1
|
Nanda S, Pandey R, Sardar R, Panda A, Naorem A, Gupta D, Malhotra P. Comparative genomics of two protozoans Dictyostelium discoideum and Plasmodium falciparum reveals conserved as well as distinct regulatory pathways crucial for exploring novel therapeutic targets for Malaria. Heliyon 2024; 10:e38500. [PMID: 39391471 PMCID: PMC11466611 DOI: 10.1016/j.heliyon.2024.e38500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Plasmodium falciparum, which causes life-threatening cerebral malaria has rapidly gained resistance against most frontline anti-malarial drugs, thereby generating an urgent need to develop novel therapeutic approaches. Conducting in-depth investigations on Plasmodium in its native form is challenging, thereby necessitating the requirement of an efficient model system. In line, mounting evidence suggests that Dictyostelium discoideum retains both conformational and functional properties of Plasmodium proteins, however, the true potential of Dictyostelium as a host system is not fully explored. In the present study, we have exploited comparative genomics as a tool to extract, compare, and curate the extensive data available on the organism-specific databases to evaluate if D. discoideum can be established as a prime model system for functional characterization of P. falciparum genes. Through comprehensive in silico analysis, we report that despite the presence of adaptation-specific genes, the two display noteworthy conservation in the housekeeping genes, signaling pathway components, transcription regulators, and post-translational modulators. Furthermore, through orthologue analysis, the known, potential, and novel drug target genes of P. falciparum were found to be significantly conserved in D. discoideum. Our findings advocate that D. discoideum can be employed to express and functionally characterize difficult-to-express P. falciparum genes.
Collapse
Affiliation(s)
- Shivam Nanda
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110 021, India
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ashutosh Panda
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110 021, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| |
Collapse
|
2
|
Kundu P, Naskar D, McKie SJ, Dass S, Kanjee U, Introini V, Ferreira MU, Cicuta P, Duraisingh M, Deane JE, Rayner JC. The structure of a Plasmodium vivax Tryptophan Rich Antigen domain suggests a lipid binding function for a pan-Plasmodium multi-gene family. Nat Commun 2023; 14:5703. [PMID: 37709739 PMCID: PMC10502043 DOI: 10.1038/s41467-023-40885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.
Collapse
Affiliation(s)
- Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Deboki Naskar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Shannon J McKie
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Pietro Cicuta
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Gupta P, Pandey R, Thakur V, Parveen S, Kaur I, Panda A, Bishi R, Mehrotra S, Akhtar A, Gupta D, Mohmmed A, Malhotra P. Heme Detoxification Protein ( PfHDP) is essential for the hemoglobin uptake and metabolism in Plasmodium falciparum. FASEB Bioadv 2022; 4:662-674. [PMID: 36238365 PMCID: PMC9536087 DOI: 10.1096/fba.2022-00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Hemoglobin degradation is crucial for the growth and survival of Plasmodium falciparum in human erythrocytes. Although the process of Hb degradation has been studied in detail, the mechanisms of Hb uptake remain ambiguous to date. Here, we characterized Heme Detoxification Protein (PfHDP); a protein localized in the parasitophorus vacuole, parasite food vacuole, and infected erythrocyte cytosol for its role in Hb uptake. Immunoprecipitation of PfHDP-GFP fusion protein from a transgenic line using GFP trap beads showed the association of PfHDP with Hb as well as with the members of PTEX translocon complex. Association of PfHDP with Hb or Pfexp-2, a component of translocon complex was confirmed by protein-protein interaction and immunolocalization tools. Based on these associations, we studied the role of PfHDP in Hb uptake using the PfHDP-HA-GlmS transgenic parasites line. PfHDP knockdown significantly reduced the Hb uptake in these transgenic parasites in comparison to the wild-type parasites. Morphological analysis of PfHDP-HA-GlmS transgenic parasites in the presence of GlcN showed food vacuole abnormalities and parasite stress, thereby causing a growth defect in the development of these parasites. Transient knockdown of a member of translocon complex, PfHSP101 in HSP101-DDDHA parasites also showed a decreased uptake of Hb inside the parasite. Together, these results advocate an interaction between PfHDP and the translocon complex at the parasitophorus vacuole membrane and also suggest a role for PfHDP in the uptake of Hb and parasite development. The study thus reveals new insights into the function of PfHDP, making it an extremely important target for developing new antimalarials.
Collapse
Affiliation(s)
- Priya Gupta
- Malaria Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Rajan Pandey
- Translational Bioinformatics GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Vandana Thakur
- Parasite Cell Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Sadaf Parveen
- Malaria Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Inderjeet Kaur
- Malaria Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ashutosh Panda
- Malaria Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Rashmita Bishi
- Malaria Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Sonali Mehrotra
- Malaria Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Asif Akhtar
- Malaria Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Dinesh Gupta
- Translational Bioinformatics GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Asif Mohmmed
- Parasite Cell Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
4
|
Park JH, Kim MH, Sutanto E, Na SW, Kim MJ, Yeom JS, Nyunt MH, Abbas Elfaki MM, Abdel Hamid MM, Cha SH, Alemu SG, Sriprawat K, Anstey NM, Grigg MJ, Barber BE, William T, Gao Q, Liu Y, Pearson RD, Price RN, Nosten F, Yoon SI, No JH, Han ET, Auburn S, Russell B, Han JH. Geographical distribution and genetic diversity of Plasmodium vivax reticulocyte binding protein 1a correlates with patient antigenicity. PLoS Negl Trop Dis 2022; 16:e0010492. [PMID: 35737709 PMCID: PMC9258880 DOI: 10.1371/journal.pntd.0010492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/06/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Min-Hee Kim
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Edwin Sutanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Seok-Won Na
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Min-Jae Kim
- Department of Infectious Diseases, Asan Medical Center, Seoul, Republic of Korea
| | - Joon Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Mohammed Mohieldien Abbas Elfaki
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Seok Ho Cha
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sisay Getachew Alemu
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Jimma Road, Addis Ababa, Ethiopia
- Bioreliance, Rockville, Maryland, United States of America
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Gleneagles Hospital, Sabah, Malaysia
| | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
5
|
Keswani T, Obeidallah A, Nieves E, Sidoli S, Fazzari M, Taylor T, Seydel K, Daily JP. Pipecolic Acid, a Putative Mediator of the Encephalopathy of Cerebral Malaria and the Experimental Model of Cerebral Malaria. J Infect Dis 2022; 225:705-714. [PMID: 34932816 PMCID: PMC8844588 DOI: 10.1093/infdis/jiab615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We explored a metabolic etiology of cerebral malaria (CM) coma. METHODS Plasma metabolites were compared between Malawian children with CM and mild Plasmodium falciparum malaria. A candidate molecule was further studied in animal models of malaria. RESULTS Clinically abnormal concentrations of pipecolic acid (PA) were present in CM plasma, and nearly normal in mild malaria samples. PA is renally cleared and the elevated PA blood levels were associated with renal insufficiency, which was present only in CM subjects. Prior studies demonstrate that PA has neuromodulatory effects and is generated by malaria parasites. PA brain levels in Plasmodium berghei ANKA-infected animals in the experimental cerebral malaria (ECM) model inversely correlated with normal behavior and correlated with blood-brain barrier (BBB) permeability. Mice infected with malaria species that do not induce neurological abnormalities or manifest BBB permeability had elevated plasma PA levels similar to ECM plasma at 7 days postinfection; however, they had low PA levels in the brain compared to ECM mice brains at 7 days postinfection. CONCLUSIONS Our model suggests that malaria-generated PA induces coma in CM and in ECM. The role of BBB permeability and the mechanisms of PA neuromodulation in CM will require additional investigation.
