains and subsequently subjected to structural stability characterization. The mutations included in the present study were selected from clinically relevant mutants in breast cancer pedigrees. Comparative folding patterns and intra-atomic interaction results showed alterations in the structural behavior of RAD proteins, specifically RAD51C triggered by mutations G125V and L138F and RAD51D triggered by mutations S207L and E233G.
Collapse
Affiliation(s)
- Aaliya Anwaar
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Ashok K. Varma
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| | - Reshita Baruah
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| |
Collapse
|
6
|
Lund Johansen E, Fribert Thusgaard C, Thomassen M, Eriksen Boonen S, Marie Jochumsen K. Germline Pathogenic Variants Associated with Ovarian Cancer: A Historical Overview. Gynecol Oncol Rep 2022; 44:101105. [DOI: 10.1016/j.gore.2022.101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
7
|
Luo H, Mipam T, Wu S, Xu C, Yi C, Zhao W, Chai Z, Chen X, Wu Z, Wang J, Wang J, Wang H, Zhong J, Cai X. DNA methylome of primary spermatocyte reveals epigenetic dysregulation associated with male sterility of cattleyak. Theriogenology 2022; 191:153-167. [PMID: 35988507 DOI: 10.1016/j.theriogenology.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
DNA cytosine methylation modification in the germline is of particular importance since it is a highly heritable epigenetic mark. Although cytosine methylation has been analyzed at the genome-scale for several mammalian species, our knowledge of DNA methylation patterns and the mechanisms underlying male hybrid sterility is still limited in domestic animals such as cattleyak. Here we for the first time show the genome-wide and single-base resolution landscape of methylcytosines (mC) in the primary spermatocyte (PSC) genome of yak with normal spermatogenesis and the inter-specific hybrid cattleyak with male infertility. A comparative investigation revealed that widespread differences are observed in the composition and patterning of DNA cytosine methylation between the two methylomes. Global CG or non-CG DNA methylation levels, as well as the number of mC sites, are increased in cattleyak compared to yak. Notably, the DNA methylome in cattleyak PSC exhibits promoter hypermethylation of meiosis-specific genes and piRNA pathway genes with respect to yak. Furthermore, major retrotransposonson classes are predominantly hypermethylated in cattleyak while those are fully hypomethylated in yak. KEGG pathway enrichment indicates Rap1 signaling and MAPK pathways may play potential roles in the spermatogenic arrest of cattleyak. Our present study not only provides valuable insights into distinct features of the cattleyak PSC methylome but also paves the way toward elucidating the complex, yet highly coordinated epigenetic modification during male germline development for inter-specific hybrid animals.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Selemenakis P, Sharma N, Uhrig ME, Katz J, Kwon Y, Sung P, Wiese C. RAD51AP1 and RAD54L Can Underpin Two Distinct RAD51-Dependent Routes of DNA Damage Repair via Homologous Recombination. Front Cell Dev Biol 2022; 10:866601. [PMID: 35652094 PMCID: PMC9149245 DOI: 10.3389/fcell.2022.866601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Homologous recombination DNA repair (HR) is a complex DNA damage repair pathway and an attractive target of inhibition in anti-cancer therapy. To help guide the development of efficient HR inhibitors, it is critical to identify compensatory HR sub-pathways. In this study, we describe a novel synthetic interaction between RAD51AP1 and RAD54L, two structurally unrelated proteins that function downstream of the RAD51 recombinase in HR. We show that concomitant deletion of RAD51AP1 and RAD54L further sensitizes human cancer cell lines to treatment with olaparib, a Poly (adenosine 5′-diphosphate-ribose) polymerase inhibitor, to the DNA inter-strand crosslinking agent mitomycin C, and to hydroxyurea, which induces DNA replication stress. We also show that the RAD54L paralog RAD54B compensates for RAD54L deficiency, although, surprisingly, less extensively than RAD51AP1. These results, for the first time, delineate RAD51AP1- and RAD54L-dependent sub-pathways and will guide the development of inhibitors that target HR stimulators of strand invasion.
Collapse
Affiliation(s)
- Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jeffrey Katz
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
9
|
Prakash R, Freyer L, Saiz N, Gavrilov S, Wang RQ, Romanienko PJ, Lacy E, Hadjantonakis AK, Jasin M. XRCC3 loss leads to midgestational embryonic lethality in mice. DNA Repair (Amst) 2021; 108:103227. [PMID: 34601382 DOI: 10.1016/j.dnarep.2021.103227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
RAD51 paralogs are key components of the homologous recombination (HR) machinery. Mouse mutants have been reported for four of the canonical RAD51 paralogs, and each of these mutants exhibits embryonic lethality, although at different gestational stages. However, the phenotype of mice deficient in the fifth RAD51 paralog, XRCC3, has not been reported. Here we report that Xrcc3 knockout mice exhibit midgestational lethality, with mild phenotypes beginning at about E8.25 but severe developmental abnormalities evident by E9.0-9.5. The most obvious phenotypes are small size and a failure of the embryo to turn to a fetal position. A knockin mutation at a key ATPase residue in the Walker A box results in embryonic lethality at a similar stage. Death of knockout mice can be delayed a few days for some embryos by homozygous or heterozygous Trp53 mutation, in keeping with an important role for XRCC3 in promoting genome integrity. Given that XRCC3 is a unique member of one of two RAD51 paralog complexes with RAD51C, these results demonstrate that both RAD51 paralog complexes are required for mouse development.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Regeneron Pharmaceuticals, Tarrytown, New York, NY, United States
| | - Laina Freyer
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Institut Pasteur, Paris, France
| | - Néstor Saiz
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Rockefeller University Press, New York, NY, United States
| | - Svetlana Gavrilov
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Bristol-Myers Squibb, New York, NY, United States
| | - Raymond Q Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States
| | - Peter J Romanienko
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Elizabeth Lacy
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States.
| |
Collapse
|
10
|
Maranon DG, Sharma N, Huang Y, Selemenakis P, Wang M, Altina N, Zhao W, Wiese C. NUCKS1 promotes RAD54 activity in homologous recombination DNA repair. J Cell Biol 2021; 219:152064. [PMID: 32876692 PMCID: PMC7659731 DOI: 10.1083/jcb.201911049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
NUCKS1 (nuclear ubiquitous casein kinase and cyclin-dependent kinase substrate 1) is a chromatin-associated, vertebrate-specific, and multifunctional protein with a role in DNA damage signaling and repair. Previously, we have shown that NUCKS1 helps maintain homologous recombination (HR) DNA repair in human cells and functions as a tumor suppressor in mice. However, the mechanisms by which NUCKS1 positively impacts these processes had remained unclear. Here, we show that NUCKS1 physically and functionally interacts with the DNA motor protein RAD54. Upon exposure of human cells to DNA-damaging agents, NUCKS1 controls the resolution of RAD54 foci. In unperturbed cells, NUCKS1 prevents RAD54's inappropriate engagement with RAD51AP1. In vitro, NUCKS1 stimulates the ATPase activity of RAD54 and the RAD51-RAD54-mediated strand invasion step during displacement loop formation. Taken together, our data demonstrate that the NUCKS1 protein is an important new regulator of the spatiotemporal events in HR.
