1
|
Chmielewska-Jeznach M, Steczkiewicz K, Kobyłecki K, Bardowski JK, Szczepankowska AK. An Adenosine Triphosphate- Dependent 5'-3' DNA Helicase From sk1-Like Lactococcus lactis F13 Phage. Front Microbiol 2022; 13:840219. [PMID: 35369496 PMCID: PMC8965321 DOI: 10.3389/fmicb.2022.840219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Here, we describe functional characterization of an early gene (gp46) product of a virulent Lactococcus lactis sk1-like phage, vB_Llc_bIBBF13 (abbr. F13). The GP46F13 protein carries a catalytically active RecA-like domain belonging to the P-loop NTPase superfamily. It also retains features characteristic for ATPases forming oligomers. In order to elucidate its detailed molecular function, we cloned and overexpressed the gp46 gene in Escherichia coli. Purified GP46F13 protein binds to DNA and exhibits DNA unwinding activity on branched substrates in the presence of adenosine triphosphate (ATP). Size exclusion chromatography with multi-angle light scattering (SEC-MALS) experiments demonstrate that GP46F13 forms oligomers, and further pull-down assays show that GP46F13 interacts with host proteins involved in replication (i.e., DnaK, DnaJ, topoisomerase I, and single-strand binding protein). Taking together the localization of the gene and the obtained results, GP46F13 is the first protein encoded in the early-expressed gene region with helicase activity that has been identified among lytic L. lactis phages up to date.
Collapse
Affiliation(s)
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Kobyłecki
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jacek K Bardowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
2
|
Ramos C, Hernández-Tamayo R, López-Sanz M, Carrasco B, Serrano E, Alonso JC, Graumann PL, Ayora S. The RecD2 helicase balances RecA activities. Nucleic Acids Res 2022; 50:3432-3444. [PMID: 35234892 PMCID: PMC8989531 DOI: 10.1093/nar/gkac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.
Collapse
Affiliation(s)
- Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| |
Collapse
|
3
|
Sakiyama Y, Nishimura M, Hayashi C, Akama Y, Ozaki S, Katayama T. The DnaA AAA+ Domain His136 Residue Directs DnaB Replicative Helicase to the Unwound Region of the Replication Origin, oriC. Front Microbiol 2018; 9:2017. [PMID: 30233515 PMCID: PMC6127211 DOI: 10.3389/fmicb.2018.02017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/09/2018] [Indexed: 11/16/2022] Open
Abstract
Chromosomal replication initiation requires dynamic mechanisms in higher-order nucleoprotein complexes that are constructed at the origin of replication. In Escherichia coli, DnaA molecules construct functional oligomers at the origin oriC, enabling localized unwinding of oriC and stable binding of DnaB helicases via multiple domain I molecules of oriC-bound DnaA. DnaA-bound DnaB helicases are then loaded onto the unwound region of oriC for construction of a pair of replisomes for bidirectional replication. However, mechanisms of DnaB loading to the unwound oriC remain largely elusive. In this study, we determined that His136 of DnaA domain III has an important role in loading of DnaB helicases onto the unwound oriC. DnaA H136A mutant protein was impaired in replication initiation in vivo, and in DnaB loading to the unwound oriC in vitro, whereas the protein fully sustained activities for oriC unwinding and DnaA domain I-dependent stable binding between DnaA and DnaB. Functional and structural analyses supported the idea that transient weak interactions between DnaB helicase and DnaA His136 within specific protomers of DnaA oligomers direct DnaB to a region in close proximity to single stranded DNA at unwound oriC bound to DnaA domain III of the DnaA oligomer. The aromatic moiety of His136 is basically conserved at corresponding residues of eubacterial DnaA orthologs, implying that the guidance function of DnaB is common to all eubacterial species.
