1
|
Vishwakarma G, Saini A, Bhardwaj SC, Kumar S, Das BK. Comparative transcriptomics of stem rust resistance in wheat NILs mediated by Sr24 rust resistance gene. PLoS One 2023; 18:e0295202. [PMID: 38079439 PMCID: PMC10712884 DOI: 10.1371/journal.pone.0295202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Stem rust of wheat is a deleterious fungal disease across the globe causing severe yield losses. Although, many stem rust resistance genes (Sr) are being used in wheat breeding programs, new emerging stem rust pathotypes are a challenge to important Sr genes. In recent years, multiple studies on leaf and yellow rust molecular mechanism have been done, however, for stem rust such studies are lacking. Current study investigated stem rust induced response in the susceptible wheat genotype C306 and its Near Isogenic Line (NIL) for Sr24 gene, HW2004, using microarray analysis to understand the transcriptomic differences at different stages of infection. Results showed that HW2004 has higher basal levels of several important genes involved in pathogen detection, defence, and display early activation of multiple defence mechanisms. Further Gene Ontology (GO) and pathway analysis identified important genes responsible for pathogen detection, downstream signalling cascades and transcription factors (TFs) involved in activation and mediation of defence responses. Results suggest that generation of Reactive Oxygen Species (ROS), cytoskeletal rearrangement, activation of multiple hydrolases, and lipid metabolism mediated biosynthesis of certain secondary metabolites are collectively involved in Sr24-mediated defence in HW2004, in response to stem rust infection. Novel and unannotated, but highly responsive genes were also identified, which may also contribute towards resistance phenotype. Furthermore, certain DEGs also mapped close to the Sr24-linked marker on Thinopyrum elongatum translocated fragment on wheat 3E chromosome, which advocate further investigations for better insights of the Sr24-mediated stem rust resistance.
Collapse
Affiliation(s)
- Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ajay Saini
- Homi Bhabha National Institute, Mumbai, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
| | | | - Satish Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Bikram Kishore Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Li J, Mao Y, Yi J, Lin M, Xu H, Cheng Y, Wu H, Liu J. Induced expression modes of genes related to Toll, Imd, and JAK/STAT signaling pathway-mediated immune response in Spodoptera frugiperda infected with Beauveria bassiana. Front Physiol 2023; 14:1249662. [PMID: 37693000 PMCID: PMC10484109 DOI: 10.3389/fphys.2023.1249662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Spodoptera frugiperda is one of the most harmful pests that attack maize and other major food crops and causes huge economic loss every year in China and other countries and regions. Beauveria bassiana, a kind of entomological fungus that is highly pathogenic to pests, is harmless to the environment and human beings. However, at present, S. frugiperda has gradually developed resistance to many pesticides and microbial insecticides. In this study, transcriptome sequencing was conducted to analyze the differences in gene expression between B. bassiana-infected and -uninfected S. frugiperda. More than 160 Gb of clean data were obtained as 150-bp paired-end reads using the Illumina HiSeq™ 4000 platform, and 2,767 and 2,892 DEGs were identified in LH36vsCK36 and LH144vsCK144, respectively. In order to explore the roles of JAK/STAT, Toll, and Imd signaling pathways in antifungal immune response in S. frugiperda against B. bassiana infection, the expression patterns of those signaling pathway-related genes in B. bassiana-infected S. frugiperda were analyzed by quantitative real-time PCR. In addition, antifungal activity experiments revealed that the suppression of JAK/STAT, Toll, and Imd signaling pathways by inhibitors could inhibit the antifungal activity to a large extent and lead to increased sensitivity of S. frugiperda to B. bassiana infection, indicating that JAK/STAT, Toll, and Imd signaling pathways and their associated genes might be involved in the synthesis and secretion of antifungal substances. This study implied that JAK/STAT, Toll, and Imd signaling pathways played crucial roles in the antifungal immune response of the S. frugiperda larvae, in which the related genes of these signaling pathways could play special regulatory roles in signal transduction. This study would improve our understanding of the molecular mechanisms underlying innate immunity and provide the basis for a wide spectrum of strategies against antifungal resistance of S. frugiperda.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Han Wu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianbai Liu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Du C, Li W, Fu Z, Yi C, Liu X, Yue B. De novo transcriptome assemblies of Epicauta tibialis provide insights into the sexual dimorphism in the production of cantharidin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21784. [PMID: 33719055 DOI: 10.1002/arch.21784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Blister beetles have medicinal uses for their defensive secretion cantharidin, which has curative effects on many cancers and other diseases. It was demonstrated that sexual dimorphism exists in the production of cantharidin between male and female adults. This study performed a de novo assembly of Epicauta tibialis transcriptomes and analyzed the differentially expressed genes (DEGs) between male and female adults to help to find genes and pathways associated with cantharidin biosynthesis. A total of 99,295,624 paired reads were generated, and more than 7 Gb transcriptome data for each sample were obtained after trimming. The clean data were used to de novo assemble and then cluster into 27,355 unigenes, with a mean length of 1442 bp and an N50 of 2725 bp. Of these, 14,314 (52.33%) unigenes were annotated by protein databases. Differential expression analysis identified 284 differentially expressed genes (DEGs) between male and female adults. Nearly 239 DEGs were up-regulated in male adults than in female adults, while 45 DEGs were down-regulated. The Kyoto Encyclopedia of Gene and Genomes pathway enrichment manifested that seven up-regulated DEGs in male adults were assigned to the terpenoid biosynthesis pathway, to which 19 unigenes were annotated. The DEGs in the terpenoid biosynthesis pathway between male and female adults may be responsible for the sexual dimorphism in cantharidin production. The up-regulated genes assigned to the pathway in male adults may play a significant role in cantharidin biosynthesis, and its biosynthesis process is probably via the mevalonate pathway. The results would be helpful to better understand and reveal the complicated mechanism of the cantharidin biosynthesis.
Collapse
Affiliation(s)
- Chao Du
- Baotou Teachers College, Inner Mongolia University of Science and Technology, Bautou, P.R. China
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Wujiao Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, P.R. China
| | - Zhaohui Fu
- Baotou Teachers College, Inner Mongolia University of Science and Technology, Bautou, P.R. China
| | - Chunyan Yi
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, P.R. China
| | - Xu Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, P.R. China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
4
|
Liu J, Liu H, Yi J, Mao Y, Li J, Sun D, An Y, Wu H. Transcriptome Characterization and Expression Analysis of Chemosensory Genes in Chilo sacchariphagus (Lepidoptera Crambidae), a Key Pest of Sugarcane. Front Physiol 2021; 12:636353. [PMID: 33762968 PMCID: PMC7982955 DOI: 10.3389/fphys.2021.636353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Insect chemoreception involves many families of genes, including odourant/pheromone binding proteins (OBP/PBPs), chemosensory proteins (CSPs), odourant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs), which play irreplaceable roles in mediating insect behaviors such as host location, foraging, mating, oviposition, and avoidance of danger. However, little is known about the molecular mechanism of olfactory reception in Chilo sacchariphagus, which is a major pest of sugarcane. A set of 72 candidate chemosensory genes, including 31 OBPs/PBPs, 15 CSPs, 11 ORs, 13 IRs, and two SNMPs, were identified in four transcriptomes from different tissues and genders of C. sacchariphagus. Phylogenetic analysis was conducted on gene families and paralogs from other model insect species. Quantitative real-time PCR (qRT-PCR) showed that most of these chemosensory genes exhibited antennae-biased expression, but some had high expression in bodies. Most of the identified chemosensory genes were likely involved in chemoreception. This study provides a molecular foundation for the function of chemosensory proteins, and an opportunity for understanding how C. sacchariphagus behaviors are mediated via chemical cues. This research might facilitate the discovery of novel strategies for pest management in agricultural ecosystems.
Collapse
Affiliation(s)
- Jianbai Liu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Huan Liu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yongkai Mao
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jihu Li
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Donglei Sun
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Su QC, Wang X, Deng C, Yun YL, Zhao Y, Peng Y. Transcriptome responses to elevated CO 2 level and Wolbachia-infection stress in Hylyphantes graminicola (Araneae: Linyphiidae). INSECT SCIENCE 2020; 27:908-920. [PMID: 31215133 DOI: 10.1111/1744-7917.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/09/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Hylyphantes graminicola is a resident spider species found in maize and cotton fields and is an important biological control agent of various pests. Previous studies have demonstrated that stress from elevated CO2 and Wolbachia infection can strongly affect spider species. Thus, based on CO2 levels (400 ppm, current atmospheric CO2 concentration and 800 ppm, high CO2 concentration) and Wolbachia status (Wolbachia-infected, W+ and Wolbachia-uninfected, W- ), we divided H. graminicola individuals into four treatment groups: W- 400 ppm, W- 800 ppm, W+ 400 ppm, and W+ 800 ppm. To investigate the effects of elevated CO2 levels (W- 400 vs W- 800), Wolbachia infection (W- 400 vs W+ 400), and the interactions between these two factors (W- 400 vs W+ 800), high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spiders and identify stress-related differentially expressed genes (DEGs). De novo assembly of complementary DNA sequences generated 86 688 unigenes, 23 938 of which were annotated in public databases. A total of 84, 21, and 157 DEGs were found among W- 400 vs W- 800, W- 400 vs W+ 400, and W- 400 vs W+ 800, respectively. Functional enrichment analysis revealed that metabolic processes, signaling, and catalytic activity were significantly affected by elevated CO2 levels and Wolbachia infection. Our findings suggest that the impact of elevated CO2 levels and Wolbachia infection on the H. graminicola transcriptome was, to a large extent, on genes involved in metabolic processes. This study is the first description of transcriptome changes in response to elevated CO2 levels and Wolbachia infection in spiders.
