1
|
Jinks M, Howard M, Rizzi F, Goldup SM, Burnett AD, Wilson AJ. Direct Detection of Hydrogen Bonds in Supramolecular Systems Using 1H- 15N Heteronuclear Multiple Quantum Coherence Spectroscopy. J Am Chem Soc 2022; 144:23127-23133. [PMID: 36508201 PMCID: PMC9782782 DOI: 10.1021/jacs.2c10742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen-bonded supramolecular systems are usually characterized in solution through analysis of NMR data such as complexation-induced shifts and nuclear Overhauser effects (nOe). Routine direct detection of hydrogen bonding particularly in multicomponent mixtures, even with the aid of 2D NMR experiments for full assignment, is more challenging. We describe an elementary rapid 1H-15N HMQC NMR experiment which addresses these challenges without the need for complex pulse sequences. Under readily accessible conditions (243/263 K, 50 mM solutions) and natural 15N abundance, unambiguous assignment of 15N resonances facilitates direct detection of intra- and intermolecular hydrogen bonds in mechanically interlocked structures and quadruply hydrogen-bonded dimers─of dialkylaminoureidopyrimidinones, ureidopyrimidinones, and diamidonaphthyridines─in single or multicomponent mixtures to establish tautomeric configuration, conformation, and, to resolve self-sorted speciation.
Collapse
Affiliation(s)
- Michael
A. Jinks
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Mark Howard
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Federica Rizzi
- Department
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 2BJ, U.K.
| | - Stephen M. Goldup
- Department
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 2BJ, U.K.
| | - Andrew D. Burnett
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Andrew J. Wilson
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.,Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.,
| |
Collapse
|
2
|
Biedenbänder T, de Jesus V, Schmidt-Dengler M, Helm M, Corzilius B, Fürtig B. RNA modifications stabilize the tertiary structure of tRNAfMet by locally increasing conformational dynamics. Nucleic Acids Res 2022; 50:2334-2349. [PMID: 35137185 PMCID: PMC8887418 DOI: 10.1093/nar/gkac040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
A plethora of modified nucleotides extends the chemical and conformational space for natural occurring RNAs. tRNAs constitute the class of RNAs with the highest modification rate. The extensive modification modulates their overall stability, the fidelity and efficiency of translation. However, the impact of nucleotide modifications on the local structural dynamics is not well characterized. Here we show that the incorporation of the modified nucleotides in tRNAfMet from Escherichia coli leads to an increase in the local conformational dynamics, ultimately resulting in the stabilization of the overall tertiary structure. Through analysis of the local dynamics by NMR spectroscopic methods we find that, although the overall thermal stability of the tRNA is higher for the modified molecule, the conformational fluctuations on the local level are increased in comparison to an unmodified tRNA. In consequence, the melting of individual base pairs in the unmodified tRNA is determined by high entropic penalties compared to the modified. Further, we find that the modifications lead to a stabilization of long-range interactions harmonizing the stability of the tRNA's secondary and tertiary structure. Our results demonstrate that the increase in chemical space through introduction of modifications enables the population of otherwise inaccessible conformational substates.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main 60438, Germany.,Institute of Chemistry and Department Life, Light & Matter, University of Rostock, Rostock 18059, Germany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Martina Schmidt-Dengler
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Björn Corzilius
- Institute of Chemistry and Department Life, Light & Matter, University of Rostock, Rostock 18059, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
3
|
Schnieders R, Peter SA, Banijamali E, Riad M, Altincekic N, Bains JK, Ceylan B, Fürtig B, Grün JT, Hengesbach M, Hohmann KF, Hymon D, Knezic B, Oxenfarth A, Petzold K, Qureshi NS, Richter C, Schlagnitweit J, Schlundt A, Schwalbe H, Stirnal E, Sudakov A, Vögele J, Wacker A, Weigand JE, Wirmer-Bartoschek J, Wöhnert J. 1H, 13C and 15N chemical shift assignment of the stem-loop 5a from the 5'-UTR of SARS-CoV-2. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:203-211. [PMID: 33484403 PMCID: PMC7822759 DOI: 10.1007/s12104-021-10007-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 05/27/2023]
Abstract
The SARS-CoV-2 (SCoV-2) virus is the causative agent of the ongoing COVID-19 pandemic. It contains a positive sense single-stranded RNA genome and belongs to the genus of Betacoronaviruses. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are potential antiviral drug targets. Major parts of these sequences are highly conserved among Betacoronaviruses and contain cis-acting RNA elements that affect RNA translation and replication. The 31 nucleotide (nt) long highly conserved stem-loop 5a (SL5a) is located within the 5'-untranslated region (5'-UTR) important for viral replication. SL5a features a U-rich asymmetric bulge and is capped with a 5'-UUUCGU-3' hexaloop, which is also found in stem-loop 5b (SL5b). We herein report the extensive 1H, 13C and 15N resonance assignment of SL5a as basis for in-depth structural studies by solution NMR spectroscopy.
Collapse
Affiliation(s)
- Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Elnaz Banijamali
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden
| | - Magdalena Riad
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden
| | | | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Jennifer Vögele
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| |
Collapse
|
4
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
5
|
Oh KI, Kim J, Park CJ, Lee JH. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. Int J Mol Sci 2020; 21:E2673. [PMID: 32290457 PMCID: PMC7216225 DOI: 10.3390/ijms21082673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
The non-canonical structures of nucleic acids are essential for their diverse functions during various biological processes. These non-canonical structures can undergo conformational exchange among multiple structural states. Data on their dynamics can illustrate conformational transitions that play important roles in folding, stability, and biological function. Here, we discuss several examples of the non-canonical structures of DNA focusing on their dynamic characterization by NMR spectroscopy: (1) G-quadruplex structures and their complexes with target proteins; (2) i-motif structures and their complexes with proteins; (3) triplex structures; (4) left-handed Z-DNAs and their complexes with various Z-DNA binding proteins. This review provides insight into how the dynamic features of non-canonical DNA structures contribute to essential biological processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| | - Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| |
Collapse
|
6
|
Weickhmann AK, Keller H, Wurm JP, Strebitzer E, Juen MA, Kremser J, Weinberg Z, Kreutz C, Duchardt-Ferner E, Wöhnert J. The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Res 2019; 47:2654-2665. [PMID: 30590743 PMCID: PMC6411933 DOI: 10.1093/nar/gky1283] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022] Open
Abstract
S-adenosylmethionine (SAM) is a central metabolite since it is used as a methyl group donor in many different biochemical reactions. Many bacteria control intracellular SAM concentrations using riboswitch-based mechanisms. A number of structurally different riboswitch families specifically bind to SAM and mainly regulate the transcription or the translation of SAM-biosynthetic enzymes. In addition, a highly specific riboswitch class recognizes S-adenosylhomocysteine (SAH)—the product of SAM-dependent methyl group transfer reactions—and regulates enzymes responsible for SAH hydrolysis. High-resolution structures are available for many of these riboswitch classes and illustrate how they discriminate between the two structurally similar ligands SAM and SAH. The so-called SAM/SAH riboswitch class binds both ligands with similar affinities and is structurally not yet characterized. Here, we present a high-resolution nuclear magnetic resonance structure of a member of the SAM/SAH-riboswitch class in complex with SAH. Ligand binding induces pseudoknot formation and sequestration of the ribosome binding site. Thus, the SAM/SAH-riboswitches are translational ‘OFF’-switches. Our results establish a structural basis for the unusual bispecificity of this riboswitch class. In conjunction with genomic data our structure suggests that the SAM/SAH-riboswitches might be an evolutionary late invention and not a remnant of a primordial RNA-world as suggested for other riboswitches.
