1
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2025; 67:393-409. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
2
|
Benslimane N, Loret C, Chazelas P, Favreau F, Faye PA, Lejeune F, Lia AS. Readthrough Activators and Nonsense-Mediated mRNA Decay Inhibitor Molecules: Real Potential in Many Genetic Diseases Harboring Premature Termination Codons. Pharmaceuticals (Basel) 2024; 17:314. [PMID: 38543100 PMCID: PMC10975577 DOI: 10.3390/ph17030314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 11/12/2024] Open
Abstract
Nonsense mutations that generate a premature termination codon (PTC) can induce both the accelerated degradation of mutated mRNA compared with the wild type version of the mRNA or the production of a truncated protein. One of the considered therapeutic strategies to bypass PTCs is their "readthrough" based on small-molecule drugs. These molecules promote the incorporation of a near-cognate tRNA at the PTC position through the native polypeptide chain. In this review, we detailed the various existing strategies organized according to pharmacological molecule types through their different mechanisms. The positive results that followed readthrough molecule testing in multiple neuromuscular disorder models indicate the potential of this approach in peripheral neuropathies.
Collapse
Affiliation(s)
- Nesrine Benslimane
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
| | - Camille Loret
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
| | - Pauline Chazelas
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Frédéric Favreau
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Fabrice Lejeune
- University of Lille, Centre National de la Recherche Scientifique, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Anne-Sophie Lia
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Bioinformatics, F-87000 Limoges, France
| |
Collapse
|
3
|
Carrard J, Lejeune F. Nonsense-mediated mRNA decay, a simplified view of a complex mechanism. BMB Rep 2023; 56:625-632. [PMID: 38052423 PMCID: PMC10761751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is both a quality control mechanism and a gene regulation pathway. It has been studied for more than 30 years, with an accumulation of many mechanistic details that have often led to debate and hence to different models of NMD activation, particularly in higher eukaryotes. Two models seem to be opposed, since the first requires intervention of the exon junction complex (EJC) to recruit NMD factors downstream of the premature termination codon (PTC), whereas the second involves an EJC-independent mechanism in which NMD factors concentrate in the 3'UTR to initiate NMD in the presence of a PTC. In this review we describe both models, giving recent molecular details and providing experimental arguments supporting one or the other model. In the end it is certainly possible to imagine that these two mechanisms co-exist, rather than viewing them as mutually exclusive. [BMB Reports 2023; 56(12): 625-632].
Collapse
Affiliation(s)
- Julie Carrard
- Univ. Lille, CNRS, Inserm, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| | - Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| |
Collapse
|
4
|
Carrard J, Ratajczak F, Elsens J, Leroy C, Kong R, Geoffroy L, Comte A, Fournet G, Joseph B, Li X, Moebs-Sanchez S, Lejeune F. Identifying Potent Nonsense-Mediated mRNA Decay Inhibitors with a Novel Screening System. Biomedicines 2023; 11:2801. [PMID: 37893174 PMCID: PMC10604367 DOI: 10.3390/biomedicines11102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades mRNAs carrying a premature termination codon. Its inhibition, alone or in combination with other approaches, could be exploited to develop therapies for genetic diseases caused by a nonsense mutation. This, however, requires molecules capable of inhibiting NMD effectively without inducing toxicity. We have built a new screening system and used it to identify and validate two new molecules that can inhibit NMD at least as effectively as cycloheximide, a reference NMD inhibitor molecule. These new NMD inhibitors show no cellular toxicity at tested concentrations and have a working concentration between 6.2 and 12.5 µM. We have further validated this NMD-inhibiting property in a physiopathological model of lung cancer in which the TP53 gene carries a nonsense mutation. These new molecules may potentially be of interest in the development of therapies for genetic diseases caused by a nonsense mutation.
