1
|
Wen S, Zhao Y, Qi X, Cai M, Huang K, Liu H, Kong DX. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation. Comput Struct Biotechnol J 2024; 23:537-548. [PMID: 38235361 PMCID: PMC10791570 DOI: 10.1016/j.csbj.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
CRISPR-Cas9 systems constitute bacterial adaptive immune systems that protect against phage infections. Bacteriophages encode anti-CRISPR proteins (Acrs) that mitigate the bacterial immune response. However, the structural basis for their inhibitory actions from a molecular perspective remains elusive. In this study, through microsecond atomistic molecular dynamics simulations, we demonstrated the remarkable flexibility of Streptococcus pyogenes Cas9 (SpyCas9) and its conformational adaptability during interactions with AcrIIA4 and AcrIIA2. Specifically, we demonstrated that the binding of AcrIIA4 and AcrIIA2 to SpyCas9 induces a conformational rearrangement that causes spatial separation between the nuclease and cleavage sites, thus making the endonuclease inactive. This separation disrupts the transmission of signals between the protospacer adjacent motif recognition and nuclease domains, thereby impeding the efficient processing of double-stranded DNA. The simulation also reveals that AcrIIA4 and AcrIIA2 cause different structural variations of SpyCas9. Our research illuminates the precise mechanisms underlying the suppression of SpyCas9 by AcrIIA4 and AcrIIA2, thus presenting new possibilities for controlling genome editing with higher accuracy.
Collapse
Affiliation(s)
- Shuixiu Wen
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Yuxin Zhao
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Xinyu Qi
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Mingzhu Cai
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Kaisheng Huang
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Hui Liu
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - De-Xin Kong
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
2
|
Carufe KEW, Economos NG, Glazer PM. Peptide Nucleic Acid-Mediated Regulation of CRISPR-Cas9 Specificity. Nucleic Acid Ther 2024; 34:245-256. [PMID: 39037032 DOI: 10.1089/nat.2024.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Although CRISPR-Cas9 gene therapies have proven to be a powerful tool across many applications, improvements are necessary to increase the specificity of this technology. Cas9 cutting in off-target sites remains an issue that limits CRISPR's application in human-based therapies. Treatment of autosomal dominant diseases also remains a challenge when mutant alleles differ from the wild-type sequence by only one base pair. Here, we utilize synthetic peptide nucleic acids (PNAs) that bind selected spacer sequences in the guide RNA (gRNA) to increase Cas9 specificity up to 10-fold. We interrogate variations in PNA length, binding position, and degree of homology with the gRNA. Our findings reveal that PNAs bound in the region distal to the protospacer adjacent motif (PAM) site effectively enhance specificity in both on-target/off-target and allele-specific scenarios. In addition, we demonstrate that introducing deliberate mismatches between PNAs bound in the PAM-proximal region of the gRNA can modulate Cas9 activity in an allele-specific manner. These advancements hold promise for addressing current limitations and expanding the therapeutic potential of CRISPR technology.