Collapse
Affiliation(s)
- A Katharina Weickhmann
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Heiko Keller
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Jan P Wurm
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Bavaria, Germany
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael A Juen
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Institute of Informatics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
7
|
Steger G, Riesner D. Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res 2019; 46:10563-10576. [PMID: 30304486 PMCID: PMC6237808 DOI: 10.1093/nar/gky903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Viroids were described 47 years ago as the smallest RNA molecules capable of infecting plants and autonomously self-replicating without an encoded protein. Work on viroids initiated the development of a number of innovative methods. Novel chromatographic and gelelectrophoretic methods were developed for the purification and characterization of viroids; these methods were later used in molecular biology, gene technology and in prion research. Theoretical and experimental studies of RNA folding demonstrated the general biological importance of metastable structures, and nuclear magnetic resonance spectroscopy of viroid RNA showed the partially covalent nature of hydrogen bonds in biological macromolecules. RNA biochemistry and molecular biology profited from viroid research, such as in the detection of RNA as template of DNA-dependent polymerases and in mechanisms of gene silencing. Viroids, the first circular RNA detected in nature, are important for studies on the much wider spectrum of circular RNAs and other non-coding RNAs.
Collapse
Affiliation(s)
- Gerhard Steger
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Jin Z, Du L, Zhang C, Sugiyama Y, Wang W, Palui G, Wang S, Mattoussi H. Modification of Poly(maleic anhydride)-Based Polymers with H2N–R Nucleophiles: Addition or Substitution Reaction? Bioconjug Chem 2019; 30:871-880. [DOI: 10.1021/acs.bioconjchem.9b00008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Liang Du
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Chengqi Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Yuya Sugiyama
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Sisi Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
9
|
Weickhmann AK, Keller H, Duchardt-Ferner E, Strebitzer E, Juen MA, Kremser J, Wurm JP, Kreutz C, Wöhnert J. NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:329-334. [PMID: 30051308 DOI: 10.1007/s12104-018-9834-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Riboswitches are structured RNA elements in the 5'-untranslated regions of bacterial mRNAs that are able to control the transcription or translation of these mRNAs in response to the specific binding of small molecules such as certain metabolites. Riboswitches that bind with high specificity to either S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) are widespread in bacteria. Based on differences in secondary structure and sequence these riboswitches can be grouped into a number of distinct classes. X-ray structures for riboswitch RNAs in complex with SAM or SAH established a structural basis for understanding ligand recognition and discrimination in many of these riboswitch classes. One class of riboswitches-the so-called SAM/SAH riboswitch class-binds SAM and SAH with similar affinity. However, this class of riboswitches is structurally not yet characterized and the structural basis for its unusual bispecificity is not established. In order to understand the ligand recognition mode that enables this riboswitch to bind both SAM and SAH with similar affinities, we are currently determining its structure in complex with SAH using NMR spectroscopy. Here, we present the NMR resonance assignment of the SAM/SAH binding riboswitch (env9b) in complex with SAH as a prerequisite for a solution NMR-based high-resolution structure determination.
Collapse
Affiliation(s)
- A Katharina Weickhmann
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Heiko Keller
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael A Juen
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jan Philip Wurm
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jens Wöhnert
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
10
|
Keller H, Weickhmann AK, Bock T, Wöhnert J. Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches. RNA (NEW YORK, N.Y.) 2018; 24:1390-1402. [PMID: 30006500 PMCID: PMC6140456 DOI: 10.1261/rna.067470.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/09/2018] [Indexed: 05/22/2023]
Abstract
In certain structural or functional contexts, RNA structures can contain protonated nucleotides. However, a direct role for stably protonated nucleotides in ligand binding and ligand recognition has not yet been demonstrated unambiguously. Previous X-ray structures of c-GAMP binding riboswitch aptamer domains in complex with their near-cognate ligand c-di-GMP suggest that an adenine of the riboswitch either forms two hydrogen bonds to a G nucleotide of the ligand in the unusual enol tautomeric form or that the adenine in its N1 protonated form binds the G nucleotide of the ligand in its canonical keto tautomeric state. By using NMR spectroscopy we demonstrate that the c-GAMP riboswitches bind c-di-GMP using a stably protonated adenine in the ligand binding pocket. Thereby, we provide novel insights into the putative biological functions of protonated nucleotides in RNA, which in this case influence the ligand selectivity in a riboswitch.
Collapse
Affiliation(s)
- Heiko Keller
- Institute for Molecular Biosciences and Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - A Katharina Weickhmann
- Institute for Molecular Biosciences and Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Thomas Bock
- Institute for Molecular Biosciences and Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences and Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Zhang K, Keane SC, Su Z, Irobalieva RN, Chen M, Van V, Sciandra CA, Marchant J, Heng X, Schmid MF, Case DA, Ludtke SJ, Summers MF, Chiu W. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure 2018; 26:490-498.e3. [PMID: 29398526 PMCID: PMC5842133 DOI: 10.1016/j.str.2018.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
Abstract
Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS]2; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs.
Collapse
Affiliation(s)
- Kaiming Zhang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Keane
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Zhaoming Su
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rossitza N Irobalieva
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Verna Van
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Carly A Sciandra
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA.
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Williams B, Zhao B, Tandon A, Ding F, Weeks KM, Zhang Q, Dokholyan NV. Structure modeling of RNA using sparse NMR constraints. Nucleic Acids Res 2018; 45:12638-12647. [PMID: 29165648 PMCID: PMC5728392 DOI: 10.1093/nar/gkx1058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
RNAs fold into distinct molecular conformations that are often essential for their functions. Accurate structure modeling of complex RNA motifs, including ubiquitous non-canonical base pairs and pseudoknots, remains a challenge. Here, we present an NMR-guided all-atom discrete molecular dynamics (DMD) platform, iFoldNMR, for rapid and accurate structure modeling of complex RNAs. We show that sparse distance constraints from imino resonances, which can be readily obtained from routine NMR experiments and easier to compile than laborious assignments of non-solvent-exchangeable protons, are sufficient to direct a DMD search for low-energy RNA conformers. Benchmarking on a set of RNAs with complex folds spanning up to 56 nucleotides in length yields structural models that recapitulate experimentally determined structures with all-heavy-atom RMSDs ranging from 2.4 to 6.5 Å. This platform represents an efficient approach for high-throughput RNA structure modeling and will facilitate analysis of diverse, newly discovered functional RNAs.
Collapse
Affiliation(s)
- Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bo Zhao
- Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arpit Tandon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Duchardt-Ferner E, Wöhnert J. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2017; 69:101-110. [PMID: 29032519 DOI: 10.1007/s10858-017-0140-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 05/24/2023]
Abstract
Hydrogen bonds involving the backbone phosphate groups occur with high frequency in functional RNA molecules. They are often found in well-characterized tertiary structural motifs presenting powerful probes for the rapid identification of these motifs for structure elucidation purposes. We have shown recently that stable hydrogen bonds to the phosphate backbone can in principle be detected by relatively simple NMR-experiments, providing the identity of both the donor hydrogen and the acceptor phosphorous within the same experiment (Duchardt-Ferner et al., Angew Chem Int Ed Engl 50:7927-7930, 2011). However, for imino and hydroxyl hydrogen bond donor groups rapidly exchanging with the solvent as well as amino groups broadened by conformational exchange experimental sensitivity is severely hampered by extensive line broadening. Here, we present improved methods for the rapid identification of hydrogen bonds to phosphate groups in nucleic acids by NMR. The introduction of the SOFAST technique into 1H,31P-correlation experiments as well as a BEST-HNP experiment exploiting 3hJN,P rather than 2hJH,P coupling constants enables the rapid and sensitive identification of these hydrogen bonds in RNA. The experiments are applicable for larger RNAs (up to ~ 100-nt), for donor groups influenced by conformational exchange processes such as amino groups and for hydrogen bonds with rather labile hydrogens such as 2'-OH groups as well as for moderate sample concentrations. Interestingly, the size of the through-hydrogen bond scalar coupling constants depends not only on the type of the donor group but also on the structural context. The largest coupling constants were measured for hydrogen bonds involving the imino groups of protonated cytosine nucleotides as donors.