Collapse
Affiliation(s)
- David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Platon Selemenakis
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| | - Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Noelia Altina
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
11
|
Yadav G, Vashisht M, Yadav V, Shyam R. Molecular Biomarkers for Early Detection and Prevention of Ovarian Cancer-A Gateway for Good Prognosis: A Narrative Review. Int J Prev Med 2020; 11:135. [PMID: 33088463 PMCID: PMC7554434 DOI: 10.4103/ijpvm.ijpvm_75_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
Gynecological cancers are one of the most lethal and deadliest cancers in the world. In India, the prevalence of ovarian cancer accounts for 2.5% to 3%. Despite the availability of improved treatment option along with improved technology, the survival rate of ovarian cancer in the early-stage and the advanced stage is poor. Therefore, due to the heterogeneity of ovarian cancer, to detect it at an early stage and to prevent further mortality turns out to be a big challenge. Researchers are still in the process to identify any single biomarker with good sensitivity and specificity. Various traditional and serum approaches to identify ovarian cancer have been successful in the early stages. The invention of molecular biomarkers such as the use of genomic profiling, DNA methylation, and other approaches have proven to be of higher sensitivity and specificity, which overall affects the prognosis of ovarian cancer. With the use of whole-genome analysis, the detection of possible location of critical tumor suppressor gene (TSGs) in the paired region of chromosomes has been identified, which are associated with BRCA1 and BRCA2 which further makes these novel molecular biomarkers as potential biomarkers. Moreover, studies are required to assess the combined use of traditional, molecular biomarkers that might be useful for enhanced sensitivity and specificity for early detection and prevention of ovarian cancer in early stages which will lead to reduced mortality and good prognosis.
Collapse
Affiliation(s)
- Geetanjali Yadav
- Department of Zoology, Baba Math Nath University, Rohtak, Haryana, India
| | - Minakshi Vashisht
- Department of Genetics, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Vipul Yadav
- Department of Public Health Dentistry, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Radhey Shyam
- Department of Public Health Dentistry, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
| |
Collapse
|
12
|
Knadler C, Rolfsmeier M, Vallejo A, Haseltine C. Characterization of an archaeal recombinase paralog that exhibits novel anti-recombinase activity. Mutat Res 2020; 821:111703. [PMID: 32416400 DOI: 10.1016/j.mrfmmm.2020.111703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 01/31/2023]
Abstract
The process of homologous recombination is heavily dependent on the RecA family of recombinases for repair of DNA double-strand breaks. These recombinases are responsible for identifying homologies and forming heteroduplex DNA between substrate ssDNA and dsDNA templates, activities that are modified by various accessory factors. In this work we describe the biochemical functions of the SsoRal2 recombinase paralog from the crenarchaeon Sulfolobus solfataricus. We found that the SsoRal2 protein is a DNA-independent ATPase that, unlike the other S. solfataricus paralogs, does not bind either ss- or dsDNA. Instead, SsoRal2 alters the ssDNA binding activity of the SsoRadA recombinase in conjunction with another paralog, SsoRal1. In the presence of SsoRal1, SsoRal2 has a modest effect on strand invasion but effectively abrogates strand exchange activity. Taken together, these results indicate that SsoRal2 assists in nucleoprotein filament modulation and control of strand exchange in S. solfataricus.
Collapse
Affiliation(s)
- Corey Knadler
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Michael Rolfsmeier
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Antonia Vallejo
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Cynthia Haseltine
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States.
| |
Collapse
|
13
|
ZmRAD51C is Essential for Double-Strand Break Repair and Homologous Recombination in Maize Meiosis. Int J Mol Sci 2019; 20:ijms20215513. [PMID: 31694261 PMCID: PMC6861927 DOI: 10.3390/ijms20215513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023] Open
Abstract
Radiation sensitive 51 (RAD51) recombinases play crucial roles in meiotic double-strand break (DSB) repair mediated by homologous recombination (HR) to ensure the correct segregation of homologous chromosomes. In this study, we identified the meiotic functions of ZmRAD51C, the maize homolog of Arabidopsis and rice RAD51C. The Zmrad51c mutants exhibited regular vegetative growth but complete sterility for both male and female inflorescence. However, the mutants showed hypersensitivity to DNA damage by mitomycin C. Cytological analysis indicated that homologous chromosome pairing and synapsis were rigorously inhibited, and meiotic chromosomes were often entangled from diplotene to metaphase I, leading to chromosome fragmentation at anaphase I. Immunofluorescence analysis showed that although the signals of the axial element absence of first division (AFD1) and asynaptic1 (ASY1) were normal, the assembly of the central element zipper1 (ZYP1) was severely disrupted. The DSB formation was normal in Zmrad51c meiocytes, symbolized by the regular occurrence of γH2AX signals. However, RAD51 and disrupted meiotic cDNA 1 (DMC1) signals were never detected at the early stage of prophase I in the mutant. Taken together, our results indicate that ZmRAD51C functions crucially for both meiotic DSB repair and homologous recombination in maize.
Collapse
|
14
|
Garcin EB, Gon S, Sullivan MR, Brunette GJ, Cian AD, Concordet JP, Giovannangeli C, Dirks WG, Eberth S, Bernstein KA, Prakash R, Jasin M, Modesti M. Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells. PLoS Genet 2019; 15:e1008355. [PMID: 31584931 PMCID: PMC6795472 DOI: 10.1371/journal.pgen.1008355] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/16/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.
Collapse
Affiliation(s)
- Edwige B. Garcin
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| | - Stéphanie Gon
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| | - Meghan R. Sullivan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Gregory J. Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Anne De Cian
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Jean-Paul Concordet
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Carine Giovannangeli
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Wilhelm G. Dirks
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kara A. Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Mauro Modesti
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| |
Collapse
|
15
|
Flaum N, Crosbie EJ, Edmondson RJ, Smith MJ, Evans DG. Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin Genet 2019; 97:54-63. [PMID: 31099061 PMCID: PMC7017781 DOI: 10.1111/cge.13566] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the fourth most common cause of cancer-related death in women in the developed world, and one of the most heritable cancers. One of the most significant risk factors for epithelial ovarian cancer (EOC) is a family history of breast and/or ovarian cancer. Combined risk factors can be used in models to stratify risk of EOC, and aid in decisions regarding risk-reduction strategies. Germline pathogenic variants in EOC susceptibility genes including those involved in homologous recombination and mismatch repair pathways are present in approximately 22% to 25% of EOC. These genes are associated with an estimated lifetime risk of EOC of 13% to 60% for BRCA1 variants and 10% to 25% for BRCA2 variants, with lower risks associated with remaining genes. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) thought to explain an additional 6.4% of the familial risk of ovarian cancer, with 34 susceptibility loci identified to date. However, an unknown proportion of the genetic component of EOC risk remains unexplained. This review comprises an overview of individual genes and SNPs suspected to contribute to risk of EOC, and discusses use of a polygenic risk score to predict individual cancer risk more accurately.
