1
|
Wang K, Mahbub M, Mastroianni G, Valladares A, Mullineaux CW. mRNA localization and thylakoid protein biogenesis in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. J Bacteriol 2024; 206:e0032824. [PMID: 39329528 PMCID: PMC11500504 DOI: 10.1128/jb.00328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Heterocyst-forming cyanobacteria such as Anabaena (Nostoc) sp. PCC 7120 exhibit extensive remodeling of their thylakoid membranes during heterocyst differentiation. Here we investigate the sites of translation of thylakoid membrane proteins in Anabaena vegetative cells and developing heterocysts, using mRNA fluorescent in situ hybridization (FISH) to detect the location of specific mRNA species. We probed mRNAs encoding reaction center core components and the heterocyst-specific terminal oxidases Cox2 and Cox3. As in unicellular cyanobacteria, the mRNAs encoding membrane-integral thylakoid proteins are concentrated in patches at the inner face of the thylakoid membrane system, adjacent to the central cytoplasm. These patches mark the putative sites of translation and membrane insertion of these proteins. Oxidase activity in mature heterocysts is concentrated in the specialized "honeycomb" regions of the thylakoid membranes close to the cell poles. However, cox2 and cox3 mRNAs remain evenly distributed over the inner face of the thylakoids, implying that oxidase proteins migrate extensively after translation to reach their destination in the honeycomb membranes. The RNA-binding protein RbpG is the closest Anabaena homolog of Rbp3 in the unicellular cyanobacterium Synechocystis sp. PCC 6803, which we previously showed to be crucial for the correct location of photosynthetic mRNAs. An rbpG null mutant shows decreased cellular levels of photosynthetic mRNAs and photosynthetic complexes, coupled with perturbations to thylakoid membrane organization and lower efficiency of the Photosystem II repair cycle. This suggests that the chaperoning of photosynthetic mRNAs by RbpG is important for the correct coordination of thylakoid protein translation and assembly.IMPORTANCECyanobacteria have a complex thylakoid membrane system which is the site of the photosynthetic light reactions as well as most of the respiratory activity in the cell. Protein targeting to the thylakoids and the spatial organization of thylakoid protein biogenesis remain poorly understood. Further complexity is found in some filamentous cyanobacteria that produce heterocysts, specialized nitrogen-fixing cells in which the thylakoid membranes undergo extensive remodeling. Here we probe mRNA locations to reveal thylakoid translation sites in a heterocyst-forming cyanobacterium. We identify an RNA-binding protein important for the correct co-ordination of thylakoid protein translation and assembly, and we demonstrate the effectiveness of mRNA fluorescent in situ hybridization (FISH) as a way to probe cell-specific gene expression in multicellular cyanobacteria.
Collapse
Affiliation(s)
- Kexin Wang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Moontaha Mahbub
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Conrad W. Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Dolcemascolo R, Heras-Hernández M, Goiriz L, Montagud-Martínez R, Requena-Menéndez A, Ruiz R, Pérez-Ràfols A, Higuera-Rodríguez RA, Pérez-Ropero G, Vranken WF, Martelli T, Kaiser W, Buijs J, Rodrigo G. Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria. eLife 2024; 12:RP91777. [PMID: 38363283 PMCID: PMC10942595 DOI: 10.7554/elife.91777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Applied Mathematics, Polytechnic University of ValenciaValenciaSpain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | | | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRLSesto FiorentinoItaly
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of FlorenceSesto FiorentinoItaly
| | - R Anahí Higuera-Rodríguez
- Dynamic Biosensors GmbHPlaneggGermany
- Department of Physics, Technical University of MunichGarchingGermany
| | - Guillermo Pérez-Ropero
- Ridgeview Instruments ABUppsalaSweden
- Department of Chemistry – BMC, Uppsala UniversityUppsalaSweden
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles – Vrije Universiteit BrusselBrusselsBelgium
| | | | | | - Jos Buijs
- Ridgeview Instruments ABUppsalaSweden
- Department of Immunology, Genetics, and Pathology, Uppsala UniversityUppsalaSweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
3
|
McKnight BM, Kang S, Le TH, Fang M, Carbonel G, Rodriguez E, Govindarajan S, Albocher-Kedem N, Tran AL, Duncan NR, Amster-Choder O, Golden SS, Cohen SE. Roles for the Synechococcus elongatus RNA-Binding Protein Rbp2 in Regulating the Circadian Clock. J Biol Rhythms 2023; 38:447-460. [PMID: 37515350 PMCID: PMC10528358 DOI: 10.1177/07487304231188761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The cyanobacterial circadian oscillator, consisting of KaiA, KaiB, and KaiC proteins, drives global rhythms of gene expression and compaction of the chromosome and regulates the timing of cell division and natural transformation. While the KaiABC posttranslational oscillator can be reconstituted in vitro, the Kai-based oscillator is subject to several layers of regulation in vivo. Specifically, the oscillator proteins undergo changes in their subcellular localization patterns, where KaiA and KaiC are diffuse throughout the cell during the day and localized as a focus at or near the pole of the cell at night. Here, we report that the CI domain of KaiC, when in a hexameric state, is sufficient to target KaiC to the pole. Moreover, increased ATPase activity of KaiC correlates with enhanced polar localization. We identified proteins associated with KaiC in either a localized or diffuse state. We found that loss of Rbp2, found to be associated with localized KaiC, results in decreased incidence of KaiC localization and long-period circadian phenotypes. Rbp2 is an RNA-binding protein, and it appears that RNA-binding activity of Rbp2 is required to execute clock functions. These findings uncover previously unrecognized roles for Rbp2 in regulating the circadian clock and suggest that the proper localization of KaiC is required for a fully functional clock in vivo.
Collapse
Affiliation(s)
- Briana M. McKnight
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Shannon Kang
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Tam H. Le
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Genelyn Carbonel
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Esbeydi Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Sutharsan Govindarajan
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
- Department of Biological Sciences, SRM University AP, Amaravati, India
| | - Nitsan Albocher-Kedem
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Amanda L. Tran
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Nicholas R. Duncan
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Susan S. Golden
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Susan E. Cohen
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| |
Collapse
|
4
|
Jia ZC, Das D, Zhang Y, Fernie AR, Liu YG, Chen M, Zhang J. Plant serine/arginine-rich proteins: versatile players in RNA processing. PLANTA 2023; 257:109. [PMID: 37145304 DOI: 10.1007/s00425-023-04132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
MAIN CONCLUSION Serine/arginine-rich (SR) proteins participate in RNA processing by interacting with precursor mRNAs or other splicing factors to maintain plant growth and stress responses. Alternative splicing is an important mechanism involved in mRNA processing and regulation of gene expression at the posttranscriptional level, which is the main reason for the diversity of genes and proteins. The process of alternative splicing requires the participation of many specific splicing factors. The SR protein family is a splicing factor in eukaryotes. The vast majority of SR proteins' existence is an essential survival factor. Through its RS domain and other unique domains, SR proteins can interact with specific sequences of precursor mRNA or other splicing factors and cooperate to complete the correct selection of splicing sites or promote the formation of spliceosomes. They play essential roles in the composition and alternative splicing of precursor mRNAs, providing pivotal functions to maintain growth and stress responses in animals and plants. Although SR proteins have been identified in plants for three decades, their evolutionary trajectory, molecular function, and regulatory network remain largely unknown compared to their animal counterparts. This article reviews the current understanding of this gene family in eukaryotes and proposes potential key research priorities for future functional studies.
Collapse
Affiliation(s)
- Zi-Chang Jia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences and Technology, 52 Agricultural Building, University of Missouri, Columbia, MO, 65201, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
5
|
Zhang S, Shen T, Zeng Y. Epigenetic Modifications in Prostate Cancer Metastasis and Microenvironment. Cancers (Basel) 2023; 15:cancers15082243. [PMID: 37190171 DOI: 10.3390/cancers15082243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gradual evolution of prostate tissue from benign tumor to malignant lesion or distant metastasis is driven by intracellular epigenetic changes and the tumor microenvironment remodeling. With the continuous study of epigenetic modifications, these tumor-driving forces are being discovered and are providing new treatments for cancer. Here we introduce the classification of epigenetic modification and highlight the role of epigenetic modification in tumor remodeling and communication of the tumor microenvironment.