Collapse
Affiliation(s)
- Qi-Chen Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Chan Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yue-Li Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Mohd Hanafiah N, Mispan MS, Lim PE, Baisakh N, Cheng A. The 21st Century Agriculture: When Rice Research Draws Attention to Climate Variability and How Weedy Rice and Underutilized Grains Come in Handy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E365. [PMID: 32188108 PMCID: PMC7154822 DOI: 10.3390/plants9030365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Rice, the first crop to be fully sequenced and annotated in the mid-2000s, is an excellent model species for crop research due mainly to its relatively small genome and rich genetic diversity. The 130-million-year-old cereal came into the limelight in the 1960s when the semi-dwarfing gene sd-1, better known as the "green revolution" gene, resulted in the establishment of a high-yielding semi-dwarf variety IR8. Deemed as the miracle rice, IR8 saved millions of lives and revolutionized irrigated rice farming particularly in the tropics. The technology, however, spurred some unintended negative consequences, especially in prompting ubiquitous monoculture systems that increase agricultural vulnerability to extreme weather events and climate variability. One feasible way to incorporate resilience in modern rice varieties with narrow genetic backgrounds is by introgressing alleles from the germplasm of its weedy and wild relatives, or perhaps from the suitable underutilized species that harbor novel genes responsive to various biotic and abiotic stresses. This review reminisces the fascinating half-century journey of rice research and highlights the potential utilization of weedy rice and underutilized grains in modern breeding programs. Other possible alternatives to improve the sustainability of crop production systems in a changing climate are also discussed.
Collapse
Affiliation(s)
- Noraikim Mohd Hanafiah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhamad Shakirin Mispan
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- The Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Phaik Eem Lim
- Institute of Ocean and Earth Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Acga Cheng
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2019; 20:368-395. [PMID: 30387391 DOI: 10.2174/1389203720666181102095910] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.
Collapse
Affiliation(s)
- João P Bezerra-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - José R C Ferreira-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Manassés D da Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Tetsu Sakamoto
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Roberta L de Oliveira Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Ederson A Kido
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Lidiane L Barbosa Amorim
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Oeiras, Avenida Projetada, s/n, 64.500-000, Oeiras, Piauí, Brazil
| | - José M Ortega
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Transcriptome characterization and gene expression analysis related to chemoreception in Trichogramma chilonis, an egg parasitoid. Gene 2018; 678:288-301. [DOI: 10.1016/j.gene.2018.07.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023]
|
9
|
Delventhal R, Rajaraman J, Stefanato FL, Rehman S, Aghnoum R, McGrann GRD, Bolger M, Usadel B, Hedley PE, Boyd L, Niks RE, Schweizer P, Schaffrath U. A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley. BMC PLANT BIOLOGY 2017; 17:232. [PMID: 29202692 PMCID: PMC5715502 DOI: 10.1186/s12870-017-1178-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Nonhost resistance (NHR) protects plants against a vast number of non-adapted pathogens which implicates a potential exploitation as source for novel disease resistance strategies. Aiming at a fundamental understanding of NHR a global analysis of transcriptome reprogramming in the economically important Triticeae cereals wheat and barley, comparing host and nonhost interactions in three major fungal pathosystems responsible for powdery mildew (Blumeria graminis ff. ssp.), cereal blast (Magnaporthe sp.) and leaf rust (Puccinia sp.) diseases, was performed. RESULTS In each pathosystem a significant transcriptome reprogramming by adapted- or non-adapted pathogen isolates was observed, with considerable overlap between Blumeria, Magnaporthe and Puccinia. Small subsets of these general pathogen-regulated genes were identified as differentially regulated between host and corresponding nonhost interactions, indicating a fine-tuning of the general pathogen response during the course of co-evolution. Additionally, the host- or nonhost-related responses were rather specific for each pair of adapted and non-adapted isolates, indicating that the nonhost resistance-related responses were to a great extent pathosystem-specific. This pathosystem-specific reprogramming may reflect different resistance mechanisms operating against non-adapted pathogens with different lifestyles, or equally, different co-option of the hosts by the adapted isolates to create an optimal environment for infection. To compare the transcriptional reprogramming between wheat and barley, putative orthologues were identified. Within the wheat and barley general pathogen-regulated genes, temporal expression profiles of orthologues looked similar, indicating conserved general responses in Triticeae against fungal attack. However, the comparison of orthologues differentially expressed between host and nonhost interactions revealed fewer commonalities between wheat and barley, but rather suggested different host or nonhost responses in the two cereal species. CONCLUSIONS Taken together, our results suggest independent co-evolutionary forces acting on host pathosystems mirrored by barley- or wheat-specific nonhost responses. As a result of evolutionary processes, at least for the pathosystems investigated, NHR appears to rely on rather specific plant responses.
Collapse
Affiliation(s)
- Rhoda Delventhal
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Jeyaraman Rajaraman
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Francesca L. Stefanato
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk, NR4 7UH UK
- Present address: Molecular microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Sajid Rehman
- Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
- Present address: Biodiversity and Integrated Gene Management Program (BIGM), International Center for Agriculture Research in the Dry Areas, Rabat, Morocco
| | - Reza Aghnoum
- Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
- Present address: Seed and Plant Improvement Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
| | - Graham R. D. McGrann
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk, NR4 7UH UK
| | - Marie Bolger
- Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056 Aachen, Germany
| | - Björn Usadel
- Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056 Aachen, Germany
| | - Pete E. Hedley
- The James Hutton Institute, Invergowrie, Dundee, Scotland DD2 5DA UK
| | - Lesley Boyd
- NIAB, Huntingdon Road, Cambridge, CB3 0LE UK
| | - Rients E. Niks
- Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Patrick Schweizer
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
10
|
Transcriptome Profiling Analysis of Wolf Spider Pardosa pseudoannulata (Araneae: Lycosidae) after Cadmium Exposure. Int J Mol Sci 2016; 17:ijms17122033. [PMID: 27918488 PMCID: PMC5187833 DOI: 10.3390/ijms17122033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022] Open
Abstract
Pardosa pseudoannulata is one of the most common wandering spiders in agricultural fields and a potentially good bioindicator for heavy metal contamination. However, little is known about the mechanisms by which spiders respond to heavy metals at the molecular level. In the present study, high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spiders and to identify differentially expressed genes (DEGs) after cadmium exposure. We obtained 60,489 assembled unigenes, 18,773 of which were annotated in the public databases. A total of 2939 and 2491 DEGs were detected between the libraries of two Cd-treated groups and the control. Functional enrichment analysis revealed that metabolism processes and digestive system function were predominately enriched in response to Cd stress. At the cellular and molecular levels, significantly enriched pathways in lysosomes and phagosomes as well as replication, recombination and repair demonstrated that oxidative damage resulted from Cd exposure. Based on the selected DEGs, certain critical genes involved in defence and detoxification were analysed. These results may elucidate the molecular mechanisms underlying spiders' responses to heavy metal stress.
Collapse
|
11
|
Franco Cairo JPL, Carazzolle MF, Leonardo FC, Mofatto LS, Brenelli LB, Gonçalves TA, Uchima CA, Domingues RR, Alvarez TM, Tramontina R, Vidal RO, Costa FF, Costa-Leonardo AM, Paes Leme AF, Pereira GAG, Squina FM. Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi. Front Microbiol 2016; 7:1518. [PMID: 27790186 PMCID: PMC5061848 DOI: 10.3389/fmicb.2016.01518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9) and beta-glucosidases (GH1) were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7) and endo-glucanases (GH5 and GH45), as well as classical xylanases (GH10 and GH11), were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi. Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs), which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes.
