1
|
Xu X, Barriot R, Voisin B, Arrowsmith TJ, Usher B, Gutierrez C, Han X, Pagès C, Redder P, Blower TR, Neyrolles O, Genevaux P. Nucleotidyltransferase toxin MenT extends aminoacyl acceptor ends of serine tRNAs to control Mycobacterium tuberculosis growth. Nat Commun 2024; 15:9596. [PMID: 39505885 PMCID: PMC11541572 DOI: 10.1038/s41467-024-53931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Toxins of toxin-antitoxin systems use diverse mechanisms to inhibit bacterial growth. In this study, we characterize the translation inhibitor toxin MenT3 of Mycobacterium tuberculosis, the bacterium responsible for tuberculosis in humans. We show that MenT3 is a robust cytidine specific tRNA nucleotidyltransferase in vitro, capable of modifying the aminoacyl acceptor ends of most tRNA but with a marked preference for tRNASer, to which long stretches of cytidines are added. Furthermore, transcriptomic-wide analysis of MenT3 targets in M. tuberculosis identifies tRNASer as the sole target of MenT3 and reveals significant detoxification attempts by the essential CCA-adding enzyme PcnA in response to MenT3. Finally, under physiological conditions, only in the presence the native menAT3 operon, an active pool of endogenous MenT3 targeting tRNASer in M. tuberculosis is detected, likely reflecting the importance of MenT3 during infection.
Collapse
Affiliation(s)
- Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Roland Barriot
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bertille Voisin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xue Han
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Pagès
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
2
|
Pawłowski PH, Zielenkiewicz P. Determining the Identity Nucleotides and the Energy of Binding of tRNAs to Their Aminoacyl-tRNA Synthetases Using a Simple Logistic Model. Life (Basel) 2024; 14:1328. [PMID: 39459628 PMCID: PMC11509504 DOI: 10.3390/life14101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study showed that the predictor in logistic regression can be applied to estimating the Gibbs free energy of tRNAs' recognition of and binding to their aminoacyl-tRNA synthetases. Then, 24 linear logistic regression models predicting different classes of tRNAs loaded with a corresponding amino acid were trained in a machine learning classification method, reducing the misclassification error to zero. The models were based on minimal subsets of Boolean explanatory variables describing the favorite presence of nucleotides or nucleosides localized in the different parts of the tRNA. In 90% of cases, they agree with the components of the consensus strand in a class of tRNAs loaded by a given amino acid. According to the proposed theoretical model, the values of the free energy for the entry of the recognition state in the process of tRNA charging were obtained, and the inputs from identity nucleotides and the tRNA strand backbone were distinguished. Almost all the resulting models indicated leading anticodon tandems defining the first and second positions of the anticodon (positions 35 and 36 of the tRNA strand) and the small sets (up to six positions) of the other nucleotides as the natural identity nucleotides most influential in the free energy balance. The magnitude of their input to this energy depends on the position in the strand, favoring positions -1, 35, and 36. The role of position 34 is relatively smaller. These identity attributes may not always be fully arranged in a real single adaptor molecule but were comprehensively present in a given tRNA class. A detailed analysis of the resulting models showed that the absolute value of the energy of binding the tandem 35-36 decreases with the number of identity positions, as well as with the decreasing number of possible hydrogen bonds. On the other hand, in these conditions, the absolute value of the energy of binding of other identity nucleotides increases. All the models indicate that the nucleotide-independent energy of the repulsion tRNA backbone decreases with the number of identity nucleotides. It was also shown that the total free energy change in entering the recognition state increases with the amino acid mass, making this process less spontaneous, which may have an evolutionary reference.
Collapse
Affiliation(s)
- Piotr H. Pawłowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
3
|
Isaacson JR, Berg MD, Jagiello J, Yeung W, Charles B, Villén J, Brandl CJ, Moehring AJ. Mistranslating tRNA variants have anticodon- and sex-specific impacts on Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae230. [PMID: 39312260 PMCID: PMC11631534 DOI: 10.1093/g3journal/jkae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNASer variant that misincorporates serine at valine codons (V→S) and the other that misincorporates serine at threonine codons (T→S). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V→S variant extended embryonic, larval, and pupal development whereas the T→S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Since mistranslation disrupts cellular translation and proteostasis, we also tested the hypothesis that tRNA variants impact fly lifespan. Interestingly, mistranslating females experienced extended lifespan whereas mistranslating male lifespan was unaffected. Consistent with delayed neurodegeneration and beneficial effects of mistranslation, mistranslating flies from both sexes showed improved locomotion as they aged. The ability of mistranslating tRNA variants to have both positive and negative effects on fly physiology and behaviour has important implications for human health given the prevalence of tRNA variants in humans.
Collapse
Affiliation(s)
- Joshua R Isaacson
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - Matthew D Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jessica Jagiello
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - William Yeung
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - Brendan Charles
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher J Brandl
- Department of Biochemistry, Western University, London, Ontario, Canada, N6A 5B7
| | - Amanda J Moehring
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
4
|
Isaacson JR, Berg MD, Jagiello J, Yeung W, Charles B, Villén J, Brandl CJ, Moehring AJ. Mistranslating tRNA variants have anticodon- and sex-specific impacts on Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598535. [PMID: 38915589 PMCID: PMC11195196 DOI: 10.1101/2024.06.11.598535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNASer variant that misincorporates serine at valine codons (V→S) and the other that misincorporates serine at threonine codons (T→S). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V→S variant extended embryonic, larval, and pupal development whereas the T→S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Mistranslating females also experienced extended lifespan whereas mistranslating male lifespan was unaffected. In addition, mistranslating flies from both sexes showed improved locomotion as they aged, suggesting delayed neurodegeneration. Therefore, although mistranslation causes detrimental effects, we demonstrate that mistranslation also has positive effects on complex traits such as lifespan and locomotion. This has important implications for human health given the prevalence of tRNA variants in humans.
Collapse
Affiliation(s)
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | - Jessica Jagiello
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - William Yeung
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Brendan Charles
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
5
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Dulic M, Godinic-Mikulcic V, Kekez M, Evic V, Rokov-Plavec J. Protein-Protein Interactions of Seryl-tRNA Synthetases with Emphasis on Human Counterparts and Their Connection to Health and Disease. Life (Basel) 2024; 14:124. [PMID: 38255739 PMCID: PMC10817482 DOI: 10.3390/life14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Seryl-tRNA synthetases (SerRSs), members of the aminoacyl-tRNA synthetase family, interact with diverse proteins, enabling SerRSs to enhance their role in the translation of the genetic message or to perform alternative functions in cellular processes beyond translation. Atypical archaeal SerRS interacts with arginyl-tRNA synthetase and proteins of the ribosomal P-stalk to optimize translation through tRNA channeling. The complex between yeast SerRS and peroxin Pex21p provides a connection between translation and peroxisome function. The partnership between Arabidopsis SerRS and BEN1 indicates a link between translation and brassinosteroid metabolism and may be relevant in plant stress response mechanisms. In Drosophila, the unusual heterodimeric mitochondrial SerRS coordinates mitochondrial translation and replication via interaction with LON protease. Evolutionarily conserved interactions of yeast and human SerRSs with m3C32 tRNA methyltransferases indicate coordination between tRNA modification and aminoacylation in the cytosol and mitochondria. Human cytosolic SerRS is a cellular hub protein connecting translation to vascular development, angiogenesis, lipogenesis, and telomere maintenance. When translocated to the nucleus, SerRS acts as a master negative regulator of VEGFA gene expression. SerRS alone or in complex with YY1 and SIRT2 competes with activating transcription factors NFκB1 and c-Myc, resulting in balanced VEGFA expression important for proper vascular development and angiogenesis. In hypoxia, SerRS phosphorylation diminishes its binding to the VEGFA promoter, while the lack of nutrients triggers SerRS glycosylation, reducing its nuclear localization. Additionally, SerRS binds telomeric DNA and cooperates with the shelterin protein POT1 to regulate telomere length and cellular senescence. As an antitumor and antiangiogenic factor, human cytosolic SerRS appears to be a promising drug target and therapeutic agent for treating cancer, cardiovascular diseases, and possibly obesity and aging.