Collapse
Affiliation(s)
- Tarun Keswani
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aisha Obeidallah
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Edward Nieves
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Melissa Fazzari
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Onchieku NM, Kumari S, Pandey R, Sharma V, Kumar M, Deshmukh A, Kaur I, Mohmmed A, Gupta D, Kiboi D, Gaur N, Malhotra P. Artemisinin Binds and Inhibits the Activity of Plasmodium falciparum Ddi1, a Retroviral Aspartyl Protease. Pathogens 2021; 10:pathogens10111465. [PMID: 34832620 PMCID: PMC8621276 DOI: 10.3390/pathogens10111465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Reduced sensitivity of the human malaria parasite, Plasmodium falciparum, to Artemisinin and its derivatives (ARTs) threatens the global efforts towards eliminating malaria. ARTs have been shown to cause ubiquitous cellular and genetic insults, which results in the activation of the unfolded protein response (UPR) pathways. The UPR restores protein homeostasis, which otherwise would be toxic to cellular survival. Here, we interrogated the role of DNA-damage inducible protein 1 (PfDdi1), a unique proteasome-interacting retropepsin in mediating the actions of the ARTs. We demonstrate that PfDdi1 is an active A2 family protease that hydrolyzes ubiquitinated proteasome substrates. Treatment of P. falciparum parasites with ARTs leads to the accumulation of ubiquitinated proteins in the parasites and blocks the destruction of ubiquitinated proteins by inhibiting the PfDdi1 protease activity. Besides, whereas the PfDdi1 is predominantly localized in the cytoplasm, exposure of the parasites to ARTs leads to DNA fragmentation and increased recruitment of the PfDdi1 into the nucleus. Furthermore, we show that Ddi1 knock-out Saccharomycescerevisiae cells are more susceptible to ARTs and the PfDdI1 protein robustly restores the corresponding functions in the knock-out cells. Together, these results show that ARTs act in multiple ways; by inducing DNA and protein damage and might be impairing the damage recovery by inhibiting the activity of PfDdi1, an essential ubiquitin-proteasome retropepsin.
Collapse
Affiliation(s)
- Noah Machuki Onchieku
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (R.P.); (D.G.)
| | - Vaibhav Sharma
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Arunaditya Deshmukh
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Inderjeet Kaur
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Asif Mohmmed
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (R.P.); (D.G.)
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Naseem Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
- Correspondence: or
| |
Collapse
|
7
|
Dia A, Jett C, Trevino SG, Chu CS, Sriprawat K, Anderson TJC, Nosten F, Cheeseman IH. Single-genome sequencing reveals within-host evolution of human malaria parasites. Cell Host Microbe 2021; 29:1496-1506.e3. [PMID: 34492224 DOI: 10.1016/j.chom.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/17/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023]
Abstract
Population genomics of bulk malaria infections is unable to examine intrahost evolution; therefore, most work has focused on the role of recombination in generating genetic variation. We used single-cell sequencing protocol for low-parasitaemia infections to generate 406 near-complete single Plasmodium vivax genomes from 11 patients sampled during sequential febrile episodes. Parasite genomes contain hundreds of de novo mutations, showing strong signatures of selection, which are enriched in the ApiAP2 family of transcription factors, known targets of adaptation. Comparing 315 P. falciparum single-cell genomes from 15 patients with our P. vivax data, we find broad complementary patterns of de novo mutation at the gene and pathway level, revealing the importance of within-host evolution during malaria infections.
Collapse
Affiliation(s)
- Aliou Dia
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Catherine Jett
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Simon G Trevino
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cindy S Chu
- Disease Intervention and Prevention, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Oxford, UK; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Timothy J C Anderson
- Disease Prevention and Intervention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - François Nosten
- Disease Intervention and Prevention, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Oxford, UK; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ian H Cheeseman
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
8
|
Jennison C, Lucantoni L, O'Neill MT, McConville R, Erickson SM, Cowman AF, Sleebs BE, Avery VM, Boddey JA. Inhibition of Plasmepsin V Activity Blocks Plasmodium falciparum Gametocytogenesis and Transmission to Mosquitoes. Cell Rep 2020; 29:3796-3806.e4. [PMID: 31851913 DOI: 10.1016/j.celrep.2019.11.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum gametocytes infect mosquitoes and are responsible for malaria transmission. New interventions that block transmission could accelerate malaria elimination. Gametocytes develop within erythrocytes and activate protein export pathways that remodel the host cell. Plasmepsin V (PMV) is an aspartyl protease that is required for protein export in asexual parasites, but its function and essentiality in gametocytes has not been definitively proven, nor has PMV been assessed as a transmission-blocking drug target. Here, we show that PMV is expressed and can be inhibited specifically in P. falciparum stage I-II gametocytes. PMV inhibitors block processing and export of gametocyte effector proteins and inhibit development of stage II-V gametocytes. Gametocytogenesis in the presence of sublethal inhibitor concentrations results in stage V gametocytes that fail to infect mosquitoes. Therefore, PMV primes gametocyte effectors for export, which is essential for the development and fitness of gametocytes for transmission to mosquitoes.
Collapse
Affiliation(s)
- Charlie Jennison
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, QLD, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia
| | - Robyn McConville
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Sara M Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, QLD, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
9
|
Pandey R, Abel S, Boucher M, Wall RJ, Zeeshan M, Rea E, Freville A, Lu XM, Brady D, Daniel E, Stanway RR, Wheatley S, Batugedara G, Hollin T, Bottrill AR, Gupta D, Holder AA, Le Roch KG, Tewari R. Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission. Cell Rep 2020; 30:1883-1897.e6. [PMID: 32049018 PMCID: PMC7016506 DOI: 10.1016/j.celrep.2020.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine the role of SMC2 and SMC4, the core subunits of condensin, during endomitosis in schizogony and endoreduplication in male gametogenesis. During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres by NDC80 fluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages. Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle.
Collapse
Affiliation(s)
- Rajan Pandey
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Matthew Boucher
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J Wall
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Aline Freville
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xueqing Maggie Lu
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Sally Wheatley
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
10
|
Nagappa LK, Singh D, Dey S, Kumar KA, Balaram H. Biochemical and physiological investigations on adenosine 5' monophosphate deaminase from Plasmodium spp. Mol Microbiol 2019; 112:699-717. [PMID: 31132185 DOI: 10.1111/mmi.14313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
The interplay between ATP generating and utilizing pathways in a cell is responsible for maintaining cellular ATP/energy homeostasis that is reflected by Adenylate Energy Charge (AEC) ratio. Adenylate kinase (AK), that catalyzes inter-conversion of ADP, ATP and AMP, plays a major role in maintaining AEC and is regulated by cellular AMP levels. Hence, the enzymes AMP deaminase (AMPD) and nucleotidases, which catabolize AMP, indirectly regulate AK activity and in-turn affect AEC. Here, we present the first report on AMPD from Plasmodium, the causative agent of malaria. The recombinant enzyme expressed in Saccharomyces cerevisiae was studied using functional complementation assay and residues vital for enzyme activity have been identified. Similarities and differences between Plasmodium falciparum AMPD (PfAMPD) and its homologs from yeast, Arabidopsis and humans are also discussed. The AMPD gene was deleted in the murine malaria parasite P. berghei and was found to be dispensable during all stages of the parasite life cycle. However, when episomal expression was attempted, viable parasites were not obtained, suggesting that perturbing AMP homeostasis by over-expressing AMPD might be lethal. As AMPD is known to be allosterically modulated by ATP, GTP and phosphate, allosteric activators of PfAMPD could be developed as anti-parasitic agents.
Collapse
Affiliation(s)
- Lakshmeesha Kempaiah Nagappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Dipti Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| |
Collapse
|
11
|
Biochemical characterization of Plasmodium complement factors binding protein for its role in immune modulation. Biochem J 2018; 475:2877-2891. [PMID: 30049893 DOI: 10.1042/bcj20180142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/17/2022]
Abstract
Complement system is the first line of human defence against intruding pathogens and is recognized as a potentially useful therapeutic target. Human malaria parasite Plasmodium employs a series of intricate mechanisms that enables it to evade different arms of immune system, including the complement system. Here, we show the expression of a multi-domain Plasmodium Complement Control Protein 1, PfCCp1 at asexual blood stages and its binding affinity with C3b as well as C4b proteins of human complement cascade. Using a biochemical assay, we demonstrate that PfCCp1 binds with complement factors and inhibits complement activation. Active immunization of mice with PfCCp1 followed by challenge with Plasmodium berghei resulted in the loss of biphasic growth of parasites and early death in comparison to the control group. The study also showed a role of PfCCp1 in modulating Toll-like receptor (TLR)-mediated signalling and effector responses on antigen-presenting cells. PfCCp1 binds with dendritic cells that down-regulates the expression of signalling molecules and pro-inflammatory cytokines, thereby dampening the TLR2-mediated signalling; hence acting as a potent immuno-modulator. In summary, PfCCp1 appears to be an important component of malaria parasite directed immuno-modulating strategies that promote the adaptive fitness of pathogens in the host.