Collapse
Affiliation(s)
- João P L Franco Cairo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)Campinas, Brazil; Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas (UNICAMP)Campinas, Brazil
| | - Marcelo F Carazzolle
- Laboratório de Genômica e Expressão, Universidade Estadual de Campinas (UNICAMP) Campinas, Brazil
| | - Flávia C Leonardo
- Laboratório de Genômica e Expressão, Universidade Estadual de Campinas (UNICAMP)Campinas, Brazil; Centro de Hematologia e Hemoterapia (Hemocentro), Universidade Estadual de Campinas (UNICAMP)Campinas, Brazil
| | - Luciana S Mofatto
- Laboratório de Genômica e Expressão, Universidade Estadual de Campinas (UNICAMP)Campinas, Brazil; Centro de Hematologia e Hemoterapia (Hemocentro), Universidade Estadual de Campinas (UNICAMP)Campinas, Brazil
| | - Lívia B Brenelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)Campinas, Brazil; Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas (UNICAMP)Campinas, Brazil
| | - Thiago A Gonçalves
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)Campinas, Brazil; Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas (UNICAMP)Campinas, Brazil
| | - Cristiane A Uchima
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas, Brazil
| | - Romênia R Domingues
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBIO), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas, Brazil
| | - Thabata M Alvarez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas, Brazil
| | - Robson Tramontina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)Campinas, Brazil; Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas (UNICAMP)Campinas, Brazil
| | - Ramon O Vidal
- Laboratório de Genômica e Expressão, Universidade Estadual de Campinas (UNICAMP) Campinas, Brazil
| | - Fernando F Costa
- Centro de Hematologia e Hemoterapia (Hemocentro), Universidade Estadual de Campinas (UNICAMP) Campinas, Brazil
| | - Ana M Costa-Leonardo
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP) Rio Claro, Brazil
| | - Adriana F Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBIO), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas, Brazil
| | - Gonçalo A G Pereira
- Laboratório de Genômica e Expressão, Universidade Estadual de Campinas (UNICAMP) Campinas, Brazil
| | - Fabio M Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas, Brazil
| |
Collapse
|
12
|
A frameshift mutation in GON4L is associated with proportionate dwarfism in Fleckvieh cattle. Genet Sel Evol 2016; 48:25. [PMID: 27036302 PMCID: PMC4818447 DOI: 10.1186/s12711-016-0207-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/17/2016] [Indexed: 01/10/2023] Open
Abstract
Background Low birth weight and postnatal growth restriction are the most evident symptoms of dwarfism. Accompanying skeletal aberrations may compromise the general condition and locomotion of affected individuals. Several paternal half-sibs with a low birth weight and a small size were born in 2013 in the Fleckvieh cattle population. Results Affected calves were strikingly underweight at birth in spite of a normal gestation length and had craniofacial abnormalities such as elongated narrow heads and brachygnathia inferior. In spite of a normal general condition, their growth remained restricted during rearing. We genotyped 27 affected and 10,454 unaffected animals at 44,672 single nucleotide polymorphisms and performed association tests followed by homozygosity mapping, which allowed us to map the locus responsible for growth failure to a 1.85-Mb segment on bovine chromosome 3. Analysis of whole-genome re-sequencing data from one affected and 289 unaffected animals revealed a 1-bp deletion (g.15079217delC, rs723240647) in the coding region of the GON4L gene that segregated with the dwarfism-associated haplotype. We showed that the deletion induces intron retention and premature termination of translation, which can lead to a severely truncated protein that lacks domains that are likely essential to normal protein function. The widespread use of an undetected carrier bull for artificial insemination has resulted in a tenfold increase in the frequency of the deleterious allele in the female population. Conclusions A frameshift mutation in GON4L is associated with autosomal recessive proportionate dwarfism in Fleckvieh cattle. The mutation has segregated in the population for more than 50 years without being recognized as a genetic disorder. However, the widespread use of an undetected carrier bull for artificial insemination caused a sudden accumulation of homozygous calves with dwarfism. Our findings provide the basis for genome-based mating strategies to avoid the inadvertent mating of carrier animals and thereby prevent the birth of homozygous calves with impaired growth. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0207-z) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Solis J, Baisakh N, Brandt SR, Villordon A, La Bonte D. Transcriptome Profiling of Beach Morning Glory (Ipomoea imperati) under Salinity and Its Comparative Analysis with Sweetpotato. PLoS One 2016; 11:e0147398. [PMID: 26848754 PMCID: PMC4743971 DOI: 10.1371/journal.pone.0147398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/04/2016] [Indexed: 01/23/2023] Open
Abstract
The response and adaption to salt remains poorly understood for beach morning glory [Ipomoea imperati (Vahl) Griseb], one of a few relatives of sweetpotato, known to thrive under salty and extreme drought conditions. In order to understand the genetic mechanisms underlying salt tolerance of a Convolvulaceae member, a genome-wide transcriptome study was carried out in beach morning glory by 454 pyrosequencing. A total of 286,584 filtered reads from both salt stressed and unstressed (control) root and shoot tissues were assembled into 95,790 unigenes with an average length of 667 base pairs (bp) and N50 of 706 bp. Putative differentially expressed genes (DEGs) were identified as transcripts overrepresented under salt stressed tissues compared to the control, and were placed into metabolic pathways. Most of these DEGs were involved in stress response, membrane transport, signal transduction, transcription activity and other cellular and molecular processes. We further analyzed the gene expression of 14 candidate genes of interest for salt tolerance through quantitative reverse transcription PCR (qRT-PCR) and confirmed their differential expression under salt stress in both beach morning glory and sweetpotato. The results comparing transcripts of I. imperati against the transcriptome of other Ipomoea species, including sweetpotato are also presented in this study. In addition, 6,233 SSR markers were identified, and an in silico analysis predicted that 434 primer pairs out of 4,897 target an identifiable homologous sequence in other Ipomoea transcriptomes, including sweetpotato. The data generated in this study will help in understanding the basics of salt tolerance of beach morning glory and the SSR resources generated will be useful for comparative genomics studies and further enhance the path to the marker-assisted breeding of sweetpotato for salt tolerance.
Collapse
Affiliation(s)
- Julio Solis
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
- * E-mail: (NB); (DL)
| | - Steven R. Brandt
- Louisiana Digital Media Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Arthur Villordon
- Sweet Potato Research Station, Louisiana State University Agricultural Center, Chase, LA, United States of America
| | - Don La Bonte
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
- * E-mail: (NB); (DL)
| |
Collapse
|
14
|
Nguyen TT, Volkening JD, Rose CM, Venkateshwaran M, Westphall MS, Coon JJ, Ané JM, Sussman MR. Potential regulatory phosphorylation sites in a Medicago truncatula plasma membrane proton pump implicated during early symbiotic signaling in roots. FEBS Lett 2015; 589:2186-93. [PMID: 26188545 PMCID: PMC5991090 DOI: 10.1016/j.febslet.2015.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
In plants and fungi the plasma membrane proton pump generates a large proton-motive force that performs essential functions in many processes, including solute transport and the control of cell elongation. Previous studies in yeast and higher plants have indicated that phosphorylation of an auto-inhibitory domain is involved in regulating pump activity. In this report we examine the Medicago truncatula plasma membrane proton pump gene family, and in particular MtAHA5. Yeast complementation assays with phosphomimetic mutations at six candidate sites support a phosphoregulatory role for two residues, suggesting a molecular model to explain early Nod factor-induced changes in the plasma membrane proton-motive force of legume root cells.
Collapse
Affiliation(s)
- Thao T Nguyen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jeremy D Volkening
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Christopher M Rose
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Muthusubramanian Venkateshwaran
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States; School of Agriculture, University of Wisconsin-Platteville, Platteville, WI 53818, United States
| | - Michael S Westphall
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
15
|
Kwon T. Benchmarking Transcriptome Quantification Methods for Duplicated Genes in Xenopus laevis. Cytogenet Genome Res 2015; 145:253-64. [DOI: 10.1159/000431386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Xenopus is an important model organism for the study of genome duplication in vertebrates. With the full genome sequence of diploid Xenopus tropicalis available, and that of allotetraploid X. laevis close to being finished, we will be able to expand our understanding of how duplicated genes have evolved. One of the key features in the study of the functional consequence of gene duplication is how their expression patterns vary across different conditions, and RNA-seq seems to have enough resolution to discriminate the expression of highly similar duplicated genes. However, most of the current RNA-seq analysis methods were not designed to study samples with duplicate genes such as in X. laevis. Here, various computational methods to quantify gene expression in RNA-seq data were evaluated, using 2 independent X. laevis egg RNA-seq datasets and 2 reference databases for duplicated genes. The fact that RNA-seq can measure expression levels of similar duplicated genes was confirmed, but long paired-end reads are more informative than short single-end reads to discriminate duplicated genes. Also, it was found that bowtie, one of the most popular mappers in RNA-seq analysis, reports significantly smaller numbers of unique hits according to a mapping quality score compared to other mappers tested (BWA, GSNAP, STAR). Calculated from unique hits based on a mapping quality score, both expression levels and the expression ratio of duplicated genes can be estimated consistently among biological replicates, demonstrating that this method can successfully discriminate the expression of each copy of a duplicated gene pair. This comprehensive evaluation will be a useful guideline for studying gene expression of organisms with genome duplication using RNA-seq in the future.
Collapse
|
16
|
Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci 2015; 72:3425-39. [PMID: 26018601 DOI: 10.1007/s00018-015-1934-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/25/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Whole transcriptome analysis plays an essential role in deciphering genome structure and function, identifying genetic networks underlying cellular, physiological, biochemical and biological systems and establishing molecular biomarkers that respond to diseases, pathogens and environmental challenges. Here, we review transcriptome analysis methods and technologies that have been used to conduct whole transcriptome shotgun sequencing or whole transcriptome tag/target sequencing analyses. We focus on how adaptors/linkers are added to both 5' and 3' ends of mRNA molecules for cloning or PCR amplification before sequencing. Challenges and potential solutions are also discussed. In brief, next generation sequencing platforms have accelerated releases of the large amounts of gene expression data. It is now time for the genome research community to assemble whole transcriptomes of all species and collect signature targets for each gene/transcript, and thus use known genes/transcripts to determine known transcriptomes directly in the near future.
Collapse
|
17
|
Suzuki M, Nakabayashi R, Ogata Y, Sakurai N, Tokimatsu T, Goto S, Suzuki M, Jasinski M, Martinoia E, Otagaki S, Matsumoto S, Saito K, Shiratake K. Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation. PLANT PHYSIOLOGY 2015; 168:47-59. [PMID: 25761715 PMCID: PMC4424009 DOI: 10.1104/pp.114.254375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/04/2015] [Indexed: 05/08/2023]
Abstract
Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies.
Collapse
Affiliation(s)
- Mami Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Ryo Nakabayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Yoshiyuki Ogata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Nozomu Sakurai
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Toshiaki Tokimatsu
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Susumu Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Makoto Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Michal Jasinski
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Enrico Martinoia
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Kazuki Saito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
| |
Collapse
|
18
|
Pausch H, Schwarzenbacher H, Burgstaller J, Flisikowski K, Wurmser C, Jansen S, Jung S, Schnieke A, Wittek T, Fries R. Homozygous haplotype deficiency reveals deleterious mutations compromising reproductive and rearing success in cattle. BMC Genomics 2015; 16:312. [PMID: 25927203 PMCID: PMC4403906 DOI: 10.1186/s12864-015-1483-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/24/2015] [Indexed: 12/20/2022] Open
Abstract
Background Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes. Results A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P = 1.79 × 10−5) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2. Conclusions Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1483-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hubert Pausch
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, 85354, Freising, Germany.
| | | | - Johann Burgstaller
- Clinic for Ruminants, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| | - Krzysztof Flisikowski
- Lehrstuhl fuer Biotechnologie der Nutztiere, Technische Universitaet Muenchen, 85354, Freising, Germany.
| | - Christine Wurmser
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, 85354, Freising, Germany.
| | - Sandra Jansen
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, 85354, Freising, Germany.
| | - Simone Jung
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, 85354, Freising, Germany.
| | - Angelika Schnieke
- Lehrstuhl fuer Biotechnologie der Nutztiere, Technische Universitaet Muenchen, 85354, Freising, Germany.
| | - Thomas Wittek
- Clinic for Ruminants, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| | - Ruedi Fries
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, 85354, Freising, Germany.
