1
|
Lawrence S, Lin J, Khurshid A, Utami W, Singhania R, Ashraf S, Thorn GJ, Mangangcha IR, Spriggs K, Kim DH, Barrett D, de Moor CH. Cordycepin generally inhibits growth factor signal transduction in a systems pharmacology study. FEBS Lett 2024. [PMID: 39508147 DOI: 10.1002/1873-3468.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Cordycepin (3' deoxyadenosine) has been widely researched as a potential cancer therapy, but many diverse mechanisms of action have been proposed. Here, we confirm that cordycepin triphosphate is likely to be the active metabolite of cordycepin and that it consistently represses growth factor-induced gene expression. Bioinformatic analysis, quantitative PCR and western blotting confirmed that cordycepin blocks the PI3K/AKT/mTOR and/or MEK/ERK pathways in six cell lines and that AMPK activation is not required. The effects of cordycepin on translation through mTOR pathway repression were detectable within 30 min, indicating a rapid process. These data therefore indicate that cordycepin has a universal mechanism of action, acting as cordycepin triphosphate on an as yet unknown target molecule involved in growth factor signalling.
Collapse
Affiliation(s)
- Steven Lawrence
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Jialiang Lin
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Asma Khurshid
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Wahyu Utami
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Richa Singhania
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Sadaf Ashraf
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Graeme J Thorn
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | | | - Keith Spriggs
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Dong-Hyun Kim
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - David Barrett
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Cornelia H de Moor
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| |
Collapse
|
2
|
Chettle J, Louie RJ, Larner O, Best R, Chen K, Morris J, Dedeic Z, Childers A, Rogers RC, DuPont BR, Skinner C, Küry S, Uguen K, Planes M, Monteil D, Li M, Eliyahu A, Greenbaum L, Mor N, Besnard T, Isidor B, Cogné B, Blesson A, Comi A, Wentzensen IM, Vuocolo B, Lalani SR, Sierra R, Berry L, Carter K, Sanders SJ, Blagden SP. LARP1 haploinsufficiency is associated with an autosomal dominant neurodevelopmental disorder. HGG ADVANCES 2024; 5:100345. [PMID: 39182167 PMCID: PMC11418108 DOI: 10.1016/j.xhgg.2024.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) that affects approximately 4% of males and 1% of females in the United States. While causes of ASD are multi-factorial, single rare genetic variants contribute to around 20% of cases. Here, we report a case series of seven unrelated probands (6 males, 1 female) with ASD or another variable NDD phenotype attributed to de novo heterozygous loss of function or missense variants in the gene LARP1 (La ribonucleoprotein 1). LARP1 encodes an RNA-binding protein that post-transcriptionally regulates the stability and translation of thousands of mRNAs, including those regulating cellular metabolism and metabolic plasticity. Using lymphocytes collected and immortalized from an index proband who carries a truncating variant in one allele of LARP1, we demonstrated that lower cellular levels of LARP1 protein cause reduced rates of aerobic respiration and glycolysis. As expression of LARP1 increases during neurodevelopment, with higher levels in neurons and astrocytes, we propose that LARP1 haploinsufficiency contributes to ASD or related NDDs through attenuated metabolic activity in the developing fetal brain.