Collapse
Affiliation(s)
- Kelly E W Carufe
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nicholas G Economos
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Asin-Garcia E, Martin-Pascual M, de Buck C, Allewijn M, Müller A, Martins dos Santos VAP. GenoMine: a CRISPR-Cas9-based kill switch for biocontainment of Pseudomonas putida. Front Bioeng Biotechnol 2024; 12:1426107. [PMID: 39351062 PMCID: PMC11439788 DOI: 10.3389/fbioe.2024.1426107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Synthetic genetic circuits have revolutionised our capacity to control cell viability by conferring microorganisms with programmable functionalities to limit survival to specific environmental conditions. Here, we present the GenoMine safeguard, a CRISPR-Cas9-based kill switch for the biotechnological workhorse Pseudomonas putida that employs repetitive genomic elements as cleavage targets to unleash a highly genotoxic response. To regulate the system's activation, we tested various circuit-based mechanisms including the digitalised version of an inducible expression system that operates at the transcriptional level and different options of post-transcriptional riboregulators. All of them were applied not only to directly control Cas9 and its lethal effects, but also to modulate the expression of two of its inhibitors: the AcrIIA4 anti-CRISPR protein and the transcriptional repressor TetR. Either upon direct induction of the endonuclease or under non-induced conditions of its inhibitors, the presence of Cas9 suppressed cell survival which could be exploited beyond biocontainment in situations where further CRISPR genome editing is undesirable.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Claudia de Buck
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Max Allewijn
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Alexandra Müller
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen, Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| |
Collapse
|
4
|
Singh D. Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies. AAPS PharmSciTech 2024; 25:129. [PMID: 38844700 DOI: 10.1208/s12249-024-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Lung carcinoma, including both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge due to its high morbidity and mortality rates. The objsective of this review is to meticulously examine the current advancements and strategies in the delivery of CRISPR-Cas9 gene-editing technology for the treatment of lung carcinoma. This technology heralds a new era in molecular biology, offering unprecedented precision in genomic modifications. However, its therapeutic potential is contingent upon the development of effective delivery mechanisms that ensure the efficient and specific transport of gene-editing tools to tumor cells. We explore a variety of delivery approaches, such as viral vectors, lipid-based nanoparticles, and physical methods, highlighting their respective advantages, limitations, and recent breakthroughs. This review also delves into the translational and clinical significance of these strategies, discussing preclinical and clinical studies that investigate the feasibility, efficacy, and safety of CRISPR-Cas9 delivery for lung carcinoma. By scrutinizing the landscape of ongoing clinical trials and offering translational perspectives, we aim to elucidate the current state and future directions of this rapidly evolving field. The review is structured to first introduce the problem and significance of lung carcinoma, followed by an overview of CRISPR-Cas9 technology, a detailed examination of delivery strategies, and an analysis of clinical applications and regulatory considerations. Our discussion concludes with future perspectives and challenges, such as optimizing delivery strategies, enhancing specificity, mitigating immunogenicity concerns, and addressing regulatory issues. This comprehensive overview seeks to provide insights into the potential of CRISPR-Cas9 as a revolutionary approach for targeted therapies and personalized medicine in lung carcinoma, emphasizing the importance of delivery strategy development in realizing the full potential of this groundbreaking technology.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
5
|
Yu Y, Li Q, Shi W, Yang Y, He H, Dai J, Mao G, Ma Y. Programmable Aptasensor for Regulating CRISPR/Cas12a Activity. ACS Sens 2024; 9:244-250. [PMID: 38085648 DOI: 10.1021/acssensors.3c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
CRISPR-mediated aptasensors have gained prevalence for detecting non-nucleic acid targets. However, there is an urgent need to develop an easily customizable design to improve the signal-to-noise ratio, enhance universality, and expand the detection range. In this article, we report a CRISPR-mediated programmable aptasensor (CPAS) platform. The platform includes single-stranded DNA comprising the aptamer sequence, locker DNA, and a crRNA recognition region, forming a hairpin structure through complementary hybridization. With T4 DNA polymerase, the crRNA recognition region was transformed into a complete double-stranded DNA through stem-loop extension, thereby activating the trans-cleavage activity of Cas 12a and generating fluorescence signals. The specific binding between the target molecule and aptamer disrupted the formation of the hairpin structure, altering the fluorescence signals. Notably, the CPAS platform allows for easy customization by simply changing the aptamer sequence and locker DNA, without entailing adjustments to the crRNA. The optimal number of bases in the locker DNA was determined to be seven nucleotides for the SARS-CoV-2 spike (S) protein and four nucleotides for ATP. The CPAS platform exhibited high sensitivity for S protein and ATP detection. Integration with a lateral flow assay enabled sensitive detection within 1 h, revealing its excellent potential for portable analysis.