Collapse
|
12
|
Pandey R, Kumar P, Gupta D. KiPho: malaria parasite kinome and phosphatome portal. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:4430889. [PMID: 29220464 PMCID: PMC5737071 DOI: 10.1093/database/bax063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/31/2017] [Indexed: 11/23/2022]
Abstract
The Plasmodium kinases and phosphatases play an essential role in the regulation of substrate reversible-phosphorylation and overall cellular homeostasis. Reversible phosphorylation is one of the key post-translational modifications (PTMs) essential for parasite survival. Thus, a complete and comprehensive information of malarial kinases and phosphatases as a single web resource will not only aid in systematic and better understanding of the PTMs, but also facilitate efforts to look for novel drug targets for malaria. In the current work, we have developed KiPho, a comprehensive and one step web-based information resource for Plasmodium kinases and phosphatases. To develop KiPho, we have made use of search methods to retrieve, consolidate and integrate predicted as well as annotated information from several publically available web repositories. Additionally, we have incorporated relevant and manually curated data, which will be updated from time to time with the availability of new information. The KiPho (Malaria Parasite Kinome—Phosphatome) resource is freely available at http://bioinfo.icgeb.res.in/kipho.
Collapse
Affiliation(s)
- Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pawan Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
13
|
Chêne A, Houard S, Nielsen MA, Hundt S, D'Alessio F, Sirima SB, Luty AJF, Duffy P, Leroy O, Gamain B, Viebig NK. Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report. Malar J 2016; 15:476. [PMID: 27639691 PMCID: PMC5027113 DOI: 10.1186/s12936-016-1527-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays with a goal to define standards that will allow comparative assessment of different placental malaria vaccine candidates. The recommendations of these workshops should guide researchers and clinicians in the further development of placental malaria vaccines.
Collapse
Affiliation(s)
- Arnaud Chêne
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, Institut National de la Transfusion Sanguine, Paris, France
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Adrian J F Luty
- IRD MERIT UMR 216, 75006, Paris, France.,COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75270, Paris, France
| | - Patrick Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Benoit Gamain
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, Institut National de la Transfusion Sanguine, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany.
| |
Collapse
|
14
|
Fletcher S, Avery VM. A novel approach for the discovery of chemically diverse anti-malarial compounds targeting the Plasmodium falciparum Coenzyme A synthesis pathway. Malar J 2014; 13:343. [PMID: 25174342 PMCID: PMC4168161 DOI: 10.1186/1475-2875-13-343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Malaria is a devastating parasitic disease, causing more than 600,000 deaths annually. Drug resistance has rendered previous generation anti-malarials ineffective and is also rapidly emerging against the current therapeutics of choice, artemisinin and its derivatives, making the discovery of new anti-malarials with novel mechanisms of action a priority. The Coenzyme A (CoA) synthesis pathway, a well-known anti-microbial drug target that is also essential for the malaria parasite Plasmodium falciparum, has not yet been exploited in anti-malarial drug development. A novel high throughput approach for the identification of chemically diverse inhibitors of the CoA synthesis pathway is reported. METHODS To identify novel CoA synthesis pathway inhibitors, a chemical rescue screening approach was developed. In short, a test compound was considered likely to inhibit the P. falciparum CoA synthesis pathway, if addition of the end product of the pathway, CoA, was able to negate the growth-inhibitory action of the compound on P. falciparum parasites. RESULTS The chemical rescue approach was employed to screen the Medicines for Malaria Venture malaria box and a small focussed compound library. This resulted in the identification of 12 chemically diverse potential inhibitors of the CoA pathway. To ascertain accurate potency and selectivity, the half-maximal inhibitory concentration (IC50 value) of these compounds was determined for both P. falciparum and a human cell line. Seven compounds showed submicromolar activity against the parasite, with selectivity indices ranging between six and greater than 300. CoA supplementation was confirmed to alleviate the effects on parasite growth and cell viability in a dose dependent manner. Microscopic investigation into the stage of effect and phenotype of treated parasites was performed on a selection of the active compounds. CONCLUSIONS The chemical rescue approach described resulted in the identification of a set of chemically diverse CoA synthesis pathway inhibitors with IC50 values ranging between 120 nM and 6 μM. The identified compounds will be utilized as tools for further investigating the parasite CoA synthesis pathway to define their exact mechanism of action. Furthermore, the chemical diversity of the compounds identified substantiates the suitability of this approach to identify novel starting points for future anti-malarial drug development.
Collapse
Affiliation(s)
- Sabine Fletcher
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111 Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111 Australia
| |
Collapse
|
15
|
Shahinas D, Folefoc A, Taldone T, Chiosis G, Crandall I, Pillai DR. A purine analog synergizes with chloroquine (CQ) by targeting Plasmodium falciparum Hsp90 (PfHsp90). PLoS One 2013; 8:e75446. [PMID: 24098696 PMCID: PMC3787104 DOI: 10.1371/journal.pone.0075446] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/18/2013] [Indexed: 12/31/2022] Open
Abstract
Background Drug resistance, absence of an effective vaccine, and inadequate public health measures are major impediments to controlling Plasmodium falciparum malaria worldwide. The development of antimalarials to which resistance is less likely is paramount. To this end, we have exploited the chaperone function of P. falciparum Hsp90 (PfHsp90) that serves to facilitate the expression of resistance determinants. Methods The affinity and activity of a purine analogue Hsp90 inhibitor (PU-H71) on PfHsp90 was determined using surface plasmon resonance (SPR) studies and an ATPase activity assay, respectively. In vitro, antimalarial activity was quantified using flow cytometry. Interactors of PfHsp90 were determined by LC-MS/MS. In vivo studies were conducted using the Plasmodium berghei infection mouse model. Results PU-H71 exhibited antimalarial activity in the nanomolar range, displayed synergistic activity with chloroquine in vitro. Affinity studies reveal that the PfHsp90 interacts either directly or indirectly with the P. falciparum chloroquine resistance transporter (PfCRT) responsible for chloroquine resistance. PU-H71 synergized with chloroquine in the P.berghei mouse model of malaria to reduce parasitemia and improve survival. Conclusions We propose that the interaction of PfHsp90 with PfCRT may account for the observed antimalarial synergy and that PU-H71 is an effective adjunct for combination therapy.
Collapse
Affiliation(s)
- Dea Shahinas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Asongna Folefoc
- Department of Pathology & Laboratory Medicine and Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Tony Taldone
- Memorial Sloan-Kettering Cancer Center New York, New York, United States of America
| | - Gabriela Chiosis
- Memorial Sloan-Kettering Cancer Center New York, New York, United States of America
| | - Ian Crandall
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan R. Pillai
- Department of Pathology & Laboratory Medicine and Medicine, The University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Fraunholz MJ, Roos DS. PlasmoDB: exploring genomics and post-genomics data of the malaria parasite,Plasmodium falciparum. Redox Rep 2013; 8:317-20. [PMID: 14962373 DOI: 10.1179/135100003225002961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The recent completion of the genome sequence of Plasmodium falciparum 3D7 provides the foundation for genome-wide analysis of the parasite. In addition to DNA and gene sequence data, postgenomic methods including microarray-based transcript profiling and high-throughput proteomics are now accessible to Plasmodium researchers. The Plasmodium Genome database (<http://PlasmoDB.org>) was developed to provide rapid and convenient access to the terabytes of genomic-scale data now being generated around the world. All data are available in a relational framework, permitting convenient downloading, browsing, and analysis. Combinatorial use of data analysis tools enables powerful data mining queries, such as combining gene and protein expression data to monitor changes through various life-cycle stages. Functional predictions can be used to explore potential targets for antimalarial drug development. This report outlines the use of PlasmoDB to examine redox-active functions in Plasmodium.