Collapse
Affiliation(s)
| | | | | | | | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.D.); (V.G.-M.); (M.K.); (V.E.)
| |
Collapse
|
7
|
Davey-Young J, Hasan F, Tennakoon R, Rozik P, Moore H, Hall P, Cozma E, Genereaux J, Hoffman KS, Chan PP, Lowe TM, Brandl CJ, O’Donoghue P. Mistranslating the genetic code with leucine in yeast and mammalian cells. RNA Biol 2024; 21:1-23. [PMID: 38629491 PMCID: PMC11028032 DOI: 10.1080/15476286.2024.2340297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.
Collapse
Affiliation(s)
- Josephine Davey-Young
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Henry Moore
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter Hall
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Patricia P. Chan
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Liu Z, Wang J, Shi Y, Yee BA, Terrey M, Zhang Q, Lee JC, Lin KI, Wang AHJ, Ackerman S, Yeo G, Cui H, Yang XL. Seryl-tRNA synthetase promotes translational readthrough by mRNA binding and involvement of the selenocysteine incorporation machinery. Nucleic Acids Res 2023; 51:10768-10781. [PMID: 37739431 PMCID: PMC10602924 DOI: 10.1093/nar/gkad773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.
Collapse
Affiliation(s)
- Ze Liu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin Wang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Shi
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biochemistry, School of Medicine, Nankai University, Tianjin, China
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Markus Terrey
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Qian Zhang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenq-Chang Lee
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taiwan
| | - Andrew H-J Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Haissi Cui
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Hoffman KS, Chung CZ, Mukai T, Krahn N, Jiang HK, Balasuriya N, O'Donoghue P, Söll D. Recoding UAG to selenocysteine in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2023; 29:1400-1410. [PMID: 37279998 PMCID: PMC10573291 DOI: 10.1261/rna.079658.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Christina Z Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Han-Kai Jiang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
10
|
Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition. Nat Commun 2023; 14:4794. [PMID: 37558671 PMCID: PMC10412605 DOI: 10.1038/s41467-023-40354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. To understand the molecular consequences of this interplay, we analyze the human mitochondrial serylation system, in which one synthetase charges two highly divergent mtRNASer isoacceptors. We present the cryo-EM structure of human mSerRS in complex with mtRNASer(UGA), and perform a structural and functional comparison with the mSerRS-mtRNASer(GCU) complex. We find that despite their common function, mtRNASer(UGA) and mtRNASer(GCU) show no constrain to converge on shared structural or sequence identity motifs for recognition by mSerRS. Instead, mSerRS evolved a bimodal readout mechanism, whereby a single protein surface recognizes degenerate identity features specific to each mtRNASer. Our results show how the mutational erosion of mtRNAs drove a remarkable innovation of intermolecular specificity rules, with multiple evolutionary pathways leading to functionally equivalent outcomes.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073, Göttingen, Germany.
| | - Marscha Hirschi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Lili K Doerfel
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Scripps Florida Research Institute at the University of Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
11
|
Mohler K, Moen JM, Rogulina S, Rinehart J. System-wide optimization of an orthogonal translation system with enhanced biological tolerance. Mol Syst Biol 2023; 19:e10591. [PMID: 37477096 PMCID: PMC10407733 DOI: 10.15252/msb.202110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Over the past two decades, synthetic biological systems have revolutionized the study of cellular physiology. The ability to site-specifically incorporate biologically relevant non-standard amino acids using orthogonal translation systems (OTSs) has proven particularly useful, providing unparalleled access to cellular mechanisms modulated by post-translational modifications, such as protein phosphorylation. However, despite significant advances in OTS design and function, the systems-level biology of OTS development and utilization remains underexplored. In this study, we employ a phosphoserine OTS (pSerOTS) as a model to systematically investigate global interactions between OTS components and the cellular environment, aiming to improve OTS performance. Based on this analysis, we design OTS variants to enhance orthogonality by minimizing host process interactions and reducing stress response activation. Our findings advance understanding of system-wide OTS:host interactions, enabling informed design practices that circumvent deleterious interactions with host physiology while improving OTS performance and stability. Furthermore, our study emphasizes the importance of establishing a pipeline for systematically profiling OTS:host interactions to enhance orthogonality and mitigate mechanisms underlying OTS-mediated host toxicity.
Collapse
Affiliation(s)
- Kyle Mohler
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI)University of California, San FranciscoSan FranciscoCAUSA
- 2QBI Coronavirus Research Group (QCRG)San FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Svetlana Rogulina
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jesse Rinehart
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| |
Collapse
|
12
|
Hasan F, Lant JT, O'Donoghue P. Perseverance of protein homeostasis despite mistranslation of glycine codons with alanine. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220029. [PMID: 36633285 PMCID: PMC9835607 DOI: 10.1098/rstb.2022.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 01/13/2023] Open
Abstract
By linking amino acids to their codon assignments, transfer RNAs (tRNAs) are essential for protein synthesis and translation fidelity. Some human tRNA variants cause amino acid mis-incorporation at a codon or set of codons. We recently found that a naturally occurring tRNASer variant decodes phenylalanine codons with serine and inhibits protein synthesis. Here, we hypothesized that human tRNA variants that misread glycine (Gly) codons with alanine (Ala) will also disrupt protein homeostasis. The A3G mutation occurs naturally in tRNAGly variants (tRNAGlyCCC, tRNAGlyGCC) and creates an alanyl-tRNA synthetase (AlaRS) identity element (G3 : U70). Because AlaRS does not recognize the anticodon, the human tRNAAlaAGC G35C (tRNAAlaACC) variant may function similarly to mis-incorporate Ala at Gly codons. The tRNAGly and tRNAAla variants had no effect on protein synthesis in mammalian cells under normal growth conditions; however, tRNAGlyGCC A3G depressed protein synthesis in the context of proteasome inhibition. Mass spectrometry confirmed Ala mistranslation at multiple Gly codons caused by the tRNAGlyGCC A3G and tRNAAlaAGC G35C mutants, and in some cases, we observed multiple mistranslation events in the same peptide. The data reveal mistranslation of Ala at Gly codons and defects in protein homeostasis generated by natural human tRNA variants that are tolerated under normal conditions. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
MESH Headings
- Humans
- Alanine/genetics
- Alanine/chemistry
- Alanine/metabolism
- Alanine-tRNA Ligase/chemistry
- Alanine-tRNA Ligase/genetics
- Alanine-tRNA Ligase/metabolism
- Codon/genetics
- Glycine/genetics
- Glycine/metabolism
- Protein Biosynthesis
- Proteostasis
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Ala/chemistry
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ala/metabolism
- RNA, Transfer, Gly/metabolism
Collapse
Affiliation(s)
- Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
13
|
Lant JT, Hasan F, Briggs J, Heinemann IU, O’Donoghue P. Genetic Interaction of tRNA-Dependent Mistranslation with Fused in Sarcoma Protein Aggregates. Genes (Basel) 2023; 14:518. [PMID: 36833445 PMCID: PMC9956149 DOI: 10.3390/genes14020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
High-fidelity protein synthesis requires properly aminoacylated transfer RNAs (tRNAs), yet diverse cell types, from bacteria to humans, show a surprising ability to tolerate errors in translation resulting from mutations in tRNAs, aminoacyl-tRNA synthetases, and other components of protein synthesis. Recently, we characterized a tRNASerAGA G35A mutant (tRNASerAAA) that occurs in 2% of the human population. The mutant tRNA decodes phenylalanine codons with serine, inhibits protein synthesis, and is defective in protein and aggregate degradation. Here, we used cell culture models to test our hypothesis that tRNA-dependent mistranslation will exacerbate toxicity caused by amyotrophic lateral sclerosis (ALS)-associated protein aggregation. Relative to wild-type tRNA, we found cells expressing tRNASerAAA showed slower but effective aggregation of the fused in sarcoma (FUS) protein. Despite reduced levels in mistranslating cells, wild-type FUS aggregates showed similar toxicity in mistranslating cells and normal cells. The aggregation kinetics of the ALS-causative FUS R521C variant were distinct and more toxic in mistranslating cells, where rapid FUS aggregation caused cells to rupture. We observed synthetic toxicity in neuroblastoma cells co-expressing the mistranslating tRNA mutant and the ALS-causative FUS R521C variant. Our data demonstrate that a naturally occurring human tRNA variant enhances cellular toxicity associated with a known causative allele for neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julia Briggs
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
14
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
15
|
Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA. Nat Commun 2022; 13:5100. [PMID: 36042193 PMCID: PMC9427863 DOI: 10.1038/s41467-022-32544-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human mitochondrial gene expression relies on the specific recognition and aminoacylation of mitochondrial tRNAs (mtRNAs) by nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs). Despite their essential role in cellular energy homeostasis, strong mutation pressure and genetic drift have led to an unparalleled sequence erosion of animal mtRNAs. The structural and functional consequences of this erosion are not understood. Here, we present cryo-EM structures of the human mitochondrial seryl-tRNA synthetase (mSerRS) in complex with mtRNASer(GCU). These structures reveal a unique mechanism of substrate recognition and aminoacylation. The mtRNASer(GCU) is highly degenerated, having lost the entire D-arm, tertiary core, and stable L-shaped fold that define canonical tRNAs. Instead, mtRNASer(GCU) evolved unique structural innovations, including a radically altered T-arm topology that serves as critical identity determinant in an unusual shape-selective readout mechanism by mSerRS. Our results provide a molecular framework to understand the principles of mito-nuclear co-evolution and specialized mechanisms of tRNA recognition in mammalian mitochondrial gene expression.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Marscha Hirschi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Lili K Doerfel
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Scripps Florida Research Institute at the University of Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
16
|
Rozik P, Szabla R, Lant JT, Kiri R, Wright DE, Junop M, O'Donoghue P. A novel fluorescent reporter sensitive to serine mis-incorporation. RNA Biol 2022; 19:221-233. [PMID: 35167412 PMCID: PMC8855846 DOI: 10.1080/15476286.2021.2015173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
High-fidelity translation was considered a requirement for living cells. The frozen accident theory suggested that any deviation from the standard genetic code should result in the production of so much mis-made and non-functional proteins that cells cannot remain viable. Studies in bacterial, yeast, and mammalian cells show that significant levels of mistranslation (1–10% per codon) can be tolerated or even beneficial under conditions of oxidative stress. Single tRNA mutants, which occur naturally in the human population, can lead to amino acid mis-incorporation at a codon or set of codons. The rate or level of mistranslation can be difficult or impossible to measure in live cells. We developed a novel red fluorescent protein reporter that is sensitive to serine (Ser) mis-incorporation at proline (Pro) codons. The mCherry Ser151Pro mutant is efficiently produced in Escherichia coli but non-fluorescent. We demonstrated in cells and with purified mCherry protein that the fluorescence of mCherry Ser151Pro is rescued by two different tRNASer gene variants that were mutated to contain the Pro (UGG) anticodon. Ser mis-incorporation was confirmed by mass spectrometry. Remarkably, E. coli tolerated mistranslation rates of ~10% per codon with negligible reduction in growth rate. Conformational sampling simulations revealed that the Ser151Pro mutant leads to significant changes in the conformational freedom of the chromophore precursor, which is indicative of a defect in chromophore maturation. Together our data suggest that the mCherry Ser151 mutants may be used to report Ser mis-incorporation at multiple other codons, further expanding the ability to measure mistranslation in living cells.
Collapse
Affiliation(s)
- Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Robert Szabla
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Jeremy T Lant
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rashmi Kiri
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - David E Wright
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Murray Junop
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int J Mol Sci 2021; 22:7258. [PMID: 34298875 PMCID: PMC8307462 DOI: 10.3390/ijms22147258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.
Collapse
Affiliation(s)
- Mark W. Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| | | | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| |
Collapse
|
18
|
Bezerra AR, Oliveira C, Correia I, Guimarães AR, Sousa G, Carvalho MJ, Moura G, Santos MAS. The role of non-standard translation in Candida albicans pathogenesis. FEMS Yeast Res 2021; 21:6280978. [PMID: 34021562 PMCID: PMC8178436 DOI: 10.1093/femsyr/foab032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans typically resides in the human gastrointestinal tract and mucosal membranes as a commensal organism. To adapt and cope with the host immune system, it has evolved a variety of mechanisms of adaptation such as stress-induced mutagenesis and epigenetic regulation. Niche-specific patterns of gene expression also allow the fungus to fine-tune its response to specific microenvironments in the host and switch from harmless commensal to invasive pathogen. Proteome plasticity produced by CUG ambiguity, on the other hand is emerging as a new layer of complexity in C. albicans adaptation, pathogenesis, and drug resistance. Such proteome plasticity is the result of a genetic code alteration where the leucine CUG codon is translated mainly as serine (97%), but maintains some level of leucine (3%) assignment. In this review, we dissect the link between C. albicans non-standard CUG translation, proteome plasticity, host adaptation and pathogenesis. We discuss published work showing how this pathogen uses the fidelity of protein synthesis to spawn novel virulence traits.
Collapse
Affiliation(s)
- Ana Rita Bezerra
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Oliveira
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês Correia
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Rita Guimarães
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gonçalo Sousa
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria João Carvalho
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gabriela Moura
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A S Santos
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Ayan GB, Park HJ, Gallie J. The birth of a bacterial tRNA gene by large-scale, tandem duplication events. eLife 2020; 9:57947. [PMID: 33124983 PMCID: PMC7661048 DOI: 10.7554/elife.57947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Organisms differ in the types and numbers of tRNA genes that they carry. While the evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly compensated by large-scale (45–290 kb) duplications in the chromosome. Each duplication encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA-Ser(UGA) in the mature tRNA pool. We postulate that tRNA-Ser(CGA) elimination increases the translational demand for tRNA-Ser(UGA), a pressure relieved by increasing serTGA copy number. This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies within genomes.
Collapse
Affiliation(s)
- Gökçe B Ayan
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
20
|
Cai Y, Usher B, Gutierrez C, Tolcan A, Mansour M, Fineran PC, Condon C, Neyrolles O, Genevaux P, Blower TR. A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems. SCIENCE ADVANCES 2020; 6:eabb6651. [PMID: 32923609 PMCID: PMC7450476 DOI: 10.1126/sciadv.abb6651] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 05/12/2023]
Abstract
Toxin-antitoxin systems are widespread stress-responsive elements, many of whose functions remain largely unknown. Here, we characterize the four DUF1814-family nucleotidyltransferase-like toxins (MenT1-4) encoded by the human pathogen Mycobacterium tuberculosis. Toxin MenT3 inhibited growth of M. tuberculosis when not antagonized by its cognate antitoxin, MenA3. We solved the structures of toxins MenT3 and MenT4 to 1.6 and 1.2 Å resolution, respectively, and identified the biochemical activity and target of MenT3. MenT3 blocked in vitro protein expression and prevented tRNA charging in vivo. MenT3 added pyrimidines (C or U) to the 3'-CCA acceptor stems of uncharged tRNAs and exhibited strong substrate specificity in vitro, preferentially targeting tRNASer from among the 45 M. tuberculosis tRNAs. Our study identifies a previously unknown mechanism that expands the range of enzymatic activities used by bacterial toxins, uncovering a new way to block protein synthesis and potentially treat tuberculosis and other infections.
Collapse
Affiliation(s)
- Yiming Cai
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Anastasia Tolcan
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Moise Mansour
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bio-protection Research Centre, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ciarán Condon
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Tim R. Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
21
|
Lentini JM, Alsaif HS, Faqeih E, Alkuraya FS, Fu D. DALRD3 encodes a protein mutated in epileptic encephalopathy that targets arginine tRNAs for 3-methylcytosine modification. Nat Commun 2020; 11:2510. [PMID: 32427860 PMCID: PMC7237682 DOI: 10.1038/s41467-020-16321-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
In mammals, a subset of arginine tRNA isoacceptors are methylated in the anticodon loop by the METTL2 methyltransferase to form the 3-methylcytosine (m3C) modification. However, the mechanism by which METTL2 identifies specific tRNA arginine species for m3C formation as well as the biological role of m3C in mammals is unknown. Here, we show that human METTL2 forms a complex with DALR anticodon binding domain containing 3 (DALRD3) protein to recognize particular arginine tRNAs destined for m3C modification. DALRD3-deficient human cells exhibit nearly complete loss of the m3C modification in tRNA-Arg species. Notably, we identify a homozygous nonsense mutation in the DALRD3 gene that impairs m3C formation in human patients exhibiting developmental delay and early-onset epileptic encephalopathy. These findings uncover an unexpected function for the DALRD3 protein in the targeting of distinct arginine tRNAs for m3C modification and suggest a crucial biological role for DALRD3-dependent tRNA modification in proper neurological development.