Collapse
Affiliation(s)
- Yao Yu
- College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100, China
| | - Qiaoyu Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Shi
- College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuxin Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Guobin Mao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingxin Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Yun D, Jung C. MiRNA-Responsive CRISPR-Cas System via a DNA Regulator. BIOSENSORS 2023; 13:975. [PMID: 37998150 PMCID: PMC10669420 DOI: 10.3390/bios13110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR-associated protein 9 (Cas9) genome editing technology is widely used for gene editing because it provides versatility in genetic manipulation. Several methods for regulating CRISPR activity already exist for accurate editing, but these require complex engineering. Thus, a simple and convenient regulatory system is required. In this study, we devised a CRISPR activation system using a DNA regulator that can be activated by miRNAs. The designed regulator was divided into two parts. The inhibition component consisted of the protospacer-adjacent motif (PAM) and seed sequence, which are important for Cas9 target recognition and bind to the ribonucleoprotein (RNP) complex for inhibition. The miRNA recognition component has a single-stranded toehold DNA for target miRNA binding and a partial double-stranded DNA complementary to the remaining miRNA sequence. In the presence of target miRNAs, the structure of the regulator is disrupted by the miRNAs, leading to its dissociation from the RNP complex and subsequent restoration of CRISPR activity. This method is easy to design and can be applied to various miRNAs via simple sequence manipulation. Therefore, this strategy provides a general platform for controlled genome editing.
Collapse
Affiliation(s)
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
7
|
Thevendran R, Maheswaran S. Recognizing CRISPR as the new age disease-modifying drug: Strategies to bioengineer CRISPR/Cas for direct in vivo delivery. Biotechnol J 2023; 18:e2300077. [PMID: 37179485 DOI: 10.1002/biot.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) have established itself as a frontier technology in genetic engineering. Researchers have successfully used the CRISPR/Cas system as precise gene editing tools and have further expanded their scope beyond both imaging and diagnostic applications. The most prominent utility of CRISPR is its capacity for gene therapy, serving as the contemporary, disease-modifying drug at the genetic level of human medical disorders. Correcting these diseases using CRISPR-based gene editing has developed to the extent of preclinical trials and possible patient treatments. A major impediment in actualizing this is the complications associated with in vivo delivery of the CRISPR/Cas complex. Currently, only the viral vectors (e.g., lentivirus) and non-viral encapsulation (e.g., lipid particles, polymer-based, and gold nanoparticles) techniques have been extensively reviewed, neglecting the efficiency of direct delivery. However, the direct delivery of CRISPR/Cas for in vivo gene editing therapies is an intricate process with numerous drawbacks. Hence, this paper discusses in detail both the need and the strategies that can potentially improve the direct delivery aspects of CRISPR/Cas biomolecules for gene therapy of human diseases. Here, we focus on enhancing the molecular and functional features of the CRISPR/Cas system for targeted in vivo delivery such as on-site localization, internalization, reduced immunogenicity, and better in vivo stability. We additionally emphasize the CRISPR/Cas complex as a multifaceted, biomolecular vehicle for co-delivery with therapeutic agents in targeted disease treatments. The delivery formats of efficient CRISPR/Cas systems for human gene editing are also briefly elaborated.
Collapse
Affiliation(s)
- Ramesh Thevendran
- Department of Biotechnology, Faculty of Applied Science, AIMST University, Bedong, Kedah, Malaysia
| | - Solayappan Maheswaran
- Department of Biotechnology, Faculty of Applied Science, AIMST University, Bedong, Kedah, Malaysia
- Centre of Excellence for Nanotechnology and Nanomedicine (CoExNano), AIMST University, Bedong, Kedah, Malaysia
| |
Collapse
|
8
|
Zhang J, Zhu A, Mei M, Qu J, Huang Y, Shi Y, Xue M, Zhang J, Zhang R, Zhou B, Tan X, Zhao J, Wang Y. Repurposing CRISPR/Cas to Discover SARS-CoV-2 Detecting and Neutralizing Aptamers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300656. [PMID: 37204115 PMCID: PMC10401102 DOI: 10.1002/advs.202300656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Indexed: 05/20/2023]
Abstract
RNA aptamers provide useful biological probes and therapeutic agents. New methodologies to screen RNA aptamers will be valuable by complementing the traditional Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Meanwhile, repurposing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated systems (Cas) has expanded their utility far beyond their native nuclease function. Here, CRISmers, a CRISPR/Cas-based novel screening system for RNA aptamers based on binding to a chosen protein of interest in a cellular context, is presented. Using CRISmers, aptamers are identified specifically targeting the receptor binding domain (RBD) of the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two aptamer leads enable sensitive detection and potent neutralization of SARS-CoV-2 Delta and Omicron variants in vitro. Intranasal administration of one aptamer, further modified with 2'-fluoro pyrimidines (2'-F), 2'-O-methyl purines (2'-O), and conjugation with both cholesterol and polyethylene glycol of 40 kDa (PEG40K), achieves effective prophylactic and therapeutic antiviral activity against live Omicron BA.2 variants in vivo. The study concludes by demonstrating the robustness, consistency, and potential broad utility of CRISmers using two newly identified aptamers but switching CRISPR, selection marker, and host species.