| |
Collapse
|
19
|
Venhoranta H, Pausch H, Flisikowski K, Wurmser C, Taponen J, Rautala H, Kind A, Schnieke A, Fries R, Lohi H, Andersson M. In frame exon skipping in UBE3B is associated with developmental disorders and increased mortality in cattle. BMC Genomics 2014; 15:890. [PMID: 25306138 PMCID: PMC4203880 DOI: 10.1186/1471-2164-15-890] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022] Open
Abstract
Background Inherited developmental diseases can cause severe animal welfare and economic problems in dairy cattle. The use of a small number of bulls for artificial insemination (AI) carries a risk that recessive defects rapidly enrich in the population. In recent years, an increasing number of Finnish Ayrshire calves have been identified with signs of ptosis, intellectual disability, retarded growth and mortality, which constitute an inherited disorder classified as PIRM syndrome. Results We established a cohort of nine PIRM-affected calves and 38 unaffected half-siblings and performed a genome-wide association study (GWAS) to map the disease to a 700-kb region on bovine chromosome 17 (p = 1.55 × 10-9). Whole genome re-sequencing of an unaffected carrier, its affected progeny and 43 other unaffected animals from another breed identified a G > A substitution mutation at the last nucleotide of exon 23 in the ubiquitin protein ligase E3B encoding gene (UBE3B). UBE3B transcript analysis revealed in-frame exon skipping in the affected animals resulting in an altered protein lacking 40 amino acids, of which 20 are located in the conserved HECT-domain, the catalytic site of the UBE3B protein. Mutation screening in 129 Ayrshire AI bulls currently used in Finland indicated a high carrier frequency (17.1%). We also found that PIRM syndrome might be connected to the recently identified AH1 haplotype, which has a frequency of 26.1% in the United States Ayrshire population. Conclusion We describe PIRM syndrome in cattle, which is associated with the mutated UBE3B gene. The bovine phenotype resembles human Kaufman oculocerebrofacial syndrome, which is also caused by mutations in UBE3B. PIRM syndrome might be connected with the recently identified AH1 haplotype, which is associated with reduced fertility in the US Ayrshire population. This study enables the development of a genetic test to efficiently reduce the high frequency of mutant UBE3B in Ayrshires, significantly improving animal health and reducing economic loss. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-890) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heli Venhoranta
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. THE PLANT CELL 2014; 26:3763-74. [PMID: 25217510 PMCID: PMC4213163 DOI: 10.1105/tpc.114.130096] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 07/25/2014] [Accepted: 08/19/2014] [Indexed: 05/18/2023]
Abstract
Potatoes (Solanum tuberosum) contain α-solanine and α-chaconine, two well-known toxic steroidal glycoalkaloids (SGAs). Sprouts and green tubers accumulate especially high levels of SGAs. Although SGAs were proposed to be biosynthesized from cholesterol, the biosynthetic pathway for plant cholesterol is poorly understood. Here, we identify sterol side chain reductase 2 (SSR2) from potato as a key enzyme in the biosynthesis of cholesterol and related SGAs. Using in vitro enzyme activity assays, we determined that potato SSR2 (St SSR2) reduces desmosterol and cycloartenol to cholesterol and cycloartanol, respectively. These reduction steps are branch points in the biosynthetic pathways between C-24 alkylsterols and cholesterol in potato. Similar enzymatic results were also obtained from tomato SSR2. St SSR2-silenced potatoes or St SSR2-disrupted potato generated by targeted genome editing had significantly lower levels of cholesterol and SGAs without affecting plant growth. Our results suggest that St SSR2 is a promising target gene for breeding potatoes with low SGA levels.
Collapse
Affiliation(s)
- Satoru Sawai
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Kiyoshi Ohyama
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hikaru Seki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Toshiya Muranaka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Naoyuki Umemoto
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
22
|
Jung S, Pausch H, Langenmayer MC, Schwarzenbacher H, Majzoub-Altweck M, Gollnick NS, Fries R. A nonsense mutation in PLD4 is associated with a zinc deficiency-like syndrome in Fleckvieh cattle. BMC Genomics 2014; 15:623. [PMID: 25052073 PMCID: PMC4117962 DOI: 10.1186/1471-2164-15-623] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Bovine hereditary zinc deficiency (BHZD) is an autosomal recessive disorder of cattle, first described in Holstein-Friesian animals. Affected calves suffer from severe skin lesions and show a poor general health status. Recently, eight calves with the phenotypic appearance of BHZD have been reported in the Fleckvieh cattle population. RESULTS In spite of the similar disease phenotypes, SLC39A4, the gene responsible for BHZD in Holstein-Friesian was excluded as underlying gene for the disorder in the affected Fleckvieh calves. In order to identify the disease-associated region, genotypes of eight affected calves obtained with the Illumina BovineHD BeadChip comprising 777,962 SNPs were contrasted with the genotypes of 1,339 unaffected animals. A strong association signal was observed on chromosome 21 (P = 5.87 × 10(-89)). Autozygosity mapping in the eight affected animals revealed a common segment of extended homozygosity encompassing 1,023 kb (BTA 21: 70,550,045 - 71,573,501). This region contains 17 genes/transcripts, among them two genes encoding gastro-intestinal zinc transporters (CRIP1, CRIP2). However, no mutation that was compatible with recessive inheritance could be detected in these candidate genes. One of the affected calves was re-sequenced together with 42 unaffected Fleckvieh animals. Analysis of the sequencing data revealed a nonsense mutation (p.W215X) in a phospholipase encoding gene (PLD4) as candidate causal polymorphism. To confirm the causality, genotypes of the p.W215X-mutation were obtained from 3,650 animals representing three different breeds. None of the unaffected animals was homozygous for the defect allele, while all eight affected calves were homozygous. The deleterious effect of the mutation is manifested in a significantly lower survival rate of descendants from risk matings when compared with the survival rate of descendants from non-risk matings. The deleterious allele has an estimated frequency of 1.1% in the Fleckvieh population. CONCLUSION Our results provide strong evidence that a newly identified recessive disorder in the Fleckvieh population is caused by a nonsense mutation in PLD4, most likely resulting in an impaired function of the encoded protein. Although the phenotype of affected calves strongly resembles BHZD, a zinc deficiency resulting from malabsorption is unlikely to be responsible for the diseased Fleckvieh calves.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruedi Fries
- Chair of Animal Breeding, Technische Universitaet Muenchen, 85354 Freising, Germany.
| |
Collapse
|
23
|
Kiirika LM, Schmitz U, Colditz F. The alternative Medicago truncatula defense proteome of ROS-defective transgenic roots during early microbial infection. FRONTIERS IN PLANT SCIENCE 2014; 5:341. [PMID: 25101099 PMCID: PMC4101433 DOI: 10.3389/fpls.2014.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 05/29/2023]
Abstract
ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homolog in plants). Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i) infected with pathogenic (Aphanomyces euteiches) and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti). While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector), we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi), 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique) were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique) after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique) after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein degradation.
Collapse
Affiliation(s)
| | | | - Frank Colditz
- Department of Plant Molecular Biology, Institute of Plant Genetics, Leibniz University HannoverHannover, Germany
| |
Collapse
|
24
|
Lunetta JM, Pappagianis D. Identification, molecular characterization, and expression analysis of a DOMON-like type 9 carbohydrate-binding module domain-containing protein of Coccidioides posadasii. Med Mycol 2014; 52:591-609. [PMID: 25023485 DOI: 10.1093/mmy/myu020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously, we investigated the effect of N-acetylglucosamine (GlcNAc) on Coccidioides posadasii chitinolytic enzymes during in vitro spherule-endospore (S/E) phase culture. During those studies, sodium dodecyl sulfatepolyacrylamide gel electrophoresis analysis of supernatants from S/E phase cultures grown in Converse medium with or without added GlcNAc revealed a ∼ 28-kDa band (CFP28), whose abundance was increased by GlcNAc in parallel with the chitinolytic enzymes. Mass spectrometry (MS) of the CFP28 band revealed peptides that matched an open reading frame found in the tentative consensus sequence, TC20325, retrieved from the Dana Farber Cancer Institute C. posadasii Gene Index Database. The TC20325 cDNA sequence was used to design internal primers based on MS peptides and a full-length cDNA was isolated using a combination of rapid amplification of cDNA ends and reverse transcription-polymerase chain reaction. The deduced amino acid sequence of the full-length cDNA consists of 231 amino acid residues with a 19 aa signal peptide. The mature protein has a calculated molecular mass of ∼ 24.5 kDa, a theoretical pI of 6.09, and consists of a single DOMON-like type 9 carbohydrate-binding module (CBM9-like-3) conserved domain. The protein shares the highest sequence similarity (≥57%) to hypothetical proteins from fungi within the Pezizomycotina subphylum of Ascomycota. Antiserum against a recombinant version of CFP28 recognized native CFP28 in S/E phase cells and culture supernatants. CFP28 mRNA and protein expression were detectable in S/E phase in Converse medium, but were increased in the presence of added GlcNAc. Purified native CFP28 reacted with pooled sera from patients with coccidioidomycosis.
Collapse
Affiliation(s)
- Jennine M Lunetta
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA
| | - Demosthenes Pappagianis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA
| |
Collapse
|
25
|
Shen Y, Xie J, Liu RD, Ni XF, Wang XH, Li ZX, Zhang M. Genomic analysis and expression investigation of caleosin gene family in Arabidopsis. Biochem Biophys Res Commun 2014; 448:365-71. [DOI: 10.1016/j.bbrc.2014.04.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 12/13/2022]
|
26
|
Norman JD, Ferguson MM, Danzmann RG. An integrated transcriptomic and comparative genomic analysis of differential gene expression in Arctic charr (Salvelinus alpinus) following seawater exposure. J Exp Biol 2014; 217:4029-42. [DOI: 10.1242/jeb.107441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
High-throughput RNA sequencing was employed to compare expression profiles in two Arctic charr (Salvelinus alpinus) families post seawater exposure to identify genes and biological processes involved in hypo-osmoregulation and regulation of salinity tolerance. To further understand the genetic architecture of hypo-osmoregulation, the genomic organization of differentially expressed (DE) genes was also analysed. Using a de novo gill transcriptome assembly we found over 2300 contigs to be DE. Major transporters from the seawater mitochondrion-rich cell (MRC) complex were up-regulated in seawater. Expression ratios for 257 differentially expressed contigs were highly correlated between families, suggesting they are strictly regulated. Based on expression profiles and known molecular pathways we inferred that seawater exposure induced changes in methylation states and elevated peroxynitrite formation in gill. We hypothesized that concomitance between DE immune genes and the transition to a hypo-osmoregulatory state could be related to Cl- sequestration by antimicrobial defence mechanisms. Gene Ontology analysis revealed that cell division genes were up-regulated, which could reflect the proliferation of ATP1α1b-type seawater MRCs. Comparative genomics analyses suggest that hypo-osmoregulation is influenced by the relative proximities among a contingent of genes on Arctic charr linkage groups AC-4 and AC-12 that exhibit homologous affinities with a region on stickleback chromosome Ga-I. This supports the hypothesis that relative gene location along a chromosome is a property of the genetic architecture of hypo-osmoregulation. Evidence of non-random structure between hypo-osmoregulation candidate genes was found on AC-1/11 and AC-28, suggesting that interchromosomal rearrangements played a role in the evolution of hypo-osmoregulation in Arctic charr.