Collapse
Affiliation(s)
- Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
22
|
Cain R, Salimraj R, Punekar AS, Bellini D, Fishwick CWG, Czaplewski L, Scott DJ, Harris G, Dowson CG, Lloyd AJ, Roper DI. Structure-Guided Enhancement of Selectivity of Chemical Probe Inhibitors Targeting Bacterial Seryl-tRNA Synthetase. J Med Chem 2019; 62:9703-9717. [PMID: 31626547 DOI: 10.1021/acs.jmedchem.9b01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetases are ubiquitous and essential enzymes for protein synthesis and also a variety of other metabolic processes, especially in bacterial species. Bacterial aminoacyl-tRNA synthetases represent attractive and validated targets for antimicrobial drug discovery if issues of prokaryotic versus eukaryotic selectivity and antibiotic resistance generation can be addressed. We have determined high-resolution X-ray crystal structures of the Escherichia coli and Staphylococcus aureus seryl-tRNA synthetases in complex with aminoacyl adenylate analogues and applied a structure-based drug discovery approach to explore and identify a series of small molecule inhibitors that selectively inhibit bacterial seryl-tRNA synthetases with greater than 2 orders of magnitude compared to their human homologue, demonstrating a route to the selective chemical inhibition of these bacterial targets.
Collapse
Affiliation(s)
- Ricky Cain
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Ramya Salimraj
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Avinash S Punekar
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Dom Bellini
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Colin W G Fishwick
- School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Lloyd Czaplewski
- Chemical Biology Ventures Limited , Abingdon OX14 1XD , United Kingdom
| | - David J Scott
- School of Biosciences , University of Nottingham , Nottingham LE12 5RD , United Kingdom.,ISIS Spallation Neutron and Muon Source and the Research Complex at Harwell , Rutherford Appleton Laboratory , Oxfordshire OX11 0FA , United Kingdom
| | - Gemma Harris
- ISIS Spallation Neutron and Muon Source and the Research Complex at Harwell , Rutherford Appleton Laboratory , Oxfordshire OX11 0FA , United Kingdom
| | - Christopher G Dowson
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Adrian J Lloyd
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - David I Roper
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| |
Collapse
|
23
|
Fan W, Zheng J, Kong W, Cui L, Aishanjiang M, Yi Q, Wang M, Cang X, Tang X, Chen Y, Mo JQ, Sondheimer N, Ge W, Guan MX. Contribution of a mitochondrial tyrosyl-tRNA synthetase mutation to the phenotypic expression of the deafness-associated tRNA Ser(UCN) 7511A>G mutation. J Biol Chem 2019; 294:19292-19305. [PMID: 31685661 DOI: 10.1074/jbc.ra119.010598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Nuclear modifier genes have been proposed to modify the phenotypic expression of mitochondrial DNA mutations. Using a targeted exome-sequencing approach, here we found that the p.191Gly>Val mutation in mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) interacts with the tRNASer(UCN) 7511A>G mutation in causing deafness. Strikingly, members of a Chinese family bearing both the YARS2 p.191Gly>Val and m.7511A>G mutations displayed much higher penetrance of deafness than those pedigrees carrying only the m.7511A>G mutation. The m.7511A>G mutation changed the A4:U69 base-pairing to G4:U69 pairing at the aminoacyl acceptor stem of tRNASer(UCN) and perturbed tRNASer(UCN) structure and function, including an increased melting temperature, altered conformation, instability, and aberrant aminoacylation of mutant tRNA. Using lymphoblastoid cell lines derived from symptomatic and asymptomatic members of these Chinese families and control subjects, we show that cell lines harboring only the m.7511A>G or p.191Gly>Val mutation revealed relatively mild defects in tRNASer(UCN) or tRNATyr metabolism, respectively. However, cell lines harboring both m.7511A>G and p.191Gly>Val mutations displayed more severe defective aminoacylations and lower tRNASer(UCN) and tRNATyr levels, aberrant aminoacylation, and lower levels of other tRNAs, including tRNAThr, tRNALys, tRNALeu(UUR), and tRNASer(AGY), than those in the cell lines carrying only the m.7511A>G or p.191Gly>Val mutation. Furthermore, mutant cell lines harboring both m.7511A>G and p.191Gly>Val mutations exhibited greater decreases in the levels of mitochondrial translation, respiration, and mitochondrial ATP and membrane potentials, along with increased production of reactive oxygen species. Our findings provide molecular-level insights into the pathophysiology of maternally transmitted deafness arising from the synergy between tRNASer(UCN) and mitochondrial YARS mutations.
Collapse
Affiliation(s)
- Wenlu Fan
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Attardi Institute of Biomedicine, School of Life Sciences and Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Kong
- Attardi Institute of Biomedicine, School of Life Sciences and Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Limei Cui
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Maerhaba Aishanjiang
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiuzi Yi
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min Wang
- Attardi Institute of Biomedicine, School of Life Sciences and Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaowen Tang
- Attardi Institute of Biomedicine, School of Life Sciences and Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California 92123
| | - Neal Sondheimer
- Department of Molecular Genetics, University of Toronto School of Medicine and the Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Wanzhong Ge
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and the University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
24
|
Fu X, Crnković A, Sevostyanova A, Söll D. Designing seryl-tRNA synthetase for improved serylation of selenocysteine tRNAs. FEBS Lett 2018; 592:3759-3768. [PMID: 30317559 PMCID: PMC6263840 DOI: 10.1002/1873-3468.13271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
Selenocysteine (Sec) lacks a cognate aminoacyl-tRNA synthetase. Instead, seryl-tRNA synthetase (SerRS) produces Ser-tRNASec , which is subsequently converted by selenocysteine synthase to Sec-tRNASec . Escherichia coli SerRS serylates tRNASec poorly; this may hinder efficient production of designer selenoproteins in vivo. Guided by structural modelling and selection for chloramphenicol acetyltransferase activity, we evolved three SerRS variants capable of improved Ser-tRNASec synthesis. They display 10-, 8-, and 4-fold increased kcat /KM values compared to wild-type SerRS using synthetic tRNASec species as substrates. The enzyme variants also facilitate in vivo read-through of a UAG codon in the position of the critical serine146 of chloramphenicol acetyltransferase. These results indicate that the naturally evolved SerRS is capable of further evolution for increased recognition of a specific tRNA isoacceptor.
Collapse
MESH Headings
- Base Sequence
- Codon, Terminator/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Kinetics
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Protein Domains
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Selenoproteins/genetics
- Selenoproteins/metabolism
- Serine/genetics
- Serine/metabolism
- Serine-tRNA Ligase/chemistry
- Serine-tRNA Ligase/genetics
- Serine-tRNA Ligase/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Xian Fu
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Ana Crnković
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Anastasia Sevostyanova
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
26
|
Simões J, Bezerra AR, Moura GR, Araújo H, Gut I, Bayes M, Santos MAS. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons. Front Microbiol 2016; 7:401. [PMID: 27065968 PMCID: PMC4814463 DOI: 10.3389/fmicb.2016.00401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans.
Collapse
Affiliation(s)
- João Simões
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Ana R Bezerra
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Gabriela R Moura
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Hugo Araújo
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Ivo Gut
- Centro Nacional de Análises Genómico, Parc Científic Barcelona, Spain
| | - Mónica Bayes
- Centro Nacional de Análises Genómico, Parc Científic Barcelona, Spain
| | - Manuel A S Santos
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| |
Collapse
|
27
|
Reverendo M, Soares AR, Pereira PM, Carreto L, Ferreira V, Gatti E, Pierre P, Moura GR, Santos MA. TRNA mutations that affect decoding fidelity deregulate development and the proteostasis network in zebrafish. RNA Biol 2015; 11:1199-213. [PMID: 25483040 DOI: 10.4161/rna.32199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in genes that encode tRNAs, aminoacyl-tRNA syntheases, tRNA modifying enzymes and other tRNA interacting partners are associated with neuropathies, cancer, type-II diabetes and hearing loss, but how these mutations cause disease is unclear. We have hypothesized that levels of tRNA decoding error (mistranslation) that do not fully impair embryonic development can accelerate cell degeneration through proteome instability and saturation of the proteostasis network. To test this hypothesis we have induced mistranslation in zebrafish embryos using mutant tRNAs that misincorporate Serine (Ser) at various non-cognate codon sites. Embryo viability was affected and malformations were observed, but a significant proportion of embryos survived by activating the unfolded protein response (UPR), the ubiquitin proteasome pathway (UPP) and downregulating protein biosynthesis. Accumulation of reactive oxygen species (ROS), mitochondrial and nuclear DNA damage and disruption of the mitochondrial network, were also observed, suggesting that mistranslation had a strong negative impact on protein synthesis rate, ER and mitochondrial homeostasis. We postulate that mistranslation promotes gradual cellular degeneration and disease through protein aggregation, mitochondrial dysfunction and genome instability.