Collapse
Affiliation(s)
- Ju Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Airu Zhu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Miao Mei
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jing Qu
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yalan Huang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yongshi Shi
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Meiying Xue
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Jingfang Zhang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
- School of Life SciencesBeijing University of Chinese MedicineBeijing100105China
| | - Renli Zhang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Xu Tan
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Yu Wang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| |
Collapse
|
9
|
Wang H, Zhang L, Sun H, Xu S, Li K, Su X. Screening and application of inhibitory aptamers for DNA repair protein apurinic/apyrimidinic endonuclease 1. Int J Biol Macromol 2023:124918. [PMID: 37244341 DOI: 10.1016/j.ijbiomac.2023.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
The base excision repair (BER) pathway is crucial for DNA repair, and apurinic/apyrimidinic endonuclease 1 (APE1) is a critical enzyme in this pathway. Overexpression of APE1 has been linked to multidrug resistance in various cancers, including lung cancer, colorectal cancer, and other malignant tumors. Therefore, reducing APE1 activity is desirable to improve cancer treatment. Inhibitory aptamers, which are versatile oligonucleotides for protein recognition and function restriction, are a promising tool for this purpose. In this study, we developed an inhibitory aptamer for APE1 using systematic evolution of ligands by exponential (SELEX) technology. We used carboxyl magnetic beads as the carrier and APE1 with a His-Tag as the positive screening target, while the His-Tag itself served as the negative screening target. The aptamer APT-D1 was selected based on its high binding affinity for APE1, with a dissociation constant (Kd) of 1.306 ± 0.1418 nM. Gel electrophoresis analysis showed that APT-D1 at a concentration of 1.6 μM could entirely inhibit APE1 with 21 nM. Our results suggest that these aptamers can be utilized for early cancer diagnosis and the treatment, and as an essential tool for studying the function of APE1.
Collapse
Affiliation(s)
- Huanhuan Wang
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huaqing Sun
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
| | - Shufeng Xu
- First Hospital of Qinhuangdao, Hebei Province 066000, China
| | - Kun Li
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19. Trends Biotechnol 2023; 41:528-544. [PMID: 35995601 PMCID: PMC9340053 DOI: 10.1016/j.tibtech.2022.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2, the causative agent of COVID-19, remains among the main causes of global mortality. Although antigen/antibody-based immunoassays and neutralizing antibodies targeting SARS-CoV-2 have been successfully developed over the past 2 years, they are often inefficient and unreliable for emerging SARS-CoV-2 variants. Novel approaches against SARS-CoV-2 and its variants are therefore urgently needed. Aptamers have been developed for the detection and inhibition of several different viruses such as HIV, influenza viruses, Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV. Aptamers targeting SARS-CoV-2 represent a promising tool in the fight against COVID-19, which is of paramount importance for the current and any future pandemics. This review presents recent advances and future trends in the development of aptamer-based approaches for SARS-CoV-2 diagnosis and treatment.