Collapse
Affiliation(s)
- Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
14
|
Duchardt-Ferner E, Juen M, Kreutz C, Wöhnert J. NMR resonance assignments for the tetramethylrhodamine binding RNA aptamer 3 in complex with the ligand 5-carboxy-tetramethylrhodamine. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:29-34. [PMID: 27730489 DOI: 10.1007/s12104-016-9715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
RNA aptamers are used in a wide range of biotechnological or biomedical applications. In many cases the high resolution structures of these aptamers in their ligand-complexes have revealed fundamental aspects of RNA folding and RNA small molecule interactions. Fluorescent RNA-ligand complexes in particular find applications as optical sensors or as endogenous fluorescent tags for RNA tracking in vivo. Structures of RNA aptamers and aptamer ligand complexes constitute the starting point for rational function directed optimization approaches. Here, we present the NMR resonance assignment of an RNA aptamer binding to the fluorescent ligand tetramethylrhodamine (TMR) in complex with the ligand 5-carboxy-tetramethylrhodamine (5-TAMRA) as a starting point for a high-resolution structure determination using NMR spectroscopy in solution.
Collapse
Affiliation(s)
- Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| | - Michael Juen
- Centre for Molecular Biosciences (CMBI), Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Centre for Molecular Biosciences (CMBI), Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
15
|
Neuner S, Kreutz C, Micura R. The synthesis of 15N(7)-Hoogsteen face-labeled adenosine phosphoramidite for solid-phase RNA synthesis. MONATSHEFTE FUR CHEMIE 2016; 148:149-155. [PMID: 28127100 PMCID: PMC5225212 DOI: 10.1007/s00706-016-1882-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
ABSTRACT We have developed an efficient route for the synthesis of 15N(7)-labeled adenosine as phosphoramidite building block for site- and atom-specific incorporation into RNA by automated solid-phase synthesis. Such labeled RNA is required for the evaluation of selected non-canonical base pair interactions in folded RNA using NMR spectroscopic methods. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Sandro Neuner
- Institute of Organic Chemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck, Austria
| |
Collapse
|
16
|
Nasiri AH, Wurm JP, Immer C, Weickhmann AK, Wöhnert J. An intermolecular G-quadruplex as the basis for GTP recognition in the class V-GTP aptamer. RNA (NEW YORK, N.Y.) 2016; 22:1750-1759. [PMID: 27659052 PMCID: PMC5066627 DOI: 10.1261/rna.058909.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Many naturally occurring or artificially created RNAs are capable of binding to guanine or guanine derivatives with high affinity and selectivity. They bind their ligands using very different recognition modes involving a diverse set of hydrogen bonding and stacking interactions. Apparently, the potential structural diversity for guanine, guanosine, and guanine nucleotide binding motifs is far from being fully explored. Szostak and coworkers have derived a large set of different GTP-binding aptamer families differing widely in sequence, secondary structure, and ligand specificity. The so-called class V-GTP aptamer from this set binds GTP with very high affinity and has a complex secondary structure. Here we use solution NMR spectroscopy to demonstrate that the class V aptamer binds GTP through the formation of an intermolecular two-layered G-quadruplex structure that directly incorporates the ligand and folds only upon ligand addition. Ligand binding and G-quadruplex formation depend strongly on the identity of monovalent cations present with a clear preference for potassium ions. GTP binding through direct insertion into an intermolecular G-quadruplex is a previously unobserved structural variation for ligand-binding RNA motifs and rationalizes the previously observed specificity pattern of the class V aptamer for GTP analogs.
Collapse
Affiliation(s)
- Amir H Nasiri
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Jan Philip Wurm
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Carina Immer
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Anna Katharina Weickhmann
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
17
|
Wolter AC, Duchardt-Ferner E, Nasiri AH, Hantke K, Wunderlich CH, Kreutz C, Wöhnert J. NMR resonance assignments for the class II GTP binding RNA aptamer in complex with GTP. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:101-105. [PMID: 26373429 DOI: 10.1007/s12104-015-9646-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
The structures of RNA-aptamer-ligand complexes solved in the last two decades were instrumental in realizing the amazing potential of RNA for forming complex tertiary structures and for molecular recognition of small molecules. For GTP as ligand the sequences and secondary structures for multiple families of aptamers were reported which differ widely in their structural complexity, ligand affinity and ligand functional groups involved in RNA-binding. However, for only one of these families the structure of the GTP-RNA complex was solved. In order to gain further insights into the variability of ligand recognition modes we are currently determining the structure of another GTP-aptamer--the so-called class II aptamer--bound to GTP using NMR-spectroscopy in solution. As a prerequisite for a full structure determination, we report here (1)H, (13)C, (15)N and partial (31)P-NMR resonance assignments for the class II GTP-aptamer bound to GTP.
Collapse
Affiliation(s)
- Antje C Wolter
- Institute for Molecular Biosciences, Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Amir H Nasiri
- Institute for Molecular Biosciences, Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Katharina Hantke
- Institute for Molecular Biosciences, Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Christoph H Wunderlich
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
18
|
Abstract
Knowledge of RNA secondary structure is often sufficient to identify relationships between the structure of RNA and processing pathways, and the design of therapeutics. Nuclear magnetic resonance (NMR) can identify types of nucleotide base pairs and the sequence, thus limiting possible secondary structures. Because NMR experiments, like chemical mapping, are performed in solution, not in single crystals, experiments can be initiated as soon as the biomolecule is expressed and purified. This chapter summarizes NMR methods that permit rapid identification of RNA secondary structure, information that can be used as supplements to chemical mapping, and/or as preliminary steps required for 3D structure determination. The primary aim is to provide guidelines to enable a researcher with minimal knowledge of NMR to quickly extract secondary structure information from basic datasets. Instrumental and sample considerations that can maximize data quality are discussed along with some details for optimal data acquisition and processing parameters. Approaches for identifying base pair types in both unlabeled and isotopically labeled RNA are covered. Common problems, such as missing signals and overlaps, and approaches to address them are considered. Programs under development for merging NMR data with structure prediction algorithms are briefly discussed.
Collapse
Affiliation(s)
- Scott D Kennedy
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
19
|
Brovarets’ OO, Yurenko YP, Hovorun DM. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J Biomol Struct Dyn 2014; 33:1624-52. [DOI: 10.1080/07391102.2014.968623] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Brovarets’ OO, Yurenko YP, Hovorun DM. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J Biomol Struct Dyn 2013; 32:993-1022. [PMID: 23730732 DOI: 10.1080/07391102.2013.799439] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Wang Z, Xu J. A conditional random fields method for RNA sequence-structure relationship modeling and conformation sampling. ACTA ACUST UNITED AC 2011; 27:i102-10. [PMID: 21685058 PMCID: PMC3117333 DOI: 10.1093/bioinformatics/btr232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Accurate tertiary structures are very important for the functional study of non-coding RNA molecules. However, predicting RNA tertiary structures is extremely challenging, because of a large conformation space to be explored and lack of an accurate scoring function differentiating the native structure from decoys. The fragment-based conformation sampling method (e.g. FARNA) bears shortcomings that the limited size of a fragment library makes it infeasible to represent all possible conformations well. A recent dynamic Bayesian network method, BARNACLE, overcomes the issue of fragment assembly. In addition, neither of these methods makes use of sequence information in sampling conformations. Here, we present a new probabilistic graphical model, conditional random fields (CRFs), to model RNA sequence–structure relationship, which enables us to accurately estimate the probability of an RNA conformation from sequence. Coupled with a novel tree-guided sampling scheme, our CRF model is then applied to RNA conformation sampling. Experimental results show that our CRF method can model RNA sequence–structure relationship well and sequence information is important for conformation sampling. Our method, named as TreeFolder, generates a much higher percentage of native-like decoys than FARNA and BARNACLE, although we use the same simple energy function as BARNACLE. Contact:zywang@ttic.edu; j3xu@ttic.edu Supplementary Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhiyong Wang
- Toyota Technological Institute at Chicago, IL, USA.