Collapse
Affiliation(s)
- Julie Carrard
- Univ. Lille, CNRS, Inserm, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Fiona Ratajczak
- Univ. Lille, CNRS, Inserm, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Joséphine Elsens
- Univ. Lille, CNRS, Inserm, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Catherine Leroy
- Univ. Lille, CNRS, Inserm, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Rebekah Kong
- Univ. Lille, CNRS, Inserm, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Lucie Geoffroy
- Univ. Lille, CNRS, Inserm, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Arnaud Comte
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, ICBMS, UMR 5246, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Guy Fournet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, ICBMS, UMR 5246, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Benoît Joseph
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, ICBMS, UMR 5246, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Xiubin Li
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, ICBMS, UMR 5246, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Sylvie Moebs-Sanchez
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, ICBMS, UMR 5246, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
5
|
Monaghan L, Longman D, Cáceres JF. Translation-coupled mRNA quality control mechanisms. EMBO J 2023; 42:e114378. [PMID: 37605642 PMCID: PMC10548175 DOI: 10.15252/embj.2023114378] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.
Collapse
Affiliation(s)
- Laura Monaghan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Lai X, Zhong J, Zhang B, Zhu T, Liao R. Exosomal Non-Coding RNAs: Novel Regulators of Macrophage-Linked Intercellular Communication in Lung Cancer and Inflammatory Lung Diseases. Biomolecules 2023; 13:536. [PMID: 36979471 PMCID: PMC10046066 DOI: 10.3390/biom13030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Macrophages are innate immune cells and often classified as M1 macrophages (pro-inflammatory states) and M2 macrophages (anti-inflammatory states). Exosomes are cell-derived nanovesicles that range in diameter from 30 to 150 nm. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are abundant in exosomes and exosomal ncRNAs influence immune responses. Exosomal ncRNAs control macrophage-linked intercellular communication via their targets or signaling pathways, which can play positive or negative roles in lung cancer and inflammatory lung disorders, including acute lung injury (ALI), asthma, and pulmonary fibrosis. In lung cancer, exosomal ncRNAs mediated intercellular communication between lung tumor cells and tumor-associated macrophages (TAMs), coordinating cancer proliferation, migration, invasion, metastasis, immune evasion, and therapy resistance. In inflammatory lung illnesses, exosomal ncRNAs mediate macrophage activation and inflammation to promote or inhibit lung damage. Furthermore, we also discussed the possible applications of exosomal ncRNA-based therapies for lung disorders.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Boyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ren Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Sun L, Mailliot J, Schaffitzel C. Nonsense-Mediated mRNA Decay Factor Functions in Human Health and Disease. Biomedicines 2023; 11:722. [PMID: 36979701 PMCID: PMC10045457 DOI: 10.3390/biomedicines11030722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades mRNAs with a premature stop codon, avoiding the synthesis of C-terminally truncated proteins. In addition to faulty mRNAs, NMD recognises ~10% of endogenous transcripts in human cells and downregulates their expression. The up-frameshift proteins are core NMD factors and are conserved from yeast to human in structure and function. In mammals, NMD diversified into different pathways that target different mRNAs employing additional NMD factors. Here, we review our current understanding of molecular mechanisms and cellular roles of NMD pathways and the involvement of more specialised NMD factors. We describe the consequences of mutations in NMD factors leading to neurodevelopmental diseases, and the role of NMD in cancer. We highlight strategies of RNA viruses to evade recognition and decay by the NMD machinery.