Collapse
Affiliation(s)
- Martin J Fraunholz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA.
| | | |
Collapse
|
17
|
Ginsburg H, Golenser J. Glutathione is involved in the antimalarial action of chloroquine and its modulation affects drug sensitivity of human and murine species ofPlasmodium. Redox Rep 2013; 8:276-9. [PMID: 14962364 DOI: 10.1179/135100003225002907] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ferriprotoporphyrin IX (FP) is released inside the food vacuole of the malaria parasite during the digestion of host cell hemoglobin. FP is detoxified by its biomineralization to hemozoin. This process is effectively inhibited by chloroquine (CQ) and amodiaquine (AQ). Undegraded FP accumulates in the membrane fraction and inhibits enzymes of infected cells in parallel with parasite killing. FP is demonstrably degraded by reduced glutathione (GSH) in a radical-mediated mechanism. This degradation is inhibited by CQ and AQ in a competitive manner, thus explaining the ability of increased GSH levels in Plasmodium falciparum-infected cells to increase resistance to CQ and vice versa, and to render Plasmodium berghei that were selected for CQ resistance in vivo sensitive to the CQ when glutathione synthesis is inhibited. Some over-the-counter drugs that are known to reduce GSH in body tissues when used in excess were found to enhance the antimalarial action of CQ and AQ in mice infected either with P. berghei or Plasmodium vinckei. In contrast, N-acetyl-cysteine which is expected to increase the cellular levels of GSH, antagonized the action of CQ. These results suggest that some over-the-counter drugs can be used in combination with some antimalarials to which the parasite has become resistant.
Collapse
Affiliation(s)
- Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
18
|
Schlarman MS, Roberts RN, Kariuki MM, LaCrue AN, Ou R, Beerntsen BT. PFE0565w, a Plasmodium falciparum protein expressed in salivary gland sporozoites. Am J Trop Med Hyg 2012; 86:943-54. [PMID: 22665598 DOI: 10.4269/ajtmh.2012.11-0797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Because malaria is still a significant problem worldwide, additional control methods need to be developed. The Plasmodium sporozoite is a good target for control measures because it displays dual infectivity for both mosquito and vertebrate host tissues. The Plasmodium falciparum gene, PFE0565w, was chosen as a candidate for study based on data from PlasmoDB, the Plasmodium database, indicating that it is expressed both at the transcriptional and protein levels in sporozoites, likely encodes a putative surface protein, and may have a potential role in the invasion of host tissues. Additional sequence analysis shows that the PFE0565w protein has orthologs in other Plasmodium species, but none outside of the genus Plasmodium. PFE0565w expresses transcript during both the sporozoite and erythrocytic stages of the parasite life cycle, where an alternative transcript was discovered during the erythrocytic stages. Data show that transcript is not present during axenic exoerythrocytic stages. Despite transcript being present in several life cycle stages, the PFE0565w protein is present only during the salivary gland sporozoite stage. Because the PFE0565w protein is present in salivary gland sporozoites, it could be a novel candidate for a pre-erythrocytic stage vaccine.
Collapse
Affiliation(s)
- Maggie S Schlarman
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Schlarman MS, Roberts RN, Kariuki MM, LaCrue AN, Ou R, Beerntsen BT. Transcript and protein expression profile of PF11_0394, a Plasmodium falciparum protein expressed in salivary gland sporozoites. Malar J 2012; 11:80. [PMID: 22443220 PMCID: PMC3355004 DOI: 10.1186/1475-2875-11-80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/23/2012] [Indexed: 11/12/2022] Open
Abstract
Background Plasmodium falciparum malaria is a significant problem around the world today, thus there is still a need for new control methods to be developed. Because the sporozoite displays dual infectivity for both the mosquito salivary glands and vertebrate host tissue, it is a good target for vaccine development. Methods The P. falciparum gene, PF11_0394, was chosen as a candidate for study due to its potential role in the invasion of host tissues. This gene, which was selected using a data mining approach from PlasmoDB, is expressed both at the transcriptional and protein levels in sporozoites and likely encodes a putative surface protein. Using reverse transcription-polymerase chain reaction (RT-PCR) and green fluorescent protein (GFP)-trafficking studies, a transcript and protein expression profile of PF11_0394 was determined. Results The PF11_0394 protein has orthologs in other Plasmodium species and Apicomplexans, but none outside of the group Apicomplexa. PF11_0394 transcript was found to be present during both the sporozoite and erythrocytic stages of the parasite life cycle, but no transcript was detected during axenic exoerythrocytic stages. Despite the presence of transcript throughout several life cycle stages, the PF11_0394 protein was only detected in salivary gland sporozoites. Conclusions PF11_0394 appears to be a protein uniquely detected in salivary gland sporozoites. Even though a specific function of PF11_0394 has not been determined in P. falciparum biology, it could be another candidate for a new vaccine.
Collapse
Affiliation(s)
- Maggie S Schlarman
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | |
Collapse
|
20
|
Application of genomics to field investigations of malaria by the international centers of excellence for malaria research. Acta Trop 2012; 121:324-32. [PMID: 22182668 DOI: 10.1016/j.actatropica.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022]
Abstract
Success of the global research agenda toward eradication of malaria will depend on development of new tools, including drugs, vaccines, insecticides and diagnostics. Genomic information, now available for the malaria parasites, their mosquito vectors, and human host, can be leveraged to both develop these tools and monitor their effectiveness. Although knowledge of genomic sequences for the malaria parasites, Plasmodium falciparum and Plasmodium vivax, have helped advance our understanding of malaria biology, simply knowing this sequence information has not yielded a plethora of new interventions to reduce the burden of malaria. Here we review and provide specific examples of how genomic information has increased our knowledge of parasite biology, focusing on P. falciparum malaria. We then discuss how population genetics can be applied toward the epidemiological and transmission-related goals outlined by the International Centers of Excellence for Malaria Research groups recently established by the National Institutes of Health. Finally, we propose genomics is a research area that can promote coordination and collaboration between various ICEMR groups, and that working together as a community can significantly advance the value of this information toward reduction of the global malaria burden.
Collapse
|
21
|
Population genetic analysis of Plasmodium falciparum parasites using a customized Illumina GoldenGate genotyping assay. PLoS One 2011; 6:e20251. [PMID: 21673999 PMCID: PMC3108946 DOI: 10.1371/journal.pone.0020251] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/28/2011] [Indexed: 11/19/2022] Open
Abstract
The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n = 306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum.
Collapse
|
22
|
Predicting malaria interactome classifications from time-course transcriptomic data along the intraerythrocytic developmental cycle. Artif Intell Med 2010; 49:167-76. [DOI: 10.1016/j.artmed.2010.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 03/28/2010] [Accepted: 03/29/2010] [Indexed: 12/15/2022]
|
23
|
Sander AF, Salanti A, Lavstsen T, Nielsen MA, Magistrado P, Lusingu J, Ndam NT, Arnot DE. Multiple var2csa-type PfEMP1 genes located at different chromosomal loci occur in many Plasmodium falciparum isolates. PLoS One 2009; 4:e6667. [PMID: 19690615 PMCID: PMC2723927 DOI: 10.1371/journal.pone.0006667] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/13/2009] [Indexed: 12/03/2022] Open
Abstract
Background The var2csa gene encodes a Plasmodium falciparum adhesion receptor which binds chondroitin sulfate A (CSA). This var gene is more conserved than other PfEMP1/var genes and is found in all P. falciparum isolates. In isolates 3D7, FCR3/It4 and HB3, var2csa is transcribed from a sub-telomeric position on the left arm of chromosome 12, but it is not known if this location is conserved in all parasites. Genome sequencing indicates that the var2csa gene is duplicated in HB3, but whether this is true in natural populations is uncertain. Methodology/Principal Findings To assess global variation in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant women and from the peripheral circulation of other malaria patients. Sequence analysis, gene mapping and copy number quantitation in P.falciparum isolates indicate that there are at least two loci and that both var2csa-like genes can be transcribed. All VAR2CSA DBL2X domains fall into one of two distinct phylogenetic groups possessing one or the other variant of a large (∼26 amino acid) dimorphic motif, but whether either motif variant is linked to a specific locus is not known. Conclusions/Significance Two or more related but distinct var2csa-type PfEMP1/var genes exist in many P. falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype in pregnancy associated malaria.