Collapse
Affiliation(s)
- Shouyi Zhang
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Shen
- Department of Urology, Second Affiliated Hospital of Shenyang Medical College, No. 20 Beijiu Road, Heping District, Shenyang 110001, China
| | - Yu Zeng
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
6
|
Watanabe S, Stazic D, Georg J, Ohtake S, Sakamaki Y, Numakura M, Asayama M, Chibazakura T, Wilde A, Steglich C, Hess WR. Regulation of RNase E during the UV stress response in the cyanobacterium Synechocystis sp. PCC 6803. MLIFE 2023; 2:43-57. [PMID: 38818332 PMCID: PMC10989929 DOI: 10.1002/mlf2.12056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 06/01/2024]
Abstract
Endoribonucleases govern the maturation and degradation of RNA and are indispensable in the posttranscriptional regulation of gene expression. A key endoribonuclease in Gram-negative bacteria is RNase E. To ensure an appropriate supply of RNase E, some bacteria, such as Escherichia coli, feedback-regulate RNase E expression via the rne 5'-untranslated region (5' UTR) in cis. However, the mechanisms involved in the control of RNase E in other bacteria largely remain unknown. Cyanobacteria rely on solar light as an energy source for photosynthesis, despite the inherent ultraviolet (UV) irradiation. In this study, we first investigated globally the changes in gene expression in the cyanobacterium Synechocystis sp. PCC 6803 after a brief exposure to UV. Among the 407 responding genes 2 h after UV exposure was a prominent upregulation of rne mRNA level. Moreover, the enzymatic activity of RNase E rapidly increased as well, although the protein stability decreased. This unique response was underpinned by the increased accumulation of full-length rne mRNA caused by the stabilization of its 5' UTR and suppression of premature transcriptional termination, but not by an increased transcription rate. Mapping of RNA 3' ends and in vitro cleavage assays revealed that RNase E cleaves within a stretch of six consecutive uridine residues within the rne 5' UTR, indicating autoregulation. These observations suggest that RNase E in cyanobacteria contributes to reshaping the transcriptome during the UV stress response and that its required activity level is secured at the RNA level despite the enhanced turnover of the protein.
Collapse
Affiliation(s)
- Satoru Watanabe
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Damir Stazic
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
- Present address:
NexxiotPrime Tower (Hardstrasse 201)ZurichSwitzerland
| | - Jens Georg
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| | - Shota Ohtake
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Yutaka Sakamaki
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Megumi Numakura
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Munehiko Asayama
- School of Agriculture, Molecular GeneticsIbaraki UniversityIbarakiJapan
| | - Taku Chibazakura
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Annegret Wilde
- Faculty of Biology, Molecular GeneticsUniversity of FreiburgFreiburgGermany
| | - Claudia Steglich
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| | - Wolfgang R. Hess
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| |
Collapse
|
7
|
Galán-Vásquez E, Gómez-García MDC, Pérez-Rueda E. A landscape of gene regulation in the parasitic amoebozoa Entamoeba spp. PLoS One 2022; 17:e0271640. [PMID: 35913975 PMCID: PMC9342746 DOI: 10.1371/journal.pone.0271640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Entamoeba are amoeboid extracellular parasites that represent an important group of organisms for which the regulatory networks must be examined to better understand how genes and functional processes are interrelated. In this work, we inferred the gene regulatory networks (GRNs) in four Entamoeba species, E. histolytica, E. dispar, E. nuttalli, and E. invadens, and the GRN topological properties and the corresponding biological functions were evaluated. From these analyses, we determined that transcription factors (TFs) of E. histolytica, E. dispar, and E. nuttalli are associated mainly with the LIM family, while the TFs in E. invadens are associated with the RRM_1 family. In addition, we identified that EHI_044890 regulates 121 genes in E. histolytica, EDI_297980 regulates 284 genes in E. dispar, ENU1_120230 regulates 195 genes in E. nuttalli, and EIN_249270 regulates 257 genes in E. invadens. Finally, we identified that three types of processes, Macromolecule metabolic process, Cellular macromolecule metabolic process, and Cellular nitrogen compound metabolic process, are the main biological processes for each network. The results described in this work can be used as a basis for the study of gene regulation in these organisms.
Collapse
Affiliation(s)
- Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- * E-mail: (EG-V); (EP-R)
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
- * E-mail: (EG-V); (EP-R)
| |
Collapse
|
8
|
Identification and Characterization of an RRM-Containing, RNA Binding Protein in Acinetobacter baumannii. Biomolecules 2022; 12:biom12070922. [PMID: 35883478 PMCID: PMC9313427 DOI: 10.3390/biom12070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen, known to acquire resistance to antibiotics used in the clinic. The RNA-binding proteome of this bacterium is poorly characterized, in particular for what concerns the proteins containing RNA Recognition Motif (RRM). Here, we browsed the A. baumannii proteome for homologous proteins to the human HuR(ELAVL1), an RNA binding protein containing three RRMs. We identified a unique locus that we called AB-Elavl, coding for a protein with a single RRM with an average of 34% identity to the first HuR RRM. We also widen the research to the genomes of all the bacteria, finding 227 entries in 12 bacterial phyla. Notably we observed a partial evolutionary divergence between the RNP1 and RNP2 conserved regions present in the prokaryotes in comparison to the metazoan consensus sequence. We checked the expression at the transcript and protein level, cloned the gene and expressed the recombinant protein. The X-ray and NMR structural characterization of the recombinant AB-Elavl revealed that the protein maintained the typical β1α1β2β3α2β4 and three-dimensional organization of eukaryotic RRMs. The biochemical analyses showed that, although the RNP1 and RNP2 show differences, it can bind to AU-rich regions like the human HuR, but with less specificity and lower affinity. Therefore, we identified an RRM-containing RNA-binding protein actually expressed in A. baumannii.
Collapse
|
9
|
Zhang Y, Wu D, Wang Y, Xu X. Two types of C-terminal regions of RNA-binding proteins play distinct roles in stress tolerance of Synechocystis sp. PCC 6803. FEMS Microbiol Lett 2022; 369:6536912. [PMID: 35212739 PMCID: PMC9333190 DOI: 10.1093/femsle/fnac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
In the phylogenetic tree of RRM-type Rbps (RNA-binding proteins) in cyanobacteria, Rbp1 of Synechocystis 6803, with a single RRM (RNA recognition motif) region and a C-terminal glycine-rich region, and Rbp2, without the C-terminal region, both belong to the cluster I, whereas Rbp3 with a different type of C-terminal region is in the cluster II. Rbp1 is required for the cold adaptability of the cyanobacterium, and Rbp3 is for salt tolerance. Here, we report that the C-terminal region of Rbp1 is not required for the cold adaptability function but the C-terminal region of Rbp3 can direct the RRM of Rbp1 to the salt tolerance function. Bioinformatic and experimental analyses indicate that Rbps in cyanobacteria should be classified as two types. It is the first report for the distinct roles of C-terminal regions of Rbps in stress tolerance of cyanobacteria.