Collapse
|
27
|
Norman JD, Ferguson MM, Danzmann RG. Transcriptomics of salinity tolerance capacity in Arctic charr (Salvelinus alpinus): a comparison of gene expression profiles between divergent QTL genotypes. Physiol Genomics 2013; 46:123-37. [PMID: 24368751 DOI: 10.1152/physiolgenomics.00105.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osmoregulatory capabilities have played an important role in the evolution, dispersal, and diversification of vertebrates. To better understand the genetic architecture of hypo-osmoregulation in fishes and to determine which genes and biological processes affect intraspecific variation in salinity tolerance, we used mRNA sequence libraries from Arctic charr gill tissue to compare gene expression profiles in fish exhibiting divergent salinity tolerance quantitative trait locus (QTL) genotypes. We compared differentially expressed genes with QTL positions to gain insight about the nature of the underlying polymorphisms and examined gene expression within the context of genome organization to gain insight about the evolution of hypo-osmoregulation in fishes. mRNA sequencing of 18 gill tissue libraries produced 417 million reads, and the final reduced de novo transcriptome assembly consisted of 92,543 contigs. Families contained a similar number of differentially expressed contigs between high and low salinity tolerance capacity groups, and log2 expression ratios ranged from 10.4 to -8.6. We found that intraspecific variation in salinity tolerance capacity correlated with differential expression of immune response genes. Some differentially expressed genes formed clusters along linkage groups. Most clusters comprised gene pairs, though clusters of three, four, and eight genes were also observed. We postulated that conserved synteny of gene clusters on multiple ancestral and teleost chromosomes may have been preserved via purifying selection. Colocalization of QTL with differentially expressed genes suggests that polymorphisms in cis-regulatory elements are part of a majority of QTL.
Collapse
Affiliation(s)
- Joseph D Norman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
28
|
Liu JJ, Sturrock RN, Benton R. Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genomics 2013; 14:884. [PMID: 24341615 PMCID: PMC3907366 DOI: 10.1186/1471-2164-14-884] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022] Open
Abstract
Background Five-needle pines are important forest species that have been devastated by white pine blister rust (WPBR, caused by Cronartium ribicola) across North America. Currently little transcriptomic and genomic data are available to understand molecular interactions in the WPBR pathosystem. Results We report here RNA-seq analysis results using Illumina deep sequencing of primary needles of western white pine (Pinus monticola) infected with WPBR. De novo gene assembly was used to generate the first P. monticola consensus transcriptome, which contained 39,439 unique transcripts with an average length of 1,303 bp and a total length of 51.4 Mb. About 23,000 P. monticola unigenes produced orthologous hits in the Pinus gene index (PGI) database (BLASTn with E values < e-100) and 6,300 genes were expressed actively (at RPKM ≥ 10) in the healthy tissues. Comparison of transcriptomes from WPBR-susceptible and -resistant genotypes revealed a total of 979 differentially expressed genes (DEGs) with a significant fold change > 1.5 during P. monticola- C. ribicola interactions. Three hundred and ten DEGs were regulated similarly in both susceptible and resistant seedlings and 275 DEGs showed regulatory differences between susceptible and resistant seedlings post infection by C. ribicola. The DEGs up-regulated in resistant seedlings included a set of putative signal receptor genes encoding disease resistance protein homologs, calcineurin B-like (CBL)-interacting protein kinases (CIPK), F-box family proteins (FBP), and abscisic acid (ABA) receptor; transcriptional factor (TF) genes of multiple families; genes homologous to apoptosis-inducing factor (AIF), flowering locus T-like protein (FT), and subtilisin-like protease. DEGs up-regulated in resistant seedlings also included a wide diversity of down-stream genes (encoding enzymes involved in different metabolic pathways, pathogenesis-related -PR proteins of multiple families, and anti-microbial proteins). A large proportion of the down-regulated DEGs were related to photosystems, the metabolic pathways of carbon fixation and flavonoid biosynthesis. Conclusions The novel P. monticola transcriptome data provide a basis for future studies of genetic resistance in a non-model, coniferous species. Our global gene expression profiling presents a comprehensive view of transcriptomic regulation in the WPBR pathosystem and yields novel insights on molecular and biochemical mechanisms of disease resistance in conifers.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1 M5, Canada.
| | | | | |
Collapse
|
29
|
Ferreira Neto JRC, Pandolfi V, Guimaraes FCM, Benko-Iseppon AM, Romero C, Silva RLDO, Rodrigues FA, Abdelnoor RV, Nepomuceno AL, Kido EA. Early transcriptional response of soybean contrasting accessions to root dehydration. PLoS One 2013; 8:e83466. [PMID: 24349513 PMCID: PMC3861472 DOI: 10.1371/journal.pone.0083466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022] Open
Abstract
Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance. The survey uncovered 120,770 unique transcripts expressed by the contrasting accessions. Of these, 57,610 aligned with known cDNA sequences, allowing the annotation of 32,373 unitags. A total of 1,127 unitags were up-regulated only in the tolerant accession, whereas 1,557 were up-regulated in both as compared to their controls. An expression profile concerning the most representative Gene Ontology (GO) categories for the tolerant accession revealed the expression "protein binding" as the most represented for "Molecular Function", whereas CDPK and CBL were the most up-regulated protein families in this category. Furthermore, particular genes expressed different isoforms according to the accession, showing the potential to operate in the distinction of physiological behaviors. Besides, heat maps comprising GO categories related to abiotic stress response and the unitags regulation observed in the expression contrasts covering tolerant and sensitive accessions, revealed the unitags potential for plant breeding. Candidate genes related to "hormone response" (LOX, ERF1b, XET), "water response" (PUB, BMY), "salt stress response" (WRKY, MYB) and "oxidative stress response" (PER) figured among the most promising molecular targets. Additionally, nine transcripts (HMGR, XET, WRKY20, RAP2-4, EREBP, NAC3, PER, GPX5 and BMY) validated by RT-qPCR (four different time points) confirmed their differential expression and pointed that already after 25 minutes a transcriptional reorganization started in response to the new condition, with important differences between both accessions.
Collapse
Affiliation(s)
| | - Valesca Pandolfi
- Laboratory of Genetics and Vegetal Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Ana Maria Benko-Iseppon
- Laboratory of Genetics and Vegetal Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Cynara Romero
- Brazilian Enterprise for Agricultural Research – Embrapa Soybean, Londrina, Brazil
| | | | | | | | - Alexandre Lima Nepomuceno
- LABEX Plant Biotechnology, Agricultural Research Service/United States Department of Agriculture Plant Gene Expression Center, Albany, California, United States of America
| | - Ederson Akio Kido
- Laboratory of Molecular Genetics, Genetics Department, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
30
|
Ramsak Ž, Baebler Š, Rotter A, Korbar M, Mozetic I, Usadel B, Gruden K. GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology. Nucleic Acids Res 2013; 42:D1167-75. [PMID: 24194592 PMCID: PMC3965006 DOI: 10.1093/nar/gkt1056] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GoMapMan (http://www.gomapman.org) is an open web-accessible resource for gene functional annotations in the plant sciences. It was developed to facilitate improvement, consolidation and visualization of gene annotations across several plant species. GoMapMan is based on the MapMan ontology, organized in the form of a hierarchical tree of biological concepts, which describe gene functions. Currently, genes of the model species Arabidopsis and three crop species (potato, tomato and rice) are included. The main features of GoMapMan are (i) dynamic and interactive gene product annotation through various curation options; (ii) consolidation of gene annotations for different plant species through the integration of orthologue group information; (iii) traceability of gene ontology changes and annotations; (iv) integration of external knowledge about genes from different public resources; and (v) providing gathered information to high-throughput analysis tools via dynamically generated export files. All of the GoMapMan functionalities are openly available, with the restriction on the curation functions, which require prior registration to ensure traceability of the implemented changes.
Collapse
Affiliation(s)
- Živa Ramsak
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia, Department of Knowledge Technologies, JoŽef Stefan Institute, 1000 Ljubljana, Slovenia, Department of Biology, Institute for Biology I, RWTH Aachen University, D-52056 Aachen, Germany and IBG-2: Plant Sciences, Institute for Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Favaro S, Lijoi A, Prünster I. Conditional formulae for Gibbs-type exchangeable random partitions. ANN APPL PROBAB 2013. [DOI: 10.1214/12-aap843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Jacoby RP, Millar AH, Taylor NL. Investigating the role of respiration in plant salinity tolerance by analyzing mitochondrial proteomes from wheat and a salinity-tolerant Amphiploid (wheat × Lophopyrum elongatum). J Proteome Res 2013; 12:4807-29. [PMID: 23895732 DOI: 10.1021/pr400504a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of salinity on mitochondrial properties was investigated by comparing the reference wheat variety Chinese Spring (CS) to a salt-tolerant amphiploid (AMP). The octoploid AMP genotype was previously generated by combining hexaploid bread wheat (CS) with the diploid wild wheatgrass adapted to salt marshes, Lophopyrum elongatum. Here we used a combination of physiological, biochemical, and proteomic analyses to explore the mitochondrial and respiratory response to salinity in these two genotypes. The AMP showed greater growth tolerance to salinity treatments and altered respiration rate in both roots and shoots. A proteomic workflow of 2D-DIGE and MALDI TOF/TOF mass spectrometry was used to compare the protein composition of isolated mitochondrial samples from roots and shoots of both genotypes, following control or salt treatment. A large set of mitochondrial proteins were identified as responsive to salinity in both genotypes, notably enzymes involved in detoxification of reactive oxygen species. Genotypic differences in mitochondrial composition were also identified, with AMP exhibiting a higher abundance of manganese superoxide dismutase, serine hydroxymethyltransferase, aconitase, malate dehydrogenase, and β-cyanoalanine synthase compared to CS. We present peptide fragmentation spectra derived from some of these AMP-specific protein spots, which could serve as biomarkers to track superior protein variants.