Collapse
|
11
|
Huang X, Wang M, Wu X, Zou Y, Xu J, Cao C, Ma Q, Yu B, Liu Y, Gui Y. Screening DNA aptamers that control the DNA cleavage, homology-directed repair, and transcriptional regulation of the CRISPR-(d)Cas9 system. Mol Ther 2023; 31:260-268. [PMID: 36245127 PMCID: PMC9840146 DOI: 10.1016/j.ymthe.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Accurate genome editing based on various molecular tools has always been the focus of gene-editing research and the primary goal for therapeutic application. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is a well-established gene-editing method that is preferred due to its simplicity and high efficiency. In this study, a group of single-stranded DNA aptamers with high affinity and high specificity for the Cas9 protein were obtained by the systematic evolution of ligands through the exponential enrichment method. Their binding affinity and possible binding domains to the Cas9 protein were analyzed. In addition, we demonstrated the effectiveness of aptamers in regulating dCas9-modulated gene transcription, in terms of both transcriptional activation and repression. Additionally, the aptamers successfully reduced the off-target effect and improved the efficiency of gene homologous recombination repair mediated by CRISPR-Cas9. The findings suggest a potential method to better control precise gene editing and enrich the diversity of modulating tools for the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China; Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Mingxia Wang
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Xia Wu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Yanfen Zou
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jinming Xu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China
| | - Congcong Cao
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Yuchen Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China.
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, China.
| |
Collapse
|
12
|
Qin P, Chen P, Deng N, Tan L, Yin BC, Ye BC. Switching the Activity of CRISPR/Cas12a Using an Allosteric Inhibitory Aptamer for Biosensing. Anal Chem 2022; 94:15908-15914. [DOI: 10.1021/acs.analchem.2c04315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peipei Qin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Pinru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Nan Deng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Liu Tan
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bin-Cheng Yin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Qin Z, Liu Y, Zhang L, Liu J, Su X. Programming Dissipation Systems by DNA Timer for Temporally Regulating Enzyme Catalysis and Nanostructure Assembly. ACS NANO 2022; 16:14274-14283. [PMID: 36102909 DOI: 10.1021/acsnano.2c04405] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Live cells precisely control their temporal pattern in energy dissipative processes such as catalysis and assembly. Here, we demonstrate a DNA-based artificial dissipative nonequilibrium system where the transient state is controlled by the processive digestion of λ-exonuclease (λ Exo). This enzyme reaction serves as an orthogonal and independent molecular timer allowing for the programmable regulation of the transient-state lifetime. This dissipation system is concatenated to enzyme catalysis and nanostructure assembly networks. Dynamic activation of enzyme catalysis and dynamic disassembly of DNA nanotubes (DNT) are realized, and the state lifetimes of these systems are accurately encoded by the DNA timer. This work demonstrates nontrivial dissipation systems with built-in molecular timers, which can be a useful tool for developing artificial reaction networks and nanostructures with enhanced complexities and intelligence.
Collapse
Affiliation(s)
- Zhaohui Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiajia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
14
|
Zhu C, Zhang F, Li H, Chen Z, Yan M, Li L, Qu F. CRISPR/Cas Systems Accelerating the Development of Aptasensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Economos NG, Quijano E, Carufe KEW, Perera J, Glazer P. Antispacer peptide nucleic acids for sequence-specific CRISPR-Cas9 modulation. Nucleic Acids Res 2022; 50:e59. [PMID: 35235944 PMCID: PMC9177974 DOI: 10.1093/nar/gkac095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the rapid and broad implementation of CRISPR-Cas9-based technologies, convenient tools to modulate dose, timing, and precision remain limited. Building on methods using synthetic peptide nucleic acids (PNAs) to bind RNA with unusually high affinity, we describe guide RNA (gRNA) spacer-targeted, or 'antispacer', PNAs as a tool to modulate Cas9 binding and activity in cells in a sequence-specific manner. We demonstrate that PNAs rapidly and efficiently target complexed gRNA spacer sequences at low doses and without design restriction for sequence-selective Cas9 inhibition. We further show that short PAM-proximal antispacer PNAs achieve potent cleavage inhibition (over 2000-fold reduction) and that PAM-distal PNAs modify gRNA affinity to promote on-target specificity. Finally, we apply antispacer PNAs for temporal regulation of two dCas9-fusion systems. These results present a novel rational approach to nucleoprotein engineering and describe a rapidly implementable antisense platform for CRISPR-Cas9 modulation to improve spatiotemporal versatility and safety across applications.