Collapse
Affiliation(s)
- Yueming Zhang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongqing Wu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Wang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xudong Xu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
10
|
Tang Y, Huang C, Li Y, Wang Y, Zhang C. Genome-wide identification, phylogenetic analysis, and expression profiling of glycine-rich RNA-binding protein (GRPs) genes in seeded and seedless grapes ( Vitis vinifera). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2231-2243. [PMID: 34744363 PMCID: PMC8526680 DOI: 10.1007/s12298-021-01082-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Glycine-rich RNA-binding proteins (GRPs) are essential for many physiological and biochemical processes in plants, especially the response to environmental stresses. GRPs exist widely in angiosperms and gymnosperms plant species; however, their roles in Vitis vinifera are still poorly understood. To characterize VviGRP gene family, we performed a genomic survey, bioinformatics and expression analysis of VviGRPs in grape. We identified nineteen VviGRPs gene family members. The result of bioinformatics analysis showed their motif distribution, gene structure characteristics and chromosomal locations. Then we carried out synteny and phylogenetic analysis to study the origin and evolutionary relationship of GRPs. Tissue-specific expression analysis showed that VviGRPs have different expression patterns. Meanwhile, we studied expression profiles of seventeen ovule-expressed genes during seed development of stenospermocarpic seedless and seeded grapes, and the result showed that most of them have much higher relative expression levels in stenospermocarpic seedless grapes than that of seeded one before 25 days after full bloom (DAFB). It is suggested that VviGRPs may involve in the seed development process. Taken together, our research indicated that VviGRPs are related to seed development and will be beneficial for further investigations into the seed abortion mechanism under stenospermocarpic grapes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01082-3.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| |
Collapse
|
11
|
Niu M, Wu J, Zou Q, Liu Z, Xu L. rBPDL:Predicting RNA-Binding Proteins Using Deep Learning. IEEE J Biomed Health Inform 2021; 25:3668-3676. [PMID: 33780344 DOI: 10.1109/jbhi.2021.3069259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-binding protein (RBP) is a powerful and wide-ranging regulator that plays an important role in cell development, differentiation, metabolism, health and disease. The prediction of RBPs provides valuable guidance for biologists. Although experimental methods have made great progress in predicting RBP, they are time-consuming and not flexible. Therefore, we developed a network model, rBPDL, by combining a convolutional neural network and long short-term memory for multilabel classification of RBPs. Moreover, to achieve better prediction results, we used a voting algorithm for ensemble learning of the model. We compared rBPDL with state-of-the-art methods and found that rBPDL significantly improved identification performance for the RBP68 dataset, with a macro-Area Under Curve (AUC), micro-AUC, and weighted AUC of 0.936, 0.962, and 0.946, respectively. Furthermore, through AUC statistical analysis of the RBP domain, we analyzed the performance of rBPDL and found that the RBP identification performance in the same domain was similar. In addition, we analyzed the performance preferences and physicochemical properties of the binding protein amino acids and explored the characteristics that affect the binding by using the RBP86 dataset.
Collapse
|
12
|
De Rosa V, Vizzotto G, Falchi R. Cold Hardiness Dynamics and Spring Phenology: Climate-Driven Changes and New Molecular Insights Into Grapevine Adaptive Potential. FRONTIERS IN PLANT SCIENCE 2021; 12:644528. [PMID: 33995442 PMCID: PMC8116538 DOI: 10.3389/fpls.2021.644528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Climate change has become a topic of increasing significance in viticulture, severely challenged by this issue. Average global temperatures are increasing, but frost events, with a large variability depending on geographical locations, have been predicted to be a potential risk for grapevine cultivation. Grape cold hardiness encompasses both midwinter and spring frost hardiness, whereas the avoidance of spring frost damage due to late budbreak is crucial in cold resilience. Cold hardiness kinetics and budbreak phenology are closely related and affected by bud's dormancy state. On the other hand, budbreak progress is also affected by temperatures during both winter and spring. Genetic control of bud phenology in grapevine is still largely undiscovered, but several studies have recently aimed at identifying the molecular drivers of cold hardiness loss and the mechanisms that control deacclimation and budbreak. A review of these related traits and their variability in different genotypes is proposed, possibly contributing to develop the sustainability of grapevine production as climate-related challenges rise.
Collapse
|
13
|
Su K, Xing H, Guo Y, Zhao F, Liu Z, Li K, Li Y, Guo X. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. BMC Genomics 2020; 21:419. [PMID: 32571215 PMCID: PMC7310074 DOI: 10.1186/s12864-020-06836-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
Background Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. Results We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. Conclusions High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Huiyang Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| |
Collapse
|
14
|
Morphoregulatory functions of the RNA-binding motif protein 3 in cell spreading, polarity and migration. Sci Rep 2018; 8:7367. [PMID: 29743635 PMCID: PMC5943363 DOI: 10.1038/s41598-018-25668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development.
Collapse
|
15
|
Shi X, Hanson MR, Bentolila S. Functional diversity of Arabidopsis organelle-localized RNA-recognition motif-containing proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28371504 DOI: 10.1002/wrna.1420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
RNA-Binding Proteins (RBPs) play key roles in plant gene expression and regulation. RBPs contain a variety of RNA-binding motifs, the most abundant and most widespread one in eukaryotes is the RNA recognition motif (RRM). Many nucleus-encoded RRM-containing proteins are transported into chloroplasts and/or mitochondria, and participate in various RNA-related processes in plant organelles. Loss of these proteins can have a detrimental effect on some critical processes such as photosynthesis and respiration, sometimes leading to lethality. Progress has been made in the last few years in understanding the function of particular organelle-localized RRM-containing proteins. Members of the Organelle RRM protein (ORRM, some also characterized as Glycine-Rich RNA-Binding Proteins) family and the Chloroplast RiboNucleoProtein (cpRNP) family, are involved in various types of RNA metabolism, including RNA editing, RNA stability and RNA processing. Organelle-localized RRM proteins also function in plant development and stress responses, in some conditions acting as protein or RNA chaperones. There has been recent progress in characterizing the function of organelle-localized RRM proteins in RNA-related processes and how RRM proteins contribute to the normal growth and development of plants. WIREs RNA 2017, 8:e1420. doi: 10.1002/wrna.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
16
|
Hayashi R, Sugita C, Sugita M. The 5' untranslated region of the rbp1 mRNA is required for translation of its mRNA under low temperatures in the cyanobacterium Synechococcus elongatus. Arch Microbiol 2016; 199:37-44. [PMID: 27449001 DOI: 10.1007/s00203-016-1270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/03/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
The unicellular cyanobacterium Synechococcus elongatus has three RNA-binding protein (Rbp) genes, rbp1, rbp2 and rbp3. The rbp1 gene was upregulated by cold treatment while rbp2 and rbp3 expression decreased remarkably after exposure to cold temperatures. To investigate the mechanism underlying cold-induced rbp1 expression, a series of rbp1-luxAB transcriptional fusion constructs were expressed in S. elongatus PCC 7942 under cold conditions. The results showed that the region from -33 to -3 of the transcription initiation site contains an essential sequence for basal transcription of the rbp1 gene and that the 120-bp region (-34 to -153) does not contain critical cis-elements required for cold-shock induction. In contrast, mutational analysis carrying the 5'-untranslated region (UTR) of rbp1-luxAB translational fusions indicated that the 5'-UTR of rbp1 plays an important role in cold induction of the rbp1 gene product. Taken together, we conclude that the cold induction of rbp1 may be regulated at a posttranscriptional level rather than at the transcriptional level.
Collapse
Affiliation(s)
- Rie Hayashi
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Leica Microsystems K.K., Shirokane-takanawa Station Bldg., 1-27-6 Shirokane, Minato-ku, Tokyo, 108-0072, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
17
|
Tripet B, Mason KE, Eilers BJ, Burns J, Powell P, Fischer AM, Copié V. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response. Biochemistry 2014; 53:7945-60. [PMID: 25495582 PMCID: PMC4278681 DOI: 10.1021/bi5007223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/25/2014] [Indexed: 12/26/2022]
Abstract
The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early-as compared to late-senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D (1)H-(15)N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5'-TTCTGX-3' with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress.