Collapse
Affiliation(s)
- Lingling Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Bristol Engineering Biology Centre BrisEngBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
8
|
Spelier S, de Poel E, Ithakisiou GN, Suen SW, Hagemeijer MC, Muilwijk D, Vonk AM, Brunsveld JE, Kruisselbrink E, van der Ent CK, Beekman JM. High-throughput functional assay in cystic fibrosis patient-derived organoids allows drug repurposing. ERJ Open Res 2023; 9:00495-2022. [PMID: 36726369 PMCID: PMC9885274 DOI: 10.1183/23120541.00495-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cystic fibrosis (CF) is a rare hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Recent therapies enable effective restoration of CFTR function of the most common F508del CFTR mutation. This shifts the unmet clinical need towards people with rare CFTR mutations such as nonsense mutations, of which G542X and W1282X are most prevalent. CFTR function measurements in patient-derived cell-based assays played a critical role in preclinical drug development for CF and may play an important role to identify new drugs for people with rare CFTR mutations. Methods Here, we miniaturised the previously described forskolin-induced swelling (FIS) assay in intestinal organoids from a 96-well to a 384-well plate screening format. Using this novel assay, we tested CFTR increasing potential of a 1400-compound Food and Drug Administration (FDA)-approved drug library in organoids from donors with W1282X/W1282X CFTR nonsense mutations. Results The 384-well FIS assay demonstrated uniformity and robustness based on coefficient of variation and Z'-factor calculations. In the primary screen, CFTR induction was limited overall, yet interestingly, the top five compound combinations that increased CFTR function all contained at least one statin. In the secondary screen, we indeed verified that four out of the five statins (mevastatin, lovastatin, simvastatin and fluvastatin) increased CFTR function when combined with CFTR modulators. Statin-induced CFTR rescue was concentration-dependent and W1282X-specific. Conclusions Future studies should focus on elucidating genotype specificity and mode-of-action of statins in more detail. This study exemplifies proof of principle of large-scale compound screening in a functional assay using patient-derived organoids.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,These authors contributed equally to this work,Corresponding author: Sacha Spelier ()
| | - Eyleen de Poel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,These authors contributed equally to this work
| | - Georgia N. Ithakisiou
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Sylvia W.F. Suen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Marne C. Hagemeijer
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Annelotte M. Vonk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jesse E. Brunsveld
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Li Y, Feng L, Bai L, Jiang H. Study of Therapeutic Mechanisms of Puerarin against Sepsis-Induced Myocardial Injury by Integrating Network Pharmacology, Bioinformatics Analysis, and Experimental Validation. Crit Rev Immunol 2023; 43:25-42. [PMID: 37824375 DOI: 10.1615/critrevimmunol.2023050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Myocardial injury is the most prevalent and serious complication of sepsis. The potential of puerarin (Pue) to treat sepsis-induced myocardial injury (SIMI) has been recently reported. Nevertheless, the specific anti-SIMI mechanisms of Pue remain largely unclear. Integrating network pharmacology, bioinformatics analysis, and experimental validation, we aimed to clarify the anti-SIMI mechanisms of Pue, thereby furnishing novel therapeutic targets. Pue-associated targets were collected from HIT, GeneCards, SwissTargetPrediction, SuperPred, and CTD databases. SIMI-associated targets were acquired from GeneCards and DisGeNET. Differentially expressed genes (DEGs) were identified from GEO database. Potential anti-SIMI targets of Pue were determined using VennDiagram. ClusterProfiler was employed for GO and KEGG analyses. STRING database and Cytoscape were used for protein-protein interaction (PPI) network construction, and cytoHubba was used for hub target screening. PyMOL and AutoDock were utilized for molecular docking. An in vitro SIMI model was built to further verify the therapeutic mechanisms of Pue. Seventy-three Pue-SIMI-DEG intersecting target genes were obtained. GO and KEGG analyses revealed that the targets were principally concentrated in cellular response to chemical stress, response to oxidative stress (OS), and insulin and neurotrophin signaling pathways. Through PPI analysis and molecular docking, AKT1, CASP3, TP53, and MAPK3 were identified as the pivotal targets. In vivo experiments indicated that Pue promoted cell proliferation, downregulated AKT1, CASP3, TP53, and MAPK3, and inhibited inflammation, myocardial injury, OS, and apoptosis in the cell model. Pue might inhibit inflammation, myocardial injury, OS, and apoptosis to treat SIMI by reducing AKT1, CASP3, TP53, and MAPK3.
Collapse
Affiliation(s)
- Yin Li
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Lei Feng
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Lin Bai
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Hao Jiang
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| |
Collapse
|
10
|
Siddika T, Balasuriya N, Frederick MI, Rozik P, Heinemann IU, O’Donoghue P. Delivery of Active AKT1 to Human Cells. Cells 2022; 11:cells11233834. [PMID: 36497091 PMCID: PMC9738475 DOI: 10.3390/cells11233834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Thr308, Ser473), yet cell stimulation also activates many other kinases. To produce cells with specific AKT1 activity, we developed a novel system to deliver active AKT1 to human cells. We recently established a method to produce AKT1 phospho-variants from Escherichia coli with programmed phosphorylation. Here, we fused AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) protein. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308 induced selective phosphorylation of the known AKT1 substrate GSK-3α, but not GSK-3β, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Ser240/244. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on AKT1 activity.