Collapse
Affiliation(s)
- Nicola Flaum
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Miriam J Smith
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dafydd G Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Prevention Breast Cancer Centre and Nightingale Breast Screening Centre, University Hospital of South Manchester, Manchester, UK.,Department of Cancer Genetics, The Christie NHS Foundation Trust, Manchester, UK.,Manchester Breast Centre, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Reilly NM, Yard BD, Pittman DL. Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers. Methods Mol Biol 2019; 1999:3-29. [PMID: 31127567 DOI: 10.1007/978-1-4939-9500-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Double-strand DNA breaks (DSBs) are generated by ionizing radiation and as intermediates during the processing of DNA, such as repair of interstrand cross-links and collapsed replication forks. These potentially deleterious DSBs are repaired primarily by the homologous recombination (HR) and nonhomologous end joining (NHEJ) DNA repair pathways. HR utilizes a homologous template to accurately restore damaged DNA, whereas NHEJ utilizes microhomology to join breaks in close proximity. The pathway available for DSB repair is dependent upon the cell cycle stage; for example, HR primarily functions during the S/G2 stages while NHEJ can repair DSBs at any cell cycle stage. Posttranslational modifications (PTMs) promote activity of specific pathways and subpathways through enzyme activation and precisely timed protein recruitment and degradation. This chapter provides an overview of PTMs occurring during DSB repair. In addition, clinical phenotypes associated with HR-defective cancers, such as mutational signatures used to predict response to poly(ADP-ribose) polymerase inhibitors, are discussed. Understanding these processes will provide insight into mechanisms of genome maintenance and likely identify targets and new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Nicole M Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUS, Candiolo, Italy
| | - Brian D Yard
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
17
|
Potugari BR, Engel JM, Onitilo AA. Metastatic Prostate Cancer in a RAD51C Mutation Carrier. Clin Med Res 2018; 16:69-72. [PMID: 30587560 PMCID: PMC6306144 DOI: 10.3121/cmr.2018.1411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/08/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
A man, aged 61 years, with a history of hypogonadism and family history of cancer experienced persistent urinary difficulties with no visible prostate abnormalities. Laboratory testing and diagnostic imaging revealed a primary lesion in the prostate with lymph node involvement and multiple bone metastases. Treatment with androgen-deprivation therapy, 17,20-lyase inhibition, and bisphosphonates for 7 months was unsuccessful in preventing disease progression, but second-line chemotherapy and continued androgen-deprivation therapy improved prostate specific antigen levels. During the patient's second treatment regimen, his daughter received a diagnosis of breast cancer. The patient's daughter underwent genetic testing for oncogenic mutations, and it was discovered that she carried a mutation in RAD51C, a gene encoding a protein involved in DNA repair and genomic maintenance. Subsequent genetic testing of the patient revealed mutation in RAD51C as well. For patients with metastatic prostate cancer who are unresponsive to standard treatment and who have a positive family history of cancer, genetic testing may be warranted to develop alternative treatment regimens for the patient and guide family discussions regarding cancer risk. Targeted agents like poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors may be a consideration in prostate cancer patients with DNA repair mutations and with refractory disease.
Collapse
Affiliation(s)
- Bindu R Potugari
- Department of Internal Medicine, Marshfield Clinic, Marshfield, Wisconsin, USA
| | - Jessica M Engel
- Department of Hematology/Oncology, Marshfield Clinic, Weston, Wisconsin, USA
| | - Adedayo A Onitilo
- Department of Hematology/Oncology, Marshfield Clinic, Weston, Wisconsin, USA
| |
Collapse
|
18
|
Ding YC, Adamson AW, Steele L, Bailis AM, John EM, Tomlinson G, Neuhausen SL. Discovery of mutations in homologous recombination genes in African-American women with breast cancer. Fam Cancer 2018; 17:187-195. [PMID: 28864920 PMCID: PMC5834346 DOI: 10.1007/s10689-017-0036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
African-American women are more likely to develop aggressive breast cancer at younger ages and experience poorer cancer prognoses than non-Hispanic Caucasians. Deficiency in repair of DNA by homologous recombination (HR) is associated with cancer development, suggesting that mutations in genes that affect this process may cause breast cancer. Inherited pathogenic mutations have been identified in genes involved in repairing DNA damage, but few studies have focused on African-Americans. We screened for germline mutations in seven HR repair pathway genes in DNA of 181 African-American women with breast cancer, evaluated the potential effects of identified missense variants using in silico prediction software, and functionally characterized a set of missense variants by yeast two-hybrid assays. We identified five likely-damaging variants, including two PALB2 truncating variants (Q151X and W1038X) and three novel missense variants (RAD51C C135R, and XRCC3 L297P and V337E) that abolish protein-protein interactions in yeast two-hybrid assays. Our results add to evidence that HR gene mutations account for a proportion of the genetic risk for developing breast cancer in African-Americans. Identifying additional mutations that diminish HR may provide a tool for better assessing breast cancer risk and improving approaches for targeted treatment.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Adam M Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Esther M John
- Cancer Prevention Institute of California, Fremont, CA, USA
- Department of Health Research & Policy (Epidemiology), and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gail Tomlinson
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
19
|
The RadA Recombinase and Paralogs of the Hyperthermophilic Archaeon Sulfolobus solfataricus. Methods Enzymol 2018; 600:255-284. [PMID: 29458762 DOI: 10.1016/bs.mie.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Repair of DNA double-strand breaks is a critical function shared by organisms in all three domains of life. The majority of mechanistic understanding of this process has come from characterization of bacterial and eukaryotic proteins, while significantly less is known about analogous activities in the third, archaeal domain. Despite the physical resemblance of archaea to bacteria, archaeal proteins involved in break repair are remarkably similar to those used by eukaryotes. Investigating the function of the archaeal version of these proteins is, in many cases, simpler than working with eukaryotic homologs owing to their robust nature and ease of purification. In this chapter, we describe methods for purification and activity analysis for the RadA recombinase and its paralogs from the hyperthermophilic acidophilic archaeon Sulfolobus solfataricus.
Collapse
|
20
|
Alayev A, Salamon RS, Manna S, Schwartz NS, Berman AY, Holz MK. Estrogen induces RAD51C expression and localization to sites of DNA damage. Cell Cycle 2016; 15:3230-3239. [PMID: 27753535 DOI: 10.1080/15384101.2016.1241927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Homologous recombination (HR) is a conserved process that maintains genome stability and cell survival by repairing DNA double-strand breaks (DSBs). The RAD51-related family of proteins is involved in repair of DSBs; consequently, deregulation of RAD51 causes chromosomal rearrangements and stimulates tumorigenesis. RAD51C has been identified as a potential tumor suppressor and a breast and ovarian cancer susceptibility gene. Recent studies have also implicated estrogen as a DNA-damaging agent that causes DSBs. We found that in ERα-positive breast cancer cells, estrogen transcriptionally regulates RAD51C expression in ERα-dependent mechanism. Moreover, estrogen induces RAD51C assembly into nuclear foci at DSBs, which is a precursor to RAD51 complex recruitment to the nucleus. Additionally, disruption of ERα signaling by either anti-estrogens or siRNA prevented estrogen induced upregulation of RAD51C. We have also found an association of a worse clinical outcome between RAD51C expression and ERα status of tumors. These findings provide insight into the mechanism of genomic instability in ERα-positive breast cancer and suggest that individuals with mutations in RAD51C that are exposed to estrogen would be more susceptible to accumulation of DNA damage, leading to cancer progression.