Collapse
MESH Headings
- Cold-Shock Response/physiology
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Hordeum/genetics
- Hordeum/metabolism
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Brian
P. Tripet
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Katelyn E. Mason
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Brian J. Eilers
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Jennifer Burns
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Paul Powell
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Andreas M. Fischer
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Valérie Copié
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
18
|
Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function. Nucleic Acids Res 2014; 42:8705-18. [PMID: 24957607 PMCID: PMC4117745 DOI: 10.1093/nar/gku468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/30/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022] Open
Abstract
Glycine-rich RNA-binding proteins (GR-RBPs) are involved in cold shock response of plants as RNA chaperones facilitating mRNA transport, splicing and translation. GR-RBPs are bipartite proteins containing a RNA recognition motif (RRM) followed by a glycine-rich region. Here, we studied the structural basis of nucleic acid binding of full-length Nicotiana tabacum GR-RBP1. NMR studies of NtGR-RBP1 show that the glycine-rich domain, while intrinsically disordered, is responsible for mediating self-association by transient interactions with its RRM domain (NtRRM). Both NtGR-RBP1 and NtRRM bind specifically and with low micromolar affinity to RNA and single-stranded DNA. The solution structure of NtRRM shows that it is a canonical RRM domain. A HADDOCK model of the NtRRM-RNA complex, based on NMR chemical shift and NOE data, shows that nucleic acid binding results from a combination of stacking and electrostatic interactions with conserved RRM residues. Finally, DNA melting experiments demonstrate that NtGR-RBP1 is more efficient in melting CTG containing nucleic acids than isolated NtRRM. Together, our study supports the model that self-association of GR-RBPs by the glycine-rich region results in cooperative unfolding of non-native substrate structures, thereby enhancing its chaperone function.
Collapse
Affiliation(s)
- Fariha Khan
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Department of Biochemistry, PMAS Agriculture University Rawalpindi, 46300 Rawalpindi, Pakistan
| | - Mark A Daniëls
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gert E Folkers
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rolf Boelens
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - S M Saqlan Naqvi
- Department of Biochemistry, PMAS Agriculture University Rawalpindi, 46300 Rawalpindi, Pakistan
| | - Hugo van Ingen
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
19
|
Xu T, Han JH, Kang H. Structural features important for the RNA chaperone activity of zinc finger-containing glycine-rich RNA-binding proteins from wheat (Triticum avestivum) and rice (Oryza sativa). PHYTOCHEMISTRY 2013; 94:28-35. [PMID: 23787154 DOI: 10.1016/j.phytochem.2013.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/13/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
Despite the increase in understanding of RNA chaperone activity of zinc finger-containing glycine-rich RNA-binding proteins (RZs) during the cold adaptation process, the structural features relevant to the RNA chaperone activity of RZs still largely remain to be established. To investigate the structural determinants important for the RNA chaperone activity of RZs, domain-swapping and deletion analyses was carried out to assess the contribution of the N-terminal zinc finger RNA-recognition motif (RRM) domain and the C-terminal glycine-rich region of wheat (Triticum avestivum) and rice (Oryza sativa) RZs to RNA chaperone activity. Although the amino acid sequence similarity among wheat TaRZ2, wheat TaRZ3, and rice OsRZ1 was high, only TaRZ2 had RNA chaperone activity as evidenced by complementation ability in cold-sensitive Escherichia coli mutant cell under cold stress and in vivo and in vitro nucleic acid-melting activity. Domain-swapping and deletion analysis demonstrated that the overall folding of RZs governed by the N-terminal RRM domain and the C-terminal glycine-rich region, as well as the size of the disordered C-terminal glycine-rich region, are crucial for the RNA chaperone activity of RZs. Collectively, these results indicate that a specific modular arrangement of RRM domain and the disordered C-terminal region determines the RNA chaperone activity of RZs in cells.
Collapse
Affiliation(s)
- Tao Xu
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | |
Collapse
|
20
|
Zeng Y, Wodzenski D, Gao D, Shiraishi T, Terada N, Li Y, Vander Griend DJ, Luo J, Kong C, Getzenberg RH, Kulkarni P. Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. Cancer Res 2013; 73:4123-33. [PMID: 23667174 DOI: 10.1158/0008-5472.can-12-1343] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stress-response pathways play an important role in cancer. The cold-inducible RNA-binding protein RBM3 is upregulated in several types of cancer, including prostate cancer, but its pathogenic contributions are undetermined. RBM3 is expressed at low basal levels in human fetal prostate or in CD133(+) prostate epithelial cells (PrEC), compared with the adult prostate or CD133-PrEC, and RBM3 is downregulated in cells cultured in soft agar or exposed to stress. Notably, RBM3 overexpression in prostate cancer cells attenuated their stem cell-like properties in vitro as well as their tumorigenic potential in vivo. Interestingly, either overexpressing RBM3 or culturing cells at 32°C suppressed RNA splicing of the CD44 variant v8-v10 and increased expression of the standard CD44 (CD44s) isoform. Conversely, silencing RBM3 or culturing cells in soft agar (under conditions that enrich for stem cell-like cells) increased the ratio of CD44v8-v10 to CD44s mRNA. Mechanistic investigations showed that elevating CD44v8-v10 interfered with MMP9-mediated cleavage of CD44s and suppressed expression of cyclin D1, whereas siRNA-mediated silencing of CD44v8-v10 impaired the ability of prostate cancer cells to form colonies in soft agar. Together, these findings suggested that RBM3 contributed to stem cell-like character in prostate cancer by inhibiting CD44v8-v10 splicing. Our work uncovers a hitherto unappreciated role of RBM3 in linking stress-regulated RNA splicing to tumorigenesis, with potential prognostic and therapeutic implications in prostate cancer.
Collapse
Affiliation(s)
- Yu Zeng
- The James Buchanan Brady Urological Institute, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang Y, Xu X. Effects of Rbp3 on lipid peroxidation and salt tolerance inSynechocystissp. PCC 6803. FEBS Lett 2013; 587:1446-51. [DOI: 10.1016/j.febslet.2013.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/20/2013] [Indexed: 11/28/2022]
|
22
|
Kang H, Park SJ, Kwak KJ. Plant RNA chaperones in stress response. TRENDS IN PLANT SCIENCE 2013; 18:100-6. [PMID: 22947615 DOI: 10.1016/j.tplants.2012.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/02/2012] [Accepted: 08/13/2012] [Indexed: 05/18/2023]
Abstract
Post-transcriptional regulation of RNA metabolism is a key regulatory process in diverse cellular processes, including the stress response of plants, during which a variety of RNA-binding proteins (RBPs) function as central regulators in cells. RNA chaperones are RBPs found in all living organisms and function by providing assistance to the correct folding of RNA molecules during RNA metabolism. Although our understanding of the role of RNA chaperones in plants is far less advanced than in bacteria, viruses, and animals, recent progress in functional characterization and determination of RNA chaperone activity of several RBPs has shed new light on the emerging roles of RNA chaperones during the stress response of plants.
Collapse
Affiliation(s)
- Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea.
| | | | | |
Collapse
|
23
|
Mamon LA, Kliver SF, Golubkova EV. Evolutionarily conserved features of the retained intron in alternative transcripts of the <i>nxf1</i> (nuclear export factor) genes in different organisms. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgen.2013.33018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Kim MK, Jung HJ, Kim DH, Kang H. Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions. PHYSIOLOGIA PLANTARUM 2012; 146:297-307. [PMID: 22462633 DOI: 10.1111/j.1399-3054.2012.01628.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although the functional roles of glycine-rich RNA-binding proteins (GRPs) during stress adaptation have been extensively evaluated in Arabidopsis thaliana and rice (Oryza sativa), the stress-responsive roles of a majority of GRPs have not been characterized in other plant species including rapeseed (Brassica napus). Here, the characteristic features and stress-responsive expression patterns of GRPs in B. napus (BnGRPs) were investigated. The genome of B. napus contains seven closely related BnGRPs, where the amino acid sequences of a well-conserved RNA-recognition motif at the N-terminal region are highly similar to each other but the sequences of the C-terminal glycine-rich region vary greatly among different BnGRPs. The transcript levels of all BnGRPs were markedly upregulated by cold stress, while their expression was significantly downregulated by dehydration or high salinity stress. Among the seven BnGRPs evaluated, BnGRP1 was characterized in more detail for its cellular localization and functional role as an RNA chaperone under cold stress. Cold-induced BnGRP1 successfully complemented the cold-sensitive phenotype of Escherichia coli mutant BX04 cells under cold stress, and harbored DNA- and RNA-melting abilities. Ectopic expression of BnGRP1 in Arabidopsis resulted in accelerated seed germination and enhanced freezing tolerance of the plant under cold or freezing stress. Collectively, the results of this study support the emerging idea that GRPs are functionally conserved RNA chaperones during the cold adaptation process in diverse plant species.