| | | |
Collapse
|
22
|
Duchardt-Ferner E, Ferner J, Wöhnert J. Direkte Identifizierung von nichtkanonischen RNA-Strukturelementen durch den Nachweis von OH⋅⋅⋅OP-, NH⋅⋅⋅OP- und NH2⋅⋅⋅OP-Wasserstoffbrücken mit NMR-Spektroskopie in Lösung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Duchardt-Ferner E, Ferner J, Wöhnert J. Rapid identification of noncanonical RNA structure elements by direct detection of OH···O=P, NH···O=P, and NH2···O=P hydrogen bonds in solution NMR spectroscopy. Angew Chem Int Ed Engl 2011; 50:7927-30. [PMID: 21837618 DOI: 10.1002/anie.201101743] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/31/2011] [Indexed: 12/24/2022]
Affiliation(s)
- Elke Duchardt-Ferner
- Institute of Molecular Biosciences, Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-Universität Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
24
|
Wang YX, Zuo X, Wang J, Yu P, Butcher SE. Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. Methods 2010; 52:180-91. [PMID: 20554045 PMCID: PMC5370570 DOI: 10.1016/j.ymeth.2010.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Indexed: 12/21/2022] Open
Abstract
Among the greatest advances in biology today are the discoveries of various roles played by RNA in biological processes. However, despite significant advances in RNA structure determination using X-ray crystallography [1] and solution NMR [2-4], the number of bona fide RNA structures is very limited, in comparison with the growing number of known functional RNAs. This is because of great difficulty in growing crystals or/and obtaining phase information, and severe size constraints on structure determination by solution NMR spectroscopy. Clearly, there is an acute need for new methodologies for RNA structure determination. The prevailing approach for structure determination of RNA in solution is a "bottom-up" approach that was basically transplanted from the approach used for determining protein structures, despite vast differences in both structural features and chemical compositions between these two types of biomacromolecules. In this chapter, we describe a new method, which has been reported recently, for rapid global structure determination of RNAs using solution-based NMR spectroscopy and small-angle X-ray scattering. The method treats duplexes as major building blocks of RNA structures. By determining the global orientations of the duplexes and the overall shape, the global structure of an RNA can be constructed and further regularized using Xplor-NIH. The utility of the method was demonstrated in global structure determination of two RNAs, a 71-nt and 102-nt RNAs with an estimated backbone RMSD ∼3.0Å. The global structure opens door to high-resolution structure determination in solution.
Collapse
Affiliation(s)
- Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
25
|
Ferner J, Suhartono M, Breitung S, Jonker HRA, Hennig M, Wöhnert J, Göbel M, Schwalbe H. Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries. Chembiochem 2009; 10:1490-4. [PMID: 19444830 DOI: 10.1002/cbic.200900220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Target TAR by NMR: Tripeptides containing arginines as terminal residues and non-natural amino acids as central residues are good leads for drug design to target the HIV trans-activation response element (TAR). The structural characterization of the RNA-ligand complex by NMR spectroscopy reveals two specific binding sites that are located at bulge residue U23 and around the pyrimidine-stretch U40-C41-U42 directly adjacent to the bulge.
Collapse
Affiliation(s)
- Jan Ferner
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang J, Zuo X, Yu P, Xu H, Starich MR, Tiede DM, Shapiro BA, Schwieters CD, Wang YX. A method for helical RNA global structure determination in solution using small-angle x-ray scattering and NMR measurements. J Mol Biol 2009; 393:717-34. [PMID: 19666030 DOI: 10.1016/j.jmb.2009.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
We report a "top-down" method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small-angle X-ray scattering data, respectively, to determine global architectures of RNA molecules consisting of mostly A-form-like duplexes. The method is implemented in the G2G (from global measurement to global structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nt RNA using experimental data. The backbone root-mean-square deviation of the ensemble of the calculated global structures relative to the X-ray crystal structure is 3.0+/-0.3 A using the experimental data and is only 2.5+/-0.2 A for the three duplexes that were orientation restrained during the calculation. The global structure simplifies interpretation of multidimensional nuclear Overhauser spectra for high-resolution structure determination. The potential general application of the method for RNA structure determination is discussed.
Collapse
Affiliation(s)
- Jinbu Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick/NIH, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Farjon J, Boisbouvier J, Schanda P, Pardi A, Simorre JP, Brutscher B. Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 2009; 131:8571-7. [PMID: 19485365 DOI: 10.1021/ja901633y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Atomic-resolution information on the structure and dynamics of nucleic acids is essential for a better understanding of the mechanistic basis of many cellular processes. NMR spectroscopy is a powerful method for studying the structure and dynamics of nucleic acids; however, solution NMR studies are currently limited to relatively small nucleic acids at high concentrations. Thus, technological and methodological improvements that increase the experimental sensitivity and spectral resolution of NMR spectroscopy are required for studies of larger nucleic acids or protein-nucleic acid complexes. Here we introduce a series of imino-proton-detected NMR experiments that yield an over 2-fold increase in sensitivity compared to conventional pulse schemes. These methods can be applied to the detection of base pair interactions, RNA-ligand titration experiments, measurement of residual dipolar (15)N-(1)H couplings, and direct measurements of conformational transitions. These NMR experiments employ longitudinal spin relaxation enhancement techniques that have proven useful in protein NMR spectroscopy. The performance of these new experiments is demonstrated for a 10 kDa TAR-TAR*(GA) RNA kissing complex and a 26 kDa tRNA.
Collapse
Affiliation(s)
- Jonathan Farjon
- Institut de Biologie Structurale-Jean-Pierre Ebel, UMR5075 CNRS-CEA-UJF, 41, rue Jules Horowitz, 38027 Grenoble Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Duszczyk MM, Zanier K, Sattler M. A NMR strategy to unambiguously distinguish nucleic acid hairpin and duplex conformations applied to a Xist RNA A-repeat. Nucleic Acids Res 2008; 36:7068-77. [PMID: 18987004 PMCID: PMC2602763 DOI: 10.1093/nar/gkn776] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
All RNA sequences that fold into hairpins possess the intrinsic potential to form intermolecular duplexes because of their high self-complementarity. The thermodynamically more stable duplex conformation is favored under high salt conditions and at high RNA concentrations, posing a challenging problem for structural studies of small RNA hairpin conformations. We developed and applied a novel approach to unambiguously distinguish RNA hairpin and duplex conformations for the structural analysis of a Xist RNA A-repeat. Using a combination of a quantitative HNN-COSY experiment and an optimized double isotope-filtered NOESY experiment we could define the conformation of the 26-mer A-repeat RNA. In contrast to a previous secondary structure prediction of a double hairpin structure, the NMR data show that only the first predicted hairpin is formed, while the second predicted hairpin mediates dimerization of the A-repeat by duplex formation with a second A-repeat. The strategy employed here will be generally applicable to identify and quantify populations of hairpin and duplex conformations and to define RNA folding topology from inter- and intra-molecular base-pairing patterns.
Collapse
Affiliation(s)
- Malgorzata M Duszczyk
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Lane AN, Chaires JB, Gray RD, Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 2008; 36:5482-515. [PMID: 18718931 PMCID: PMC2553573 DOI: 10.1093/nar/gkn517] [Citation(s) in RCA: 575] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/26/2008] [Accepted: 07/29/2008] [Indexed: 12/30/2022] Open
Abstract
In this review, we give an overview of recent literature on the structure and stability of unimolecular G-rich quadruplex structures that are relevant to drug design and for in vivo function. The unifying theme in this review is energetics. The thermodynamic stability of quadruplexes has not been studied in the same detail as DNA and RNA duplexes, and there are important differences in the balance of forces between these classes of folded oligonucleotides. We provide an overview of the principles of stability and where available the experimental data that report on these principles. Significant gaps in the literature have been identified, that should be filled by a systematic study of well-defined quadruplexes not only to provide the basic understanding of stability both for design purposes, but also as it relates to in vivo occurrence of quadruplexes. Techniques that are commonly applied to the determination of the structure, stability and folding are discussed in terms of information content and limitations. Quadruplex structures fold and unfold comparatively slowly, and DNA unwinding events associated with transcription and replication may be operating far from equilibrium. The kinetics of formation and resolution of quadruplexes, and methodologies are discussed in the context of stability and their possible biological occurrence.