Collapse
Affiliation(s)
- Anya Alayev
- a Department of Biology , Yeshiva University , New York , NY , USA
| | - Rachel S Salamon
- a Department of Biology , Yeshiva University , New York , NY , USA
| | - Subrata Manna
- a Department of Biology , Yeshiva University , New York , NY , USA
| | - Naomi S Schwartz
- a Department of Biology , Yeshiva University , New York , NY , USA
| | - Adi Y Berman
- a Department of Biology , Yeshiva University , New York , NY , USA
| | - Marina K Holz
- a Department of Biology , Yeshiva University , New York , NY , USA.,b Department of Molecular Pharmacology and the Albert Einstein Cancer Center , Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
21
|
Martino J, Bernstein KA. The Shu complex is a conserved regulator of homologous recombination. FEMS Yeast Res 2016; 16:fow073. [PMID: 27589940 DOI: 10.1093/femsyr/fow073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) is an error-free DNA repair mechanism that maintains genome integrity by repairing double-strand breaks (DSBs). Defects in HR lead to genomic instability and are associated with cancer predisposition. A key step in HR is the formation of Rad51 nucleoprotein filaments which are responsible for the homology search and strand invasion steps that define HR. Recently, the budding yeast Shu complex has emerged as an important regulator of Rad51 along with the other Rad51 mediators including Rad52 and the Rad51 paralogs, Rad55-Rad57. The Shu complex is a heterotetramer consisting of two novel Rad51 paralogs, Psy3 and Csm2, along with Shu1 and a SWIM domain-containing protein, Shu2. Studies done primarily in yeast have provided evidence that the Shu complex regulates HR at several types of DNA DSBs (i.e. replication-associated and meiotic DSBs) and that its role in HR is highly conserved across eukaryotic lineages. This review highlights the main findings of these studies and discusses the proposed specific roles of the Shu complex in many aspects of recombination-mediated DNA repair.
Collapse
Affiliation(s)
- Julieta Martino
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Rad51c- and Trp53-double-mutant mouse model reveals common features of homologous recombination-deficient breast cancers. Oncogene 2016; 35:4601-10. [DOI: 10.1038/onc.2015.528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/14/2015] [Accepted: 12/18/2015] [Indexed: 01/15/2023]
|
23
|
Beirne JP, Irwin GW, McIntosh SA, Harley IJG, Harkin DP. The molecular and genetic basis of inherited cancer risk in gynaecology. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/tog.12213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- James P Beirne
- Northern Ireland Gynaecological Cancer Centre; Belfast City Hospital; Belfast Health and Social Care Trust; Belfast, Northern Ireland and Gynaecological Cancer Research Focus Group; Centre for Cancer Research and Cell Biology; Queens University; Belfast Northern Ireland
| | - Gareth W Irwin
- Northern Ireland Regional Breast Unit, Belfast City Hospital; Belfast Health and Social Care Trust; Belfast; Northern Ireland and Breast Cancer Research Focus Group; Centre for Cancer Research and Cell Biology; Queens University; Belfast Northern Ireland
| | - Stuart A McIntosh
- Northern Ireland Regional Breast Unit, Belfast City Hospital; Belfast Health and Social Care Trust; Belfast; Northern Ireland and Breast Cancer Research Focus Group; Centre for Cancer Research and Cell Biology; Queens University; Belfast Northern Ireland
| | - Ian JG Harley
- Northern Ireland Gynaecological Cancer Centre; Belfast City Hospital; Belfast Health and Social Care Trust; Belfast, Northern Ireland and Gynaecological Cancer Research Focus Group; Centre for Cancer Research and Cell Biology; Queens University; Belfast Northern Ireland
| | - D Paul Harkin
- Breast Cancer Research Focus Group; Centre for Cancer Research and Cell Biology; Queens University; Belfast Northern Ireland
| |
Collapse
|
24
|
Zhang B, Wang M, Tang D, Li Y, Xu M, Gu M, Cheng Z, Yu H. XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5713-25. [PMID: 26034131 DOI: 10.1093/jxb/erv253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
RAD51 paralogues play important roles in the assembly and stabilization of RAD51 nucleoprotein filaments, which promote homologous pairing and strand exchange reactions in organisms ranging from yeast to vertebrates. XRCC3, a RAD51 paralogue, has been characterized in budding yeast, mouse, and Arabidopsis. In the present study, XRCC3 in rice was identified and characterized. The rice xrcc3 mutant exhibited normal vegetative growth but complete male and female sterility. Cytological investigations revealed that homologous pairing and synapsis were severely disrupted in the mutant. Meiotic chromosomes were frequently entangled from diplotene to metaphase I, resulting in chromosome fragmentation at anaphase I. The immunostaining signals from γH2AX were regular, implying that double-strand break (DSB) formation was normal in xrcc3 meiocytes. However, COM1 was not detected on early prophase I chromosomes, suggesting that the DSB end-processing system was destroyed in the mutant. Moreover, abnormal chromosome localization of RAD51C, DMC1, ZEP1, ZIP4, and MER3 was observed in xrcc3. Taken together, the results suggest that XRCC3 plays critical roles in both DSB repair and homologous chromosome recombination during rice meiosis.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 2015; 7:a016600. [PMID: 25833843 DOI: 10.1101/cshperspect.a016600] [Citation(s) in RCA: 595] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defects with mutations in HR genes. The tumor suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and ovarian cancers. Other HR proteins, including PALB2 and RAD51 paralogs, have also been identified as tumor suppressors. This review summarizes recent findings on BRCA1, BRCA2, and associated proteins involved in human disease with an emphasis on their molecular roles and interactions.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
26
|
Pryadkina M, Lostal W, Bourg N, Charton K, Roudaut C, Hirsch ML, Richard I. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15009. [PMID: 26029720 PMCID: PMC4445010 DOI: 10.1038/mtm.2015.9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/12/2022]
Abstract
Recombinant adeno-associated virus (rAAV) is currently the best vector for gene delivery into the skeletal muscle. However, the 5-kb packaging size of this virus is a major obstacle for large gene transfer. This past decade, many different strategies were developed to circumvent this issue (concatemerization-splicing, overlapping vectors, hybrid dual or fragmented AAV). Loss of function mutations in the DYSF gene whose coding sequence is 6.2kb lead to progressive muscular dystrophies (LGMD2B: OMIM_253601; MM: OMIM_254130; DMAT: OMIM_606768). In this study, we compared large gene transfer techniques to deliver the DYSF gene into the skeletal muscle. After rAAV8s intramuscular injection into dysferlin deficient mice, we showed that the overlap strategy is the most effective approach to reconstitute a full-length messenger. After systemic administration, the level of dysferlin obtained on different muscles corresponded to 0.5- to 2-fold compared to the normal level. We further demonstrated that the overlapping vector set was efficient to correct the histopathology, resistance to eccentric contractions and whole body force in the dysferlin deficient mice. Altogether, these data indicate that using overlapping vectors could be a promising approach for a potential clinical treatment of dysferlinopathies.