Collapse
Affiliation(s)
- James Chettle
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Olivia Larner
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Robert Best
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | | | | | - Zinaida Dedeic
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | | | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, 44000 Nantes, France
| | - Kevin Uguen
- Service de Génétique Médicale et Biologie de la Reproduction, CHRU de Brest, Brest, France
| | - Marc Planes
- Service de Génétique Médicale et Biologie de la Reproduction, CHRU de Brest, Brest, France
| | | | - Megan Li
- Invitae, San Francisco Corp., San Francisco, CA, USA
| | - Aviva Eliyahu
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Nofar Mor
- The Genomic Unit, Sheba Cancer Research Centre, Sheba Medical Center, Tel Hashomer, Israel
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, 44000 Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, 44000 Nantes, France
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, 44000 Nantes, France
| | | | - Anne Comi
- Kennedy Krieger Institute, Baltimore, MD, USA
| | | | | | | | | | - Lori Berry
- Baylor College of Medicine, Houston, TX, USA
| | - Kent Carter
- University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Stephan J Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK; Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
3
|
Shichino Y, Yamaguchi T, Kashiwagi K, Mito M, Takahashi M, Ito T, Ingolia NT, Kuba K, Iwasaki S. eIF4A1 enhances LARP1-mediated translational repression during mTORC1 inhibition. Nat Struct Mol Biol 2024; 31:1557-1566. [PMID: 38773334 DOI: 10.1038/s41594-024-01321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/18/2024] [Indexed: 05/23/2024]
Abstract
Eukaryotic translation initiation factor (eIF)4A-a DEAD-box RNA-binding protein-plays an essential role in translation initiation. Recent reports have suggested helicase-dependent and helicase-independent functions for eIF4A, but the multifaceted roles of eIF4A have not been fully explored. Here we show that eIF4A1 enhances translational repression during the inhibition of mechanistic target of rapamycin complex 1 (mTORC1), an essential kinase complex controlling cell proliferation. RNA pulldown followed by sequencing revealed that eIF4A1 preferentially binds to mRNAs containing terminal oligopyrimidine (TOP) motifs, whose translation is rapidly repressed upon mTORC1 inhibition. This selective interaction depends on a La-related RNA-binding protein, LARP1. Ribosome profiling revealed that deletion of EIF4A1 attenuated the translational repression of TOP mRNAs upon mTORC1 inactivation. Moreover, eIF4A1 increases the interaction between TOP mRNAs and LARP1 and, thus, ensures stronger translational repression upon mTORC1 inhibition. Our data show the multimodality of eIF4A1 in modulating protein synthesis through an inhibitory binding partner and provide a unique example of the repressive role of a universal translational activator.
Collapse
Affiliation(s)
- Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan.
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
4
|
Nguyen E, Sosa JA, Cassidy KC, Berman AJ. Comparative analysis of the LARP1 C-terminal DM15 region through Coelomate evolution. PLoS One 2024; 19:e0308574. [PMID: 39190712 DOI: 10.1371/journal.pone.0308574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
TOR (target of rapamycin), a ubiquitous protein kinase central to cellular homeostasis maintenance, fundamentally regulates ribosome biogenesis in part by its target La-related protein 1 (LARP1). Among other target transcripts, LARP1 specifically binds TOP (terminal oligopyrimidine) mRNAs encoding all 80 ribosomal proteins in a TOR-dependent manner through its C-terminal region containing the DM15 module. Though the functional implications of the LARP1 interaction with target mRNAs is controversial, it is clear that the TOP-LARP1-TOR axis is critical to cellular health in humans. Its existence and role in evolutionarily divergent animals remain less understood. We focused our work on expanding our knowledge of the first arm of the axis: the connection between LARP1-DM15 and the 5' TOP motif. We show that the overall DM15 architecture observed in humans is conserved in fruit fly and zebrafish. Both adopt familiar curved arrangements of HEAT-like repeats that bind 5' TOP mRNAs on the same conserved surface, although molecular dynamics simulations suggest that the N-terminal fold of the fruit fly DM15 is predicted to be unstable and unfold. We demonstrate that each ortholog interacts with TOP sequences with varying affinities. Importantly, we determine that the ability of the DM15 region to bind some TOP sequences but not others might amount to the context of the RNA structure, rather than the ability of the module to recognize some sequences but not others. We propose that TOP mRNAs may retain similar secondary structures to regulate LARP1 DM15 recognition.
Collapse
Affiliation(s)
- Elaine Nguyen
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jahree A Sosa
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kevin C Cassidy
- BIOVIA, Dassault Systèmes, Waltham, MA, United States of America
| | - Andrea J Berman
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Bley H, Krisp C, Schöbel A, Hehner J, Schneider L, Becker M, Stegmann C, Heidenfels E, Nguyen-Dinh V, Schlüter H, Gerold G, Herker E. Proximity labeling of host factor ANXA3 in HCV infection reveals a novel LARP1 function in viral entry. J Biol Chem 2024; 300:107286. [PMID: 38636657 PMCID: PMC11101947 DOI: 10.1016/j.jbc.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.