Collapse
Affiliation(s)
- Yukari Sakiyama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Nishimura
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chihiro Hayashi
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Akama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
van Eijk E, Paschalis V, Green M, Friggen AH, Larson MA, Spriggs K, Briggs GS, Soultanas P, Smits WK. Primase is required for helicase activity and helicase alters the specificity of primase in the enteropathogen Clostridium difficile. Open Biol 2017; 6:rsob.160272. [PMID: 28003473 PMCID: PMC5204125 DOI: 10.1098/rsob.160272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
DNA replication is an essential and conserved process in all domains of life and may serve as a target for the development of new antimicrobials. However, such developments are hindered by subtle mechanistic differences and limited understanding of DNA replication in pathogenic microorganisms. Clostridium difficile is the main cause of healthcare-associated diarrhoea and its DNA replication machinery is virtually uncharacterized. We identify and characterize the mechanistic details of the putative replicative helicase (CD3657), helicase-loader ATPase (CD3654) and primase (CD1454) of C. difficile, and reconstitute helicase and primase activities in vitro. We demonstrate a direct and ATP-dependent interaction between the helicase loader and the helicase. Furthermore, we find that helicase activity is dependent on the presence of primase in vitro. The inherent trinucleotide specificity of primase is determined by a single lysine residue and is similar to the primase of the extreme thermophile Aquifex aeolicus. However, the presence of helicase allows more efficient de novo synthesis of RNA primers from non-preferred trinucleotides. Thus, loader–helicase–primase interactions, which crucially mediate helicase loading and activation during DNA replication in all organisms, differ critically in C. difficile from that of the well-studied Gram-positive Bacillus subtilis model.
Collapse
Affiliation(s)
- Erika van Eijk
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vasileios Paschalis
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Matthew Green
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Annemieke H Friggen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marilynn A Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.,National Strategic Research Institute, Omaha, NE 68105, USA
| | | | - Geoffrey S Briggs
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Panos Soultanas
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
6
|
Verma V, Kumar A, Nitharwal RG, Alam J, Mukhopadhyay AK, Dasgupta S, Dhar SK. 'Modulation of the enzymatic activities of replicative helicase (DnaB) by interaction with Hp0897: a possible mechanism for helicase loading in Helicobacter pylori'. Nucleic Acids Res 2016; 44:3288-303. [PMID: 27001508 PMCID: PMC4838378 DOI: 10.1093/nar/gkw148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
DNA replication in Helicobacter pylori is initiated from a unique site (oriC) on its chromosome where several proteins assemble to form a functional replisome. The assembly of H. pylori replication machinery is similar to that of the model gram negative bacterium Escherichia coli except for the absence of DnaC needed to recruit the hexameric DnaB helicase at the replisome assembly site. In the absence of an obvious DnaC homologue in H. pylori, the question arises as to whether HpDnaB helicase is loaded at the Hp-replication origin by itself or is assisted by other unidentified protein(s). A high-throughput yeast two-hybrid study has revealed two proteins of unknown functions (Hp0897 and Hp0340) that interact with HpDnaB. Here we demonstrate that Hp0897 interacts with HpDnaB helicase in vitro as well as in vivo. Furthermore, the interaction stimulates the DNA binding activity of HpDnaB and modulates its adenosine triphosphate hydrolysis and helicase activities significantly. Prior complex formation of Hp0897 and HpDnaB enhances the binding/loading of DnaB onto DNA. Hp0897, along with HpDnaB, colocalizes with replication complex at initiation but does not move with the replisome during elongation. Together, these results suggest a possible role of Hp0897 in loading of HpDnaB at oriC.
Collapse
Affiliation(s)
- Vijay Verma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ajay Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ram Gopal Nitharwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala-75124, Sweden
| | - Jawed Alam
- National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | | | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala-75124, Sweden
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
7
|
Zhang H, Zhang Z, Yang J, He ZG. Functional characterization of DnaB helicase and its modulation by single-stranded DNA binding protein in Mycobacterium tuberculosis. FEBS J 2014; 281:1256-66. [PMID: 24387047 DOI: 10.1111/febs.12703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022]
Abstract
DnaB is important in the initiation and extension stages of DNA replication. Although DnaB has been studied in many bacterial species, its function in the devastating human pathogen Mycobacterium tuberculosis remains unclear. In this study, an intein-deleted form of M. tuberculosis DnaB (MtbDnaB) was cloned, expressed and characterized. MtbDnaB exhibited strong 5' to 3' helicase and ATPase activities, suggesting that MtbDnaB is a functional homolog of Escherichia coli DnaB. A physical interaction between MtbSSB (single-stranded binding protein of M. tuberculosis) and MtbDnaB was further identified in vivo and in vitro. The MtbSSB C-terminal fragment was found to have a critical function in this interaction. Moreover, the helicase activity of MtbDnaB was stimulated by MtbSSB at low concentrations and inhibited at high concentrations. An MtbSSB mutant with decreased binding affinity for ssDNA can stimulate the helicase activity of MtbDnaB over a wider concentration range than wild-type MtbSSB. These results suggest that MtbSSB assists in the loading of MtbDnaB on the DNA replication fork in M. tuberculosis.