Collapse
Affiliation(s)
- Nicholas G Economos
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520 USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520 USA
| | - Elias Quijano
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520 USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520 USA
| | - Kelly E W Carufe
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520 USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520 USA
| | - J Dinithi R Perera
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520 USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520 USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
16
|
Roueinfar M, Templeton HN, Sheng JA, Hong KL. An Update of Nucleic Acids Aptamers Theranostic Integration with CRISPR/Cas Technology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031114. [PMID: 35164379 PMCID: PMC8839139 DOI: 10.3390/molecules27031114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system is best known for its role in genomic editing. It has also demonstrated great potential in nucleic acid biosensing. However, the specificity limitation in CRISPR/Cas has created a hurdle for its advancement. More recently, nucleic acid aptamers known for their high affinity and specificity properties for their targets have been integrated into CRISPR/Cas systems. This review article gives a brief overview of the aptamer and CRISPR/Cas technology and provides an updated summary and discussion on how the two distinctive nucleic acid technologies are being integrated into modern diagnostic and therapeutic applications
Collapse
Affiliation(s)
- Mina Roueinfar
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
| | - Hayley N. Templeton
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
| | - Julietta A. Sheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
| | - Ka Lok Hong
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Notre Dame of Maryland University, 4701 North Charles Street, Baltimore, MD 21210, USA
- Correspondence: ; Tel.: +1-410-532-5044
| |
Collapse
|
17
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
18
|
Patinios C, Creutzburg SCA, Arifah AQ, Adiego-Pérez B, Gyimah E, Ingham C, Kengen SWM, van der Oost J, Staals RHJ. Streamlined CRISPR genome engineering in wild-type bacteria using SIBR-Cas. Nucleic Acids Res 2021; 49:11392-11404. [PMID: 34614191 PMCID: PMC8565351 DOI: 10.1093/nar/gkab893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR-Cas is a powerful tool for genome editing in bacteria. However, its efficacy is dependent on host factors (such as DNA repair pathways) and/or exogenous expression of recombinases. In this study, we mitigated these constraints by developing a simple and widely applicable genome engineering tool for bacteria which we termed SIBR-Cas (Self-splicing Intron-Based Riboswitch-Cas). SIBR-Cas was generated from a mutant library of the theophylline-dependent self-splicing T4 td intron that allows for tight and inducible control over CRISPR-Cas counter-selection. This control delays CRISPR-Cas counter-selection, granting more time for the editing event (e.g. by homologous recombination) to occur. Without the use of exogenous recombinases, SIBR-Cas was successfully applied to knock-out several genes in three wild-type bacteria species (Escherichia coli MG1655, Pseudomonas putida KT2440 and Flavobacterium IR1) with poor homologous recombination systems. Compared to other genome engineering tools, SIBR-Cas is simple, tightly regulated and widely applicable for most (non-model) bacteria. Furthermore, we propose that SIBR can have a wider application as a simple gene expression and gene regulation control mechanism for any gene or RNA of interest in bacteria.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Sjoerd C A Creutzburg
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Adini Q Arifah
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Evans A Gyimah
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Colin J Ingham
- Hoekmine Besloten Vennootschap, Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, 3584 CS, Utrecht, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
19
|
Pereira HS, Tagliaferri TL, Mendes TADO. Enlarging the Toolbox Against Antimicrobial Resistance: Aptamers and CRISPR-Cas. Front Microbiol 2021; 12:606360. [PMID: 33679633 PMCID: PMC7932999 DOI: 10.3389/fmicb.2021.606360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
In the post-genomic era, molecular treatments and diagnostics have been envisioned as powerful techniques to tackle the antimicrobial resistance (AMR) crisis. Among the molecular approaches, aptamers and CRISPR-Cas have gained support due to their practicality, sensibility, and flexibility to interact with a variety of extra- and intracellular targets. Those characteristics enabled the development of quick and onsite diagnostic tools as well as alternative treatments for pan-resistant bacterial infections. Even with such potential, more studies are necessary to pave the way for their successful use against AMR. In this review, we highlight those two robust techniques and encourage researchers to refine them toward AMR. Also, we describe how aptamers and CRISPR-Cas can work together with the current diagnostic and treatment toolbox.
Collapse
Affiliation(s)
| | | | - Tiago Antônio de Oliveira Mendes
- Laboratory of Synthetic Biology and Modelling of Biological Systems, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|