Collapse
Affiliation(s)
- Marina Pryadkina
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - William Lostal
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Nathalie Bourg
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Karine Charton
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Carinne Roudaut
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina, USA ; Department of Ophthalmology, University of North Carolina , Chapel Hill, North Carolina, USA
| | - Isabelle Richard
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| |
Collapse
|
27
|
Tumiati M, Hemmes A, Uusivirta S, Koopal S, Kankainen M, Lehtonen E, Kuznetsov SG. Loss of Rad51c accelerates tumourigenesis in sebaceous glands of Trp53-mutant mice. J Pathol 2015; 235:136-46. [PMID: 25270124 DOI: 10.1002/path.4455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/29/2014] [Accepted: 09/21/2014] [Indexed: 11/11/2022]
Abstract
Germline mutations in RAD51C predispose to breast and ovarian cancers. However, the mechanism of RAD51C-mediated carcinogenesis is poorly understood. We previously reported a first-generation Rad51c-knock-out mouse model, in which a spontaneous loss of both Rad51c and Trp53 together resulted in a high incidence of sebaceous carcinomas, particularly in preputial glands. Here we describe a second-generation mouse model, in which Rad51c is deleted, alone or together with Trp53, in sebaceous glands, using Cre-mediated recombination. We demonstrate that deletion of Rad51c alone is not sufficient to drive tumourigenesis and may only cause keratinization of preputial sebocytes. However, deletion of Rad51c together with Trp53 leads to tumour development at around 6 months of age, compared to 11 months for single Trp53-mutant mice. Preputial glands of double-mutant mice are also characterized by increased levels of cell proliferation and DNA damage and form multiple hyperplasias, detectable as early as 2 months of age. Our results reveal a critical synergy between Rad51c and Trp53 in tumour progression and provide a predictable in vivo model system for studying mechanisms of Rad51c-mediated carcinogenesis.
Collapse
Affiliation(s)
- Manuela Tumiati
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
28
|
Lee PS, Fang J, Jessop L, Myers T, Raj P, Hu N, Wang C, Taylor PR, Wang J, Khan J, Jasin M, Chanock SJ. RAD51B Activity and Cell Cycle Regulation in Response to DNA Damage in Breast Cancer Cell Lines. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2014; 8:135-44. [PMID: 25368520 PMCID: PMC4213955 DOI: 10.4137/bcbcr.s17766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 12/12/2022]
Abstract
Common genetic variants mapping to two distinct regions of RAD51B, a paralog of RAD51, have been associated with breast cancer risk in genome-wide association studies (GWAS). RAD51B is a plausible candidate gene because of its established role in the homologous recombination (HR) process. How germline genetic variation in RAD51B confers susceptibility to breast cancer is not well understood. Here, we investigate the molecular function of RAD51B in breast cancer cell lines by knocking down RAD51B expression by small interfering RNA and treating cells with DNA-damaging agents, namely cisplatin, hydroxyurea, or methyl-methanesulfonate. Our results show that RAD51B-depleted breast cancer cells have increased sensitivity to DNA damage, reduced efficiency of HR, and altered cell cycle checkpoint responses. The influence of RAD51B on the cell cycle checkpoint is independent of its role in HR and further studies are required to determine whether these functions can explain the RAD51B breast cancer susceptibility alleles.
Collapse
Affiliation(s)
- Phoebe S Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Fang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lea Jessop
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Myers
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Preethi Raj
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianjun Wang
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Javed Khan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Wang Y, Xiao R, Wang H, Cheng Z, Li W, Zhu G, Wang Y, Ma H. The Arabidopsis RAD51 paralogs RAD51B, RAD51D and XRCC2 play partially redundant roles in somatic DNA repair and gene regulation. THE NEW PHYTOLOGIST 2014; 201:292-304. [PMID: 24102485 DOI: 10.1111/nph.12498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/14/2013] [Indexed: 05/12/2023]
Abstract
The eukaryotic RAD51 gene family has seven ancient paralogs conserved between plants and animals. Among these, RAD51, DMC1, RAD51C and XRCC3 are important for homologous recombination and/or DNA repair, whereas single mutants in RAD51B, RAD51D or XRCC2 show normal meiosis, and the lineages they represent diverged from each other evolutionarily later than the other four paralogs, suggesting possible functional redundancy. The function of Arabidopsis RAD51B, RAD51D and XRCC2 genes in mitotic DNA repair and meiosis was analyzed using molecular genetic, cytological and transcriptomic approaches. The relevant double and triple mutants displayed normal vegetative and reproductive growth. However, the triple mutant showed greater sensitivity than single or double mutants to DNA damage by bleomycin. RNA-Seq transcriptome analysis supported the idea that the triple mutant showed DNA damage similar to that caused by bleomycin. On bleomycin treatment, many genes were altered in the wild-type but not in the triple mutant, suggesting that the RAD51 paralogs have roles in the regulation of gene transcription, providing an explanation for the hypersensitive phenotype of the triple mutant to bleomycin. Our results provide strong evidence that Arabidopsis XRCC2, RAD51B and RAD51D have complex functions in somatic DNA repair and gene regulation, arguing for further studies of these ancient genes that have been maintained in both plants and animals during their long evolutionary history.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Rong Xiao
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Haifeng Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wuxing Li
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Genfeng Zhu
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
30
|
Tang D, Miao C, Li Y, Wang H, Liu X, Yu H, Cheng Z. OsRAD51C is essential for double-strand break repair in rice meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:167. [PMID: 24847337 PMCID: PMC4019848 DOI: 10.3389/fpls.2014.00167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/08/2014] [Indexed: 05/18/2023]
Abstract
RAD51C is one of the RAD51 paralogs that plays an important role in DNA double-strand break repair by homologous recombination. Here, we identified and characterized OsRAD51C, the rice homolog of human RAD51C. The Osrad51c mutant plant is normal in vegetative growth but exhibits complete male and female sterility. Cytological investigation revealed that homologous pairing and synapsis were severely disrupted. Massive chromosome fragmentation occurred during metaphase I in Osrad51c meiocytes, and was fully suppressed by the CRC1 mutation. Immunofluorescence analysis showed that OsRAD51C localized onto the chromosomes from leptotene to early pachytene during prophase I, and that normal loading of OsRAD51C was dependent on OsREC8, PAIR2, and PAIR3. Additionally, ZEP1 did not localize properly in Osrad51c, indicating that OsRAD51C is required for synaptonemal complex assembly. Our study also provided evidence in support of a functional divergence in RAD51C among organisms.
Collapse
Affiliation(s)
- Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chunbo Miao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaofei Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Zhukuan Cheng, State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang Distict, Beijing 100101, China e-mail:
| |
Collapse
|
31
|
The HsRAD51B-HsRAD51C stabilizes the HsRAD51 nucleoprotein filament. DNA Repair (Amst) 2013; 12:723-32. [PMID: 23810717 DOI: 10.1016/j.dnarep.2013.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/28/2013] [Accepted: 05/14/2013] [Indexed: 12/17/2022]
Abstract
There are six human RAD51 related proteins (HsRAD51 paralogs), HsRAD51B, HsRAD51C, HsRAD51D, HsXRCC2, HsXRCC3 and HsDMC1, that appear to enhance HsRAD51 mediated homologous recombinational (HR) repair of DNA double strand breaks (DSBs). Here we model the structures of HsRAD51, HsRAD51B and HsRAD51C and show similar domain orientations within a hypothetical nucleoprotein filament (NPF). We then demonstrate that HsRAD51B-HsRAD51C heterodimer forms stable complex on ssDNA and partially stabilizes the HsRAD51 NPF against the anti-recombinogenic activity of BLM. Moreover, HsRAD51B-HsRAD51C stimulates HsRAD51 mediated D-loop formation in the presence of RPA. However, HsRAD51B-HsRAD51C does not facilitate HsRAD51 nucleation on a RPA coated ssDNA. These results suggest that the HsRAD51B-HsRAD51C complex plays a role in stabilizing the HsRAD51 NPF during the presynaptic phase of HR, which appears downstream of BRCA2-mediated HsRAD51 NPF formation.