Collapse
Affiliation(s)
- Andrew N Lane
- Structural Biology Program, JG Brown Cancer Center, University of Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
30
|
Hart JM, Kennedy SD, Mathews DH, Turner DH. NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. J Am Chem Soc 2008; 130:10233-9. [PMID: 18613678 PMCID: PMC2646634 DOI: 10.1021/ja8026696] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Indexed: 12/30/2022]
Abstract
As the rate of functional RNA sequence discovery escalates, high-throughput techniques for reliable structural determination are becoming crucial for revealing the essential features of these RNAs in a timely fashion. Computational predictions of RNA secondary structure quickly generate reasonable models but suffer from several approximations, including overly simplified models and incomplete knowledge of significant interactions. Similar problems limit the accuracy of predictions for other self-folding polymers, including DNA and peptide nucleic acid (PNA). The work presented here demonstrates that incorporating unassigned data from simple nuclear magnetic resonance (NMR) experiments into a dynamic folding algorithm greatly reduces the potential folding space of a given RNA and therefore increases the confidence and accuracy of modeling. This procedure has been packaged into an NMR-assisted prediction of secondary structure (NAPSS) algorithm that can produce pseudoknotted as well as non-pseudoknotted secondary structures. The method reveals a probable pseudoknot in the part of the coding region of the R2 retrotransposon from Bombyx mori that orchestrates second-strand DNA cleavage during insertion into the genome.
Collapse
Affiliation(s)
- James M Hart
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
31
|
Li H, Cukier RI, Bu Y. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs. J Phys Chem B 2008; 112:9174-81. [PMID: 18598072 DOI: 10.1021/jp8030545] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of metal ion binding on the (2h) J(NN)-coupling and delta( (1)H)/Deltadelta( (15)N) chemical shifts of N-H...N H-bond units in internucleotide base pairs were explored by a combination of density functional theory calculations and molecular dynamics (MD) simulations. Results indicate that the NMR parameters vary considerably upon cation binding to the natural GC or AT base pairs, and thus can be used to identify the status of the base pairs, if cation-perturbed. The basic trend is that cation perturbation causes (2h) J(NN) to increase, Deltadelta( (15)N) to decrease, and delta( (1)H) to shift upfield for GC, and in the opposite directions for AT. The magnitudes of variation are closely related to the Lewis acidity of the metal ions. For both base pair series (M(z+)GC and M(z+)AT), these NMR parameters are linearly correlated among themselves. Their values depend strongly on the energy gaps (Delta(ELP-->sigma*)) and the second-order interaction energies ( E(2)) between the donor N lone pair (LP(N)) and the acceptor sigma* N-H localized NBO orbitals. In addition, the (2h) J NN changes are also sensitive to the amount of sigma charge transfer from LP(N) to sigma*(N-H) NBOs or from the purine to the pyrimidine moieties. The different trends are a consequence of the different H-bond patterns combined with the polarization effect of the metal ions in the cationized M(z+)AT series, M(z+) <-- A --> T, and the cationized GC series, M(z+) <-- G <-- C. The predicted cation-induced systematic trends of (2h) J(NN) and delta( (15)N, (1)H) in N-H...N H-bond units may provide a new approach to the determination of H-bond structure and strength in Watson-Crick base pairs, and provide an alternative probe of the heterogeneity of DNA sequences.
Collapse
Affiliation(s)
- Huifang Li
- The Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | | | | |
Collapse
|
32
|
Alkorta I, Elguero J, Denisov GS. A review with comprehensive data on experimental indirect scalar NMR spin-spin coupling constants across hydrogen bonds. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2008; 46:599-624. [PMID: 18357569 DOI: 10.1002/mrc.2209] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Scalar NMR spin-spin coupling constants across hydrogen bonds are fundamental in structural studies and as test grounds for theoretical calculations. Since they are scattered among many articles of different kinds, it seems useful to collect them in the most comprehensive way.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | | | | |
Collapse
|
33
|
Webba da Silva M. NMR methods for studying quadruplex nucleic acids. Methods 2008; 43:264-77. [PMID: 17967697 DOI: 10.1016/j.ymeth.2007.05.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy has traditionally played a central role in examining quadruplex structure, dynamics, and interactions. Here, an overview is given of the methods currently applied to structural, dynamics, thermodynamics, and kinetics studies of nucleic acid quadruplexes and associated cations.
Collapse
Affiliation(s)
- Mateus Webba da Silva
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, UK.
| |
Collapse
|
34
|
Vokacova Z, Sponer J, Sponer JE, Sychrovský V. Theoretical study of the scalar coupling constants across the noncovalent contacts in RNA base pairs: the cis- and trans-watson-crick/sugar edge base pair family. J Phys Chem B 2007; 111:10813-24. [PMID: 17713941 DOI: 10.1021/jp072822p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The structure and function of RNA molecules are substantially affected by non-Watson-Crick base pairs actively utilizing the 2'-hydroxyl group of ribose. Here we correlate scalar coupling constants across the noncovalent contacts calculated for the cis- and trans-WC/SE (Watson-Crick/sugar edge) RNA base pairs with the geometry of base to base and sugar to base hydrogen bond(s). 23 RNA base pairs from the 32 investigated were found in RNA crystal structures, and the calculated scalar couplings are therefore experimentally relevant with regard to the binding patterns occurring in this class of RNA base pairs. The intermolecular scalar couplings 1hJ(N,H), 2hJ(N,N), 2hJ(C,H), and 3hJ(C,N) were calculated for the N-H...N and N-H...O=C base to base contacts and various noncovalent links between the sugar hydroxyl and RNA base. Also, the intramolecular 1J(N,H) and 2J(C,H) couplings were calculated for the amino or imino group of RNA base and the ribose 2'-hydroxyl group involved in the noncovalent interactions. The calculated scalar couplings have implications for validation of local geometry, show specificity for the amino and imino groups of RNA base involved in the linkage, and can be used for discrimination between the cis- and trans-WC/SE base pairs. The RNA base pairs within an isosteric subclass of the WC/SE binding patterns can be further sorted according to the scalar couplings calculated across different local noncovalent contacts. The effect of explicit water inserted in the RNA base pairs on the magnitude of the scalar couplings was calculated, and the data for discrimination between the water-inserted and direct RNA base pairs are presented. The calculated NMR data are significant for structural interpretation of the scalar couplings in the noncanonical RNA base pairs.
Collapse
Affiliation(s)
- Zuzana Vokacova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Square 2, 166 10 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
35
|
Noeske J, Schwalbe H, Wöhnert J. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain. Nucleic Acids Res 2007; 35:5262-73. [PMID: 17686787 PMCID: PMC1976443 DOI: 10.1093/nar/gkm565] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Divalent cations are important in the folding and stabilization of complex RNA structures. The adenine-sensing riboswitch controls the expression of mRNAs for proteins involved in purine metabolism by directly sensing intracellular adenine levels. Adenine binds with high affinity and specificity to the ligand binding or aptamer domain of the adenine-sensing riboswitch. The X-ray structure of this domain in complex with adenine revealed an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base-pairing interactions and identified five binding sites for hexahydrated Mg2+-ions. Furthermore, a role for Mg2+-ions in the ligand-induced folding of this RNA was suggested. Here, we describe the interaction of divalent cations with the RNA-adenine complex in solution as studied by high-resolution NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping and intermolecular nuclear Overhauser effects (NOEs) indicate the presence of at least three binding sites for divalent cations. Two of them are similar to those in the X-ray structure. The third site, which is important for the folding of this RNA, has not been observed previously. The ligand-free state of the RNA is conformationally heterogeneous and contains base-pairing patterns detrimental to ligand binding in the absence of Mg2+, but becomes partially pre-organized for ligand binding in the presence of Mg2+. Compared to the highly similar guanine-sensing riboswitch, the folding pathway for the adenine-sensing riboswitch aptamer domain is more complex and the influence of Mg2+ is more pronounced.