Collapse
Affiliation(s)
- Richard P Jacoby
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks (CABiN), M316, The University of Western Australia , 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
33
|
Abstract
SUMMARY The Malaria Genome Exploration Tool (MaGnET) is a software tool enabling intuitive 'exploration-style' visualization of functional genomics data relating to the malaria parasite, Plasmodium falciparum. MaGnET provides innovative integrated graphic displays for different datasets, including genomic location of genes, mRNA expression data, protein-protein interactions and more. Any selection of genes to explore made by the user is easily carried over between the different viewers for different datasets, and can be changed interactively at any point (without returning to a search). AVAILABILITY AND IMPLEMENTATION Free online use (Java Web Start) or download (Java application archive and MySQL database; requires local MySQL installation) at http://malariagenomeexplorer.org CONTACT joanna.sharman@ed.ac.uk or dgerloff@ffame.org SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | | |
Collapse
|
34
|
Jansen S, Aigner B, Pausch H, Wysocki M, Eck S, Benet-Pagès A, Graf E, Wieland T, Strom TM, Meitinger T, Fries R. Assessment of the genomic variation in a cattle population by re-sequencing of key animals at low to medium coverage. BMC Genomics 2013; 14:446. [PMID: 23826801 PMCID: PMC3716689 DOI: 10.1186/1471-2164-14-446] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome- and population-wide re-sequencing would allow for most efficient detection of causal trait variants. However, despite a strong decrease of costs for next-generation sequencing in the last few years, re-sequencing of large numbers of individuals is not yet affordable. We therefore resorted to re-sequencing of a limited number of bovine animals selected to explain a major proportion of the population's genomic variation, so called key animals, in order to provide a catalogue of functional variants and a substrate for population- and genome-wide imputation of variable sites. RESULTS Forty-three animals accounting for about 69 percent of the genetic diversity of the Fleckvieh population, a cattle breed of Southern Germany and Austria, were sequenced with coverages ranging from 4.17 to 24.98 and averaging 7.46. After alignment to the reference genome (UMD3.1) and multi-sample variant calling, more than 17 million variant positions were identified, about 90 percent biallelic single nucleotide variants (SNVs) and 10 percent short insertions and deletions (InDels). The comparison with high-density chip data revealed a sensitivity of at least 92 percent and a specificity of 81 percent for sequencing based genotyping, and 97 percent and 93 percent when a imputation step was included. There are 91,733 variants in coding regions of 18,444 genes, 46 percent being non-synonymous exchanges, of which 575 variants are predicted to cause premature stop codons. Three variants are listed in the OMIA database as causal for specific phenotypes. CONCLUSIONS Low- to medium-coverage re-sequencing of individuals explaining a major fraction of a population's genomic variation allows for the efficient and reliable detection of most variants. Imputation strongly improves genotype quality of lowly covered samples and thus enables maximum density genotyping by sequencing. The functional annotation of variants provides the basis for exhaustive genotype imputation in the population, e.g., for highest-resolution genome-wide association studies.
Collapse
Affiliation(s)
- Sandra Jansen
- Technische Universität München, Liesel-Beckmann-Strasse 1, Freising, 85354, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guillén G, Díaz-Camino C, Loyola-Torres CA, Aparicio-Fabre R, Hernández-López A, Díaz-Sánchez M, Sanchez F. Detailed analysis of putative genes encoding small proteins in legume genomes. FRONTIERS IN PLANT SCIENCE 2013; 4:208. [PMID: 23802007 PMCID: PMC3687714 DOI: 10.3389/fpls.2013.00208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/01/2013] [Indexed: 05/23/2023]
Abstract
Diverse plant genome sequencing projects coupled with powerful bioinformatics tools have facilitated massive data analysis to construct specialized databases classified according to cellular function. However, there are still a considerable number of genes encoding proteins whose function has not yet been characterized. Included in this category are small proteins (SPs, 30-150 amino acids) encoded by short open reading frames (sORFs). SPs play important roles in plant physiology, growth, and development. Unfortunately, protocols focused on the genome-wide identification and characterization of sORFs are scarce or remain poorly implemented. As a result, these genes are underrepresented in many genome annotations. In this work, we exploited publicly available genome sequences of Phaseolus vulgaris, Medicago truncatula, Glycine max, and Lotus japonicus to analyze the abundance of annotated SPs in plant legumes. Our strategy to uncover bona fide sORFs at the genome level was centered in bioinformatics analysis of characteristics such as evidence of expression (transcription), presence of known protein regions or domains, and identification of orthologous genes in the genomes explored. We collected 6170, 10,461, 30,521, and 23,599 putative sORFs from P. vulgaris, G. max, M. truncatula, and L. japonicus genomes, respectively. Expressed sequence tags (ESTs) available in the DFCI Gene Index database provided evidence that ~one-third of the predicted legume sORFs are expressed. Most potential SPs have a counterpart in a different plant species and counterpart regions or domains in larger proteins. Potential functional sORFs were also classified according to a reduced set of GO categories, and the expression of 13 of them during P. vulgaris nodule ontogeny was confirmed by qPCR. This analysis provides a collection of sORFs that potentially encode for meaningful SPs, and offers the possibility of their further functional evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Federico Sanchez
- *Correspondence: Federico Sanchez, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México e-mail:
| |
Collapse
|
36
|
Bandaranayake PCG, Yoder JI. Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:575-84. [PMID: 23383721 DOI: 10.1094/mpmi-12-12-0297-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Parasitic species of the family Orobanchaceae are devastating agricultural pests in many parts of the world. The control of weedy Orobanchaceae spp. is challenging, particularly due to the highly coordinated life cycles of the parasite and host plants. Although host genetic resistance often provides the foundation of plant pathogen management, few genes that confer resistance to root parasites have been identified and incorporated into crop species. Members of the family Orobanchaceae acquire water, nutrients, macromolecules, and oligonucleotides from host plants through haustoria that connect parasite and host plant roots. We are evaluating a resistance strategy based on using interfering RNA (RNAi) that is made in the host but inhibitory in the parasite as a parasite-derived oligonucleotide toxin. Sequences from the cytosolic acetyl-CoA carboxylase (ACCase) gene from Triphysaria versicolor were cloned in hairpin conformation and introduced into Medicago truncatula roots by Agrobacterium rhizogenes transformation. Transgenic roots were recovered for four of five ACCase constructions and infected with T. versicolor against parasitic weeds. In all cases, Triphysaria root viability was reduced up to 80% when parasitizing a host root bearing the hairpin ACCase. Triphysaria root growth was recovered by exogenous application of malonate. Reverse-transcriptase polymerase chain reaction (RT-PCR) showed that ACCase transcript levels were dramatically decreased in Triphysaria spp. parasitizing transgenic Medicago roots. Northern blot analysis identified a 21-nucleotide, ACCase-specific RNA in transgenic M. truncatula and in T. versicolor attached to them. One hairpin ACCase construction was lethal to Medicago spp. unless grown in media supplemented with malonate. Quantitative RT-PCR showed that the Medicago ACCase was inhibited by the Triphysaria ACCase RNAi. This work shows that ACCase is an effective target for inactivation in parasitic plants by trans-specific gene silencing.
Collapse
|
37
|
Kruszka K, Pacak A, Swida-Barteczka A, Stefaniak AK, Kaja E, Sierocka I, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z. Developmentally regulated expression and complex processing of barley pri-microRNAs. BMC Genomics 2013; 14:34. [PMID: 23324356 PMCID: PMC3558349 DOI: 10.1186/1471-2164-14-34] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/04/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19). However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely. RESULTS To investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3' UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element. CONCLUSIONS Seven of the eight barley miRNA genes characterized in this study contain introns with their respective transcripts undergoing developmentally specific processing events prior to the dicing out of pre-miRNA species from their pri-miRNA precursors. The observed tendency to maintain the intron encoding miR156g within the transcript, and preferences in splicing the miR1126-harboring intron, may suggest the existence of specific regulation of the levels of intron-derived miRNAs in barley.
Collapse
Affiliation(s)
- Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Aleksandra Swida-Barteczka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Agnieszka K Stefaniak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Elzbieta Kaja
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Wojciech Karlowski
- Computational Genomics Laboratory - Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
- Computational Genomics Laboratory - Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| |
Collapse
|
38
|
A practical approach to reconstruct evolutionary history of animal sialyltransferases and gain insights into the sequence-function relationships of Golgi-glycosyltransferases. Methods Mol Biol 2013; 1022:73-97. [PMID: 23765655 DOI: 10.1007/978-1-62703-465-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In higher vertebrates, sialyltransferases catalyze the transfer of sialic acid residues, either Neu5Ac or Neu5Gc or KDN from an activated sugar donor, which is mainly CMP-Neu5Ac in human tissues, to the hydroxyl group of another saccharide acceptor. In the human genome, 20 unique genes have been described that encode enzymes with remarkable specificity with regards to their acceptor substrates and the glycosidic linkage formed. A systematic search of sialyltransferase-related sequences in genome and EST databases and the use of bioinformatic tools enabled us to investigate the evolutionary history of animal sialyltransferases and propose original models of divergent evolution of animal sialyltransferases. In this chapter, we extend our phylogenetic studies to the comparative analysis of the environment of sialyltransferase gene loci (synteny and paralogy studies), the variations of tissue expression of these genes and the analysis of amino-acid position evolution after gene duplications, in order to assess their sequence-function relationships and the molecular basis underlying their functional divergence.