Collapse
Affiliation(s)
- Adam F. Sander
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Pamela Magistrado
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- JMP-ENRICA Project, National Institute for Medical Research, Korogwe Laboratory, Tanga, Tanzania
| | - John Lusingu
- JMP-ENRICA Project, National Institute for Medical Research, Korogwe Laboratory, Tanga, Tanzania
| | - Nicaise Tuikue Ndam
- Institut de Recherche pour le Developpment, UR010, Universite Paris Descartes, Paris, France
| | - David E. Arnot
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Institute of Immunology & Infection Research, School of Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, Randall A, Molina D, Liang X, Freilich DA, Oloo JA, Blair PL, Aguiar JC, Baldi P, Davies DH, Felgner PL. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 2009; 8:4680-94. [PMID: 18937256 DOI: 10.1002/pmic.200800194] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A complete description of the serological response following exposure of humans to complex pathogens is lacking and approaches suitable for accomplishing this are limited. Here we report, using malaria as a model, a method which elucidates the profile of antibodies that develop after natural or experimental infection or after vaccination with attenuated organisms, and which identifies immunoreactive antigens of interest for vaccine development or other applications. Expression vectors encoding 250 Plasmodium falciparum (Pf) proteins were generated by PCR/recombination cloning; the proteins were individually expressed with >90% efficiency in Escherichia coli cell-free in vitro transcription and translation reactions, and printed directly without purification onto microarray slides. The protein microarrays were probed with human sera from one of four groups which differed in immune status: sterile immunity or no immunity against experimental challenge following vaccination with radiation-attenuated Pf sporozoites, partial immunity acquired by natural exposure, and no previous exposure to Pf. Overall, 72 highly reactive Pf antigens were identified. Proteomic features associated with immunoreactivity were identified. Importantly, antibody profiles were distinct for each donor group. Information obtained from such analyses will facilitate identifying antigens for vaccine development, dissecting the molecular basis of immunity, monitoring the outcome of whole-organism vaccine trials, and identifying immune correlates of protection.
Collapse
|
25
|
González-Pons M, Szeto AC, González-Méndez R, Serrano AE. Identification and bioinformatic characterization of a multidrug resistance associated protein (ABCC) gene in Plasmodium berghei. Malar J 2009; 8:1. [PMID: 19118502 PMCID: PMC2630995 DOI: 10.1186/1475-2875-8-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 01/02/2009] [Indexed: 11/25/2022] Open
Abstract
Background The ATP-binding cassette (ABC) superfamily is one of the largest evolutionarily conserved families of proteins. ABC proteins play key roles in cellular detoxification of endobiotics and xenobiotics. Overexpression of certain ABC proteins, among them the multidrug resistance associated protein (MRP), contributes to drug resistance in organisms ranging from human neoplastic cells to parasitic protozoa. In the present study, the Plasmodium berghei mrp gene (pbmrp) was partially characterized and the predicted protein was classified using bioinformatics in order to explore its putative involvement in drug resistance. Methods The pbmrp gene from the P. berghei drug sensitive, N clone, was sequenced using a PCR strategy. Classification and domain organization of pbMRP were determined with bioinformatics. The Plasmodium spp. MRPs were aligned and analysed to study their conserved motifs and organization. Gene copy number and organization were determined via Southern blot analysis in both N clone and the chloroquine selected line, RC. Chromosomal Southern blots and RNase protection assays were employed to determine the chromosomal location and expression levels of pbmrp in blood stages. Results The pbmrp gene is a single copy, intronless gene with a predicted open reading frame spanning 5820 nucleotides. Bioinformatic analyses show that this protein has distinctive features characteristic of the ABCC sub-family. Multiple sequence alignments reveal a high degree of conservation in the nucleotide binding and transmembrane domains within the MRPs from the Plasmodium spp. analysed. Expression of pbmrp was detected in asexual blood stages. Gene organization, copy number and mRNA expression was similar in both lines studied. A chromosomal translocation was observed in the chloroquine selected RC line, from chromosome 13/14 to chromosome 8, when compared to the drug sensitive N clone. Conclusion In this study, the pbmrp gene was sequenced and classified as a member of the ABCC sub-family. Multiple sequence alignments reveal that this gene is homologous to the Plasmodium y. yoelii and Plasmodium knowlesi mrp, and the Plasmodium vivax and Plasmodium falciparum mrp2 genes. There were no differences in gene organization, copy number, or mRNA expression between N clone and the RC line, but a chromosomal translocation of pbmrp from chromosome 13/14 to chromosome 8 was detected in RC.
Collapse
Affiliation(s)
- María González-Pons
- Department of Microbiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan, PR 00936-5067, USA.
| | | | | | | |
Collapse
|
26
|
Okada K. The novel heme oxygenase-like protein fromPlasmodiumfalciparumconverts heme to bilirubin IXα in the apicoplast. FEBS Lett 2008; 583:313-9. [DOI: 10.1016/j.febslet.2008.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022]
|
27
|
Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog 2008; 4:e1000195. [PMID: 18974882 PMCID: PMC2570797 DOI: 10.1371/journal.ppat.1000195] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/09/2008] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito—early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans. Human malaria is caused by Plasmodium falciparum, a unicellular protozoan parasite that is transmitted by Anopheles mosquitoes. An infectious mosquito injects saliva containing sporozoite forms of the parasite and these then migrate from the skin to the liver, where they establish an infection. Many intervention strategies are currently focused on preventing the establishment of infection by sporozoites. Clearly, an understanding of the biology of the sporozoite is essential for developing new intervention strategies. Sporozoites are produced within the oocyst, located on the outside wall of the mosquito midgut, and migrate after release from the oocysts to the salivary glands where they are stored as mature infectious forms. Comparison of the proteomes of sporozoites derived from either the oocyst or from the salivary gland reveals remarkable differences in the protein content of these stages despite their similar morphology. The changes in protein content reflect the very specific preparations the sporozoites make in order to establish an infection of the liver. Analysis of the function of several previously uncharacterized, conserved proteins revealed proteins essential for sporozoite development at distinct points of their maturation.
Collapse
|
28
|
|
29
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Siau A, Toure FS, Ouwe-Missi-Oukem-Boyer O, Ciceron L, Mahmoudi N, Vaquero C, Froissard P, Bisvigou U, Bisser S, Coppee JY, Bischoff E, David PH, Mazier D. Whole-transcriptome analysis of Plasmodium falciparum field isolates: identification of new pathogenicity factors. J Infect Dis 2007; 196:1603-12. [PMID: 18008243 DOI: 10.1086/522012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/30/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Severe malaria and one of its most important pathogenic processes, cerebral malaria, involves the sequestration of parasitized red blood cells (pRBCs) in brain postcapillary venules. Although the pathogenic mechanisms underlying malaria remain poorly characterized, it has been established that adhesion of pRBCs to endothelial cells (ECs) can result in cell apoptosis, which in turn may lead to disruption of the blood-brain barrier. The nature of the parasite molecules involved in the pathogenesis of severe malaria remains elusive. METHODS Whole-transcriptome profiling of nonapoptogenic versus apoptogenic parasite field isolates obtained from Gabonese children was performed with pan-genomic Plasmodium falciparum DNA microarrays; radiolabeled instead of fluorescent cDNAs were used to improve the sensitivity of signal detection. RESULTS Our methods allowed the identification of 59 genes putatively associated with the induction of EC apoptosis. Silencing of Plasmodium gene expression with specific double-stranded RNA was performed on 8 selected genes; 5 of these, named "Plasmodium apoptosis-linked pathogenicity factors" (PALPFs), were found to be linked to parasite apoptogenicity. Of these genes, 2 might act via parasite cytoadherence. CONCLUSION This is the first attempt to identify genes involved in parasite pathogenic mechanisms against human ECs. The finding of PALPFs illuminates perspectives for novel therapeutic strategies against cerebral complications of malaria.