Collapse
Affiliation(s)
- Hua Zhang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | |
Collapse
|
8
|
Perumal SK, Nelson SW, Benkovic SJ. Interaction of T4 UvsW helicase and single-stranded DNA binding protein gp32 through its carboxy-terminal acidic tail. J Mol Biol 2013; 425:2823-39. [PMID: 23732982 DOI: 10.1016/j.jmb.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage T4 UvsW helicase contains both unwinding and annealing activities and displays some functional similarities to bacterial RecG and RecQ helicases. UvsW is involved in several DNA repair pathways, playing important roles in recombination-dependent DNA repair and the reorganization of stalled replication forks. The T4 single-stranded DNA (ssDNA) binding protein gp32 is a central player in nearly all DNA replication and repair processes and is thought to facilitate their coordination by recruiting and regulating the various proteins involved. Here, we show that the activities of the UvsW protein are modulated by gp32. UvsW-catalyzed unwinding of recombination intermediates such as D-loops and static X-DNA (Holliday junction mimic) to ssDNA products is enhanced by the gp32 protein. The enhancement requires the presence of the protein interaction domain of gp32 (the acidic carboxy-terminus), suggesting that a specific interaction between UvsW and gp32 is required. In the absence of this interaction, the ssDNA annealing and ATP-dependent translocation activities of UvsW are severely inhibited when gp32 coats the ssDNA lattice. However, when UvsW and gp32 do interact, UvsW is able to efficiently displace the gp32 protein from the ssDNA. This ability of UvsW to remove gp32 from ssDNA may explain its ability to enhance the strand invasion activity of the T4 recombinase (UvsX) and suggests a possible new role for UvsW in gp32-mediated DNA transactions.
Collapse
Affiliation(s)
- Senthil K Perumal
- 414 Wartik Laboratories, Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
9
|
Hayes S, Erker C, Horbay MA, Marciniuk K, Wang W, Hayes C. Phage Lambda P protein: trans-activation, inhibition phenotypes and their suppression. Viruses 2013; 5:619-53. [PMID: 23389467 PMCID: PMC3640518 DOI: 10.3390/v5020619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 11/16/2022] Open
Abstract
The initiation of bacteriophage λ replication depends upon interactions between the oriλ DNA site, phage proteins O and P, and E. coli host replication proteins. P exhibits a high affinity for DnaB, the major replicative helicase for unwinding double stranded DNA. The concept of P-lethality relates to the hypothesis that P can sequester DnaB and in turn prevent cellular replication initiation from oriC. Alternatively, it was suggested that P-lethality does not involve an interaction between P and DnaB, but is targeted to DnaA. P-lethality is assessed by examining host cells for transformation by ColE1-type plasmids that can express P, and the absence of transformants is attributed to a lethal effect of P expression. The plasmid we employed enabled conditional expression of P, where under permissive conditions, cells were efficiently transformed. We observed that ColE1 replication and plasmid establishment upon transformation is extremely sensitive to P, and distinguish this effect from P-lethality directed to cells. We show that alleles of dnaB protect the variant cells from P expression. P-dependent cellular filamentation arose in ΔrecA or lexA[Ind-] cells, defective for SOS induction. Replication propagation and restart could represent additional targets for P interference of E. coli replication, beyond the oriC-dependent initiation step.