Collapse
Affiliation(s)
- Min Kyung Kim
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | | | | | | |
Collapse
|
25
|
Kupsch C, Ruwe H, Gusewski S, Tillich M, Small I, Schmitz-Linneweber C. Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. THE PLANT CELL 2012; 24:4266-80. [PMID: 23110894 PMCID: PMC3517249 DOI: 10.1105/tpc.112.103002] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/27/2012] [Accepted: 10/16/2012] [Indexed: 05/18/2023]
Abstract
Chloroplast RNA metabolism is mediated by a multitude of nuclear encoded factors, many of which are highly specific for individual RNA processing events. In addition, a family of chloroplast ribonucleoproteins (cpRNPs) has been suspected to regulate larger sets of chloroplast transcripts. This together with their propensity for posttranslational modifications in response to external cues suggested a potential role of cpRNPs in the signal-dependent coregulation of chloroplast genes. We show here on a transcriptome-wide scale that the Arabidopsis thaliana cpRNPs CP31A and CP29A (for 31 kD and 29 kD chloroplast protein, respectively), associate with large, overlapping sets of chloroplast transcripts. We demonstrate that both proteins are essential for resistance of chloroplast development to cold stress. They are required to guarantee transcript stability of numerous mRNAs at low temperatures and under these conditions also support specific processing steps. Fine mapping of cpRNP-RNA interactions in vivo suggests multiple points of contact between these proteins and their RNA ligands. For CP31A, we demonstrate an essential function in stabilizing sense and antisense transcripts that span the border of the small single copy region and the inverted repeat of the chloroplast genome. CP31A associates with the common 3'-terminus of these RNAs and protects them against 3'-exonucleolytic activity.
Collapse
Affiliation(s)
- Christiane Kupsch
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Hannes Ruwe
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Sandra Gusewski
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael Tillich
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 6009 Perth, Australia
| | - Christian Schmitz-Linneweber
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Address correspondence to
| |
Collapse
|
26
|
Kallberg Y, Segerstolpe Å, Lackmann F, Persson B, Wieslander L. Evolutionary conservation of the ribosomal biogenesis factor Rbm19/Mrd1: implications for function. PLoS One 2012; 7:e43786. [PMID: 22984444 PMCID: PMC3440411 DOI: 10.1371/journal.pone.0043786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/24/2012] [Indexed: 12/23/2022] Open
Abstract
Ribosome biogenesis in eukaryotes requires coordinated folding and assembly of a pre-rRNA into sequential pre-rRNA-protein complexes in which chemical modifications and RNA cleavages occur. These processes require many small nucleolar RNAs (snoRNAs) and proteins. Rbm19/Mrd1 is one such protein that is built from multiple RNA-binding domains (RBDs). We find that Rbm19/Mrd1 with five RBDs is present in all branches of the eukaryotic phylogenetic tree, except in animals and Choanoflagellates, that instead have a version with six RBDs and Microsporidia which have a minimal Rbm19/Mrd1 protein with four RBDs. Rbm19/Mrd1 therefore evolved as a multi-RBD protein very early in eukaryotes. The linkers between the RBDs have conserved properties; they are disordered, except for linker 3, and position the RBDs at conserved relative distances from each other. All but one of the RBDs have conserved properties for RNA-binding and each RBD has a specific consensus sequence and a conserved position in the protein, suggesting a functionally important modular design. The patterns of evolutionary conservation provide information for experimental analyses of the function of Rbm19/Mrd1. In vivo mutational analysis confirmed that a highly conserved loop 5-β4-strand in RBD6 is essential for function.
Collapse
Affiliation(s)
- Yvonne Kallberg
- Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Segerstolpe
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Fredrik Lackmann
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Bengt Persson
- Bioinformatics Infrastructure for Life Sciences and Swedish eScience Research Centre, IFM Bioinformatics, Linköping University, Linköping, Sweden
- Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
27
|
Li W, Gao H, Yin C, Xu X. Identification of a novel thylakoid protein gene involved in cold acclimation in cyanobacteria. MICROBIOLOGY-SGM 2012; 158:2440-2449. [PMID: 22767544 DOI: 10.1099/mic.0.060038-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In cyanobacteria, genes involved in cold acclimation can be upregulated in response to cold stress with or without light. By inactivating 17 such genes in Synechocystis sp. PCC 6803, slr0815 (ccr2) was identified to be a novel gene required for survival at 15 °C. It was upregulated by cold stress in the light. Upon exposure to low temperature, a ccr2-null mutant showed greatly reduced photosynthetic and respiratory activities within 12 h relative to the wild-type. At 48 h, the photosystem (PS)II-mediated electron transport in the mutant was reduced to less than one-third of the wild-type level, and the duration of electron transfer from the Q(B) binding site of PSII to PSI was increased to about eight times the wild-type level, whereas the PSI-mediated electron transport remained unchanged. Using an antibody against GFP, a Ccr2-GFP fusion protein was localized to the thylakoid membrane rather than the cytoplasmic and outer membranes. Homologues to Ccr2 can be found in most cyanobacteria, algae and higher plants with sequenced genomes. Ccr2 is probably representative of a group of novel thylakoid proteins involved in acclimation to cold or other stresses.
Collapse
Affiliation(s)
- Weizhi Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Hong Gao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Chuntao Yin
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Xudong Xu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| |
Collapse
|
28
|
McDonagh B, Domínguez-Martín MA, Gómez-Baena G, López-Lozano A, Diez J, Bárcena JA, García Fernández JM. Nitrogen starvation induces extensive changes in the redox proteome of Prochlorococcus sp. strain SS120. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:257-267. [PMID: 23757281 DOI: 10.1111/j.1758-2229.2012.00329.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Very low nitrogen concentration is a critical limitation in the oligotrophic oceans inhabited by the cyanobacterium Prochlorococccus, one of the main primary producers on Earth. It is well known that nitrogen starvation affects redox homeostasis in cells. We have studied the effect of nitrogen starvation on the thiol redox proteome in the Prochlorococcus sp. SS120 strain, by using shotgun proteomic techniques to map the cysteine modified in each case and to quantify the ratio of reversibly oxidized/reduced species. We identified a number of proteins showing modified cysteines only under either control or N-starvation, including isocitrate dehydrogenase and ribulose phosphate 3-epimerase. We detected other key enzymes, such as glutamine synthetase, transporters and transaminases, showing that nitrogen-related pathways were deeply affected by nitrogen starvation. Reversibly oxidized cysteines were also detected in proteins of other important metabolic pathways, such as photosynthesis, phosphorus metabolism, ATP synthesis and nucleic acids metabolism. Our results demonstrate a wide effect of nitrogen limitation on the redox status of the Prochlorococcus proteome, suggesting that besides previously reported transcriptional changes, this cyanobacterium responds with post-translational redox changes to the lack of nitrogen in its environment.