Collapse
Affiliation(s)
- Anthony Siau
- Institut National de la Sante et de la Recherche Medicale U511, Paris 75013, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoffman BU, Chattopadhyay R. Plasmodium falciparum: effect of radiation on levels of gene transcripts in sporozoites. Exp Parasitol 2007; 118:247-52. [PMID: 17935717 DOI: 10.1016/j.exppara.2007.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/13/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Humans immunized by the bites of irradiated Plasmodium falciparum (Pf) sporozoite-infected mosquitoes are protected against malaria. Radiation attenuates the sporozoites preventing them from fully developing and replicating in hepatocytes, but the effects of radiation on gene expression in sporozoites are unknown. We used RT-PCR (35 cycles of PCR followed by densitometry) to assess the expression of ten genes in Pf sporozoites, and in sporozoites irradiated with 15,000cGy. Irradiation reduced expression substantially (>60%) of two DNA repair genes; moderately (30-60%) of PfUIS3, the Pf orthologue of PbUIS3, a gene up-regulated in Plasmodium berghei sporozoites and of a third DNA repair gene; and minimally (<30%) of the Pf18S ribosomal RNA, PfCSP, PfSSP2/TRAP, and PfCELTOS genes. Irradiation increased expression of PfSPATR minimally. PfLSA1 RNA was not detectable in sporozoites. These results establish that radiation of sporozoites affects gene expression levels and provide the foundation for studies to identify specific genes involved in attenuation and protective immunity.
Collapse
Affiliation(s)
- Benjamin U Hoffman
- Protein Potential LLC, 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
32
|
Casta LJ, Buguliskis JS, Matsumoto Y, Taraschi TF. Expression and biochemical characterization of the Plasmodium falciparum DNA repair enzyme, flap endonuclease-1 (PfFEN-1). Mol Biochem Parasitol 2007; 157:1-12. [PMID: 17928073 DOI: 10.1016/j.molbiopara.2007.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/29/2022]
Abstract
Flap endonuclease-1 (FEN-1) is a structure-specific endonuclease that is critical for the resolution of single-stranded DNA flap intermediates that form during long patch DNA base excision repair (BER). This investigation reports that Plasmodium species encode FEN-1 homologs. Protein sequence analysis revealed the N and I domains of Plasmodium falciparum (PfFEN-1) and Plasmodium yoelii (PyFEN-1) to be homologous to FEN-1 from other species. However, each possessed an extended C domain which had limited homology to apicomplexan FEN-1s and no homology to eukaryotic FEN-1s. A conserved proliferating cell nuclear antigen (PCNA)-binding site was identified at an internal location rather than the extreme C-terminal location typically seen in FEN-1 from other organisms. The endonuclease and exonuclease activities of PfFEN-1 and PyFEN-1 were investigated using recombinant protein produced in Escherichia coli. Pf and PyFEN-1 possessed DNA structure-specific flap endonuclease and 5'-->3' exonuclease activities, similar to FEN-1s from other species. Endonuclease activity was stimulated by Mg(2+) or Mn(2+) and inhibited by monovalent ions (>20.0 mM). A PfFEN-1 C-terminal truncation mutant lacking the terminal 250 amino acids (PfFEN-1DeltaC) had endonuclease activity that was approximately 130-fold greater (k(cat)=1.2x10(-1)) than full-length PfFEN-1 (k(cat)=9.1x10(-4)) or approximately 240-fold greater than PyFEN-1 (k(cat)=4.9x10(-4)) in vitro. PfFEN-1 generated a nicked DNA substrate that was ligated by recombinant Pf DNA Ligase I (PfLigI) using an in vitro DNA repair assay. Plasmodium FEN-1s have enzymatic activities similar to other species but contain extended C-termini and a more internally located PCNA-binding site.
Collapse
Affiliation(s)
- Louis J Casta
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107-6731, USA
| | | | | | | |
Collapse
|
33
|
Gunasekera AM, Myrick A, Le Roch K, Winzeler E, Wirth DF. Plasmodium falciparum: Genome wide perturbations in transcript profiles among mixed stage cultures after chloroquine treatment. Exp Parasitol 2007; 117:87-92. [PMID: 17475254 DOI: 10.1016/j.exppara.2007.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
A genomic approach was taken to study the effect of chloroquine (CQ) on Plasmodium falciparum cultures in multiple cell states, following short and long exposures to drug at varying concentrations. Six hundred genes from numerous functional groups were responsive to CQ amongst all cell states assayed in a micro-array analysis; however, the amplitude of fold-change was low in the majority of cases. Moreover, alterations in specific, functionally related cascades could not be discerned, leading us to believe there is no single signature response to CQ at the transcript level in P. falciparum. Instead, cell cycle changes appear to have a more pronounced effect on gene expression; only a fraction of the drug responsive loci (approximately 5%) were shared between two separate starting cultures that varied in staging profile in the current study, as well as a previous published analysis using SAGE technology [Gunasekera, A.M., Patankar, S., Schug, J., Eisen, G.,Wirth, D.F., 2003. Drug-induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum. Molecular Microbiology 50, 1229-1239]. These findings are important to report, given the striking contrast to similar studies in other model eukaryotic organisms.
Collapse
Affiliation(s)
- Anusha M Gunasekera
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Harvard University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
34
|
Sokolova YY, Snigirevskaya ES, Komissarchik YY. The Golgi apparatus in parasitic protists. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Splendiani A, Brandizi M, Even G, Beretta O, Pavelka N, Pelizzola M, Mayhaus M, Foti M, Mauri G, Ricciardi-Castagnoli P. The genopolis microarray database. BMC Bioinformatics 2007; 8 Suppl 1:S21. [PMID: 17430566 PMCID: PMC1885851 DOI: 10.1186/1471-2105-8-s1-s21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Gene expression databases are key resources for microarray data management and analysis and the importance of a proper annotation of their content is well understood. Public repositories as well as microarray database systems that can be implemented by single laboratories exist. However, there is not yet a tool that can easily support a collaborative environment where different users with different rights of access to data can interact to define a common highly coherent content. The scope of the Genopolis database is to provide a resource that allows different groups performing microarray experiments related to a common subject to create a common coherent knowledge base and to analyse it. The Genopolis database has been implemented as a dedicated system for the scientific community studying dendritic and macrophage cells functions and host-parasite interactions. Results The Genopolis Database system allows the community to build an object based MIAME compliant annotation of their experiments and to store images, raw and processed data from the Affymetrix GeneChip® platform. It supports dynamical definition of controlled vocabularies and provides automated and supervised steps to control the coherence of data and annotations. It allows a precise control of the visibility of the database content to different sub groups in the community and facilitates exports of its content to public repositories. It provides an interactive users interface for data analysis: this allows users to visualize data matrices based on functional lists and sample characterization, and to navigate to other data matrices defined by similarity of expression values as well as functional characterizations of genes involved. A collaborative environment is also provided for the definition and sharing of functional annotation by users. Conclusion The Genopolis Database supports a community in building a common coherent knowledge base and analyse it. This fills a gap between a local database and a public repository, where the development of a common coherent annotation is important. In its current implementation, it provides a uniform coherently annotated dataset on dendritic cells and macrophage differentiation.
Collapse
Affiliation(s)
- Andrea Splendiani
- Department Informatics, Systemistics and Communication, University of Milano-Bicocca, Via degli Arcimboldi 8, Milano, Italy
| | - Marco Brandizi
- Department Informatics, Systemistics and Communication, University of Milano-Bicocca, Via degli Arcimboldi 8, Milano, Italy
| | - Gael Even
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 4, Milano, Italy
| | - Ottavio Beretta
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 4, Milano, Italy
| | - Norman Pavelka
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 4, Milano, Italy
| | - Mattia Pelizzola
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 4, Milano, Italy
| | - Manuel Mayhaus
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 4, Milano, Italy
| | - Maria Foti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 4, Milano, Italy
| | - Giancarlo Mauri
- Department Informatics, Systemistics and Communication, University of Milano-Bicocca, Via degli Arcimboldi 8, Milano, Italy
| | - Paola Ricciardi-Castagnoli
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 4, Milano, Italy
| |
Collapse
|
36
|
BioDIFF: An Effective Fast Change Detection Algorithm for Biological Annotations. ADVANCES IN DATABASES: CONCEPTS, SYSTEMS AND APPLICATIONS 2007. [PMCID: PMC7121968 DOI: 10.1007/978-3-540-71703-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Warehousing heterogeneous, dynamic biological data is a key technique for biological data integration as it greatly improves performance. However, it requires complex maintenance procedures to update the warehouse in light of the changes to the sources. Consequently, a key issue to address is how to detect changes to the underlying biological data sources. In this paper, we present an algorithm called BioDiff for detecting exact changes to biological annotations. In our approach we transform heterogeneous biological data to XML format and then detect changes between two versions of XML representation of biological data. Our algorithm extends X-Diff, a published XML change detection algorithm. X-Diff, being designed for any type of XML data, does not exploit the semantics of biological data to reduce the data set of bipartite mapping. We have implemented BioDiff in Java. We have conducted an extensive performance study using data from EMBL, GenBank, SwissProt and PDB. Our experimental results show that BioDiff runs 1.5 to 6 times faster than X-Diff.
