1
|
Fleming A, Knatko EV, Li X, Zoch A, Heckhausen Z, Stransky S, Brenes AJ, Sidoli S, Hajkova P, O'Carroll D, Rasmussen KD. PROSER1 modulates DNA demethylation through dual mechanisms to prevent syndromic developmental malformations. Genes Dev 2024; 38:952-964. [PMID: 39562138 DOI: 10.1101/gad.352176.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
The link between DNA methylation and neurodevelopmental disorders is well established. However, how DNA methylation is fine-tuned-ensuring precise gene expression and developmental fidelity-remains poorly understood. PROSER1, a known TET2 interactor, was recently linked to a severe neurodevelopmental disorder. Here, we demonstrate that PROSER1 interacts with all TET enzymes and stabilizes chromatin-bound TET-OGT-PROSER1-DBHS (TOPD) complexes, which regulate DNA demethylation and developmental gene expression. Surprisingly, we found that PROSER1 also sequesters TET enzymes, preventing widespread demethylation and transposable element derepression. Our findings identify PROSER1 as a key factor that both positively and negatively regulates DNA demethylation essential for mammalian neurodevelopment.
Collapse
Affiliation(s)
- Anna Fleming
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Elena V Knatko
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Xiang Li
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Zoe Heckhausen
- MRC Laboratory of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Petra Hajkova
- MRC Laboratory of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Kasper D Rasmussen
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
2
|
Okuzono S, Fujii F, Setoyama D, Taira R, Shinmyo Y, Kato H, Masuda K, Yonemoto K, Akamine S, Matsushita Y, Motomura Y, Sakurai T, Kawasaki H, Han K, Kato TA, Torisu H, Kang D, Nakabeppu Y, Ohga S, Sakai Y. An N-terminal and ankyrin repeat domain interactome of Shank3 identifies the protein complex with the splicing regulator Nono in mice. Genes Cells 2024; 29:746-756. [PMID: 38964745 PMCID: PMC11447829 DOI: 10.1111/gtc.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
An autism-associated gene Shank3 encodes multiple splicing isoforms, Shank3a-f. We have recently reported that Shank3a/b-knockout mice were more susceptible to kainic acid-induced seizures than wild-type mice at 4 weeks of age. Little is known, however, about how the N-terminal and ankyrin repeat domains (NT-Ank) of Shank3a/b regulate multiple molecular signals in the developing brain. To explore the functional roles of Shank3a/b, we performed a mass spectrometry-based proteomic search for proteins interacting with GFP-tagged NT-Ank. In this study, NT-Ank was predicted to form a variety of complexes with a total of 348 proteins, in which RNA-binding (n = 102), spliceosome (n = 22), and ribosome-associated molecules (n = 9) were significantly enriched. Among them, an X-linked intellectual disability-associated protein, Nono, was identified as a NT-Ank-binding protein. Coimmunoprecipitation assays validated the interaction of Shank3 with Nono in the mouse brain. In agreement with these data, the thalamus of Shank3a/b-knockout mice aberrantly expressed splicing isoforms of autism-associated genes, Nrxn1 and Eif4G1, before and after seizures with kainic acid treatment. These data indicate that Shank3 interacts with multiple RNA-binding proteins in the postnatal brain, thereby regulating the homeostatic expression of splicing isoforms for autism-associated genes after birth.