Collapse
Affiliation(s)
- Brian McDonagh
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Agroalimentario CEIA3, Universidad de Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Califice S, Baurain D, Hanikenne M, Motte P. A single ancient origin for prototypical serine/arginine-rich splicing factors. PLANT PHYSIOLOGY 2012; 158:546-60. [PMID: 22158759 PMCID: PMC3271749 DOI: 10.1104/pp.111.189019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/09/2011] [Indexed: 05/20/2023]
Abstract
Eukaryotic precursor mRNA splicing is a process involving a very complex RNA-protein edifice. Serine/arginine-rich (SR) proteins play essential roles in precursor mRNA constitutive and alternative splicing and have been suggested to be crucial in plant-specific forms of developmental regulation and environmental adaptation. Despite their functional importance, little is known about their origin and evolutionary history. SR splicing factors have a modular organization featuring at least one RNA recognition motif (RRM) domain and a carboxyl-terminal region enriched in serine/arginine dipeptides. To investigate the evolution of SR proteins, we infer phylogenies for more than 12,000 RRM domains representing more than 200 broadly sampled organisms. Our analyses reveal that the RRM domain is not restricted to eukaryotes and that all prototypical SR proteins share a single ancient origin, including the plant-specific SR45 protein. Based on these findings, we propose a scenario for their diversification into four natural families, each corresponding to a main SR architecture, and a dozen subfamilies, of which we profile both sequence conservation and composition. Finally, using operational criteria for computational discovery and classification, we catalog SR proteins in 20 model organisms, with a focus on green algae and land plants. Altogether, our study confirms the homogeneity and antiquity of SR splicing factors while establishing robust phylogenetic relationships between animal and plant proteins, which should enable functional analyses of lesser characterized SR family members, especially in green plants.
Collapse
Affiliation(s)
| | | | | | - Patrick Motte
- Laboratory of Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy, Department of Life Sciences, Institute of Botany, University of Liège, B–4000 Liege, Belgium (S.C., M.H., P.M.); Unit of Animal Genomics, Department of Animal Production, GIGA-Research, and Faculty of Veterinary Medicine, University of Liège, B-4000 Liege, Belgium (D.B.)
| |
Collapse
|
31
|
Ruwe H, Kupsch C, Teubner M, Schmitz-Linneweber C. The RNA-recognition motif in chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1361-71. [PMID: 21330002 DOI: 10.1016/j.jplph.2011.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 05/10/2023]
Abstract
Chloroplast RNA metabolism is characterized by multiple RNA processing steps that require hundreds of RNA binding proteins. A growing number of RNA binding proteins have been shown to mediate specific RNA processing steps in the chloroplast, but little do we know about their regulatory importance or mode of molecular action. This review summarizes knowledge on chloroplast proteins that contain an RNA recognition motif, a classical RNA binding domain widespread in pro- and eukaryotes. Several members of this family respond to external and internal stimuli by changes in their expression levels and protein modification state. They therefore appear as ideal candidates for regulating chloroplast RNA processing under shifting environmental conditions.
Collapse
Affiliation(s)
- Hannes Ruwe
- Institute of Biology, Humboldt University of Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | | | |
Collapse
|
32
|
Wang S, Wang R, Liang D, Ma F, Shu H. Molecular characterization and expression analysis of a glycine-rich RNA-binding protein gene from Malus hupehensis Rehd. Mol Biol Rep 2011; 39:4145-53. [PMID: 21779801 DOI: 10.1007/s11033-011-1197-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 07/11/2011] [Indexed: 11/29/2022]
Abstract
Members of the plant glycine-rich RNA-binding protein (GR-RBP) family play diverse roles in regulating RNA metabolism for various cellular processes. To understand better their function at the molecular level in stress responses, we cloned a GR-RBP gene, MhGR-RBP1, from Malus hupehensis. Its full-length cDNA is 558 bp long, with a 495-bp open reading frame, and it encodes 164 amino acids. The deduced amino acid sequence contains an RNA-recognition motif (RRM) at the amino terminal and a glycine-rich domain at the carboxyl terminal; these are highly homologous with those from other plant species. Multiple alignment and phylogenetic analyses show that the deduced protein is a novel member of the plant GR-RBP family. To characterize this gene, we also applied a model for predicting its homology of protein structure with other species. Both organ-specific and stress-related expression were detected by quantitative real-time PCR and semi-quantitative RT-PCR, indicating that MhGR-RBP1 is expressed abundantly in young leaves but weakly in roots and shoots. Transcript levels in the leaves were increased markedly by drought, hydrogen peroxide (H(2)O(2)), and mechanical wounding, slightly by salt stress. Furthermore, the transcript is initially up- and down-regulated rapidly within 24 h of abscisic acid (ABA) treatment. After 24 h of ABA and jasmonic acid (JA) treatments with different concentrations, the transcript levels of MhGR-RBP1 were significantly repressed. These results suggest that MhGR-RBP1 may be involved in the responses to abiotic stresses, H(2)O(2), ABA, or JA.
Collapse
Affiliation(s)
- Shuncai Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Kwak KJ, Park SJ, Han JH, Kim MK, Oh SH, Han YS, Kang H. Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4003-11. [PMID: 21511907 PMCID: PMC3134357 DOI: 10.1093/jxb/err101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/16/2011] [Accepted: 03/11/2011] [Indexed: 05/19/2023]
Abstract
Although glycine-rich RNA-binding proteins (GRPs) have been determined to function as RNA chaperones during the cold adaptation process, the structural features relevant to this RNA chaperone activity remain largely unknown. To uncover which structural determinants are necessary for RNA chaperone activity of GRPs, the importance of the N-terminal RNA recognition motif (RRM) and the C-terminal glycine-rich domains of two Arabidopsis thaliana GRPs (AtGRP4 harbouring no RNA chaperone activity and AtGRP7 harbouring RNA chaperone activity) was assessed via domain swapping and mutation analyses. The results of domain swapping and deletion experiments showed that the domain sequences encompassing the N-terminal RRM of GRPs were found to be crucial to the ability to complement cold-sensitive Escherichia coli mutant cells under cold stress, RNA melting ability, and freezing tolerance ability in the grp7 loss-of-function Arabidopsis mutant. In particular, the N-terminal 24 amino acid extension of AtGRP4 impedes the RNA chaperone activity. Collectively, these results reveal that domain sequences and overall folding of GRPs governed by a specific modular arrangement of RRM and glycine-rich sequences are critical to the RNA chaperone activity of GRPs during the cold adaptation process in cells.
Collapse
|
34
|
Abstract
Synechocystis sp. strain PCC 6803 cultured at 30°C losses viability quickly under chill (5°C)-light stress but becomes highly tolerant to the stress after conditioning at 15°C (Y. Yang, C. Yin, W. Li, and X. Xu, J. Bacteriol. 190:1554-1560, 2008). Hypothetically, certain factors induced during preconditioning are involved in acquisition of chill-light tolerance. In this study, Rbp1 (RNA-binding protein 1) rather than Rbp2 was found to be accumulated during preconditioning, and the accumulation of Rbp1 was correlated with the increase of chill-light tolerance. Inactivation of its encoding gene rbp1 led to a great reduction in the acquired chill-light tolerance, while ectopic expression of rbp1 enabled the cyanobacterium to survive the chill-light stress without preconditioning. Microarray analyses suggested that the Rbp1-dependent chill-light tolerance may not be based on its influence on mRNA abundance of certain genes. Similarly to that in Synechocystis, the Rbp1 homologue(s) can be accumulated in Microcystis cells collected from a subtropic lake in low-temperature seasons. Rbp1 is the first factor shown to be both accumulated early during preconditioning and directly involved in development of chill-light tolerance in Synechocystis. Its accumulation may greatly enhance the overwintering capability in certain groups of cyanobacteria.