Collapse
Affiliation(s)
- Jonas Noeske
- Department of Biochemistry, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA and Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Johann-Wolfgang-Goethe-University, 60438 Frankfurt/M., Germany
| | - Harald Schwalbe
- Department of Biochemistry, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA and Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Johann-Wolfgang-Goethe-University, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Department of Biochemistry, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA and Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Johann-Wolfgang-Goethe-University, 60438 Frankfurt/M., Germany
- *To whom correspondence should be addressed.++1 210 567 8781++1 210 567 6595
| |
Collapse
|
36
|
Abstract
Density functional theory calculations were used to examine the effect of H-bond cooperativity on the magnitude of the NMR chemical shifts and spin-spin coupling constants in a C4h-symmetric G-quartet and in structures consisting of six cyanamide monomers. These included two ring structures (a planar C6h-symmetric structure and a nonplanar S6-symmetric structure) and two linear chain structures (a fully optimized planar Cs-symmetric chain and a planar chain structure where all intra- and intermolecular parameters were constrained to be identical). The NMR parameters were computed for the G-quartet and cyanamide structures, as well as for shorter fragments derived from these assemblies without reoptimization. In the ring structures and the chain with identical monomers, the intra- and intermolecular geometries of the cyanamides were identical, thereby allowing the study of cooperative effects in the absence of geometry changes. The magnitude of the |1JNH| coupling, 1H and 15N chemical shifts of the H-bonding amino N-H group, and the |h2JNN| H-bond coupling increased, whereas the size of the |1JNH| coupling of the non-H-bonded amino N-H bonds of the first amino group in the chain, which are roughly perpendicular to the H-bonding network, decreased in magnitude when H-bonding monomers were progressively added to extending ring or chain structures. These effects are attributed to electron redistribution induced by the presence of the nearby H-bonding guanine or cyanamide molecules.
Collapse
Affiliation(s)
- Tanja van Mourik
- Chemistry Department, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | | |
Collapse
|
37
|
Bdour HM, Kao JLF, Taylor JS. Synthesis and characterization of a [3-15N]-labeled cis-syn thymine dimer-containing DNA duplex. J Org Chem 2006; 71:1640-6. [PMID: 16468818 PMCID: PMC2580729 DOI: 10.1021/jo0524167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cis-syn thymine dimers are the major photoproducts of DNA and are the principal cause of mutations induced by sunlight. To better understand the nature of base pairing with cis-syn thymine dimers, we have synthesized a decamer oligodeoxynucleotide (ODN) containing a cis-syn thymine dimer labeled at the N3 of both T's with 15N by two efficient routes from [3-15N]-thymidine phosphoramidite. In the postsynthetic irradiation route, an ODN containing an adjacent pair of [3-15N]-labeled T's was irradiated and the cis-syn dimer-containing ODN isolated by HPLC. In the mixed building block route, a mixture of cis-syn and trans-syn dimer-containing ODNs was synthesized from a mixture of [3-15N]-labeled thymine dimer phosphoramidites after which the cis-syn dimer-containing ODN was isolated by HPLC. The N3-nitrogen and imino proton signals of an (15)N-labeled thymine dimer-containing decamer duplex were assigned by 2D 1H-15N heterocorrelated HSQC NMR spectroscopy, and the 15N-1H coupling constant was found to be 1.8 Hz greater for the 5'-T than for the 3'-T. The larger coupling constant is indicative of weaker H-bonding that is consistent with the more distorted nature of the 5'-base pair found in solution state NMR and crystallographic structures.
Collapse
|
38
|
Joli F, Bouchemal N, Laigle A, Hartmann B, Hantz E. Solution structure of a purine rich hexaloop hairpin belonging to PGY/MDR1 mRNA and targeted by antisense oligonucleotides. Nucleic Acids Res 2006; 34:5740-51. [PMID: 17041234 PMCID: PMC1694020 DOI: 10.1093/nar/gkl617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A preferential target of antisense oligonucleotides directed against human PGY/MDR1 mRNA is a hairpin containing a stem with a G*U wobble pair, capped by the purine-rich 5'r(GGGAUG)3' hexaloop. This hairpin is studied by multidimensional NMR and restrained molecular dynamics, with special emphasis on the conformation of south sugars and non-standard phosphate linkages evidenced in both the stem and the loop. The hairpin is found to be highly structured. The G*U wobble pair, a strong counterion binding site, displays structural particularities that are characteristic of this type of mismatch. The upper part of the stem undergoes distortions that optimize its interactions with the beginning of the loop. The loop adopts a new fold in which the single-stranded GGGA purine tract is structured in A-like conformation stacked in continuity of the stem and displays an extensive hydrogen bonding surface for recognition. The remarkable hairpin stability results from classical inter- and intra-strand interactions reinforced by numerous hydrogen bonds involving unusual backbone conformations and ribose 2'-hydroxyl groups. Overall, this work emphasizes numerous features that account for the well-ordered structure of the whole hairpin and highlights the loop properties that facilitate interaction with antisense oligonucleotides.
Collapse
Affiliation(s)
- Flore Joli
- Laboratoire BioMoCeTi, CNRS UMR 7033UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
- Laboratoire de Biochimie Théorique, CNRS UPR 9080Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
- To whom correspondence should be addressed. Tel: +33 158415167; Fax: +33 158415026;
| | - Nadia Bouchemal
- Laboratoire BioMoCeTi, CNRS UMR 7033UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
| | - Alain Laigle
- Laboratoire BioMoCeTi, CNRS UMR 7033UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
| | - Brigitte Hartmann
- Laboratoire de Biochimie Théorique, CNRS UPR 9080Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
- To whom correspondence should be addressed. Tel: +33 158415167; Fax: +33 158415026;
| | - Edith Hantz
- Laboratoire BioMoCeTi, CNRS UMR 7033UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
| |
Collapse
|
39
|
Beckman RA, Moreland D, Louise-May S, Humblet C. RNA unrestrained molecular dynamics ensemble improves agreement with experimental NMR data compared to single static structure: a test case. J Comput Aided Mol Des 2006; 20:263-79. [PMID: 17006738 DOI: 10.1007/s10822-006-9049-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/05/2006] [Indexed: 11/30/2022]
Abstract
Nuclear magnetic resonance (NMR) provides structural and dynamic information reflecting an average, often non-linear, of multiple solution-state conformations. Therefore, a single optimized structure derived from NMR refinement may be misleading if the NMR data actually result from averaging of distinct conformers. It is hypothesized that a conformational ensemble generated by a valid molecular dynamics (MD) simulation should be able to improve agreement with the NMR data set compared with the single optimized starting structure. Using a model system consisting of two sequence-related self-complementary ribonucleotide octamers for which NMR data was available, 0.3 ns particle mesh Ewald MD simulations were performed in the AMBER force field in the presence of explicit water and counterions. Agreement of the averaged properties of the molecular dynamics ensembles with NMR data such as homonuclear proton nuclear Overhauser effect (NOE)-based distance constraints, homonuclear proton and heteronuclear (1)H-(31)P coupling constant (J) data, and qualitative NMR information on hydrogen bond occupancy, was systematically assessed. Despite the short length of the simulation, the ensemble generated from it agreed with the NMR experimental constraints more completely than the single optimized NMR structure. This suggests that short unrestrained MD simulations may be of utility in interpreting NMR results. As expected, a 0.5 ns simulation utilizing a distance dependent dielectric did not improve agreement with the NMR data, consistent with its inferior exploration of conformational space as assessed by 2-D RMSD plots. Thus, ability to rapidly improve agreement with NMR constraints may be a sensitive diagnostic of the MD methods themselves.