Collapse
|
37
|
Scholl PF, Tripathi AK, Sullivan DJ. Bioavailable iron and heme metabolism in Plasmodium falciparum. Curr Top Microbiol Immunol 2006; 295:293-324. [PMID: 16265896 DOI: 10.1007/3-540-29088-5_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Iron metabolism is essential for cell function and potentially toxic because iron can catalyze oxygen radical production. Malaria-attributable anemia and iron deficiency anemia coincide as being treatable diseases in the developing world. In absolute amounts, more than 95% of Plasmodium metal biochemistry occurs in the acidic digestive vacuole where heme released from hemoglobin catabolism forms heme crystals. The antimalarial quinolines interfere with crystallization. Despite the completion of the Plasmodium genome, many 'gene gaps' exist in components of the metal pathways described in mammalian or yeast cells. Present evidence suggests that parasite bioavailable iron originates from a labile erythrocyte cytosolic pool rather than from abundant heme iron. Indeed the parasite has to make its own heme within two separate organelles, the mitochondrion and the apicomplast. Paradoxically, despite the abundance of iron within the erythrocyte, iron chelators are cytocidal to the Plasmodium parasite. Hemozoin has become a sensitive biomarker for laser desorption mass spectrometry detection of Plasmodium infection in both mice and humans.
Collapse
Affiliation(s)
- P F Scholl
- Department of Environmental Health Sciences, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
38
|
Holmes MA, Buckner FS, Van Voorhis WC, Verlinde CLMJ, Mehlin C, Boni E, DeTitta G, Luft J, Lauricella A, Anderson L, Kalyuzhniy O, Zucker F, Schoenfeld LW, Earnest TN, Hol WGJ, Merritt EA. Structure of ribose 5-phosphate isomerase from Plasmodium falciparum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:427-31. [PMID: 16682767 PMCID: PMC2219984 DOI: 10.1107/s1744309106010876] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 03/24/2006] [Indexed: 11/10/2022]
Abstract
The structure of ribose 5-phosphate isomerase from Plasmodium falciparum, PFE0730c, has been determined by molecular replacement at 2.09 angstroms resolution. The enzyme, which catalyzes the isomerization reaction that interconverts ribose 5-phosphate and ribulose 5-phosphate, is a member of the pentose phosphate pathway. The P. falciparum enzyme belongs to the ribose 5-phosphate isomerase A family, Pfam family PF06562 (DUF1124), and is structurally similar to other members of the family.
Collapse
Affiliation(s)
- Margaret A. Holmes
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Frederick S. Buckner
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Christophe L. M. J. Verlinde
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Christopher Mehlin
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Erica Boni
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - George DeTitta
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - Joseph Luft
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - Angela Lauricella
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - Lori Anderson
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Oleksandr Kalyuzhniy
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Frank Zucker
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Lori W. Schoenfeld
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Thomas N. Earnest
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wim G. J. Hol
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ethan A. Merritt
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| |
Collapse
|
39
|
Blair PL, Carucci DJ. Functional proteome and expression analysis of sporozoites and hepatic stages of malaria development. Curr Top Microbiol Immunol 2005; 295:417-38. [PMID: 16265900 DOI: 10.1007/3-540-29088-5_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An evolution in modern malaria research occurred with the completion of the Plasmodium falciparum genome project and the onset and application of novel post-genomic technologies. Corresponding with these technological achievements are improvements in accessing and purifying parasite material from 'hard-to-reach' stages of malaria development. Characterization of gene and protein expression in the infectious sporozoite and subsequent liver-stage parasite development is critical to identify novel pre-erythrocytic drug and vaccine targets as well as to understand the basic biology of this deadly parasite. Both transcriptional and proteomic analyses on these stages and the remaining stages of development will assist in the 'credentialing process' of the complete malaria genome.
Collapse
Affiliation(s)
- P L Blair
- Biology Department, Earlham College, 801 National Road West, Richmond, IN 47374, USA.
| | | |
Collapse
|
40
|
Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou Y, Carucci DJ, Baker DA, Winzeler EA. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol 2005; 143:67-79. [PMID: 16005087 DOI: 10.1016/j.molbiopara.2005.05.007] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/29/2005] [Accepted: 05/20/2005] [Indexed: 01/24/2023]
Abstract
The sexual stages of malarial parasites are essential for the mosquito transmission of the disease and therefore are the focus of transmission-blocking drug and vaccine development. In order to better understand genes important to the sexual development process, the transcriptomes of high-purity stage I-V Plasmodium falciparum gametocytes were comprehensively profiled using a full-genome high-density oligonucleotide microarray. The interpretation of this transcriptional data was aided by applying a novel knowledge-based data-mining algorithm termed ontology-based pattern identification (OPI) using current information regarding known sexual stage genes as a guide. This analysis resulted in the identification of a sexual development cluster containing 246 genes, of which approximately 75% were hypothetical, exhibiting highly-correlated, gametocyte-specific expression patterns. Inspection of the upstream promoter regions of these 246 genes revealed putative cis-regulatory elements for sexual development transcriptional control mechanisms. Furthermore, OPI analysis was extended using current annotations provided by the Gene Ontology Consortium to identify 380 statistically significant clusters containing genes with expression patterns characteristic of various biological processes, cellular components, and molecular functions. Collectively, these results, available as part of a web-accessible OPI database (http://carrier.gnf.org/publications/Gametocyte), shed light on the components of molecular mechanisms underlying parasite sexual development and other areas of malarial parasite biology.
Collapse
Affiliation(s)
- Jason A Young
- Department of Cell Biology ICND202, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gelhaus C, Fritsch J, Krause E, Leippe M. Fractionation and identification of proteins by 2-DE and MS: towards a proteomic analysis ofPlasmodium falciparum. Proteomics 2005; 5:4213-22. [PMID: 16196089 DOI: 10.1002/pmic.200401285] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since completion of genome sequencing of the malarial parasite Plasmodium falciparum, proteomic tools for the identification of parasite proteins have become particularly attractive as they allow a more thorough interpretation of these data. Recent advances in 2-D PAGE, MS, and bioinformatics have created great opportunities for mapping and characterization of protein populations. We employed these improvements in a proteomic approach for the analysis of proteins detected in two blood stages of P. falciparum, (i) in the schizont stage and (ii) in the merozoite stage. For the isolation of merozoites, we introduced a new protocol based on the preparation of clustered structures of merozoites upon treatment of cultures with the common cysteine proteinase inhibitor E64. Peptide mass fingerprints of excised and trypsinated protein spots, acquired by MALDI-TOF MS were generated to identify a variety of proteins. Moreover, prefractionation procedures were used to enrich and map low-abundance proteins in protein samples. The data demonstrate that classic proteomic analyses using 2-D PAGE are now feasible for P. falciparum and represent the first step in the direction of creating 2-D reference maps for this medically most relevant protozoon.