Collapse
|
32
|
BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair (Amst) 2013; 12:306-11. [PMID: 23384538 DOI: 10.1016/j.dnarep.2012.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/08/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022]
Abstract
Homologous recombination plays an important role in the high-fidelity repair of DNA double-strand breaks. A central player in this process, RAD51, polymerizes onto single-stranded DNA and searches for homology in a duplex donor DNA molecule, usually the sister chromatid. Homologous recombination is a highly regulated event in mammalian cells: some proteins have direct enzymatic functions, others mediate or overcome rate-limiting steps in the process, and still others signal cell cycle arrest to allow repair to occur. While the human BRCA2 protein has a clear role in delivering and loading RAD51 onto single-stranded DNA generated after resection of the DNA break, the mechanistic functions of the RAD51 paralogs remain unclear. In this study, we sought to determine the genetic interactions between BRCA2 and the RAD51 paralogs during DNA DSB repair. We utilized siRNA-mediated knockdown of these proteins in human cells to assess their impact on the DNA damage response. The results indicate that loss of BRCA2 alone imparts a more severe phenotype than the loss of any individual RAD51 paralog and that BRCA2 is epistatic to each of the four paralogs tested.
Collapse
|
33
|
Amunugama R, Fishel R. Homologous Recombination in Eukaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:155-206. [DOI: 10.1016/b978-0-12-387665-2.00007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Suwaki N, Klare K, Tarsounas M. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol 2011; 22:898-905. [PMID: 21821141 DOI: 10.1016/j.semcdb.2011.07.019] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 11/18/2022]
Abstract
Chromosomal double-strand breaks (DSBs) have the potential to permanently arrest cell cycle progression and endanger cell survival. They must therefore be efficiently repaired to preserve genome integrity and functionality. Homologous recombination (HR) provides an important error-free mechanism for DSB repair in mammalian cells. In addition to RAD51, the central recombinase activity in mammalian cells, a family of proteins known as the RAD51 paralogs and consisting of five proteins (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), play an essential role in the DNA repair reactions through HR. The RAD51 paralogs act to transduce the DNA damage signal to effector kinases and to promote break repair. However, their precise cellular functions are not fully elucidated. Here we discuss recent advances in our understanding of how these factors mediate checkpoint responses and act in the HR repair process. In addition, we highlight potential functional similarities with the BRCA2 tumour suppressor, through the recently reported links between RAD51 paralog deficiencies and tumorigenesis triggered by genome instability.
Collapse
Affiliation(s)
- Natsuko Suwaki
- The Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
35
|
Cortes DF, Sha W, Hower V, Blekherman G, Laubenbacher R, Akman S, Torti SV, Shulaev V. Differential gene expression in normal and transformed human mammary epithelial cells in response to oxidative stress. Free Radic Biol Med 2011; 50:1565-74. [PMID: 21397008 PMCID: PMC3119600 DOI: 10.1016/j.freeradbiomed.2011.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/15/2011] [Accepted: 03/01/2011] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays a key role in breast carcinogenesis. To investigate whether normal and malignant breast epithelial cells differ in their responses to oxidative stress, we examined the global gene expression profiles of three cell types, representing cancer progression from a normal to a malignant stage, under oxidative stress. Normal human mammary epithelial cells (HMECs), an immortalized cell line (HMLER-1), and a tumorigenic cell line (HMLER-5) were exposed to increased levels of reactive oxygen species (ROS) by treatment with glucose oxidase. Functional analysis of the metabolic pathways enriched with differentially expressed genes demonstrated that normal and malignant breast epithelial cells diverge substantially in their response to oxidative stress. Whereas normal cells exhibit the up-regulation of antioxidant mechanisms, cancer cells are unresponsive to the ROS insult. However, the gene expression response of normal HMECs under oxidative stress is comparable to that of the malignant cells under normal conditions, indicating that altered redox status is persistent in breast cancer cells, which makes them resistant to increased generation of ROS. We discuss some of the possible adaptation mechanisms of breast cancer cells under persistent oxidative stress that differentiate them from normal mammary epithelial cells as regards the response to acute oxidative stress.
Collapse
Affiliation(s)
- Diego F Cortes
- Virginia Bioinformatics Institute, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pelttari LM, Heikkinen T, Thompson D, Kallioniemi A, Schleutker J, Holli K, Blomqvist C, Aittomäki K, Bützow R, Nevanlinna H. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet 2011; 20:3278-88. [PMID: 21616938 DOI: 10.1093/hmg/ddr229] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A homozygous mutation in the RAD51C gene was recently found to cause Fanconi anemia-like disorder. Furthermore, six heterozygous deleterious RAD51C mutations were detected in German breast and ovarian cancer families. We screened 277 Finnish familial breast or ovarian cancer patients for RAD51C and identified two recurrent deleterious mutations (c.93delG and c.837+1G>A). These mutations were further genotyped in 491 familial breast cancer patients, 409 unselected ovarian cancer patients and two series of unselected breast cancer cases (884 from Helsinki and 686 from Tampere) and population controls (1279 and 807, respectively). The mutation frequency among all breast cancer cases was not different from the controls (4 out of 2239, 0.2% versus population controls 2 out of 2086, 0.1%, P= 0.7). In the Helsinki series, each mutation was found in four cases with personal or family history of ovarian cancer. No mutations were found among cases with familial breast cancer only, four out of the eight carriers did not have family history of breast cancer. The mutations associated with an increased risk of familial breast and ovarian cancer (OR: 13.59, 95% CI 1.89-97.6, P= 0.026 compared with controls), but especially with familial ovarian cancer in the absence of breast cancer (OR: 213, 95% CI 25.6-1769, P= 0.0002) and also with unselected ovarian cancer (OR: 6.31, 95% CI 1.15-34.6, P= 0.033), with a significantly higher mutation rate among the familial cases (two out of eight, 25%) than the unselected ovarian cancer cases (4 out of 409, 1%) (OR: 33.8, 95% CI 5.15-221, P= 0.005). These results suggest RAD51C as the first moderate-to-high risk susceptibility gene for ovarian cancer.
Collapse
Affiliation(s)
- Liisa M Pelttari
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, 00029 HUS, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pang Z, Yao L, Zhang J, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y. RAD51C germline mutations in Chinese women with familial breast cancer. Breast Cancer Res Treat 2011; 129:1019-20. [DOI: 10.1007/s10549-011-1574-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
38
|
Neal JA, Meek K. Choosing the right path: does DNA-PK help make the decision? Mutat Res 2011; 711:73-86. [PMID: 21376743 DOI: 10.1016/j.mrfmmm.2011.02.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 12/30/2022]
Abstract
DNA double-strand breaks are extremely harmful lesions that can lead to genomic instability and cell death if not properly repaired. There are at least three pathways that are responsible for repairing DNA double-strand breaks in mammalian cells: non-homologous end joining, homologous recombination and alternative non-homologous end joining. Here we review each of these three pathways with an emphasis on the role of the DNA-dependent protein kinase, a critical component of the non-homologous end joining pathway, in influencing which pathway is ultimately utilized for repair.