Collapse
Affiliation(s)
- Hanna Bley
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Christoph Krisp
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Miriam Becker
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Cora Stegmann
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Elisa Heidenfels
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Van Nguyen-Dinh
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Gerold
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Hochstoeger T, Papasaikas P, Piskadlo E, Chao JA. Distinct roles of LARP1 and 4EBP1/2 in regulating translation and stability of 5'TOP mRNAs. SCIENCE ADVANCES 2024; 10:eadi7830. [PMID: 38363833 PMCID: PMC10871529 DOI: 10.1126/sciadv.adi7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
A central mechanism of mTOR complex 1 (mTORC1) signaling is the coordinated translation of ribosomal protein and translation factor mRNAs mediated by the 5'-terminal oligopyrimidine motif (5'TOP). Recently, La-related protein 1 (LARP1) was proposed to be the specific regulator of 5'TOP mRNA translation downstream of mTORC1, while eIF4E-binding proteins (4EBP1/2) were suggested to have a general role in translational repression of all transcripts. Here, we use single-molecule translation site imaging of 5'TOP and canonical mRNAs to study the translation of single mRNAs in living cells. Our data reveal that 4EBP1/2 has a dominant role in repression of translation of both 5'TOP and canonical mRNAs during pharmacological inhibition of mTOR. In contrast, we find that LARP1 selectively protects 5'TOP mRNAs from degradation in a transcriptome-wide analysis of mRNA half-lives. Our results clarify the roles of 4EBP1/2 and LARP1 in regulating 5'TOP mRNAs and provide a framework to further study how these factors control cell growth during development and disease.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | | | - Ewa Piskadlo
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jeffrey A. Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
7
|
Kozlov G, Jiang J, Rutherford T, Noronha AM, Wilds CJ, Gehring K. Enhanced binding of guanylated poly(A) RNA by the LaM domain of LARP1. RNA Biol 2024; 21:7-16. [PMID: 39016322 PMCID: PMC11259064 DOI: 10.1080/15476286.2024.2379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
La-related proteins (LARPs) are a family of RNA-binding proteins that share a conserved La motif (LaM) domain. LARP1 plays a role in regulating ribosomal protein synthesis and stabilizing mRNAs and has a unique structure without an RNA binding RRM domain adjoining the LaM domain. In this study, we investigated the physical basis for LARP1 specificity for poly(A) sequences and observed an unexpected bias for sequences with single guanines. Multiple guanine substitutions did not increase the affinity, demonstrating preferential recognition of singly guanylated sequences. We also observed that the cyclic di-nucleotides in the cCAS/STING pathway, cyclic-di-GMP and 3',3'-cGAMP, bound with sub-micromolar affinity. Isothermal titration measurements were complemented by high-resolution crystal structures of the LARP1 LaM with six different RNA ligands, including two stereoisomers of a phosphorothioate linkage. The selectivity for singly substituted poly(A) sequences suggests LARP1 may play a role in the stabilizing effect of poly(A) tail guanylation. [Figure: see text].
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Tyler Rutherford
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Anne M. Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
8
|
Mansouri-Noori F, Pircher A, Bilodeau D, Siniavskaia L, Grigull J, Rissland OS, Bayfield MA. The LARP1 homolog Slr1p controls the stability and expression of proto-5'TOP mRNAs in fission yeast. Cell Rep 2023; 42:113226. [PMID: 37851576 DOI: 10.1016/j.celrep.2023.113226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Messenger RNAs (mRNAs) in higher eukaryotes that encode proteins important for the assembly of the translational apparatus (e.g., ribosomal proteins) often harbor a pyrimidine-rich motif at the extreme 5' end known as a 5' terminal oligopyrimidine (5'TOP) sequence. Members of the La-related protein 1 (LARP1) family control 5'TOP expression through a conserved DM15 motif, but the mechanism is not well understood. 5'TOP motifs have not been described in many lower organisms, and fission yeast harbors a LARP1 homolog that also lacks a DM15 motif. In this work, we show that the fission yeast LARP1 homolog, Slr1p, controls the translation and stability of mRNAs encoding proteins analogous to 5'TOP mRNAs in higher eukaryotes, which we thus refer to as proto-5'TOPs. Our data suggest that the LARP1 DM15 motif and the mRNA 5'TOP motif may be features that were scaffolded over a more fundamental mechanism of LARP1-associated control of gene expression.