Collapse
Affiliation(s)
- Christoph Gelhaus
- Research Center for Infectious Diseases of the University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
42
|
Basso LA, da Silva LHP, Fett-Neto AG, de Azevedo WF, Moreira IDS, Palma MS, Calixto JB, Astolfi Filho S, dos Santos RR, Soares MBP, Santos DS. The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases: a review. Mem Inst Oswaldo Cruz 2005; 100:475-506. [PMID: 16302058 DOI: 10.1590/s0074-02762005000600001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Collapse
Affiliation(s)
- Luiz Augusto Basso
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Glenn MP, Chang SY, Hucke O, Verlinde CLMJ, Rivas K, Hornéy C, Yokoyama K, Buckner FS, Pendyala PR, Chakrabarti D, Gelb M, Van Voorhis WC, Sebti SM, Hamilton AD. Structurally Simple Farnesyltransferase Inhibitors Arrest the Growth of Malaria Parasites. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200500674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Glenn MP, Chang SY, Hucke O, Verlinde CLMJ, Rivas K, Hornéy C, Yokoyama K, Buckner FS, Pendyala PR, Chakrabarti D, Gelb M, Van Voorhis WC, Sebti SM, Hamilton AD. Structurally Simple Farnesyltransferase Inhibitors Arrest the Growth of Malaria Parasites. Angew Chem Int Ed Engl 2005; 44:4903-6. [PMID: 16007716 DOI: 10.1002/anie.200500674] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthew P Glenn
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pessi G, Choi JY, Reynolds JM, Voelker DR, Mamoun CB. In Vivo Evidence for the Specificity of Plasmodium falciparum Phosphoethanolamine Methyltransferase and Its Coupling to the Kennedy Pathway. J Biol Chem 2005; 280:12461-6. [PMID: 15664981 DOI: 10.1074/jbc.m414626200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike humans and yeast, Plasmodium falciparum, the agent of the most severe form of human malaria, utilizes host serine as a precursor for the synthesis of phosphatidylcholine via a plant-like pathway involving phosphoethanolamine methylation. The monopartite phosphoethanolamine methyltransferase, Pfpmt, plays an important role in the biosynthetic pathway of this major phospholipid by providing the precursor phosphocholine via a three-step S-adenosyl-L-methionine-dependent methylation of phosphoethanolamine. In vitro studies showed that Pfpmt has strong specificity for phosphoethanolamine. However, the in vivo substrate (phosphoethanolamine or phosphatidylethanolamine) is not yet known. We used yeast as a surrogate system to express Pfpmt and provide genetic and biochemical evidence demonstrating the specificity of Pfpmt for phosphoethanolamine in vivo. Wild-type yeast cells, which inherently lack phosphoethanolamine methylation, acquire this activity as a result of expression of Pfpmt. The Pfpmt restores the ability of a yeast mutant pem1Deltapem2Delta lacking the phosphatidylethanolamine methyltransferase genes to grow in the absence of choline. Lipid analysis of the Pfpmt-complemented pem1Deltapem2Delta strain demonstrates the synthesis of phosphatidylcholine but not the intermediates of phosphatidylethanolamine transmethylation. Complementation of the pem1Deltapem2Delta mutant relies on specific methylation of phosphoethanolamine but not phosphatidylethanolamine. Interestingly, a mutation in the yeast choline-phosphate cytidylyltransferase gene abrogates the complementation by Pfpmt thus demonstrating that Pfpmt activity is directly coupled to the Kennedy pathway for the de novo synthesis of phosphatidylcholine.
Collapse
Affiliation(s)
- Gabriella Pessi
- Center for Microbial Pathogenesis and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
46
|
Nallani KC, Sullivan WJ. Identification of proteins interacting with Toxoplasma SRCAP by yeast two-hybrid screening. Parasitol Res 2005; 95:236-42. [PMID: 15729590 DOI: 10.1007/s00436-004-1291-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
Toxoplasma gondii is an opportunistic protozoan parasite that differentiates into latent cysts (bradyzoite) that can be reactivated during immunosuppression. TgSRCAP (Toxoplasma gondii Snf2-related CBP activator protein) is a SWI2/SNF2 family chromatin remodeler whose expression increases during cyst development. Identifying the proteins associating with TgSRCAP during the pre-cyst stage (tachyzoite) will increase our understanding of how parasite differentiation is initiated. We employed the yeast two-hybrid system to identify proteins that may interact directly with TgSRCAP. A stretch of 1,060 amino acids between ATPase subdomains IV and V of TgSRCAP was chosen as "bait" since the corresponding region in human SRCAP interacts with other proteins, including CREB binding protein. We have identified several novel parasite-specific transcription factors predicted to be in the T. gondii genome. Metabolic enzymes that may participate in cyst development were also identified as interacting with TgSRCAP.
Collapse
Affiliation(s)
- Karuna C Nallani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Medical Sciences Building Room A-525, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|
47
|
Abstract
In higher eukaryotes, introns are spliced out of protein-coding mRNAs by the spliceosome, a massive complex comprising five non-coding RNAs (ncRNAs) and about 200 proteins. By comparing the differences between spliceosomal proteins from many basal eukaryotic lineages, it is possible to infer properties of the splicing system in the last common ancestor of extant eukaryotes, the eukaryotic ancestor. We begin with the hypothesis that, similar to intron length (that appears to have increased in multicellular eukaryotes), the spliceosome has increased in complexity throughout eukaryotic evolution. However, examination of the distribution of spliceosomal components indicates that not only was a spliceosome present in the eukaryotic ancestor but it also contained most of the key components found in today's eukaryotes. All the small nuclear ribonucleoproteins (snRNPs) protein components are likely to have been present, as well as many splicing-related proteins. Both major and trans-splicing are likely to have been present, and the spliceosome had already formed links with other cellular processes such as transcription and capping. However, there is no evidence as yet to suggest that minor (U12-dependent) splicing was present in the eukaryotic ancestor. Although the last common ancestor of extant eukaryotes appears to show much of the molecular complexity seen today, we do not, from this work, infer anything of the properties of the earlier "first eukaryote."
Collapse
Affiliation(s)
- Lesley Collins
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
48
|
Young JA, Winzeler EA. Using expression information to discover new drug and vaccine targets in the malaria parasitePlasmodium falciparum. Pharmacogenomics 2005; 6:17-26. [PMID: 15723602 DOI: 10.1517/14622416.6.1.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The recent completion of the malaria parasite Plasmodium falciparum genome has opened the door for applying a variety of genomic-based systems biology approaches that complement existing gene-by-gene methods of investigation. Transcriptomic analyses of P. falciparum using DNA microarrays has allowed for the rapid elucidation of gene function, parasite drug response, and in vivo expression profiles, as well as general mechanisms guiding the parasite life cycle that are vital to disease pathogenesis. The results of these studies have identified promising novel gene targets for the development of new drug and vaccine therapies.
Collapse
Affiliation(s)
- Jason A Young
- The Scripps Research Institute, Department of Cell Biology, ICND 202, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Janssen CS, Phillips RS, Turner CMR, Barrett MP. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. Nucleic Acids Res 2004; 32:5712-20. [PMID: 15507685 PMCID: PMC528792 DOI: 10.1093/nar/gkh907] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functionally related homologues of known genes can be difficult to identify in divergent species. In this paper, we show how multi-character analysis can be used to elucidate the relationships among divergent members of gene superfamilies. We used probabilistic modelling in conjunction with protein structural predictions and gene-structure analyses on a whole-genome scale to find gene homologies that are missed by conventional similarity-search strategies and identified a variant gene superfamily in six species of malaria (Plasmodium interspersed repeats, pir). The superfamily includes rif in P.falciparum, vir in P.vivax, a novel family kir in P.knowlesi and the cir/bir/yir family in three rodent malarias. Our data indicate that this is the major multi-gene family in malaria parasites. Protein localization of products from pir members to the infected erythrocyte membrane in the rodent malaria parasite P.chabaudi, demonstrates phenotypic similarity to the products of pir in other malaria species. The results give critical insight into the evolutionary adaptation of malaria parasites to their host and provide important data for comparative immunology between malaria parasites obtained from laboratory models and their human counterparts.
Collapse
Affiliation(s)
- Christoph S Janssen
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
50
|
Bourgon R, Delorenzi M, Sargeant T, Hodder AN, Crabb BS, Speed TP. The serine repeat antigen (SERA) gene family phylogeny in Plasmodium: the impact of GC content and reconciliation of gene and species trees. Mol Biol Evol 2004; 21:2161-71. [PMID: 15306658 DOI: 10.1093/molbev/msh228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies.
Collapse
Affiliation(s)
- Richard Bourgon
- Department of Statistics, University of California, Berkeley, USA
| | | | | | | | | | | |
Collapse
|