Collapse
Affiliation(s)
- Jessica A Neal
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | | |
Collapse
|
39
|
Somyajit K, Subramanya S, Nagaraju G. RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 2010; 31:2031-8. [PMID: 20952512 PMCID: PMC2994284 DOI: 10.1093/carcin/bgq210] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Germline mutations in many of the genes that are involved in homologous recombination (HR)-mediated DNA double-strand break repair (DSBR) are associated with various human genetic disorders and cancer. RAD51 and RAD51 paralogs are important for HR and in the maintenance of genome stability. Despite the identification of five RAD51 paralogs over a decade ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remains obscure. In addition to the known roles of RAD51C in early and late stages of HR, it also contributes to activation of the checkpoint kinase CHK2. One recent study identifies biallelic mutation in RAD51C leading to Fanconi anemia-like disorder. Whereas a second study reports monoallelic mutation in RAD51C associated with increased risk of breast and ovarian cancer. These reports show RAD51C is a cancer susceptibility gene. In this review, we focus on describing the functions of RAD51C in HR, DNA damage signaling and as a tumor suppressor with an emphasis on the new roles of RAD51C unveiled by these reports.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | | | |
Collapse
|
40
|
Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, Freund M, Lichtner P, Hartmann L, Schaal H, Ramser J, Honisch E, Kubisch C, Wichmann HE, Kast K, Deissler H, Engel C, Müller-Myhsok B, Neveling K, Kiechle M, Mathew CG, Schindler D, Schmutzler RK, Hanenberg H. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 2010; 42:410-4. [PMID: 20400964 DOI: 10.1038/ng.569] [Citation(s) in RCA: 523] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 03/22/2010] [Indexed: 12/31/2022]
Abstract
Germline mutations in a number of genes involved in the recombinational repair of DNA double-strand breaks are associated with predisposition to breast and ovarian cancer. RAD51C is essential for homologous recombination repair, and a biallelic missense mutation can cause a Fanconi anemia-like phenotype. In index cases from 1,100 German families with gynecological malignancies, we identified six monoallelic pathogenic mutations in RAD51C that confer an increased risk for breast and ovarian cancer. These include two frameshift-causing insertions, two splice-site mutations and two nonfunctional missense mutations. The mutations were found exclusively within 480 pedigrees with the occurrence of both breast and ovarian tumors (BC/OC; 1.3%) and not in 620 pedigrees with breast cancer only or in 2,912 healthy German controls. These results provide the first unambiguous evidence of highly penetrant mutations associated with human cancer in a RAD51 paralog and support the 'common disease, rare allele' hypothesis.
Collapse
Affiliation(s)
- Alfons Meindl
- Department of Obstetrics and Gynecology, Division of Tumor Genetics, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rolfsmeier ML, Haseltine CA. The Single-Stranded DNA Binding Protein of Sulfolobus solfataricus Acts in the Presynaptic Step of Homologous Recombination. J Mol Biol 2010; 397:31-45. [DOI: 10.1016/j.jmb.2010.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/13/2009] [Accepted: 01/05/2010] [Indexed: 12/31/2022]
|
42
|
Chittela RK, Sainis JK. Plant DNA recombinases: a long way to go. J Nucleic Acids 2009; 2010. [PMID: 20798837 PMCID: PMC2925088 DOI: 10.4061/2010/646109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/08/2009] [Indexed: 01/12/2023] Open
Abstract
DNA homologous recombination is fundamental process by which two homologous DNA molecules exchange the genetic information for the generation of genetic diversity and maintain the genomic integrity. DNA recombinases, a special group of proteins bind to single stranded DNA (ssDNA) nonspecifically and search the double stranded DNA (dsDNA) molecule for a stretch of DNA that is homologous with the bound ssDNA. Recombinase A (RecA) has been well characterized at genetic, biochemical, as well as structural level from prokaryotes. Two homologues of RecA called Rad51 and Dmc1 have been detected in yeast and higher eukaryotes and are known to mediate the homologous recombination in eukaryotes. The biochemistry and mechanism of action of recombinase is important in understanding the process of homologous recombination. Even though considerable progress has been made in yeast and human recombinases, understanding of the plant recombination and recombinases is at nascent stage. Since crop plants are subjected to different breeding techniques, it is important to know the homologous recombination process. This paper focuses on the properties of eukaryotes recombinases and recent developments in the field of plant recombinases Dmc1 and Rad51.
Collapse
Affiliation(s)
- Rajani Kant Chittela
- Plant Biochemistry Section, Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, India
| | | |
Collapse
|
43
|
Gildemeister OS, Sage JM, Knight KL. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C. J Biol Chem 2009; 284:31945-52. [PMID: 19783859 DOI: 10.1074/jbc.m109.024646] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.
Collapse
Affiliation(s)
- Otto S Gildemeister
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
44
|
Gruver AM, Yard BD, McInnes C, Rajesh C, Pittman DL. Functional characterization and identification of mouse Rad51d splice variants. BMC Mol Biol 2009; 10:27. [PMID: 19327148 PMCID: PMC2667185 DOI: 10.1186/1471-2199-10-27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 03/27/2009] [Indexed: 11/10/2022] Open
Abstract
Background The homologous recombination (HR) pathway is vital for maintaining genomic integrity through the restoration of double-stranded breaks and interstrand crosslinks. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) are essential for this process in vertebrates, and the RAD51D paralog is unique in that it participates in both HR repair and telomere maintenance. RAD51D is also known to directly interact with the RAD51C and XRCC2 proteins. Rad51d splice variants have been reported in mouse and human tissues, supportive of a role for alternative splicing in HR regulation. The present study evaluated the interaction of the Rad51d splice isoform products with RAD51C and XRCC2 and their expression patterns. Results Yeast-2-hybrid analysis was used to determine that the Mus musculus Rad51d splice variant product RAD51DΔ7b (deleted for residues 219 through 223) was capable of interacting with both RAD51C and XRCC2 and that RAD51D+int3 interacted with XRCC2. In addition, the linker region (residues 54 through 77) of RAD51D was identified as a region that potentially mediates binding with XRCC2. Cellular localization, detected by EGFP fusion proteins, demonstrated that each of the splice variant products tested was distributed throughout the cell similar to the full-length protein. However, none of the splice variants were capable of restoring resistance of Rad51d-deficient cell lines to mitomycin C. RT-PCR expression analysis revealed that Rad51dΔ3 (deleted for exon 3) and Rad51dΔ5 (deleted for exon 5)transcripts display tissue specific expression patterns with Rad51dΔ3 being detected in each tissue except ovary and Rad51dΔ5 not detected in mammary gland and testis. These expression studies also led to the identification of two additional Rad51d ubiquitously expressed transcripts, one deleted for both exon 9 and 10 and one deleted for only exon 10. Conclusion These results suggest Rad51d alternative splice variants potentially modulate mechanisms of HR by sequestering either RAD51C or XRCC2.