Collapse
Affiliation(s)
- Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
4
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
5
|
Chen S, Wang J, Zhang K, Ma B, Li X, Wei R, Nian H. LncRNA Neat1 targets NonO and miR-128-3p to promote antigen-specific Th17 cell responses and autoimmune inflammation. Cell Death Dis 2023; 14:610. [PMID: 37716986 PMCID: PMC10505237 DOI: 10.1038/s41419-023-06132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) interaction with RNA-Binding proteins (RBPs) plays an important role in immunological processes. The generation of antigen-specific Th17 cells is closely associated with autoimmune pathogenesis. However, the function of lncRNA-RBP interactions in the regulation of pathogenic Th17 cell responses during autoimmunity remains poorly understood. Here, we found that lncRNA Neat1, highly expressed in Th17 cells, promoted antigen-specific Th17 cell responses. Both global and CD4+ T cell-specific knockdown of Neat1 protected mice against the development of experimental autoimmune uveitis (EAU). Mechanistically, Neat1 regulated RNA-Binding protein NonO, thus relieving IL-17 and IL-23R from NonO-mediated transcriptional repression and supporting antigen-specific Th17 cell responses. In addition, Neat1 also modulated miR-128-3p/NFAT5 axis to increase the expression of IL-17 and IL-23R, leading to augmented Th17 cell responses. Our findings elucidate a previously unrecognized mechanistic insight into the action of Neat1 in promoting antigen-specific Th17 responses and autoimmunity, and may facilitate the development of therapeutic targets for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Jiali Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Kailang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
6
|
Pandit M, Akhtar MN, Sundaram S, Sahoo S, Manjunath LE, Eswarappa SM. Termination codon readthrough of NNAT mRNA regulates calcium-mediated neuronal differentiation. J Biol Chem 2023; 299:105184. [PMID: 37611826 PMCID: PMC10506107 DOI: 10.1016/j.jbc.2023.105184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Termination codon readthrough (TCR) is a process in which ribosomes continue to translate an mRNA beyond a stop codon generating a C-terminally extended protein isoform. Here, we demonstrate TCR in mammalian NNAT mRNA, which encodes NNAT, a proteolipid important for neuronal differentiation. This is a programmed event driven by cis-acting RNA sequences present immediately upstream and downstream of the canonical stop codon and is negatively regulated by NONO, an RNA-binding protein known to promote neuronal differentiation. Unlike the canonical isoform NNAT, we determined that the TCR product (NNATx) does not show detectable interaction with the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, cannot increase cytoplasmic Ca2+ levels, and therefore does not enhance neuronal differentiation in Neuro-2a cells. Additionally, an antisense oligonucleotide that targets a region downstream of the canonical stop codon reduced TCR of NNAT and enhanced the differentiation of Neuro-2a cells to cholinergic neurons. Furthermore, NNATx-deficient Neuro-2a cells, generated using CRISPR-Cas9, showed increased cytoplasmic Ca2+ levels and enhanced neuronal differentiation. Overall, these results demonstrate regulation of neuronal differentiation by TCR of NNAT. Importantly, this process can be modulated using a synthetic antisense oligonucleotide.
Collapse
Affiliation(s)
- Madhuparna Pandit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Susinder Sundaram
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
7
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Xu X, Wang J, Wang W, Zhang Y, Wan B, Miao Z, Xu X. 5hmC modification regulates R-loop accumulation in response to stress. Front Psychiatry 2023; 14:1198502. [PMID: 37363169 PMCID: PMC10289295 DOI: 10.3389/fpsyt.2023.1198502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
R-loop, an RNA-DNA hybrid structure, arises as a transcriptional by-product and has been implicated in DNA damage and genomic instability when excessive R-loop is accumulated. Although previous study demonstrated that R-loop is associated with ten-eleven translocation (Tet) proteins, which oxidize 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), the sixth base of DNA. However, the relationship between R-loop and DNA 5hmC modification remains unclear. In this study, we found that chronic restraint stress increased R-loop accumulation and decreased 5hmC modification in the prefrontal cortex (PFC) of the stressed mice. The increase of DNA 5hmC modification by vitamin C was accompanied with the decrease of R-loop levels; on the contrary, the decrease of DNA 5hmC modification by a small compound SC-1 increased the R-loop levels, indicating that 5hmC modification inversely regulates R-loop accumulation. Further, we showed that Tet deficiency-induced reduction of DNA 5hmC promoted R-loop accumulation. In addition, Tet proteins immunoprecipitated with Non-POU domain-containing octamer-binding (NONO) proteins. The deficiency of Tet proteins or NONO increased R-loop levels, but silencing Tet proteins and NONO did not further increase the increase accumulation, suggesting that NONO and Tet proteins formed a complex to inhibit R-loop formation. It was worth noting that NONO protein levels decreased in the PFC of stressed mice with R-loop accumulation. The administration of antidepressant fluoxetine to stressed mice increased NONO protein levels, and effectively decreased R-loop accumulation and DNA damage. In conclusion, we showed that DNA 5hmC modification negatively regulates R-loop accumulation by the NONO-Tet complex under stress. Our findings provide potential therapeutic targets for depression.
Collapse
Affiliation(s)
- Xingyun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Junjie Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yutong Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Zhang S, Cooper JAL, Chong YS, Naveed A, Mayoh C, Jayatilleke N, Liu T, Amos S, Kobelke S, Marshall AC, Meers O, Choi YS, Bond CS, Fox AH. NONO enhances mRNA processing of super-enhancer-associated GATA2 and HAND2 genes in neuroblastoma. EMBO Rep 2023; 24:e54977. [PMID: 36416237 PMCID: PMC9900351 DOI: 10.15252/embr.202254977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.