Collapse
Affiliation(s)
| | | | - Danielle Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, Canada
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
9
|
Jennings MD, Srivastava P, Kershaw CJ, Talavera D, Grant C, Pavitt G. Interaction of the La-related protein Slf1 with colliding ribosomes maintains translation of oxidative-stress responsive mRNAs. Nucleic Acids Res 2023; 51:5755-5773. [PMID: 37070186 PMCID: PMC10287931 DOI: 10.1093/nar/gkad272] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
In response to oxidative stress cells reprogram gene expression to enhance levels of antioxidant enzymes and promote survival. In Saccharomyces cerevisiae the polysome-interacting La-related proteins (LARPs) Slf1 and Sro9 aid adaptation of protein synthesis during stress by undetermined means. To gain insight in their mechanisms of action in stress responses, we determined LARP mRNA binding positions in stressed and unstressed cells. Both proteins bind within coding regions of stress-regulated antioxidant enzyme and other highly translated mRNAs in both optimal and stressed conditions. LARP interaction sites are framed and enriched with ribosome footprints suggesting ribosome-LARP-mRNA complexes are identified. Although stress-induced translation of antioxidant enzyme mRNAs is attenuated in slf1Δ, these mRNAs remain on polysomes. Focusing further on Slf1, we find it binds to both monosomes and disomes following RNase treatment. slf1Δ reduces disome enrichment during stress and alters programmed ribosome frameshifting rates. We propose that Slf1 is a ribosome-associated translational modulator that stabilises stalled/collided ribosomes, prevents ribosome frameshifting and so promotes translation of a set of highly-translated mRNAs that together facilitate cell survival and adaptation to stress.
Collapse
Affiliation(s)
- Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Priya Srivastava
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
10
|
Turner M. Regulation and function of poised mRNAs in lymphocytes. Bioessays 2023; 45:e2200236. [PMID: 37009769 DOI: 10.1002/bies.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 04/04/2023]
Abstract
Pre-existing but untranslated or 'poised' mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with trans-acting factors that direct poised mRNAs away from or into the ribosome. Here, I discuss mechanisms by which this might be regulated.
Collapse
Affiliation(s)
- Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
11
|
Xu Y, Yuan F, Sun Q, Zhao L, Hong Y, Tong S, Qi Y, Ye L, Hu P, Ye Z, Zhang S, Liu B, Chen Q. The RNA-binding protein CSTF2 regulates BAD to inhibit apoptosis in glioblastoma. Int J Biol Macromol 2023; 226:915-926. [PMID: 36521710 DOI: 10.1016/j.ijbiomac.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
RNA-binding proteins (RBP) regulate several aspects of co- and post-transcriptional gene expression in cancer cells. CSTF2 is involved in the expression of many cellular mRNAs and involved in the 3'-end cleavage and polyadenylation of pre-mRNAs to terminate transcription. However, the role of CSTF2 in human glioblastoma (GBM) and the underlying mechanisms remain unclear. In the present study, CSTF2 was found to be upregulated in GBM, and its high expression predicted poor prognosis. Knockdown CSTF2 induced GBM cell apoptosis both in vitro and in vivo. Specific mechanism studies showed that CSTF2 unstabilized the mRNA of the BAD protein by shortening its 3' UTR. Additionally, an increase in the expression level of CSTF2 decreased the expression level of BAD. In conclusion, CSTF2 binds to the mRNA of the BAD protein to shorten its 3'UTR, which negatively affects the BAD mediated apoptosis and promotes GBM cell survival.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Linyao Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yu Hong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China.
| |
Collapse
|
12
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
13
|
Schneider C, Erhard F, Binotti B, Buchberger A, Vogel J, Fischer U. An unusual mode of baseline translation adjusts cellular protein synthesis capacity to metabolic needs. Cell Rep 2022; 41:111467. [DOI: 10.1016/j.celrep.2022.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
|
14
|
Embarc-Buh A, Francisco-Velilla R, Garcia-Martin JA, Abellan S, Ramajo J, Martinez-Salas E. Gemin5-dependent RNA association with polysomes enables selective translation of ribosomal and histone mRNAs. Cell Mol Life Sci 2022; 79:490. [PMID: 35987821 PMCID: PMC9392717 DOI: 10.1007/s00018-022-04519-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
Abstract
AbstractSelective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action. Here, we investigated the differential function of Gemin5 in translation by identifying at a genome-wide scale the mRNAs associated with polysomes. Among the mRNAs showing Gemin5-dependent enrichment in polysomal fractions, we identified a selective enhancement of specific transcripts. Comparison of the targets previously identified by CLIP methodologies with the polysome-associated transcripts revealed that only a fraction of the targets was enriched in polysomes. Two different subsets of these mRNAs carry unique cis-acting regulatory elements, the 5’ terminal oligopyrimidine tracts (5’TOP) and the histone stem-loop (hSL) structure at the 3’ end, respectively, encoding ribosomal proteins and histones. RNA-immunoprecipitation (RIP) showed that ribosomal and histone mRNAs coprecipitate with Gemin5. Furthermore, disruption of the TOP motif impaired Gemin5-RNA interaction, and functional analysis showed that Gemin5 stimulates translation of mRNA reporters bearing an intact TOP motif. Likewise, Gemin5 enhanced hSL-dependent mRNA translation. Thus, Gemin5 promotes polysome association of only a subset of its targets, and as a consequence, it favors translation of the ribosomal and the histone mRNAs. Together, the results presented here unveil Gemin5 as a novel translation regulator of mRNA subsets encoding proteins involved in fundamental cellular processes.