Collapse
|
39
|
Ng KH, Ho CK, Phon-Amnuaisuk S. A hybrid distance measure for clustering expressed sequence tags originating from the same gene family. PLoS One 2012; 7:e47216. [PMID: 23071763 PMCID: PMC3469558 DOI: 10.1371/journal.pone.0047216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/10/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Clustering is a key step in the processing of Expressed Sequence Tags (ESTs). The primary goal of clustering is to put ESTs from the same transcript of a single gene into a unique cluster. Recent EST clustering algorithms mostly adopt the alignment-free distance measures, where they tend to yield acceptable clustering accuracies with reasonable computational time. Despite the fact that these clustering methods work satisfactorily on a majority of the EST datasets, they have a common weakness. They are prone to deliver unsatisfactory clustering results when dealing with ESTs from the genes derived from the same family. The root cause is the distance measures applied on them are not sensitive enough to separate these closely related genes. METHODOLOGY/PRINCIPAL FINDINGS We propose a hybrid distance measure that combines the global and local features extracted from ESTs, with the aim to address the clustering problem faced by ESTs derived from the same gene family. The clustering process is implemented using the DBSCAN algorithm. We test the hybrid distance measure on the ten EST datasets, and the clustering results are compared with the two alignment-free EST clustering tools, i.e. wcd and PEACE. The clustering results indicate that the proposed hybrid distance measure performs relatively better (in terms of clustering accuracy) than both EST clustering tools. CONCLUSIONS/SIGNIFICANCE The clustering results provide support for the effectiveness of the proposed hybrid distance measure in solving the clustering problem for ESTs that originate from the same gene family. The improvement of clustering accuracies on the experimental datasets has supported the claim that the sensitivity of the hybrid distance measure is sufficient to solve the clustering problem.
Collapse
Affiliation(s)
- Keng-Hoong Ng
- Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia.
| | | | | |
Collapse
|
40
|
Gordo SMC, Pinheiro DG, Moreira ECO, Rodrigues SM, Poltronieri MC, de Lemos OF, da Silva IT, Ramos RTJ, Silva A, Schneider H, Silva WA, Sampaio I, Darnet S. High-throughput sequencing of black pepper root transcriptome. BMC PLANT BIOLOGY 2012; 12:168. [PMID: 22984782 PMCID: PMC3487918 DOI: 10.1186/1471-2229-12-168] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/29/2012] [Indexed: 05/06/2023]
Abstract
BACKGROUND Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. RESULTS The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. CONCLUSIONS This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.
Collapse
Affiliation(s)
- Sheila MC Gordo
- Genetics and Molecular Biology Laboratory, Coastal Studies Institute, Bragança Campus, Universidade Federal do Pará, Bragança, PA, 68.600-000, Brazil
| | - Daniel G Pinheiro
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Centro Regional de Hemoterapia de Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP 14051-140, Brazil
| | - Edith CO Moreira
- Genetics and Molecular Biology Laboratory, Coastal Studies Institute, Bragança Campus, Universidade Federal do Pará, Bragança, PA, 68.600-000, Brazil
| | - Simone M Rodrigues
- EMBRAPA Amazônia Oriental, Trav. Dr. Enéas Pinheiro s/nº, Caixa Postal 48, Belém, PA 66095-100, Brazil
| | - Marli C Poltronieri
- EMBRAPA Amazônia Oriental, Trav. Dr. Enéas Pinheiro s/nº, Caixa Postal 48, Belém, PA 66095-100, Brazil
| | - Oriel F de Lemos
- EMBRAPA Amazônia Oriental, Trav. Dr. Enéas Pinheiro s/nº, Caixa Postal 48, Belém, PA 66095-100, Brazil
| | - Israel Tojal da Silva
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Centro Regional de Hemoterapia de Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP 14051-140, Brazil
| | - Rommel TJ Ramos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Campus Universitário do Guamá, Rua Augusto Corrêa, nº1, Belém, PA 66075-110, Brazil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Campus Universitário do Guamá, Rua Augusto Corrêa, nº1, Belém, PA 66075-110, Brazil
| | - Horacio Schneider
- Genetics and Molecular Biology Laboratory, Coastal Studies Institute, Bragança Campus, Universidade Federal do Pará, Bragança, PA, 68.600-000, Brazil
| | - Wilson A Silva
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Centro Regional de Hemoterapia de Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP 14051-140, Brazil
| | - Iracilda Sampaio
- Genetics and Molecular Biology Laboratory, Coastal Studies Institute, Bragança Campus, Universidade Federal do Pará, Bragança, PA, 68.600-000, Brazil
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Campus Universitário do Guamá, Rua Augusto Corrêa, nº1, Belém, PA 66075-110, Brazil
| |
Collapse
|
41
|
Identification and dissection of four major QTL affecting milk fat content in the German Holstein-Friesian population. PLoS One 2012; 7:e40711. [PMID: 22792397 PMCID: PMC3394711 DOI: 10.1371/journal.pone.0040711] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/12/2012] [Indexed: 12/29/2022] Open
Abstract
Milk composition traits exhibit a complex genetic architecture with a small number of major quantitative trait loci (QTL) explaining a large fraction of the genetic variation and numerous QTL with minor effects. In order to identify QTL for milk fat percentage (FP) in the German Holstein-Friesian (HF) population, a genome-wide association study (GWAS) was performed. The study population consisted of 2327 progeny-tested bulls. Genotypes were available for 44,280 SNPs. Phenotypes in the form of estimated breeding values (EBVs) for FP were used as highly heritable traits. A variance components-based approach was used to account for population stratification. The GWAS identified four major QTL regions explaining 46.18% of the FP EBV variance. Besides two previously known FP QTL on BTA14 (P = 8.91×10−198) and BTA20 (P = 7.03×10−12) within DGAT1 and GHR, respectively, we uncovered two additional QTL regions on BTA5 (P = 2.00×10−13) and BTA27 (P = 9.83×10−5) encompassing EPS8 and GPAT4, respectively. EPS8 and GPAT4 are involved in lipid metabolism in mammals. Re-sequencing of EPS8 and GPAT4 revealed 50 polymorphisms. Genotypes for five of them were inferred for the entire study population. Two polymorphisms affecting potential transcription factor binding sites of EPS8 (P = 1.40×10−12) and GPAT4 (P = 5.18×10−5), respectively, were highly significantly associated with the FP EBV. Our results provide evidence that alteration of regulatory sites is an important aspect of genetic variation of complex traits in cattle.
Collapse
|
42
|
Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A. Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:47-56. [PMID: 22350090 DOI: 10.1007/s00122-012-1815-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 05/07/2023]
Abstract
We constructed an integrated DNA marker linkage map of eggplant (Solanum melongena L.) using DNA marker segregation data sets obtained from two independent intraspecific F(2) populations. The linkage map consisted of 12 linkage groups and encompassed 1,285.5 cM in total. We mapped 952 DNA markers, including 313 genomic SSR markers developed by random sequencing of simple sequence repeat (SSR)-enriched genomic libraries, and 623 single-nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms (InDels) found in eggplant-expressed sequence tags (ESTs) and related genomic sequences [introns and untranslated regions (UTRs)]. Because of their co-dominant inheritance and their highly polymorphic and multi-allelic nature, the SSR markers may be more versatile than the SNP and InDel markers for map-based genetic analysis of any traits of interest using segregating populations derived from any intraspecific crosses of practical breeding materials. However, we found that the distribution of microsatellites in the genome was biased to some extent, and therefore a considerable part of the eggplant genome was first detected when gene-derived SNP and InDel markers were mapped. Of the 623 SNP and InDel markers mapped onto the eggplant integrated map, 469 were derived from eggplant unigenes contained within Solanum orthologous (SOL) gene sets (i.e., sets of orthologous unigenes from eggplant, tomato, and potato). Out of the 469 markers, 326 could also be mapped onto the tomato map. These common markers will be informative landmarks for the transfer of tomato's more saturated genomic information to eggplant and will also provide comparative information on the genome organization of the two solanaceous species. The data are available from the DNA marker database of vegetables, VegMarks (http://vegmarks.nivot.affrc.go.jp).
Collapse
Affiliation(s)
- Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science (NIVTS), National Agriculture and Food Research Organization, 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Duran VA, Todd CD. Four allantoinase genes are expressed in nitrogen-fixing soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 54:149-55. [PMID: 22476036 DOI: 10.1016/j.plaphy.2012.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 03/02/2012] [Indexed: 05/01/2023]
Abstract
Soybean (Glycine max L. [Merr]) plants export nitrogen from the nodules as ureides during symbiotic biological nitrogen fixation. Ureides also play a role as nitrogen storage compounds in the seeds and are broken down in germinating seedlings. In this work we identified four soybean genes encoding allantoinase (E.C. 3.5.2.5), an enzyme involved in both ureide production in nodules and ureide catabolism in leaves and other sink tissues. We examined ureide content, allantoinase enzyme activity and expression of these genes, which we term GmALN1 through GmALN4, in germinating seedlings and in vegetative tissues from 45 day old soybean plants. GmALN1 and GmALN2 transcripts were measured in all tissues, but similar levels of expression of GmALN3 and GmALN4 was only observed in nodules. The soybean allantoinase genes seem to have arisen through tandem gene duplication followed by a whole genome duplication. We looked for evidence of the tandem duplication in common bean (Phaseolus vulgaris L.) and present evidence that it occured sometime in the bean lineage before these two species diverged, but before soybean became a tetraploid.