Collapse
|
28
|
Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 2015; 589:1703-12. [PMID: 25937125 DOI: 10.1016/j.febslet.2015.04.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Over the last years protein engineering using non-standard amino acids has gained increasing attention. As a result, improved methods are now available, enabling the efficient and directed cotranslational incorporation of various non-standard amino acids to equip proteins with desired characteristics. In this context, the utilization of cell-free protein synthesis is particularly useful due to the direct accessibility of the translational machinery and synthesized proteins without having to maintain a vital cellular host. We review prominent methods for the incorporation of non-standard amino acids into proteins using cell-free protein synthesis. Furthermore, a list of non-standard amino acids that have been successfully incorporated into proteins in cell-free systems together with selected applications is provided.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Devid Mrusek
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
29
|
Dutta S, Nandi N. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri. J Phys Chem B 2015; 119:10832-48. [PMID: 25794108 DOI: 10.1021/jp511585w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Saheb Dutta
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Nilashis Nandi
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
30
|
Mehta A, López-Maury L, Florencio FJ. Proteomic pattern alterations of the cyanobacterium Synechocystis sp. PCC 6803 in response to cadmium, nickel and cobalt. J Proteomics 2014; 102:98-112. [PMID: 24650429 DOI: 10.1016/j.jprot.2014.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 11/19/2022]
Abstract
UNLABELLED Cyanobacteria represent the largest and most diverse group of prokaryotes capable of performing oxygenic photosynthesis and are frequently found in environments contaminated with heavy metals. Several studies have been performed in these organisms in order to better understand the effects of metals such as Zn, Cd, Cu, Ni and Co. In Synechocystis sp. PCC 6803, genes involved in Ni, Co, Cu and Zn resistance have been reported. However, proteomic studies for the identification of proteins modulated by heavy metals have not been carried out. In the present work, we have analyzed the proteomic pattern alterations of the cyanobacterium Synechocystis sp. PCC 6803 in response to Ni, Co and Cd in order to identify the metabolic processes affected by these metals. We show that some proteins are commonly regulated in response to the different metal ions, including ribulose1,5-bisphosphate carboxylase and the periplasmic iron-binding protein FutA2, while others, such as chaperones, were specifically induced by each metal. We also show that the main processes affected by the metals are carbon metabolism and photosynthesis, since heavy metals affect proteins required for the correct functioning of these activities. BIOLOGICAL SIGNIFICANCE This is the first report on the proteomic profile of Synechocystis sp. PCC 6803 wild type and mutant strains for the identification of proteins affected by the heavy metals Ni, Co and Cd. We have identified proteins commonly responsive to all three metals and also chaperones specifically modulated by each metal. Our data also supports previous studies that suggest the existence of additional sensor systems for Co.
Collapse
Affiliation(s)
- Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte (final), 70770-917 Brasília, DF, Brazil
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, E-41092 Seville, Spain
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, E-41092 Seville, Spain
| |
Collapse
|
31
|
Tukalo MA, Yaremchuk GD, Kovalenko OP, Kriklivyi IA, Gudzera OI. Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.000825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- M. A. Tukalo
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - G. D. Yaremchuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - O. P. Kovalenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - I. A. Kriklivyi
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - O. I. Gudzera
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
32
|
Mateus DD, Paredes JA, Español Y, Ribas de Pouplana L, Moura GR, Santos MAS. Molecular reconstruction of a fungal genetic code alteration. RNA Biol 2013; 10:969-80. [PMID: 23619021 DOI: 10.4161/rna.24683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fungi of the CTG clade translate the Leu CUG codon as Ser. This genetic code alteration is the only eukaryotic sense-to-sense codon reassignment known to date, is mediated by an ambiguous serine tRNA (tRNACAG(Ser)), exposes unanticipated flexibility of the genetic code and raises major questions about its selection and fixation in this fungal lineage. In particular, the origin of the tRNACAG(Ser) and the evolutionary mechanism of CUG reassignment from Leu to Ser remain poorly understood. In this study, we have traced the origin of the tDNACAG(Ser) gene and studied critical mutations in the tRNACAG(Ser) anticodon-loop that modulated CUG reassignment. Our data show that the tRNACAG(Ser) emerged from insertion of an adenosine in the middle position of the 5'-CGA-3'anticodon of a tRNACGA(Ser) ancestor, producing the 5'-CAG-3' anticodon of the tRNACAG(Ser), without altering its aminoacylation properties. This mutation initiated CUG reassignment while two additional mutations in the anticodon-loop resolved a structural conflict produced by incorporation of the Leu 5'-CAG-3'anticodon in the anticodon-arm of a tRNA(Ser). Expression of the mutant tRNACAG(Ser) in yeast showed that it cannot be expressed at physiological levels and we postulate that such downregulation was essential to maintain Ser misincorporation at sub-lethal levels during the initial stages of CUG reassignment. We demonstrate here that such low level CUG ambiguity is advantageous in specific ecological niches and we propose that misreading tRNAs are targeted for degradation by an unidentified tRNA quality control pathway.
Collapse
Affiliation(s)
- Denisa D Mateus
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Rokov-Plavec J, Lesjak S, Gruic-Sovulj I, Mocibob M, Dulic M, Weygand-Durasevic I. Substrate recognition and fidelity of maize seryl-tRNA synthetases. Arch Biochem Biophys 2013; 529:122-30. [DOI: 10.1016/j.abb.2012.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022]
|
34
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
35
|
Zhang YN, Ding SG, Huang LH, Zhang J, Shi YY, Zhong LJ. Comparative proteome analysis of Helicobacter pylori clinical strains by two-dimensional gel electrophoresis. J Zhejiang Univ Sci B 2012; 12:820-7. [PMID: 21960345 DOI: 10.1631/jzus.b1000445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To investigate the pathogenic properties of Helicobacter pylori by comparing the proteome map of H. pylori clinical strains. METHODS Two wild-type H. pylori strains, YN8 (isolated from biopsy tissue of a gastric cancer patient) and YN14 (isolated from biopsy tissue of a gastritis and duodenal ulcer patient), were used. Proteomic analysis, using a pH range of 3-10 and 5-8, was performed. The individual proteins were identified by quadrupole time-of-flight (Q-TOF) mass spectrometer and protein database search. RESULTS Variation in spot patterns directed towards differential protein expression levels was observed between the strains. The gel revealed prominent proteins with several protein "families". The comparison of protein expressions of the two strains reveals a high variability. Differentially present or absent spots were observed. Nine differentially expressed protein spots identified by Q-TOF included adenosine triphosphate (ATP)-binding protein, disulfide oxidoreductase B (DsbB)-like protein, N utilization substance A (NusA), ATP-dependent protease binding subunit/heat shock protein, hydantoin utilization protein A, seryl-tRNA synthetase, molybdenum ABC transporter ModD, and hypothetical proteins. CONCLUSIONS This study suggests that H. pylori strains express/repress protein variation, not only in terms of the virulence proteins, but also in terms of physiological proteins, when they infect a human host. The difference of protein expression levels between H. pylori strains isolated from gastric cancer and gastritis may be the initiator of inflammation, and result in the different clinical presentation. In this preliminary study, we report seven differential proteins between strains, with molecule weights from approximately 10 kDa to approximately 40 kDa. Further studies are needed to investigate those proteins and their function associated with H. pylori colonization and adaptation to host environment stress.