Collapse
Affiliation(s)
- Robert A Beckman
- Discovery Research Informatics, Computer-Assisted Drug Design, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.
| | | | | | | |
Collapse
|
40
|
van Mourik T, Dingley AJ. Characterization of the monovalent ion position and hydrogen-bond network in guanine quartets by DFT calculations of NMR parameters. Chemistry 2006; 11:6064-79. [PMID: 16052652 DOI: 10.1002/chem.200500198] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformational stability of G-quartets found in telomeric DNA quadruplex structures requires the coordination of monovalent ions. Here, an extensive Hartree-Fock and density functional theory analysis of the energetically favored position of Li+, Na+, and K+ ions is presented. The calculations show that at quartet-quartet distances observed in DNA quadruplex structures (3.3 A), the Li+ and Na+ ions favor positions of 0.55 and 0.95 A outside the plane of the G-quartet, respectively. The larger K+ ion prefers a central position between successive G-quartets. The energy barrier separating the minima in the quartet-ion-quartet model are much smaller for the Li+ and Na+ ions compared with the K+ ion; this suggests that K+ ions will not move as freely through the central channel of the DNA quadruplex. Spin-spin coupling constants and isotropic chemical shifts in G-quartets extracted from crystal structures of K+- and Na+-coordinated DNA quadruplexes were calculated with B3LYP/6-311G(d). The results show that the sizes of the trans-hydrogen-bond couplings are influenced primarily by the hydrogen bond geometry and only slightly by the presence of the ion. The calculations show that the R(N2N7) distance of the N2-H2...N7 hydrogen bond is characterized by strong correlations to both the chemical shifts of the donor group atoms and the (h2)J(N2N7) couplings. In contrast, weaker correlations between the (h3)J(N1C6') couplings and single geometric factors related to the N1-H1...O6=C6 hydrogen bond are observed. As such, deriving geometric information on the hydrogen bond through the use of trans-hydrogen-bond couplings and chemical shifts is more complex for the N1-H1...O6=C6 hydrogen bond than for the N2-H2...N7 moiety. The computed trans-hydrogen-bond couplings are shown to correlate with the experimentally determined couplings. However, the experimental values do not show such strong geometric dependencies.
Collapse
Affiliation(s)
- Tanja van Mourik
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | |
Collapse
|
41
|
Abstract
Three-dimensional structure determination of small proteins and oligonucleotides by solution NMR is established. With the development of novel NMR and labeling techniques, structure determination is now feasible for proteins with a molecular mass of up to approximately 100 kDa and RNAs of up to 35 kDa. Beyond these molecular masses special techniques and approaches are required for applying NMR as a multiprobe method for structural investigations of proteins and RNAs. It is the aim of this review to summarize the NMR techniques and approaches available to advance the molecular mass limit of NMR both for proteins (up to 1 MDa) and RNAs (up to 100 kDa). Physical pictures of the novel techniques, their experimental applications, as well as labeling and assignment strategies are discussed and accompanied by future perspectives.
Collapse
Affiliation(s)
- Andreas G Tzakos
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
42
|
Cornish PV, Giedroc DP, Hennig M. Dissecting non-canonical interactions in frameshift-stimulating mRNA pseudoknots. JOURNAL OF BIOMOLECULAR NMR 2006; 35:209-23. [PMID: 16865417 DOI: 10.1007/s10858-006-9033-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/08/2006] [Accepted: 05/17/2006] [Indexed: 05/11/2023]
Abstract
A variety of powerful NMR experiments have been introduced over the last few years that allow for the direct identification of different combinations of donor and acceptor atoms involved in hydrogen bonds in biomolecules. This ability to directly observe tertiary structural hydrogen bonds in solution tremendously facilitates structural studies of nucleic acids. We show here that an adiabatic HNN-COSY pulse scheme permits observation and measurement of J(N,N) couplings for nitrogen sites that are separated by up to 140 ppm in a single experiment at a proton resonance frequency of 500 MHz. Crucial hydrogen bond acceptor sites in nucleic acids, such as cytidine N3 nitrogens, can be unambiguously identified even in the absence of detectable H41 and H42 amino protons using a novel triple-resonance two-dimensional experiment, denoted H5(C5C4)N3. The unambiguous identification of amino nitrogen donor and aromatic nitrogen acceptor sites associated with both major groove as well as minor groove triple base pairs reveal the details of hydrogen bonding networks that stabilize the complex architecture of frameshift-stimulating mRNA pseudoknots. Another key tertiary interaction involving a 2'-OH hydroxyl proton that donates a hydrogen bond to an aromatic nitrogen acceptor in a cis Watson-Crick/sugar edge interaction can also be directly detected using a quantitative J(H,N) 1H,15N-HSQC experiment.
Collapse
Affiliation(s)
- Peter V Cornish
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
43
|
Latham MP, Brown DJ, McCallum SA, Pardi A. NMR methods for studying the structure and dynamics of RNA. Chembiochem 2006; 6:1492-505. [PMID: 16138301 DOI: 10.1002/cbic.200500123] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proper functioning of RNAs requires the formation of complex three-dimensional structures combined with the ability to rapidly interconvert between multiple functional states. This review covers recent advances in isotope-labeling strategies and NMR experimental approaches that have promise for facilitating solution structure determinations and dynamics studies of biologically active RNAs. Improved methods for the production of isotopically labeled RNAs combined with new multidimensional heteronuclear NMR experiments make it possible to dramatically reduce spectral crowding and simplify resonance assignments for RNAs. Several novel applications of experiments that directly detect hydrogen-bonding interactions are discussed. These studies demonstrate how NMR spectroscopy can be used to distinguish between possible secondary structures and identify mechanisms of ligand binding in RNAs. A variety of recently developed methods for measuring base and sugar residual dipolar couplings are described. NMR residual dipolar coupling techniques provide valuable data for determining the long-range structure and orientation of helical regions in RNAs. A number of studies are also presented where residual dipolar coupling constraints are used to determine the global structure and dynamics of RNAs. NMR relaxation data can be used to probe the dynamics of macromolecules in solution. The power dependence of transverse rotating-frame relaxation rates was used here to study dynamics in the minimal hammerhead ribozyme. Improved methods for isotopically labeling RNAs combined with new types of structural data obtained from a growing repertoire of NMR experiments are facilitating structural and dynamic studies of larger RNAs.