Collapse
Affiliation(s)
- Veronica A Duran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | | |
Collapse
|
44
|
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. PLANT PHYSIOLOGY 2012; 159:501-16. [PMID: 22399646 PMCID: PMC3375982 DOI: 10.1104/pp.112.193706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/06/2012] [Indexed: 05/03/2023]
Abstract
RAC/ROP proteins (ρ-related GTPases of plants) are plant-specific small G proteins that function as molecular switches within elementary signal transduction pathways, including the regulation of reactive oxygen species (ROS) generation during early microbial infection via the activation of NADPH oxidase homologs of plants termed RBOH (for respiratory burst oxidase homolog). We investigated the role of Medicago truncatula Jemalong A17 small GTPase MtROP9, orthologous to Medicago sativa Rac1, via an RNA interference silencing approach. Composite M. truncatula plants (MtROP9i) whose roots have been transformed by Agrobacterium rhizogenes carrying the RNA interference vector were generated and infected with the symbiotic arbuscular mycorrhiza fungus Glomus intraradices and the rhizobial bacterium Sinorhizobium meliloti as well as with the pathogenic oomycete Aphanomyces euteiches. MtROP9i transgenic lines showed a clear growth-reduced phenotype and revealed neither ROS generation nor MtROP9 and MtRBOH gene expression after microbial infection. Coincidently, antioxidative compounds were not induced in infected MtROP9i roots, as documented by differential proteomics (two-dimensional differential gel electrophoresis). Furthermore, MtROP9 knockdown clearly promoted mycorrhizal and A. euteiches early hyphal root colonization, while rhizobial infection was clearly impaired. Infected MtROP9i roots showed, in part, extremely swollen noninfected root hairs and reduced numbers of deformed nodules. S. meliloti nodulation factor treatments of MtROP9i led to deformed root hairs showing progressed swelling of its upper regions or even of the entire root hair and spontaneous constrictions but reduced branching effects occurring only at swollen root hairs. These results suggest a key role of Rac1 GTPase MtROP9 in ROS-mediated early infection signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Frank Colditz
- Leibniz University of Hannover, Institute for Plant Genetics, Department III, Plant Molecular Biology, D–30419 Hannover, Germany (L.M.K., C.S., D.W., J.K., U.S., F.C.); University of Bielefeld, Department 7, Proteome and Metabolome Research, D–33615 Bielefeld, Germany (H.F.B., K.N.)
| |
Collapse
|
45
|
Reid AJ, Vermont SJ, Cotton JA, Harris D, Hill-Cawthorne GA, Könen-Waisman S, Latham SM, Mourier T, Norton R, Quail MA, Sanders M, Shanmugam D, Sohal A, Wasmuth JD, Brunk B, Grigg ME, Howard JC, Parkinson J, Roos DS, Trees AJ, Berriman M, Pain A, Wastling JM. Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy. PLoS Pathog 2012; 8:e1002567. [PMID: 22457617 PMCID: PMC3310773 DOI: 10.1371/journal.ppat.1002567] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/23/2012] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species.
Collapse
Affiliation(s)
- Adam James Reid
- Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, United Kingdom
| | - Sarah J. Vermont
- Institute of Infection and Global Health and School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, United Kingdom
| | - David Harris
- Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, United Kingdom
| | | | | | - Sophia M. Latham
- Institute of Infection and Global Health and School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Norton
- Institute of Infection and Global Health and School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, United Kingdom
| | - Dhanasekaran Shanmugam
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amandeep Sohal
- Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, United Kingdom
| | - James D. Wasmuth
- Program in Molecular Structure and Function, Hospital for Sick Children and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Laboratory of Parasitic Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, United States of America
| | - Brian Brunk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael E. Grigg
- Laboratory of Parasitic Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, United States of America
| | - Jonathan C. Howard
- Institute for Genetics, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - John Parkinson
- Program in Molecular Structure and Function, Hospital for Sick Children and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexander J. Trees
- Institute of Infection and Global Health and School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, United Kingdom
| | - Arnab Pain
- Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, United Kingdom
- King Abdullah University of Science and Technology, Thuwal, Jeddah, Kingdom of Saudi Arabia
- * E-mail: (AP); (JMW)
| | - Jonathan M. Wastling
- Institute of Infection and Global Health and School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail: (AP); (JMW)
| |
Collapse
|
46
|
Spooner W, Youens-Clark K, Staines D, Ware D. GrameneMart: the BioMart data portal for the Gramene project. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012; 2012:bar056. [PMID: 22374386 PMCID: PMC3289142 DOI: 10.1093/database/bar056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gramene is a well-established resource for plant comparative genome analysis. Data are generated through automated and curated analyses and made available through web interfaces such as GrameneMart. The Gramene project was an early adopter of the BioMart software, which remains an integral and well-used component of the Gramene website. BioMart accessible data sets include plant gene annotations, plant variation catalogues, genetic markers, physical mapping entities, public DNA/mRNA sequences of various types and curated quantitative trait loci for various species. Database URL:http://www.gramene.org/biomart/martview
Collapse
Affiliation(s)
- William Spooner
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA and European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Ken Youens-Clark
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA and European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Daniel Staines
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA and European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Doreen Ware
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA and European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- *Corresponding author: ;
| |
Collapse
|
47
|
Bellgard MI, Moolhuijzen PM, Guerrero FD, Schibeci D, Rodriguez-Valle M, Peterson DG, Dowd SE, Barrero R, Hunter A, Miller RJ, Lew-Tabor AE. CattleTickBase: An integrated Internet-based bioinformatics resource for Rhipicephalus (Boophilus) microplus. Int J Parasitol 2012; 42:161-9. [DOI: 10.1016/j.ijpara.2011.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
|
48
|
Figueiredo A, Monteiro F, Fortes AM, Bonow-Rex M, Zyprian E, Sousa L, Pais MS. Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Funct Integr Genomics 2012; 12:379-86. [PMID: 22246600 DOI: 10.1007/s10142-012-0261-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/08/2011] [Accepted: 01/01/2012] [Indexed: 01/05/2023]
Abstract
The oomycete pathogen Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is the causing agent of the destructive downy mildew disease in grapevine. Despite the advances towards elucidation of grapevine resistance mechanisms to downy mildew, increased knowledge of the biological and genetic components of the pathosystem is important to design suitable breeding strategies. Previously, a cDNA microarray approach was used to compare two Vitis vinifera genotypes Regent and Trincadeira (resistant and susceptible to downy mildew, respectively) in field conditions. The same cDNA microarray chip was used to confirm field-based results and to compare both genotypes under greenhouse conditions at 0, 6, and 12 h post-inoculation with P. viticola. Results show that when comparing both cultivars after pathogen inoculation, there is a preferential modulation of several defense, signaling, and metabolism associated transcripts in Regent. Early transcriptional changes are discussed in terms of genetic background and resistance mechanism. This study is the first to directly compare resistant and susceptible cultivars responses as early as 6 hpi with P. viticola, providing several candidate genes potentially related to the expression of resistance traits.
Collapse
Affiliation(s)
- Andreia Figueiredo
- Plant Systems Biology Lab, Center of Biodiversity, Functional & Integrative Genomics, Science Faculty of Lisbon University, 1749-016 Lisbon, Portugal.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. PLANT PHYSIOLOGY 2011; 157:2023-43. [PMID: 22034628 PMCID: PMC3327204 DOI: 10.1104/pp.111.186635] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/26/2011] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizae (AM) are the most widespread symbioses on Earth, promoting nutrient supply of most terrestrial plant species. To unravel gene expression in defined stages of Medicago truncatula root colonization by AM fungi, we here combined genome-wide transcriptome profiling based on whole mycorrhizal roots with real-time reverse transcription-PCR experiments that relied on characteristic cell types obtained via laser microdissection. Our genome-wide approach delivered a core set of 512 genes significantly activated by the two mycorrhizal fungi Glomus intraradices and Glomus mossae. Focusing on 62 of these genes being related to membrane transport, signaling, and transcriptional regulation, we distinguished whether they are activated in arbuscule-containing or the neighboring cortical cells harboring fungal hyphae. In addition, cortical cells from nonmycorrhizal roots served as a reference for gene expression under noncolonized conditions. Our analysis identified 25 novel arbuscule-specific genes and 37 genes expressed both in the arbuscule-containing and the adjacent cortical cells colonized by fungal hyphae. Among the AM-induced genes specifying transcriptional regulators were two members encoding CAAT-box binding transcription factors (CBFs), designated MtCbf1 and MtCbf2. Promoter analyses demonstrated that both genes were already activated by the first physical contact between the symbionts. Subsequently, and corresponding to our cell-type expression patterns, they were progressively up-regulated in those cortical areas colonized by fungal hyphae, including the arbuscule-containing cells. The encoded CBFs thus represent excellent candidates for regulators that mediate a sequential reprogramming of root tissues during the establishment of an AM symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Helge Küster
- Institut für Pflanzengenetik, Leibniz Universität Hannover, D–30419 Hannover, Germany (C.H., D.A., N.H., H.K.); Instituto Gulbenkian de Ciência, 2780–156 Oeiras, Portugal (P.A.P., J.D.B.)
| |
Collapse
|
50
|
iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics 2011; 12:453. [PMID: 22111509 PMCID: PMC3233632 DOI: 10.1186/1471-2105-12-453] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expressed Sequence Tags (ESTs) have played significant roles in gene discovery and gene functional analysis, especially for non-model organisms. For organisms with no full genome sequences available, ESTs are normally assembled into longer consensus sequences for further downstream analysis. However current de novo EST assembly programs often generate large number of assembly errors that will negatively affect the downstream analysis. In order to generate more accurate consensus sequences from ESTs, tools are needed to reduce or eliminate errors from de novo assemblies. RESULTS We present iAssembler, a pipeline that can assemble large-scale ESTs into consensus sequences with significantly higher accuracy than current existing assemblers. iAssembler employs MIRA and CAP3 assemblers to generate initial assemblies, followed by identifying and correcting two common types of transcriptome assembly errors: 1) ESTs from different transcripts (mainly alternatively spliced transcripts or paralogs) are incorrectly assembled into same contigs; and 2) ESTs from same transcripts fail to be assembled together. iAssembler can be used to assemble ESTs generated using the traditional Sanger method and/or the Roche-454 massive parallel pyrosequencing technology. CONCLUSION We compared performances of iAssembler and several other de novo EST assembly programs using both Roche-454 and Sanger EST datasets. It demonstrated that iAssembler generated significantly more accurate consensus sequences than other assembly programs.
Collapse
|