Collapse
Affiliation(s)
- Song Zhang
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Jack AL Cooper
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Yee Seng Chong
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Alina Naveed
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Chelsea Mayoh
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
- School of Women's and Children's HealthUNSW SydneyKensingtonNSWAustralia
| | - Nisitha Jayatilleke
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
| | - Tao Liu
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
| | - Sebastian Amos
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Simon Kobelke
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Andrew C Marshall
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Oliver Meers
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Yu Suk Choi
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Charles S Bond
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Archa H Fox
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
10
|
Huang X, Bashkenova N, Hong Y, Lyu C, Guallar D, Hu Z, Malik V, Li D, Wang H, Shen X, Zhou H, Wang J. A TET1-PSPC1-Neat1 molecular axis modulates PRC2 functions in controlling stem cell bivalency. Cell Rep 2022; 39:110928. [PMID: 35675764 PMCID: PMC9214724 DOI: 10.1016/j.celrep.2022.110928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic stem cells (ESCs). However, TET1 catalytic activity-independent function in regulating bivalent genes is not well understood. Using a proteomics approach, we map the TET1 interactome in ESCs and identify PSPC1 as a TET1 partner. Genome-wide location analysis reveals that PSPC1 functionally associates with TET1 and Polycomb repressive complex-2 (PRC2). We establish that PSPC1 and TET1 repress, and the lncRNA Neat1 activates, bivalent gene expression. In ESCs, Neat1 is preferentially bound to PSPC1 alongside its PRC2 association at bivalent promoters. During the ESC-to-epiblast-like stem cell (EpiLC) transition, PSPC1 and TET1 maintain PRC2 chromatin occupancy at bivalent gene promoters, while Neat1 facilitates the activation of certain bivalent genes by promoting PRC2 binding to their mRNAs. Our study demonstrates a TET1-PSPC1-Neat1 molecular axis that modulates PRC2-binding affinity to chromatin and bivalent gene transcripts in controlling stem cell bivalency.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nazym Bashkenova
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yantao Hong
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Zhe Hu
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
11
|
Liu W, Wu G, Xiong F, Chen Y. Advances in the DNA methylation hydroxylase TET1. Biomark Res 2021; 9:76. [PMID: 34656178 PMCID: PMC8520278 DOI: 10.1186/s40364-021-00331-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ten-eleven translocation 1 (TET1) protein is a 5-methylcytosine hydroxylase that belongs to the TET protein family of human α-ketoglutarate oxygenases. TET1 recognizes and binds to regions of high genomic 5'-CpG-3' dinucleotide density, such as CpG islands, initiates the DNA demethylation program, and maintains DNA methylation and demethylation balance to maintain genomic methylation homeostasis and achieve epigenetic regulation. This article reviews the recent research progress of TET1 in the mechanism of demethylation, stem cells and immunity, various malignant tumours and other clinical diseases. CONCLUSION TET1 acts as a key factor mediating demethylation, the mechanism of which still remains to be investigated in detail. TET1 is also critical in maintaining the differentiation pluripotency of embryonic stem cells and plays anti- or oncogenic roles in combination with different signalling pathways in different tumours. In certain tumours, its role is still controversial. In addition, the noncatalytic activity of TET1 has gradually attracted attention and has become a new direction of research in recent years.
Collapse
Affiliation(s)
- Wenzheng Liu
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Guanhua Wu
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Fei Xiong
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongjun Chen
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
12
|
Li X, Chen M, Liu B, Lu P, Lv X, Zhao X, Cui S, Xu P, Nakamura Y, Kurita R, Chen B, Huang DCS, Liu DP, Liu M, Zhao Q. Transcriptional silencing of fetal hemoglobin expression by NonO. Nucleic Acids Res 2021; 49:9711-9723. [PMID: 34379783 PMCID: PMC8464040 DOI: 10.1093/nar/gkab671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Human fetal globin (γ-globin) genes are developmentally silenced after birth, and reactivation of γ-globin expression in adulthood ameliorates symptoms of hemoglobin disorders, such as sickle cell disease (SCD) and β-thalassemia. However, the mechanisms by which γ-globin expression is precisely regulated are still incompletely understood. Here, we found that NonO (non-POU domain-containing octamer-binding protein) interacted directly with SOX6, and repressed the expression of γ-globin gene in human erythroid cells. We showed that NonO bound to the octamer binding motif, ATGCAAAT, of the γ-globin proximal promoter, resulting in inhibition of γ-globin transcription. Depletion of NonO resulted in significant activation of γ-globin expression in K562, HUDEP-2, and primary human erythroid progenitor cells. To confirm the role of NonO in vivo, we further generated a conditional knockout of NonO by using IFN-inducible Mx1-Cre transgenic mice. We found that induced NonO deletion reactivated murine embryonic globin and human γ-globin gene expression in adult β-YAC mice, suggesting a conserved role for NonO during mammalian evolution. Thus, our data indicate that NonO acts as a novel transcriptional repressor of γ-globin gene expression through direct promoter binding, and is essential for γ-globin gene silencing.