Collapse
Affiliation(s)
- Michael P Latham
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | | | |
Collapse
|
44
|
Zhao Q, Nagaswamy U, Lee H, Xia Y, Huang HC, Gao X, Fox GE. NMR structure and Mg2+ binding of an RNA segment that underlies the L7/L12 stalk in the E.coli 50S ribosomal subunit. Nucleic Acids Res 2005; 33:3145-53. [PMID: 15939932 PMCID: PMC1143578 DOI: 10.1093/nar/gki621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Helix 42 of Domain II of Escherichia coli 23S ribosomal RNA underlies the L7/L12 stalk in the ribosome and may be significant in positioning this feature relative to the rest of the 50S ribosomal subunit. Unlike the Haloarcula marismortui and Deinococcus radiodurans examples, the lower portion of helix 42 in E.coli contains two consecutive G*A oppositions with both adenines on the same side of the stem. Herein, the structure of an analog of positions 1037-1043 and 1112-1118 in the helix 42 region is reported. NMR spectra and structure calculations support a cis Watson-Crick/Watson-Crick (cis W.C.) G*A conformation for the tandem (G*A)2 in the analog and a minimally perturbed helical duplex stem. Mg2+ titration studies imply that the cis W.C. geometry of the tandem (G*A)2 probably allows O6 of G20 and N1 of A4 to coordinate with a Mg2+ ion as indicated by the largest chemical shift changes associated with the imino group of G20 and the H8 of G20 and A4. A cross-strand bridging Mg2+ coordination has also been found in a different sequence context in the crystal structure of H.marismortui 23S rRNA, and therefore it may be a rare but general motif in Mg2+ coordination.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Uma Nagaswamy
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Hunjoong Lee
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Youlin Xia
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Hung-Chung Huang
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
- To whom correspondence should be addressed. Tel: +1 713 743 8363; Fax: +1 713 743 8351;
| |
Collapse
|
45
|
Abstract
NMR spectroscopy is a powerful tool for studying proteins and nucleic acids in solution. This is illustrated by the fact that nearly half of all current RNA structures were determined by using NMR techniques. Information about the structure, dynamics, and interactions with other RNA molecules, proteins, ions, and small ligands can be obtained for RNA molecules up to 100 nucleotides. This review provides insight into the resonance assignment methods that are the first and crucial step of all NMR studies, into the determination of base-pair geometry, into the examination of local and global RNA conformation, and into the detection of interaction sites of RNA. Examples of NMR investigations of RNA are given by using several different RNA molecules to illustrate the information content obtainable by NMR spectroscopy and the applicability of NMR techniques to a wide range of biologically interesting RNA molecules.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
46
|
Löhr F, Yalloway GN, Mayhew SG, Rüterjans H. Cofactor-Apoprotein Hydrogen Bonding in Oxidized and Fully Reduced Flavodoxin Monitored by Trans-Hydrogen-Bond Scalar Couplings. Chembiochem 2004; 5:1523-34. [PMID: 15515086 DOI: 10.1002/cbic.200400171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hydrogen bonding plays a key role in the tight binding of the FMN cofactor and the regulation of its redox properties in flavodoxins. Hydrogen bonding interactions can be directly observed in solution by multidimensional heteronuclear NMR spectroscopy through the scalar couplings between donor and acceptor nuclei. Here we report on the detection of intermolecular trans-hydrogen-bond couplings ((h)J) between the flavin ring system and the backbone of Desulfovibrio vulgaris flavodoxin in the oxidized and the two-electron reduced states. For this purpose, experiments are adapted from pulse sequences previously applied to determining (h)J coupling constants in nucleic acid-base pairs and proteins. The resulting (h2)J(N,N), (h4)J(N,N), (h3)J(C,N), and (h1)J(H,N) couplings involve the (15)N(1), (13)C(2), and (15)N(3) nuclei of the pyrimidine moiety of FMN, whereas no such interactions are detectable for (13)C(4) and (15)N(5). Several long-range (15)N-(15)N, (13)C-(15)N, and (1)H-(15)N J-coupling constants within the flavin are obtained as "by-products". The magnitudes of both (h)J and regular J couplings are found to be dependent on the redox state. In general, good correlations between (h)J coupling constants and donor-group (1)H chemical shifts and also crystallographic donor-acceptor distances are observed.
Collapse
Affiliation(s)
- Frank Löhr
- Institut für Biophysikalische Chemie, Zentrum für Biomolekulare Magnetische Resonanz, Johann Wolfgang Goethe-Universität, Marie Curie-Strasse 9, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
47
|
Sotoya H, Matsugami A, Ikeda T, Ouhashi K, Uesugi S, Katahira M. Method for direct discrimination of intra- and intermolecular hydrogen bonds, and characterization of the G(:A):G(:A):G(:A):G heptad, with scalar couplings across hydrogen bonds. Nucleic Acids Res 2004; 32:5113-8. [PMID: 15452278 PMCID: PMC521662 DOI: 10.1093/nar/gkh849] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Discrimination of intra- and intermolecular hydrogen bonds in a symmetric multimer has not been accomplished yet, although such discrimination would provide a crucial basis for construction of the multimeric architecture of nucleic acids by NMR. We have developed a direct and unambiguous method for such discrimination involving the use of scalar couplings across hydrogen bonds. The method has been validated with a symmetric dimer of d(GGGCTTTTGGGC), for which the structure including both intra- and intermolecular hydrogen bonds was already reported. This has demonstrated that our method can clearly discriminate these two kinds of hydrogen bonds. Then, the method was applied to a symmetric dimer of d(GGAGGAGGAGGA) and has provided decisive information on its multimeric architecture. Additionally, the values for scalar couplings across hydrogen bonds for G:G and G:A base pairs in the G(:A):G(:A):G(:A):G heptad formed by d(GGAGGAGGAGGA) were determined for the first time. This determination has provided an insight into the nature of the heptad.
Collapse
Affiliation(s)
- Hidetsugu Sotoya
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Leppert J, Urbinati CR, Häfner S, Ohlenschläger O, Swanson MS, Görlach M, Ramachandran R. Identification of NH...N hydrogen bonds by magic angle spinning solid state NMR in a double-stranded RNA associated with myotonic dystrophy. Nucleic Acids Res 2004; 32:1177-83. [PMID: 14973225 PMCID: PMC373415 DOI: 10.1093/nar/gkh288] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA plays a central role in biological processes and exhibits a variety of secondary and tertiary structural features that are often stabilized via hydrogen bonds. The distance between the donor and acceptor nitrogen nuclei involved in NH...N hydrogen bonds in nucleic acid base pairs is typically in the range of 2.6-2.9 A. Here, we show for the first time that such spatial proximity between 15N nitrogen nuclei can be conveniently monitored via magic angle spinning solid state NMR on a uniformly 15N-labelled RNA. The presence of NH.N hydrogen bonds is reflected as cross-peaks between the donor and acceptor nitrogen nuclei in 2D 15N dipolar chemical shift correlation spectra. The RNA selected for this experimental study was a CUG repeat expansion implicated in the neuromuscular disease myotonic dystrophy. The results presented provide direct evidence that the CUG repeat expansion adopts a double-stranded conformation.
Collapse
Affiliation(s)
- Jörg Leppert
- Abteilung Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Häfner S, Ramachandran R, Zell R, Görlach M. The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 2004; 12:237-48. [PMID: 14962384 DOI: 10.1016/j.str.2004.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 10/24/2003] [Accepted: 10/24/2003] [Indexed: 11/25/2022]
Abstract
Stemloop D (SLD) of the 5' cloverleaf RNA is the cognate ligand of the coxsackievirus B3 (CVB3) 3C proteinase (3Cpro). Both are indispensable components of the viral replication initiation complex. SLD is a structurally autonomous subunit of the 5' cloverleaf. The SLD structure was solved by NMR spectroscopy to an rms deviation of 0.66 A (all heavy atoms). SLD contains a novel triple pyrimidine mismatch motif with a central Watson-Crick type C:U pair. SLD is capped by an apical uCACGg tetraloop adopting a structure highly similar to stable cUNCGg tetraloops. Binding of CVB3 3Cpro induces changes in NMR spectra for nucleotides adjacent to the triple pyrimidine mismatch and of the tetraloop implying them as sites of specific SLD:3Cpro interaction. The binding of 3Cpro to SLD requires the integrity of those structural elements, strongly suggesting that 3Cpro recognizes a structural motif instead of a specific sequence.
Collapse
Affiliation(s)
- Oliver Ohlenschläger
- Institut für Molekulare Biotechnologie eV, Bentenbergstr 100813, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Matsugami A, Kobayashi SI, Ouhashi K, Uesugi S, Yamamoto R, Taira K, Nishikawa S, Kumar PKR, Katahira M. Structural basis of the highly efficient trapping of the HIV Tat protein by an RNA aptamer. Structure 2003; 11:533-45. [PMID: 12737819 DOI: 10.1016/s0969-2126(03)00069-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An RNA aptamer containing two binding sites exhibits extremely high affinity to the HIV Tat protein. We have determined the structure of the aptamer complexed with two argininamide molecules. Two adjacent U:A:U base triples were formed, which widens the major groove to make space for the two argininamide molecules. The argininamide molecules bind to the G bases through hydrogen bonds. The binding is stabilized through stacking interactions. The structure of the aptamer complexed with a Tat-derived arginine-rich peptide was also characterized. It was suggested that the aptamer structure is similar for both complexes and that the aptamer interacts with two different arginine residues of the peptide simultaneously at the two binding sites, which could explain the high affinity to Tat.
Collapse
Affiliation(s)
- Akimasa Matsugami
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, 240-8501, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|