Collapse
Affiliation(s)
- Ya-nan Zhang
- Department of Laboratory, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
36
|
Suzuki T, Nagao A, Suzuki T. Human Mitochondrial tRNAs: Biogenesis, Function, Structural Aspects, and Diseases. Annu Rev Genet 2011; 45:299-329. [DOI: 10.1146/annurev-genet-110410-132531] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Mitochondria are eukaryotic organelles that generate most of the energy in the cell by oxidative phosphorylation (OXPHOS). Each mitochondrion contains multiple copies of a closed circular double-stranded DNA genome (mtDNA). Human (mammalian) mtDNA encodes 13 essential subunits of the inner membrane complex responsible for OXPHOS. These mRNAs are translated by the mitochondrial protein synthesis machinery, which uses the 22 species of mitochondrial tRNAs (mt tRNAs) encoded by mtDNA. The unique structural features of mt tRNAs distinguish them from cytoplasmic tRNAs bearing the canonical cloverleaf structure. The genes encoding mt tRNAs are highly susceptible to point mutations, which are a primary cause of mitochondrial dysfunction and are associated with a wide range of pathologies. A large number of nuclear factors involved in the biogenesis and function of mt tRNAs have been identified and characterized, including processing endonucleases, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases. These nuclear factors are also targets of pathogenic mutations linked to various diseases, indicating the functional importance of mt tRNAs for mitochondrial activity.
Collapse
Affiliation(s)
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
37
|
Geslain R, Pan T. Functional analysis of human tRNA isodecoders. J Mol Biol 2009; 396:821-31. [PMID: 20026070 DOI: 10.1016/j.jmb.2009.12.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/02/2009] [Accepted: 12/10/2009] [Indexed: 11/16/2022]
Abstract
tRNA isodecoders share the same anticodon but have differences in their body sequence. An unexpected result from genome sequencing projects is the identification of a large number of tRNA isodecoder genes in mammalian genomes. In the reference human genome, more than 270 isodecoder genes are present among the approximately 450 tRNA genes distributed among 49 isoacceptor families. Whether sequence diversity among isodecoder tRNA genes reflects functional variability is an open question. To address this, we developed a method to quantify the efficiency of tRNA isodecoders in stop-codon suppression in human cell lines. First, a green fluorescent protein (GFP) gene that contains a single UAG stop codon at two distinct locations is introduced. GFP is only produced when a tRNA suppressor containing CUA anticodon is co-transfected with the GFP gene. The suppression efficiency is examined for 31 tRNA isodecoders (all contain CUA anticodon), 21 derived from four isoacceptor families of tRNASer genes, 7 from five families of tRNALeu genes, and 3 from three families of tRNAAla genes. We found that isodecoder tRNAs display a large difference in their suppression efficiency. Among those with above background suppression activity, differences of up to 20-fold were observed. We were able to tune tRNA suppression efficiency by subtly adjusting the tRNA sequence and inter-convert poor suppressors into potent ones. We also demonstrate that isodecoder tRNAs with varying suppression efficiencies have similar stability and exhibit similar levels of aminoacylation in vivo. Our results indicate that naturally occurring tRNA isodecoders can have large functional variations and suggest that some tRNA isodecoders may perform a function distinct from translation.
Collapse
Affiliation(s)
- Renaud Geslain
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
38
|
Geslain R, Cubells L, Bori-Sanz T, Alvarez-Medina R, Rossell D, Martí E, Ribas de Pouplana L. Chimeric tRNAs as tools to induce proteome damage and identify components of stress responses. Nucleic Acids Res 2009; 38:e30. [PMID: 20007146 PMCID: PMC2836549 DOI: 10.1093/nar/gkp1083] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Misfolded proteins are caused by genomic mutations, aberrant splicing events, translation errors or environmental factors. The accumulation of misfolded proteins is a phenomenon connected to several human disorders, and is managed by stress responses specific to the cellular compartments being affected. In wild-type cells these mechanisms of stress response can be experimentally induced by expressing recombinant misfolded proteins or by incubating cells with large concentrations of amino acid analogues. Here, we report a novel approach for the induction of stress responses to protein aggregation. Our method is based on engineered transfer RNAs that can be expressed in cells or tissues, where they actively integrate in the translation machinery causing general proteome substitutions. This strategy allows for the introduction of mutations of increasing severity randomly in the proteome, without exposing cells to unnatural compounds. Here, we show that this approach can be used for the differential activation of the stress response in the Endoplasmic Reticulum (ER). As an example of the applications of this method, we have applied it to the identification of human microRNAs activated or repressed during unfolded protein stress.
Collapse
Affiliation(s)
- Renaud Geslain
- Institute for Research in Biomedicine, Omnia Molecular, Barcelona Science Park, Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, c/Baldiri Reixac 15-21, Barcelona 08028, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Messmer M, Pütz J, Suzuki T, Suzuki T, Sauter C, Sissler M, Catherine F. Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny. Nucleic Acids Res 2009; 37:6881-95. [PMID: 19767615 PMCID: PMC2777451 DOI: 10.1093/nar/gkp697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Primary and secondary structures of mammalian mitochondrial (mt) tRNAs are divergent from canonical tRNA structures due to highly skewed nucleotide content and large size variability of D- and T-loops. The nonconservation of nucleotides involved in the expected network of tertiary interactions calls into question the rules governing a functional L-shaped three-dimensional (3D) structure. Here, we report the solution structure of human mt-tRNAAsp in its native post-transcriptionally modified form and as an in vitro transcript. Probing performed with nuclease S1, ribonuclease V1, dimethylsulfate, diethylpyrocarbonate and lead, revealed several secondary structures for the in vitro transcribed mt-tRNAAsp including predominantly the cloverleaf. On the contrary, the native tRNAAsp folds into a single cloverleaf structure, highlighting the contribution of the four newly identified post-transcriptional modifications to correct folding. Reactivities of nucleotides and phosphodiester bonds in the native tRNA favor existence of a full set of six classical tertiary interactions between the D-domain and the variable region, forming the core of the 3D structure. Reactivities of D- and T-loop nucleotides support an absence of interactions between these domains. According to multiple sequence alignments and search for conservation of Leontis–Westhof interactions, the tertiary network core building rules apply to all tRNAAsp from mammalian mitochondria.
Collapse
Affiliation(s)
- Marie Messmer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Jaric J, Bilokapic S, Lesjak S, Crnkovic A, Ban N, Weygand-Durasevic I. Identification of amino acids in the N-terminal domain of atypical methanogenic-type Seryl-tRNA synthetase critical for tRNA recognition. J Biol Chem 2009; 284:30643-51. [PMID: 19734148 DOI: 10.1074/jbc.m109.044099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Seryl-tRNA synthetase (SerRS) from methanogenic archaeon Methanosarcina barkeri, contains an idiosyncratic N-terminal domain, composed of an antiparallel beta-sheet capped by a helical bundle, connected to the catalytic core by a short linker peptide. It is very different from the coiled-coil tRNA binding domain in bacterial-type SerRS. Because the crystal structure of the methanogenic-type SerRSxtRNA complex has not been obtained, a docking model was produced, which indicated that highly conserved helices H2 and H3 of the N-terminal domain may be important for recognition of the extra arm of tRNA(Ser). Based on structural information and the docking model, we have mutated various positions within the N-terminal region and probed their involvement in tRNA binding and serylation. Total loss of activity and inability of the R76A variant to form the complex with cognate tRNA identifies Arg(76) located in helix H2 as a crucial tRNA-interacting residue. Alteration of Lys(79) positioned in helix H2 and Arg(94) in the loop between helix H2 and beta-strand A4 have a pronounced effect on SerRSxtRNA(Ser) complex formation and dissociation constants (K(D)) determined by surface plasmon resonance. The replacement of residues Arg(38) (located in the loop between helix H1 and beta-strand A2), Lys(141) and Asn(142) (from H3), and Arg(143) (between H3 and H4) moderately affect both the serylation activity and the K(D) values. Furthermore, we have obtained a striking correlation between these results and in vivo effects of these mutations by quantifying the efficiency of suppression of bacterial amber mutations, after coexpression of the genes for M. barkeri suppressor tRNA(Ser) and a set of mMbSerRS variants in Escherichia coli.