Collapse
|
15
|
Kozlov G, Mattijssen S, Jiang J, Nyandwi S, Sprules T, Iben J, Coon S, Gaidamakov S, Noronha AM, Wilds C, Maraia R, Gehring K. Structural basis of 3'-end poly(A) RNA recognition by LARP1. Nucleic Acids Res 2022; 50:9534-9547. [PMID: 35979957 PMCID: PMC9458460 DOI: 10.1093/nar/gkac696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
La-related proteins (LARPs) comprise a family of RNA-binding proteins involved in a wide range of posttranscriptional regulatory activities. LARPs share a unique tandem of two RNA-binding domains, La motif (LaM) and RNA recognition motif (RRM), together referred to as a La-module, but vary in member-specific regions. Prior structural studies of La-modules reveal they are pliable platforms for RNA recognition in diverse contexts. Here, we characterize the La-module of LARP1, which plays an important role in regulating synthesis of ribosomal proteins in response to mTOR signaling and mRNA stabilization. LARP1 has been well characterized functionally but no structural information exists for its La-module. We show that unlike other LARPs, the La-module in LARP1 does not contain an RRM domain. The LaM alone is sufficient for binding poly(A) RNA with submicromolar affinity and specificity. Multiple high-resolution crystal structures of the LARP1 LaM domain in complex with poly(A) show that it is highly specific for the RNA 3'-end, and identify LaM residues Q333, Y336 and F348 as the most critical for binding. Use of a quantitative mRNA stabilization assay and poly(A) tail-sequencing demonstrate functional relevance of LARP1 RNA binding in cells and provide novel insight into its poly(A) 3' protection activity.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Samuel Nyandwi
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Tara Sprules
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada,Quebec/Eastern Canada NMR Centre, McGill University, Montréal, Canada
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Steven L Coon
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Anne M Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
16
|
Szaflarski W, Leśniczak-Staszak M, Sowiński M, Ojha S, Aulas A, Dave D, Malla S, Anderson P, Ivanov P, Lyons SM. Early rRNA processing is a stress-dependent regulatory event whose inhibition maintains nucleolar integrity. Nucleic Acids Res 2022; 50:1033-1051. [PMID: 34928368 PMCID: PMC8789083 DOI: 10.1093/nar/gkab1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/20/2023] Open
Abstract
The production of ribosomes is an energy-intensive process owing to the intricacy of these massive macromolecular machines. Each human ribosome contains 80 ribosomal proteins and four non-coding RNAs. Accurate assembly requires precise regulation of protein and RNA subunits. In response to stress, the integrated stress response (ISR) rapidly inhibits global translation. How rRNA is coordinately regulated with the rapid inhibition of ribosomal protein synthesis is not known. Here, we show that stress specifically inhibits the first step of rRNA processing. Unprocessed rRNA is stored within the nucleolus, and when stress resolves, it re-enters the ribosome biogenesis pathway. Retention of unprocessed rRNA within the nucleolus aids in the maintenance of this organelle. This response is independent of the ISR or inhibition of cellular translation but is independently regulated. Failure to coordinately control ribosomal protein translation and rRNA production results in nucleolar fragmentation. Our study unveils how the rapid translational shut-off in response to stress coordinates with rRNA synthesis production to maintain nucleolar integrity.