Collapse
Affiliation(s)
- Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mengxia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biru Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiang Lv
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
TET1 Interacts Directly with NANOG via Independent Domains Containing Hydrophobic and Aromatic Residues. J Mol Biol 2020; 432:6075-6091. [PMID: 33058869 PMCID: PMC7763487 DOI: 10.1016/j.jmb.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
TET1 and NANOG interact via multiple independent binding regions. TET1 and NANOG interactions are mediated by aromatic and hydrophobic residues. TET1 residues that bind NANOG are highly conserved in mammals. Co-localisation of TET1 and NANOG on chromatin is enriched at NANOG target genes. NANOG and TET1 have regulatory roles in maintaining and reprogramming pluripotency.
The DNA demethylase TET1 is highly expressed in embryonic stem cells and is important both for lineage commitment, and reprogramming to naïve pluripotency. TET1 interacts with the pluripotency transcription factor NANOG which may contribute to its biological activity in pluripotent cells. However, how TET1 interacts with other proteins is largely unknown. Here, we characterise the physical interaction between TET1 and NANOG using embryonic stem cells and bacterial expression systems. TET1 and NANOG interact through multiple binding sites that act independently. Critically, mutating conserved hydrophobic and aromatic residues within TET1 and NANOG abolishes the interaction. On chromatin, NANOG is predominantly localised at ESC enhancers. While TET1 binds to CpG dinucleotides in promoters using its CXXC domain, TET1 also binds to enhancers, though the mechanism involved is unknown. Comparative ChIP-seq analysis identifies genomic loci bound by both TET1 and NANOG, that correspond predominantly to pluripotency enhancers. Importantly, around half of NANOG transcriptional target genes are associated with TET1-NANOG co-bound sites. These results indicate a mechanism by which TET1 protein may be targeted to specific sites of action at enhancers by direct interaction with a transcription factor.
Collapse
|
14
|
Lee K, Jang SH, Tian H, Kim SJ. NonO Is a Novel Co-factor of PRDM1 and Regulates Inflammatory Response in Monocyte Derived-Dendritic Cells. Front Immunol 2020; 11:1436. [PMID: 32765503 PMCID: PMC7378894 DOI: 10.3389/fimmu.2020.01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Proper expression of the transcription factor, Positive regulatory domain 1 (PRDM1), is required for maintaining homeostasis of human monocyte derived-dendritic cells (MO-DCs). The molecular mechanisms and gene targets of PRDM1 in B and T lymphocytes have been identified. However, the function of PRDM1 in dendritic cells (DCs) remains unclear. We investigate co-regulators of PRDM1 in MO-DCs identified by mass spectrometry (MS) and co-immunoprecipitation (Co-IP). Notably, non-POU domain-containing octamer-binding protein (NonO) was found to be a PRDM1 binding protein in the nucleus of MO-DCs. NonO is recruited to the PRDM1 binding site in the promoter region of IL-6. Knockdown of NonO expression by siRNA lessened suppression of IL-6 promoter activity by PRMD1 following LPS stimulation. While NonO binding to PRDM1 was observed in human myeloma cell lines, an effect of NonO on IL-6 expression was not observed. Thus, loss of NonO interrupted the inhibitory effect of PRDM1 on IL-6 expression in MO-DCs, but not plasma cells. Moreover, MO-DCs with low expression of PRDM1 or NonO induce an increased number of IL-21-producing TFH-like cells in vitro. These data suggest that low level of PRDM1 and NonO lead to enhanced activation of MO-DCs and the regulation of MO-DC function by PRDM1 is mediated through cell lineage-specific mechanisms.
Collapse
Affiliation(s)
- Kyungwoo Lee
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Su Hwa Jang
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
- Department of Biomedical Science, Graduate School of Biomedical Sciences and Engineering, Hanyang University, Seoul, South Korea
| | - Hong Tian
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sun Jung Kim
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|