Collapse
Affiliation(s)
- Jelena Jaric
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
41
|
Lesjak S, Weygand-Durasevic I. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations. FEMS Microbiol Lett 2008; 294:111-8. [PMID: 19309487 DOI: 10.1111/j.1574-6968.2009.01560.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Two dissimilar seryl-tRNA synthetases (SerRSs) exist in Methanosarcina barkeri: one of bacterial type (bMbSerRS) and the other resembling SerRSs present only in methanogenic archaea (mMbSerRS). While the expression of the archaeal bMbSerRS gene in Escherichia coli complements the function of thermolabile SerRS at a nonpermissive temperature, mMbSerRS does not. Our recent X-ray structural analysis of mMbSerRS revealed an idiosyncratic N-terminal domain and a catalytic zinc ion in the active site, identifying methanogenic-type SerRSs as atypical members of the SerRS family. To shed further light on substrate discrimination by methanogenic-type SerRS, we developed an in vivo system in E. coli to study tRNA serylation by mMbSerRS variants. We show that coexpression of the M. barkeri SerRS gene, encoding either bacterial- or methanogenic-type SerRS, with the gene for cognate archaeal suppressor tRNA leads to suppression of bacterial amber mutations, implying that the E. coli translation machinery can use serylated tRNA from methanogenic archaea as a substrate in protein synthesis. Furthermore, because serylation of M. barkeri serine-specific tRNA by endogenous E. coli SerRS is negligible, suppression is entirely dependent on recognition between archaeal partners (mMbSerRS/suppressor tRNA(Ser)). Thus, the efficiency of suppression by mMbSerRS variants quantified in the described beta-galactosidase-based reporter system, accurately reflects enzymes' serylation propensity obtained by in vitro kinetic measurements.
Collapse
Affiliation(s)
- Sonja Lesjak
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
42
|
Vasil'eva IA, Moor NA. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. BIOCHEMISTRY (MOSCOW) 2007; 72:247-63. [PMID: 17447878 DOI: 10.1134/s0006297907030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes results of numerous (mainly functional) studies that have been accumulated over recent years on the problem of tRNA recognition by aminoacyl-tRNA synthetases. Development and employment of approaches that use synthetic mutant and chimeric tRNAs have demonstrated general principles underlying highly specific interaction in different systems. The specificity of interaction is determined by a certain number of nucleotides and structural elements of tRNA (constituting the set of recognition elements or specificity determinants), which are characteristic of each pair. Crystallographic structures available for many systems provide the details of the molecular basis of selective interaction. Diversity and identity of biochemical functions of the recognition elements make substantial contribution to the specificity of such interactions.
Collapse
Affiliation(s)
- I A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
43
|
Geslain R, Aeby E, Guitart T, Jones TE, Castro de Moura M, Charrière F, Schneider A, Ribas de Pouplana L. Trypanosoma seryl-tRNA synthetase is a metazoan-like enzyme with high affinity for tRNASec. J Biol Chem 2006; 281:38217-25. [PMID: 17040903 DOI: 10.1074/jbc.m607862200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosomatids are important human pathogens that form a basal branch of eukaryotes. Their evolutionary history is still unclear as are many aspects of their molecular biology. Here we characterize essential components required for the incorporation of serine and selenocysteine into the proteome of Trypanosoma. First, the biological function of a putative Trypanosoma seryl-tRNA synthetase was characterized in vivo. Secondly, the molecular recognition by Trypanosoma seryl-tRNA synthetase of its cognate tRNAs was dissected in vitro. The cellular distribution of tRNA(Sec) was studied, and the catalytic constants of its aminoacylation were determined. These were found to be markedly different from those reported in other organisms, indicating that this reaction is particularly efficient in trypanosomatids. Our functional data were analyzed in the context of a new phylogenetic analysis of eukaryotic seryl-tRNA synthetases that includes Trypanosoma and Leishmania sequences. Our results show that trypanosomatid seryl-tRNA synthetases are functionally and evolutionarily more closely related to their metazoan homologous enzymes than to other eukaryotic enzymes. This conclusion is supported by sequence synapomorphies that clearly connect metazoan and trypanosomatid seryl-tRNA synthetases.
Collapse
Affiliation(s)
- Renaud Geslain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institute for Research in Biomedicine, Barcelona, Barcelona Science Park, C/Samitier 1-5, Barcelona 08015, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gruic-Sovulj I, Jaric J, Dulic M, Cindric M, Weygand-Durasevic I. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea. J Mol Biol 2006; 361:128-39. [PMID: 16822522 DOI: 10.1016/j.jmb.2006.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Seryl-tRNA synthetases (SerRSs) from methanogenic archaea possess distinct evolutionary origin and show minimal sequence similarity with counterparts from bacteria, eukaryotes and other archaea. Here we show that SerRS from yeast Saccharomyces cerevisiae and archaeon Methanococcus maripaludis (ScSerRS and MmSerRS, respectively) display significantly different ability to serylate heterologous tRNA(Ser). Recognition in yeast was shown to be more stringent than in archaeon. While cross-aminoacylation of M. maripaludis tRNA(Ser) (MmtRNA(Ser)) by yeast SerRS barely occurs, yeast tRNA(Ser) (SctRNA(Ser)) was shown to be a good substrate for heterologous MmSerRS. To investigate the contribution of different tRNA regions for the recognition by yeast and archaeal SerRS, chimeric tRNAs bearing separated domains of SctRNA(Ser) in MmtRNA(Ser) framework were produced by in vitro transcription and subjected to kinetic and gel mobility shift analysis with both enzymes. Generally, the recognition in M. maripaludis seems to be relatively relaxed toward tertiary elements of tRNA(Ser) structure and relies on the direct recognition of identity nucleotides. On the other hand, expression of tRNA(Ser) identity elements in yeast seems to be more sensitive toward surrounding sequence context. In both systems variable arm of tRNA was recognized as a major identity region with a strong influence on SerRS:tRNA binding. Acceptor domain of SctRNA(Ser) was also shown to be important for serylation in yeast. We propose that cognate interactions between N-terminal domain of yeast SerRS and variable region of SctRNA(Ser) place the acceptor stem into the enzyme's active site and lead to increased affinity toward serine and efficient serylation of tRNA. The same effect was not observed in M. maripaludis. Unlike its yeast counterpart, MmSerRS forms only one type of covalent complex with MmtRNA(Ser), regardless of the tRNA/SerRS molar ratio. Stoichiometry of the complex, one tRNA per dimeric SerRS, was revealed by mass spectrometry. Our studies indicate that different SerRS:tRNA recognition mode is utilized by these two systems.
Collapse
Affiliation(s)
- Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | | | | | | | | |
Collapse
|
45
|
Bilokapic S, Maier T, Ahel D, Gruic-Sovulj I, Söll D, Weygand-Durasevic I, Ban N. Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. EMBO J 2006; 25:2498-509. [PMID: 16675947 PMCID: PMC1478180 DOI: 10.1038/sj.emboj.7601129] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 04/11/2006] [Indexed: 11/09/2022] Open
Abstract
Methanogenic archaea possess unusual seryl-tRNA synthetase (SerRS), evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. The two types of SerRSs show only minimal sequence similarity, primarily within class II conserved motifs 1, 2 and 3. Here, we report a 2.5 A resolution crystal structure of the atypical methanogenic Methanosarcina barkeri SerRS and its complexes with ATP, serine and the nonhydrolysable seryl-adenylate analogue 5'-O-(N-serylsulfamoyl)adenosine. The structures reveal two idiosyncratic features of methanogenic SerRSs: a novel N-terminal tRNA-binding domain and an active site zinc ion. The tetra-coordinated Zn2+ ion is bound to three conserved protein ligands (Cys306, Glu355 and Cys461) and binds the amino group of the serine substrate. The absolute requirement of the metal ion for enzymatic activity was confirmed by mutational analysis of the direct zinc ion ligands. This zinc-dependent serine recognition mechanism differs fundamentally from the one employed by the bacterial-type SerRSs. Consequently, SerRS represents the only known aminoacyl-tRNA synthetase system that evolved two distinct mechanisms for the recognition of the same amino-acid substrate.