Collapse
Affiliation(s)
- Tarana Siddika
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mallory I. Frederick
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Correspondence: (I.U.H.); (P.O.)
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Correspondence: (I.U.H.); (P.O.)
| |
Collapse
|
11
|
Meraviglia-Crivelli D, Villanueva H, Zheleva A, Villalba-Esparza M, Moreno B, Menon AP, Calvo A, Cebollero J, Barainka M, de los Mozos IR, Huesa-Berral C, Pastor F. IL-6/STAT3 signaling in tumor cells restricts the expression of frameshift-derived neoantigens by SMG1 induction. Mol Cancer 2022; 21:211. [PMID: 36443756 PMCID: PMC9703761 DOI: 10.1186/s12943-022-01679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The quality and quantity of tumor neoantigens derived from tumor mutations determines the fate of the immune response in cancer. Frameshift mutations elicit better tumor neoantigens, especially when they are not targeted by nonsense-mediated mRNA decay (NMD). For tumor progression, malignant cells need to counteract the immune response including the silencing of immunodominant neoantigens (antigen immunoediting) and promoting an immunosuppressive tumor microenvironment. Although NMD inhibition has been reported to induce tumor immunity and increase the expression of cryptic neoantigens, the possibility that NMD activity could be modulated by immune forces operating in the tumor microenvironment as a new immunoediting mechanism has not been addressed. METHODS We study the effect of SMG1 expression (main kinase that initiates NMD) in the survival and the nature of the tumor immune infiltration using TCGA RNAseq and scRNAseq datasets of breast, lung and pancreatic cancer. Different murine tumor models were used to corroborate the antitumor immune dependencies of NMD. We evaluate whether changes of SMG1 expression in malignant cells impact the immune response elicited by cancer immunotherapy. To determine how NMD fluctuates in malignant cells we generated a luciferase reporter system to track NMD activity in vivo under different immune conditions. Cytokine screening, in silico studies and functional assays were conducted to determine the regulation of SMG1 via IL-6/STAT3 signaling. RESULTS IL-6/STAT3 signaling induces SMG1, which limits the expression of potent frameshift neoantigens that are under NMD control compromising the outcome of the immune response. CONCLUSION We revealed a new neoantigen immunoediting mechanism regulated by immune forces (IL-6/STAT3 signaling) responsible for silencing otherwise potent frameshift mutation-derived neoantigens.
Collapse
Affiliation(s)
- Daniel Meraviglia-Crivelli
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - María Villalba-Esparza
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain ,grid.47100.320000000419368710Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Beatriz Moreno
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Ashwathi Puravankara Menon
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Alfonso Calvo
- grid.5924.a0000000419370271IDISNA, CIBERONC, Program in Solid Tumors (CIMA), Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Avenida Pío XII, 55, 31008 Pamplona, Spain
| | - Javier Cebollero
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Igor Ruiz de los Mozos
- grid.5924.a0000000419370271Gene Therapy Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.424222.00000 0001 2242 5374Department of Personalized Medicine, NASERTIC, Government of Navarra, 31008 Pamplona, Spain
| | - Carlos Huesa-Berral
- grid.5924.a0000000419370271Department of Physics and Applied Mathematics, School of Science, University of Navarra, E-31008 Pamplona, Navarra Spain
| | - Fernando Pastor
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain ,grid.5924.a0000000419370271Department of Molecular Therapies, CIMA (Center for Applied Medical Research) University of Navarre, Av. de Pío XII, 55, 31008 Pamplona, Spain
| |
Collapse
|
12
|
Chousal JN, Sohni A, Vitting-Seerup K, Cho K, Kim M, Tan K, Porse B, Wilkinson MF, Cook-Andersen H. Progression of the pluripotent epiblast depends upon the NMD factor UPF2. Development 2022; 149:dev200764. [PMID: 36255229 PMCID: PMC9687065 DOI: 10.1242/dev.200764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.