Collapse
Affiliation(s)
- Sidney Hayes
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada.
| | | | | | | | | | | |
Collapse
|
10
|
Biswas-Fiss EE, Kukiratirat J, Biswas SB. Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein. BMC BIOCHEMISTRY 2012; 13:10. [PMID: 22698072 PMCID: PMC3464605 DOI: 10.1186/1471-2091-13-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Single-stranded DNA binding proteins (SSB) are essential for DNA replication, repair, and recombination in all organisms. SSB works in concert with a variety of DNA metabolizing enzymes such as DNA polymerase. RESULTS We have cloned and purified SSB from Bacillus anthracis (SSB(BA)). In the absence of DNA, at concentrations ≤100 μg/ml, SSB(BA) did not form a stable tetramer and appeared to resemble bacteriophage T4 gene 32 protein. Fluorescence anisotropy studies demonstrated that SSB(BA) bound ssDNA with high affinity comparable to other prokaryotic SSBs. Thermodynamic analysis indicated both hydrophobic and ionic contributions to ssDNA binding. FRET analysis of oligo(dT)(70) binding suggested that SSB(BA) forms a tetrameric assembly upon ssDNA binding. This report provides evidence of a bacterial SSB that utilizes a novel mechanism for DNA binding through the formation of a transient tetrameric structure. CONCLUSIONS Unlike other prokaryotic SSB proteins, SSB(BA) from Bacillus anthracis appeared to be monomeric at concentrations ≤100 μg/ml as determined by SE-HPLC. SSB(BA) retained its ability to bind ssDNA with very high affinity, comparable to SSB proteins which are tetrameric. In the presence of a long ssDNA template, SSB(BA) appears to form a transient tetrameric structure. Its unique structure appears to be due to the cumulative effect of multiple key amino acid changes in its sequence during evolution, leading to perturbation of stable dimer and tetramer formation. The structural features of SSB(BA) could promote facile assembly and disassembly of the protein-DNA complex required in processes such as DNA replication.
Collapse
Affiliation(s)
- Esther E Biswas-Fiss
- Department of Molecular Biology, School of Osteopathic Medicine & Graduate School of Biomedical Sciences, University of Medicine & Dentistry of New Jersey, Stratford, NJ 08084, USA.
| | | | | |
Collapse
|
11
|
Yeeles JTP, van Aelst K, Dillingham MS, Moreno-Herrero F. Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease. Mol Cell 2011; 42:806-16. [PMID: 21700225 DOI: 10.1016/j.molcel.2011.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/03/2011] [Accepted: 04/11/2011] [Indexed: 12/24/2022]
Abstract
AddAB is a helicase-nuclease that processes double-stranded DNA breaks for repair by homologous recombination. This process is modulated by Chi recombination hotspots: specific DNA sequences that attenuate the nuclease activity of the translocating AddAB complex to promote downstream recombination. Using a combination of kinetic and imaging techniques, we show that AddAB translocation is not coupled to DNA unwinding in the absence of single-stranded DNA binding proteins because nascent single-stranded DNA immediately re-anneals behind the moving enzyme. However, recognition of recombination hotspot sequences during translocation activates unwinding by coupling these activities, thereby ensuring the downstream formation of single-stranded DNA that is required for RecA-mediated recombinational repair. In addition to their implications for the mechanism of double-stranded DNA break repair, these observations may affect our implementation and interpretation of helicase assays and our understanding of helicase mechanisms in general.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- DNA:Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
12
|
ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct Mol Biol 2008; 16:42-8. [PMID: 19098916 PMCID: PMC2707180 DOI: 10.1038/nsmb.1535] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/20/2008] [Indexed: 01/08/2023]
Abstract
The spliceosome is a highly dynamic machine requiring multiple RNA-dependent ATPases of the DExD/H-box family. A fundamental unanswered question is how their activities are regulated. Brr2 function is necessary for unwinding the U4/U6 duplex, a step essential for catalytic activation of the spliceosome. Here we show that Brr2-dependent dissociation of U4/U6 snRNAs in vitro is activated by a fragment from the C-terminus of the U5 snRNP protein Prp8. In contrast to its helicase-stimulating activity, this fragment inhibits Brr2 U4/U6-dependent ATPase activity. Notably, U4/U6 unwinding activity is not stimulated by fragments carrying alleles of prp8 that in humans confers an autosomal dominant form of retinitis pigmentosa. Because Brr2 activity must be restricted to prevent premature catalytic activation, our results have important implications for fidelity maintenance in the spliceosome.