Collapse
|
35
|
Jacobs J, Kück U. Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 2011; 68:735-48. [PMID: 20848156 PMCID: PMC11115000 DOI: 10.1007/s00018-010-0523-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/18/2022]
Abstract
Chloroplasts are eukaryotic organelles which represent evolutionary chimera with proteins that have been derived from either a prokaryotic endosymbiont or a eukaryotic host. Chloroplast gene expression starts with transcription of RNA and is followed by multiple post-transcriptional processes which are mediated mainly by an as yet unknown number of RNA-binding proteins. Here, we review the literature to date on the structure and function of these chloroplast RNA-binding proteins. For example, the functional protein domains involved in RNA binding, such as the RNA-recognition motifs, the chloroplast RNA-splicing and ribosome maturation domains, and the pentatricopeptide-repeat motifs, are summarized. We also describe biochemical and forward genetic approaches that led to the identification of proteins modifying RNA stability or carrying out RNA splicing or editing. Such data will greatly contribute to a better understanding of the biogenesis of a unique organelle found in all photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Jacobs
- Department for General and Molecular Biology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
| | | |
Collapse
|
36
|
Henson BJ, Hartman L, Watson LE, Barnum SR. Evolution and variation of the nifD and hupL elements in the heterocystous cyanobacteria. Int J Syst Evol Microbiol 2011; 61:2938-2949. [PMID: 21278412 DOI: 10.1099/ijs.0.028340-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In heterocystous cyanobacteria, heterocyst differentiation is accompanied by developmentally regulated DNA rearrangements that occur within the nifD and hupL genes, referred to as the nifD and hupL elements. These elements are segments of DNA that are embedded within the coding region of each gene and range from 4 to 24 kb in length. The nifD and hupL elements are independently excised from the genome during the later stages of differentiation by the site-specific recombinases, XisA and XisC, respectively, which are encoded within the elements themselves. Here we examine the variation and evolution of the nifD and hupL elements by comparing full-length nifD and hupL element sequences and by phylogenetic analysis of xisA and xisC gene sequences. There is considerable variation in the size and composition of the nifD and hupL elements, however, conserved regions are also present within representatives of each element. The data suggest that the nifD and hupL elements have undergone a complex pattern of insertions, deletions, translocations and sequence divergence over the course of evolution, but that conserved regions remain.
Collapse
Affiliation(s)
- Brian J Henson
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, USA
| | | | | | | |
Collapse
|
37
|
CHEN X, ZENG QC, LU XP, YU DQ, LI WZ. Characterization and Expression Analysis of Four Glycine-Rich RNA-Binding Proteins Involved in Osmotic Response in Tobacco (Nicotiana tabacum cv. Xanthi). ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60254-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Kim WY, Kim JY, Jung HJ, Oh SH, Han YS, Kang H. Comparative analysis of Arabidopsis zinc finger-containing glycine-rich RNA-binding proteins during cold adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:866-872. [PMID: 20850334 DOI: 10.1016/j.plaphy.2010.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 08/21/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
Among the three zinc finger-containing glycine-rich RNA-binding proteins, named AtRZ-1a, AtRZ-1b, and AtRZ-1c, in the Arabidopsis thaliana genome, AtRZ-1a has previously been shown to enhance cold and freezing tolerance in Arabidopsis. Here, we determined and compared the functional roles of AtRZ-1b and AtRZ-1c in Arabidopsis and Escherichia coli under cold stress conditions. AtRZ-1b, but not AtRZ-1c, successfully complemented the cold sensitivity of E. coli BX04 mutant cells lacking four cold shock proteins. Domain deletion and site-directed mutagenesis showed that the zinc finger motif of AtRZ-1b is important for its complementation ability, and that the truncated N- and C-terminal domains of AtRZ-1b and AtRZ-1c harbor the complementation ability. Despite an increase in transcript levels of AtRZ-1b and AtRZ-1c under cold stress, overexpression or loss-of-function mutations did not affect seed germination or seedling growth of Arabidopsis under cold stress conditions. AtRZ-1b and AtRZ-1c proteins, being localized to the nucleus, have been shown to bind non-specifically to RNA sequences in vitro, in comparison to AtRZ-1a that is localized to both the nucleus and the cytoplasm and binds preferentially to G- or U-rich RNA sequences. Taken together, these results demonstrate that the three AtRZ-1 family members showing different cellular localization and characteristic nucleic acid-binding property have a potential to contribute differently to the enhancement of cold tolerance in Arabidopsis and E. coli.
Collapse
Affiliation(s)
- Won Yong Kim
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Effects of a type-II RNA-binding protein on fatty acid composition in Synechocystis sp. PCC 6803. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3254-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Park SJ, Kwak KJ, Jung HJ, Lee HJ, Kang H. The C-terminal zinc finger domain of Arabidopsis cold shock domain proteins is important for RNA chaperone activity during cold adaptation. PHYTOCHEMISTRY 2010; 71:543-547. [PMID: 20060550 DOI: 10.1016/j.phytochem.2009.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/26/2009] [Accepted: 12/15/2009] [Indexed: 05/28/2023]
Abstract
Among the four cold shock domain proteins (CSDPs) identified in Arabidopsis thaliana, it has recently been shown that CSDP1 harboring seven CCHC-type zinc fingers, but not CSDP2 harboring two CCHC-type zinc fingers, function as a RNA chaperone during cold adaptation. However, the structural features relevant to this differing RNA chaperone activity between CSDP1 and CSDP2 remain largely unknown. To determine which structural features are necessary for the RNA chaperone activity of the CSDPs, the importance of the N-terminal cold shock domain (CSD) and the C-terminal zinc finger glycine-rich domains of CSDP1 and CSDP2 were assessed. The results of sequence motif-swapping and deletion experiments showed that, although the CSD itself harbored RNA chaperone activity, the number and length of the zinc finger glycine-rich domains of CSDPs were crucial to the full activity of the RNA chaperones. The C-terminal domain itself of CSDP1, harboring seven CCHC-type zinc fingers, also has RNA chaperone activity. The RNA chaperone activity and nuclei acid-binding property of the native and chimeric proteins were closely correlated with each other. Collectively, these results indicate that a specific modular arrangement of the CSD and the zinc finger domain determines both the RNA chaperone activity and nucleic acid-binding property of CSDPs; this, in turn, contributes to enhanced cold tolerance in plants as well as in bacteria.
Collapse
Affiliation(s)
- Su Jung Park
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proc Natl Acad Sci U S A 2009; 106:6002-7. [PMID: 19297624 DOI: 10.1073/pnas.0808529106] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast ribonucleoproteins (cpRNPs) are nuclear-encoded, highly abundant, and light-regulated RNA binding proteins. They have been shown to be involved in chloroplast RNA processing and stabilization in vitro and are phylogenetically related to the well-described heterogeneous nuclear ribonucleoproteins (hnRNPs). cpRNPs have been found associated with mRNAs present in chloroplasts and have been regarded as nonspecific stabilizers of chloroplast transcripts. Here, we demonstrate that null mutants of the cpRNP family member CP31A exhibit highly specific and diverse defects in chloroplast RNA metabolism. First, analysis of cp31a and cp31a/cp31b double mutants uncovers that these 2 paralogous genes participate nonredundantly in a combinatorial fashion in processing a subset of chloroplast editing sites in vivo. Second, a genome-wide analysis of chloroplast transcript accumulation in cp31a mutants detected a virtually complete loss of the chloroplast ndhF mRNA and lesser reductions for specific other mRNAs. Fluorescence analyses show that the activity of the NADH dehydrogenase complex, which also includes the NdhF subunit, is defective in cp31a mutants. This indicates that cpRNPs are important in vivo for calibrating the expression levels of specific chloroplast mRNAs and impact chloroplast physiology. Taken together, the specificity and combinatorial aspects of cpRNP functions uncovered suggest that these chloroplast proteins are functional equivalents of nucleocytosolic hnRNPs.
Collapse
|
42
|
Pilotte J, Cunningham BA, Edelman GM, Vanderklish PW. Developmentally regulated expression of the cold-inducible RNA-binding motif protein 3 in euthermic rat brain. Brain Res 2009; 1258:12-24. [DOI: 10.1016/j.brainres.2008.12.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 01/07/2023]
|
43
|
Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2008; 15:119-38. [PMID: 18936037 DOI: 10.1093/humupd/dmn044] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The steroid hormone progesterone is indispensable for mammalian procreation by controlling key female reproductive events that range from ovulation to implantation, maintenance of pregnancy and breast development. In addition to activating the progesterone receptors (PRs)-B and -A, members of the superfamily of ligand-dependent transcription factors, progesterone also elicits a variety of rapid signalling events independently of transcriptional or genomic regulation. This review covers our current knowledge on the mechanisms and relevance of non-genomic progesterone signalling in female reproduction. METHODS PubMed was searched up to August 2008 for papers on progesterone actions in ovary/breast/endometrium/myometrium/brain, focusing primarily on non-genomic signalling mechanisms. RESULTS Convergence and intertwining of rapid non-genomic events and the slower transcriptional actions critically determine the functional response to progesterone in the female reproductive system in a cell-type- and environment-specific manner. Several putative progesterone-binding moieties have been implicated in rapid signalling events, including the 'classical' PR and its variants, progesterone receptor membrane component 1, and the novel family of membrane progestin receptors. Progesterone and its metabolites have also been implicated in the allosteric regulation of several unrelated receptors, such as gamma-aminobutyric acid type A, oxytocin and sigma(1) receptors. CONCLUSIONS Identification of the mechanisms and receptors that relay rapid progesterone signalling is an area of research fraught with difficulties and controversy. More in-depth characterization of the putative receptors is required before the non-genomic progesterone pathway in normal and pathological reproductive function can be targeted for pharmacological intervention.