Collapse
Affiliation(s)
- Jennifer N. Chousal
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
- Section for Bioinformatics, Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Cho H, Abshire ET, Popp MW, Pröschel C, Schwartz JL, Yeo GW, Maquat LE. AKT constitutes a signal-promoted alternative exon-junction complex that regulates nonsense-mediated mRNA decay. Mol Cell 2022; 82:2779-2796.e10. [PMID: 35675814 PMCID: PMC9357146 DOI: 10.1016/j.molcel.2022.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Despite a long appreciation for the role of nonsense-mediated mRNA decay (NMD) in destroying faulty, disease-causing mRNAs and maintaining normal, physiologic mRNA abundance, additional effectors that regulate NMD activity in mammalian cells continue to be identified. Here, we describe a haploid-cell genetic screen for NMD effectors that has unexpectedly identified 13 proteins constituting the AKT signaling pathway. We show that AKT supersedes UPF2 in exon-junction complexes (EJCs) that are devoid of RNPS1 but contain CASC3, defining an unanticipated insulin-stimulated EJC. Without altering UPF1 RNA binding or ATPase activity, AKT-mediated phosphorylation of the UPF1 CH domain at T151 augments UPF1 helicase activity, which is critical for NMD and also decreases the dependence of helicase activity on ATP. We demonstrate that upregulation of AKT signaling contributes to the hyperactivation of NMD that typifies Fragile X syndrome, as exemplified using FMR1-KO neural stem cells derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth T Abshire
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Stem Cell and Regenerative Medicine Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
14
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Potential Molecular Mechanisms of Ephedra Herb in the Treatment of Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9214589. [PMID: 35837376 PMCID: PMC9276517 DOI: 10.1155/2022/9214589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/30/2022] [Accepted: 06/11/2022] [Indexed: 01/17/2023]
Abstract
Objective To explore the possible mechanisms of Ephedra herb (EH) in the treatment of nephrotic syndrome (NS) by using network pharmacology and molecular docking in this study. Methods Active ingredients and related targets of EH were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the gene names corresponding to the proteins were found through the UniProt database. Then, target genes related to NS were screened out from GeneCards, PharmGKB, and OMIM databases. Next, the intersection targets were obtained successfully through Venn diagram, which were also seen as key target genes of EH and NS. Cytoscape 3.9.0 software was used to construct the effective “active ingredient-target” network diagram, and “drug-ingredient-target-disease (D-I-T-D)” network diagram. After that, the STRING database was used to construct a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment involved in the targets were performed by the DAVID database and ClueGO plugin in Cytoscape. Finally, AutoDockTools software was used for molecular docking to verify the binding strength between main active ingredients and key target proteins. Results A total of 22 main active ingredients such as quercetin, kaempferol, luteolin, and naringenin were obtained, which could act on 105 targets related to NS. Through PPI network, 53 core targets such as AKT1, TNF, IL6, VEGFA, and IL1B were found, which might play a crucial role in the treatment of NS. Meanwhile, these targets were significantly involved in PI3K-Akt signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway, hepatitis B, and pathways in cancer through GO and KEGG enrichment analysis. The docking results indicated that active ingredients such as kaempferol, luteolin, quercetin, and naringenin all had good binding to the target protein AKT1 or TNF. Among them, luteolin and naringenin binding with AKT1 showed the best binding energy (-6.2 kcal/mol). Conclusion This study indicated that the potential mechanism of EH in treating NS may be related to PI3K-Akt signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway, which provided better approaches for exploring the mechanism in treating NS and new ideas for further in vivo and in vitro experimental verifications.
Collapse
|
16
|
Lejeune F. Nonsense-Mediated mRNA Decay, a Finely Regulated Mechanism. Biomedicines 2022; 10:biomedicines10010141. [PMID: 35052820 PMCID: PMC8773229 DOI: 10.3390/biomedicines10010141] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is both a mechanism for rapidly eliminating mRNAs carrying a premature termination codon and a pathway that regulates many genes. This implies that NMD must be subject to regulation in order to allow, under certain physiological conditions, the expression of genes that are normally repressed by NMD. Therapeutically, it might be interesting to express certain NMD-repressed genes or to allow the synthesis of functional truncated proteins. Developing such approaches will require a good understanding of NMD regulation. This review describes the different levels of this regulation in human cells.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
- Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|