Collapse
Affiliation(s)
| | - Timm Maier
- Institute of Molecular Biology and Biophyscis, Swiss Federal Institute of Technology, ETH Zürich, ETH Hoenggerberg, Zürich, Switzerland
| | - Dragana Ahel
- Department of Chemistry, University of Zagreb, Zagreb, Croatia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ivana Weygand-Durasevic
- Department of Chemistry, University of Zagreb, Zagreb, Croatia
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10 000, Croatia. Tel.: +385 1 460 6230; Fax: +385 1 460 6401; E-mail:
| | - Nenad Ban
- Institute of Molecular Biology and Biophyscis, Swiss Federal Institute of Technology, ETH Zürich, ETH Hoenggerberg, Zürich, Switzerland
- Institute of Molecular Biology and Biophyscis, Swiss Federal Institute of Technology, ETH Zurich, ETH Hoenggerberg, HPK Bld., Zurich 8093, Switzerland. Tel.: +41 1 633 27 85; Fax: +41 1 633 12 46; E-mail:
| |
Collapse
|
46
|
Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H. Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 2006; 281:14151-62. [PMID: 16551623 DOI: 10.1074/jbc.m512927200] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-serine is a coagonist of N-methyl-D-aspartate (NMDA) receptors that occurs at high levels in the brain. Biosynthesis of D-serine is carried out by serine racemase, which converts L- to D-serine. D-serine has been demonstrated to occur in glial cells, leading to the proposal that astrocytes are the only source of D-serine. We now report significant amounts of serine racemase and D-serine in primary neuronal cultures and neurons in vivo. Several neuronal culture types expressed serine racemase, and D-serine synthesis was comparable with that in glial cultures. Immunohistochemical staining of brain sections with new antibodies revealed the presence of serine racemase and D-serine in neurons. Cortical neurons expressing serine racemase also expressed the NR2a subunit in situ. Neuron-derived D-serine contributes to NMDA receptor activation in cortical neuronal cultures. Degradation of endogenous D-serine by addition of the recombinant enzyme D-serine deaminase diminished NMDA-elicited excitotoxicity. Release of neuronal D-serine was mediated by ionotropic glutamate receptor agonists such as NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate. Removal of either external Ca2+ or Na+ blocked D-serine release. Release of D-serine was mostly through a cytosolic route because it was insensitive to bafilomycin A1, a potent inhibitor of vesicular neurotransmitter uptake. D-serine was also not transported into purified synaptic vesicles under conditions optimal for the uptake of known transmitters. Our results suggest that neurons are a major source of D-serine. Glutamate-induced neuronal D-serine release provides a novel mechanism for activating NMDA receptors by an autocrine or paracrine way.
Collapse
Affiliation(s)
- Elena Kartvelishvily
- Department of Biochemistry, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
47
|
Unique features of selenocysteine incorporation function within the context of general eukaryotic translational processes. Biochem Soc Trans 2005; 33:1493-7. [PMID: 16246153 DOI: 10.1042/bst0331493] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unlike other essential dietary trace elements, selenium exerts its biological actions through its direct incorporation into selenoproteins, as a part of the 21st amino acid, selenocysteine. Fundamental studies have elucidated the unique structures and putative functions of multiple co-translational factors required for the incorporation of selenocysteine into selenoproteins. The current challenge is to understand how these selenocysteine incorporation factors function within the framework of translation. In eukaryotes, co-ordinating nuclear transcription with cytoplasmic translation of genes is a challenge involving complex spatial and temporal regulation. Selenoproteins utilize the common cellular machinery required for synthesis of non-selenoproteins. This machinery includes the elements involved in transcription, mRNA splicing and transport, and translational processes. Many investigators have emphasized the differences between the expression of selenoproteins and other eukaryotic proteins, whereas this review will attempt to highlight common themes and point out where additional interactions may be discovered.
Collapse
|
48
|
Chimnaronk S, Gravers Jeppesen M, Suzuki T, Nyborg J, Watanabe K. Dual-mode recognition of noncanonical tRNAs(Ser) by seryl-tRNA synthetase in mammalian mitochondria. EMBO J 2005; 24:3369-79. [PMID: 16163389 PMCID: PMC1276171 DOI: 10.1038/sj.emboj.7600811] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/22/2005] [Indexed: 11/09/2022] Open
Abstract
The secondary structures of metazoan mitochondrial (mt) tRNAs(Ser) deviate markedly from the paradigm of the canonical cloverleaf structure; particularly, tRNA(Ser)(GCU) corresponding to the AGY codon (Y=U and C) is highly truncated and intrinsically missing the entire dihydrouridine arm. None of the mt serine isoacceptors possesses the elongated variable arm, which is the universal landmark for recognition by seryl-tRNA synthetase (SerRS). Here, we report the crystal structure of mammalian mt SerRS from Bos taurus in complex with seryl adenylate at an atomic resolution of 1.65 A. Coupling structural information with a tRNA-docking model and the mutagenesis studies, we have unraveled the key elements that establish tRNA binding specificity, differ from all other known bacterial and eukaryotic systems, are the characteristic extensions in both extremities, as well as a few basic residues residing in the amino-terminal helical arm of mt SerRS. Our data further uncover an unprecedented mechanism of a dual-mode recognition employed to discriminate two distinct 'bizarre' mt tRNAs(Ser) by alternative combination of interaction sites.
Collapse
Affiliation(s)
- Sarin Chimnaronk
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | | | - Tsutomu Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Jens Nyborg
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Kimitsuna Watanabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
- Present address: Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Biological Information Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan. Tel.:+81 3 3599 8106; Fax: +81 3 5530 2064; E-mail:
| |
Collapse
|
49
|
Korencic D, Polycarpo C, Weygand-Durasevic I, Söll D. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. J Biol Chem 2004; 279:48780-6. [PMID: 15364939 DOI: 10.1074/jbc.m408753200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two dissimilar seryl-transfer RNA (tRNA) synthetases (SerRSs) exist in Methanosarcina barkeri, one of bacterial type and the other resembling SerRSs present only in some methanogenic archaea. To investigate the requirements of these enzymes for tRNASer recognition, serylation of variant transcripts of M. barkeri tRNASer was kinetically analyzed in vitro with pure enzyme preparations. Characteristically for the serine system, the length of the variable arm was shown to be crucial for both enzymes, as was the identity of the discriminator base (G73). Moreover, a novel determinant for the specific tRNASer recognition was identified as the anticodon stem base pair G30:C40; its contribution to the efficiency of serylation was remarkable for both SerRSs. However, despite these similarities, the two SerRSs do not possess a uniform mode of tRNASer recognition, and additional determinants are necessary for serylation specificity by the methanogenic enzyme. In particular, the methanogenic SerRS relies on G1:C72 identity and on the number of unpaired nucleotides at the base of the variable stem for tRNASer recognition, unlike its bacterial type counterpart. We propose that such a distinction between the two enzymes in tRNASer identity determinants reflects their evolutionary pathways, hence attesting to their diversity.
Collapse
Affiliation(s)
- Dragana Korencic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
50
|
Bilokapic S, Korencic D, Söll D, Weygand-Durasevic I. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. ACTA ACUST UNITED AC 2004; 271:694-702. [PMID: 14764085 DOI: 10.1111/j.1432-1033.2003.03971.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The methanogenic archaea Methanococcus jannaschii and M. maripaludis contain an atypical seryl-tRNA synthetase (SerRS), which recognizes eukaryotic and bacterial tRNAsSer, in addition to the homologous tRNASer and tRNASec species. The relative flexibility in tRNA recognition displayed by methanogenic SerRSs, shown by aminoacylation and gel mobility shift assays, indicates the conservation of some serine determinants in all three domains. The complex of M. maripaludis SerRS with the homologues tRNASer was isolated by gel filtration chromatography. Complex formation strongly depends on the conformation of tRNA. Therefore, the renaturation conditions for in vitro transcribed tRNASer(GCU) isoacceptor were studied carefully. This tRNA, unlike many other tRNAs, is prone to dimerization, possibly due to several stretches of complementary oligonucleotides within its sequence. Dimerization is facilitated by increased tRNA concentration and can be diminished by fast renaturation in the presence of 5 mm magnesium chloride.
Collapse
MESH Headings
- Anticodon/genetics
- Base Sequence
- Chromatography, Gel
- Dimerization
- Electrophoretic Mobility Shift Assay
- Escherichia coli/enzymology
- Isoelectric Focusing
- Methanococcus/enzymology
- Methanococcus/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Serine/metabolism
- Serine-tRNA Ligase/chemistry
- Serine-tRNA Ligase/metabolism
- Substrate Specificity
- Transcription, Genetic
- Yeasts/enzymology
Collapse
Affiliation(s)
- Silvija Bilokapic
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | | | | | | |
Collapse
|