Collapse
Affiliation(s)
- Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mateusz Sowiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
- The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Anaïs Aulas
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Dhwani Dave
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Sulochan Malla
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
- The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
- The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
17
|
Galloway A, Kaskar A, Ditsova D, Atrih A, Yoshikawa H, Gomez-Moreira C, Suska O, Warminski M, Grzela R, Lamond AI, Darzynkiewicz E, Jemielity J, Cowling V. Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation. Nucleic Acids Res 2021; 49:6722-6738. [PMID: 34125914 PMCID: PMC8266598 DOI: 10.1093/nar/gkab465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/07/2023] Open
Abstract
The m7G cap is ubiquitous on RNAPII-transcribed RNA and has fundamental roles in eukaryotic gene expression, however its in vivo role in mammals has remained unknown. Here, we identified the m7G cap methyltransferase, RNMT, as a key mediator of T cell activation, which specifically regulates ribosome production. During T cell activation, induction of mRNA expression and ribosome biogenesis drives metabolic reprogramming, rapid proliferation and differentiation generating effector populations. We report that RNMT is induced by T cell receptor (TCR) stimulation and co-ordinates the mRNA, snoRNA and rRNA production required for ribosome biogenesis. Using transcriptomic and proteomic analyses, we demonstrate that RNMT selectively regulates the expression of terminal polypyrimidine tract (TOP) mRNAs, targets of the m7G-cap binding protein LARP1. The expression of LARP1 targets and snoRNAs involved in ribosome biogenesis is selectively compromised in Rnmt cKO CD4 T cells resulting in decreased ribosome synthesis, reduced translation rates and proliferation failure. By enhancing ribosome abundance, upregulation of RNMT co-ordinates mRNA capping and processing with increased translational capacity during T cell activation.
Collapse
Affiliation(s)
- Alison Galloway
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Aneesa Kaskar
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dimitrinka Ditsova
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Abdelmadjid Atrih
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harunori Yoshikawa
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Carolina Gomez-Moreira
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga Suska
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Marcin Warminski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, and Division of Physics, 02-093 Warsaw, Poland
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Edward Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, and Division of Physics, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
18
|
Misra J, Holmes MJ, T Mirek E, Langevin M, Kim HG, Carlson KR, Watford M, Dong XC, Anthony TG, Wek RC. Discordant regulation of eIF2 kinase GCN2 and mTORC1 during nutrient stress. Nucleic Acids Res 2021; 49:5726-5742. [PMID: 34023907 PMCID: PMC8191763 DOI: 10.1093/nar/gkab362] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Appropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.
Collapse
Affiliation(s)
- Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Michael J Holmes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Michael Langevin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Kenneth R Carlson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Malcolm Watford
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
19
|
Vieira-Vieira CH, Selbach M. Opportunities and Challenges in Global Quantification of RNA-Protein Interaction via UV Cross-Linking. Front Mol Biosci 2021; 8:669939. [PMID: 34055886 PMCID: PMC8155585 DOI: 10.3389/fmolb.2021.669939] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
RNA-binding proteins (RBPs) are key mediators of posttranscriptional gene expression control. However, the links between cell signaling on the one hand and RBP function on the other are understudied. While thousands of posttranslational modification (PTM) sites on RBPs have been identified, their functional roles are only poorly characterized. RNA-interactome capture (RIC) and cross-linking and immunoprecipitation (CLIP) are attractive methods that provide information about RBP-RNA interactions on a genome-wide scale. Both approaches rely on the in situ UV cross-linking of RBPs and RNAs, biochemical enrichment and analysis by RNA-sequencing (CLIP) or mass spectrometry (RIC). In principle, RIC- and CLIP-like methods could be used to globally quantify RBP-RNA interactions in response to perturbations. However, several biases have to be taken into account to avoid misinterpretation of the results obtained. Here, we focus on RIC-like methods and discuss four key aspects relevant for quantitative interpretation: (1) the RNA isolation efficiency, (2) the inefficient and highly variable UV cross-linking, (3) the baseline RNA occupancy of RBPs, and (4) indirect factors affecting RBP-RNA interaction. We highlight these points by presenting selected examples of PTMs that might induce differential quantification in RIC-like experiments without necessarily affecting RNA-binding. We conclude that quantifying RBP-RNA interactions via RIC or CLIP-like methods should not be regarded as an end in itself but rather as starting points for deeper analysis.
Collapse
Affiliation(s)
- Carlos H Vieira-Vieira
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|