Collapse
|
44
|
Koksharova OA, Klint J, Rasmussen U. Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942. MICROBIOLOGY-SGM 2007; 153:2505-2517. [PMID: 17660415 DOI: 10.1099/mic.0.2007/007039-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial cell division is a highly co-ordinated and fine-tuned process. In the unicellular cyanobacterium Synechococcus sp. strain PCC 7942, inactivating mutations in the ftn2 and ftn6 genes block cell division and result in a phenotype with extensively elongated cells. In order to establish the pleiotropic responses induced and cellular processes affected by blocked cell division, the proteomes of wild-type and the cell division mutants Ftn2 and Ftn6 of Synechococcus sp. strain PCC 7942 were characterized and compared. By separating soluble extracted proteins on 2D gels, more than 800 protein spots were visualized on each SYPRO Ruby-stained gel. Quantitative differences in protein composition were detected by using the PDQuest software, and comparative analysis revealed that 76 protein spots changed significantly in the cell division mutants. These protein spots were selected for identification using peptide mass fingerprints generated by MALDI-TOF MS. Fifty-three protein spots were successfully identified, representing 44 different proteins. The upregulated proteins include proteins involved in cell division/cell morphogenesis, protein synthesis and processing, oxidative stress response, amino acid metabolism, nucleotide biosynthesis, and glycolysis, as well as unknown proteins. Among the downregulated proteins are those involved in chromosome segregation, protein processing, photosynthesis, redox regulation, carbon dioxide fixation, nucleotide biosynthesis, the biosynthetic pathway to fatty acids, and energy production. Besides eliciting common responses, inactivation of Ftn2 and Ftn6 in the mutants may result in different responses in protein levels between the mutants. Among 18 identified differentially affected protein spots, 75 % (9/12) of the protein spots affected in the Ftn2 mutant were upshifted, whereas in the Ftn6 mutant 70 % (7/10) of the affected protein spots were downshifted. Identification of such differentially expressed proteins provides new targets for future studies that will allow assessment of their physiological roles and significance in cyanobacterial cell division.
Collapse
Affiliation(s)
- Olga A Koksharova
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov State University, Moscow 119992, Russia
| | - Johan Klint
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulla Rasmussen
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Smart F, Aschrafi A, Atkins A, Owens GC, Pilotte J, Cunningham BA, Vanderklish PW. Two isoforms of the cold-inducible mRNA-binding protein RBM3 localize to dendrites and promote translation. J Neurochem 2007; 101:1367-79. [PMID: 17403028 DOI: 10.1111/j.1471-4159.2007.04521.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A diverse set of mRNA-binding proteins (BPs) regulate local translation in neurons. However, little is known about the role(s) played by a family of cold-inducible, glycine-rich mRNA-BPs. Unlike neuronal mRNA-BPs characterized thus far, these proteins are induced by hypothermia and are comprised of one RNA recognition motif and an adjacent arginine- and glycine-rich domain. We studied the expression and function of the RNA-binding motif protein 3 (RBM3), a member of this family, in neurons. RBM3 was expressed in multiple brain regions, with the highest levels in cerebellum and olfactory bulb. In dissociated neurons, RBM3 was observed in nuclei and in a heterogeneous population of granules within dendrites. In sucrose gradient assays, RBM3 cofractionated with heavy mRNA granules and multiple components of the translation machinery. Two alternatively spliced RBM3 isoforms that differed by a single arginine residue were identified in neurons; both were post-translationally modified. The variant lacking the spliced arginine exhibited a higher dendritic localization and was the only isoform present in astrocytes. When overexpressed in neuronal cell lines, RBM3 isoforms-enhanced global translation, the formation of active polysomes, and the activation of initiation factors. These data suggest that RBM3 plays a distinctive role in enhancing translation in neurons.
Collapse
Affiliation(s)
- Fiona Smart
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim JY, Park SJ, Jang B, Jung CH, Ahn SJ, Goh CH, Cho K, Han O, Kang H. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:439-51. [PMID: 17376161 DOI: 10.1111/j.1365-313x.2007.03057.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although glycine-rich RNA-binding protein 2 (GRP2) has been implicated in plant responses to environmental stresses, the function and importance of GRP2 in stress responses are largely unknown. Here, we examined the functional roles of GRP2 in Arabidopsis thaliana under high-salinity, cold or osmotic stress. GRP2 affects seed germination of Arabidopsis plants under salt stress, but does not influence seed germination and seedling growth of Arabidopsis plants under osmotic stress. GRP2 accelerates seed germination and seedling growth in Arabidopsis plants under cold stress, and contributes to enhancement of cold and freezing tolerance in Arabidopsis plants. No differences in germination between the wild-type and transgenic plants were observed following addition of abscisic acid (ABA) or glucose, implying that GRP2 affects germination through an ABA-independent pathway. GRP2 complements the cold sensitivity of an Escherichia coli BX04 mutant and exhibits transcription anti-termination activity, suggesting that it has an RNA chaperone activity during the cold adaptation process. Mitochondrial respiration and catalase and peroxidase activities were affected by expression of mitochondrial-localized GRP2 in Arabidopsis plants under cold stress. Proteome analysis revealed that expression of several mitochondrial-encoded genes was modulated by GRP2 under cold stress. These results provide new evidence indicating that GRP2 plays important roles in seed germination, seedling growth and freezing tolerance of Arabidopsis under stress conditions, and that GRP2 exerts its function by modulating the expression and activity of various classes of genes.
Collapse
Affiliation(s)
- Joo Y Kim
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sato N. Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2007. [DOI: 10.1007/978-1-4020-4061-0_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 2006; 35:506-16. [PMID: 17169986 PMCID: PMC1802614 DOI: 10.1093/nar/gkl1076] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinkyung Song
- Department of Chemistry, College of Life ScienceChonnam National University, Gwangju, 500-757, Republic of Korea
| | - Boseung Jang
- Department of Chemistry, College of Life ScienceChonnam National University, Gwangju, 500-757, Republic of Korea
| | - Che-Hun Jung
- Department of Chemistry, College of Life ScienceChonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hunseung Kang
- To whom correspondence should be addressed at Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea. Tel: +82 62 530 2181; Fax: +82 62 530 2047;
| |
Collapse
|
49
|
Koksharova OA, Klint J, Rasmussen U. The first protein map of Synechococcus sp. strain PCC 7942. Microbiology (Reading) 2006. [DOI: 10.1134/s0026261706060087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Kim YO, Kang H. The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2006; 47:793-8. [PMID: 16608866 DOI: 10.1093/pcp/pcj047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mechanistic role of a glycine-rich RNA-binding protein designated atRZ-1a that contributes to enhance cold tolerance in Arabidopsis was investigated. Overexpression of atRZ-1a did not affect the expression of various cold-responsive genes such as COR6.6, COR15a, COR47, RD29A, RD29B and LTI29. Proteome analyses revealed that overexpression of atRZ-1a modulated the expression of several stress-responsive genes, and the transcript levels and RNA stability of these target genes were not affected by atRZ-1a. atRZ-1a successfully complements the cold sensitivity of Escherichia coli lacking four cold shock proteins. These results strongly suggest that atRZ-1a plays a role as an RNA chaperone during the cold adaptation process.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757 Korea
| | | |
Collapse
|