Collapse
Affiliation(s)
- Aaron M Gruver
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina Campus, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
45
|
Kirshner M, Rathavs M, Nizan A, Essers J, Kanaar R, Shiloh Y, Barzilai A. Analysis of the relationships between ATM and the Rad54 paralogs involved in homologous recombination repair. DNA Repair (Amst) 2009; 8:253-61. [DOI: 10.1016/j.dnarep.2008.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 01/22/2023]
|
46
|
Khoo KHP, Jolly HR, Able JA. The RAD51 gene family in bread wheat is highly conserved across eukaryotes, with RAD51A upregulated during early meiosis. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1267-1277. [PMID: 32688873 DOI: 10.1071/fp08203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/25/2008] [Indexed: 06/11/2023]
Abstract
The RADiation sensitive protein 51 (RAD51) recombinase is a eukaryotic homologue of the bacterial Recombinase A (RecA). It is required for homologous recombination of DNA during meiosis where it plays a role in processes such as homology searching and strand invasion. RAD51 is well conserved in eukaryotes with as many as four paralogues identified in vertebrates and some higher plants. Here we report the isolation and preliminary characterisation of four RAD51 gene family members in hexaploid (bread) wheat (Triticum aestivum L.). RAD51A1, RAD51A2 and RAD51D were located on chromosome group 7, and RAD51C was on chromosome group 2. Q-PCR gene expression profiling revealed that RAD51A1 was upregulated during meiosis with lower expression levels seen in mitotic tissue, and bioinformatics analysis demonstrated the evolutionary linkages of this gene family to other eukaryotic RAD51 sequences. Western blot analysis of heterologously expressed RAD51 from bread wheat has shown that it is detectable using anti-human RAD51 antibodies and that molecular modelling of the same protein revealed structural conservation when compared with yeast, human, Arabidopsis and maize RAD51A orthologues. This report has widened the knowledge base of this important protein family in plants, and highlighted the high level of structural conservation among RAD51 proteins from various species.
Collapse
Affiliation(s)
- Kelvin H P Khoo
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Hayley R Jolly
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
47
|
Park JY, Yoo HW, Kim BR, Park R, Choi SY, Kim Y. Identification of a novel human Rad51 variant that promotes DNA strand exchange. Nucleic Acids Res 2008; 36:3226-34. [PMID: 18417535 PMCID: PMC2425499 DOI: 10.1093/nar/gkn171] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rad51 plays a key role in the repair of DNA double-strand breaks through homologous recombination, which is the central process in the maintenance of genomic integrity. Five paralogs of the human Rad51 gene (hRad51) have been identified to date, including hRad51B, hRad51C, hRad51D, Xrcc2 and Xrcc3. In searches of additional hRad51 paralogs, we identified a novel hRad51 variant that lacked the sequence corresponding to exon 9 (hRad51-Δex9). The expected amino acid sequence of hRad51-Δex9 showed a frame-shift at codon 259, which resulted in a truncated C-terminus. RT-PCR analysis revealed that both hRad51 and hRad51-Δex9 were prominently expressed in the testis, but that there were subtle differences in tissue specificity. The hRad51-Δex9 protein was detected as a 31-kDa protein in the testis and localized at the nucleus. In addition, the hRad51-Δex9 protein showed a DNA-strand exchange activity comparable to that of hRad51. Taken together, these results indicate that hRad51-Δex9 promotes homologous pairing and DNA strand exchange in the nucleus, suggesting that alternative pathways in hRad51- or hRad51-Δex9-dependent manners exist for DNA recombination and repair.
Collapse
Affiliation(s)
- Jung-Young Park
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan, Jeollabuk-Do 570-749, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Rossi P, Lolicato F, Grimaldi P, Dolci S, Di Sauro A, Filipponi D, Geremia R. Transcriptome analysis of differentiating spermatogonia stimulated with kit ligand. Gene Expr Patterns 2007; 8:58-70. [PMID: 18036996 DOI: 10.1016/j.modgep.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/02/2007] [Accepted: 10/17/2007] [Indexed: 01/15/2023]
Abstract
Kit ligand (KL) is a survival factor and a mitogenic stimulus for differentiating spermatogonia. However, it is not known whether KL also plays a role in the differentiative events that lead to meiotic entry of these cells. We performed a wide genome analysis of difference in gene expression induced by treatment with KL of spermatogonia from 7-day-old mice, using gene chips spanning the whole mouse genome. The analysis revealed that the pattern of RNA expression induced by KL is compatible with the qualitative changes of the cell cycle that occur during the subsequent cell divisions in type A and B spermatogonia, i.e. the progressive lengthening of the S phase and the shortening of the G2/M transition. Moreover, KL up-regulates in differentiating spermatogonia the expression of early meiotic genes (for instance: Lhx8, Nek1, Rnf141, Xrcc3, Tpo1, Tbca, Xrcc2, Mesp1, Phf7, Rtel1), whereas it down-regulates typical spermatogonial markers (for instance: Pole, Ptgs2, Zfpm2, Egr2, Egr3, Gsk3b, Hnrpa1, Fst, Ptch2). Since KL modifies the expression of several genes known to be up-regulated or down-regulated in spermatogonia during the transition from the mitotic to the meiotic cell cycle, these results are consistent with a role of the KL/kit interaction in the induction of their meiotic differentiation.
Collapse
Affiliation(s)
- Pellegrino Rossi
- Dipartimento di Sanita' Pubblica e Biologia Cellulare, Universita' degli Studi di Roma Tor Vergata, via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Sheng D, Zhu S, Wei T, Ni J, Shen Y. The in vitro activity of a Rad55 homologue from Sulfolobus tokodaii, a candidate mediator in RadA-catalyzed homologous recombination. Extremophiles 2007; 12:147-57. [DOI: 10.1007/s00792-007-0113-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/17/2007] [Indexed: 11/29/2022]
|
50
|
Guipaud O, Guillonneau F, Labas V, Praseuth D, Rossier J, Lopez B, Bertrand P. An in vitro enzymatic assay coupled to proteomics analysis reveals a new DNA processing activity for Ewing sarcoma and TAF(II)68 proteins. Proteomics 2007; 6:5962-72. [PMID: 17106916 DOI: 10.1002/pmic.200600259] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on structural and functional similarities, translocated in liposarcoma/fusion (TLS/FUS) protein, Ewing sarcoma (EWS) protein and human TATA binding protein-associated factor (hTAF(II)68) have been grouped in the TLS-EWS-TAF(II)68 (TET) protein family. Translocations involving their genes lead to sarcomas. Polypyrimidine tract-binding protein-associated splicing factor (PSF), although not grouped in this family, presents structural and functional similarities with TET proteins and is involved in translocation leading to carcinoma. Beside their role in RNA metabolism, the precise cellular functions of these multifunctional proteins are not yet fully elucidated. We previously showed that both TLS/FUS and PSF display activities able to pair homologous DNA on membrane in an in vitro assay. In the present study, we address the question whether EWS and hTAF(II)68 also display pairing on membrane activities, and to a larger extent whether other proteins also exhibit such activity. We applied the pairing on membrane assay to 2-DE coupled to MS analysis for a global screening of DNA pairing on membrane activities. In addition to TLS/FUS and PSF, this test allowed us to identify EWS and hTAF(II)68, but no other proteins, indicating a feature specific to a protein family whose members share extensive structural similarities. This common activity suggests a role for TET proteins and PSF in genome plasticity control.
Collapse
Affiliation(s)
- Olivier Guipaud
- Commissariat à l'Energie Atomique, Département de Radiobiologie et Radiopathologie, Fontenay aux Roses, France
| | | | | | | | | | | | | |
Collapse
|