Collapse
|
13
|
Sharma A, Nitharwal RG, Singh B, Dar A, Dasgupta S, Dhar SK. Helicobacter pylori single-stranded DNA binding protein--functional characterization and modulation of H. pylori DnaB helicase activity. FEBS J 2008; 276:519-31. [PMID: 19087193 DOI: 10.1111/j.1742-4658.2008.06799.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Helicobacter pylori, an important bacterial pathogen, causes gastric ulcer and gastric adenocarcinoma in humans. The fundamentals of basic biology such as DNA replication are poorly understood in this pathogen. In the present study, we report the cloning and functional characterization of the single-stranded DNA (ssDNA) binding protein from H. pylori. The N-terminal DNA binding domain shows significant homology with E. coli single-stranded DNA binding protein (SSB), whereas the C-terminal domain shows less homology. The overall DNA-binding activity and tetramerization properties, however, remain unaffected. In in vitro experiments with purified proteins, H. pylori (Hp) SSB bound specifically to ssDNA and modulated the enzymatic ATPase and helicase activity of HpDnaB helicase. HpSSB and HpDnaB proteins were co-localized in sharp, distinct foci in exponentially growing H. pylori cells, whereas both were spread over large areas in its dormant coccoid form, suggesting the absence of active replication forks in the latter. These results confirm the multiple roles of SSB during DNA replication and provide evidence for altered replicative metabolism in the spiral and coccoid forms that may be central to the bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Atul Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
14
|
An essential DnaB helicase of Bacillus anthracis: identification, characterization, and mechanism of action. J Bacteriol 2008; 191:249-60. [PMID: 18931108 DOI: 10.1128/jb.01259-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have described a novel essential replicative DNA helicase from Bacillus anthracis, the identification of its gene, and the elucidation of its enzymatic characteristics. Anthrax DnaB helicase (DnaB(BA)) is a 453-amino-acid, 50-kDa polypeptide with ATPase and DNA helicase activities. DnaB(BA) displayed distinct enzymatic and kinetic properties. DnaB(BA) has low single-stranded DNA (ssDNA)-dependent ATPase activity but possesses a strong 5'-->3' DNA helicase activity. The stimulation of ATPase activity appeared to be a function of the length of the ssDNA template rather than of ssDNA binding alone. The highest specific activity was observed with M13mp19 ssDNA. The results presented here indicated that the ATPase activity of DnaB(BA) was coupled to its migration on an ssDNA template rather than to DNA binding alone. It did not require nucleotide to bind ssDNA. DnaB(BA) demonstrated a strong DNA helicase activity that required ATP or dATP. Therefore, DnaB(BA) has an attenuated ATPase activity and a highly active DNA helicase activity. Based on the ratio of DNA helicase and ATPase activities, DnaB(BA) is highly efficient in DNA unwinding and its coupling to ATP consumption.
Collapse
|
15
|
Single strand binding proteins increase the processivity of DNA unwinding by the hepatitis C virus helicase. J Mol Biol 2007; 376:69-79. [PMID: 18155046 DOI: 10.1016/j.jmb.2007.10.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 12/19/2022]
Abstract
The nonstructural NS3 protein of the hepatitis C virus is a multifunctional enzyme with an N-terminal serine protease activity and a C-terminal helicase activity. The helicase is capable of unwinding both DNA and RNA duplexes; however, the overall processivity of the helicase is fairly low. We show here that single-strand binding (SSB) proteins enhance the unwinding processivity of both the NS3 helicase domain (NS3h) and the full-length protease-helicase NS3-4A. The detailed study of the effect of SSB on the DNA unwinding activity of NS3h indicates that the SSB stabilizes the helicase at the unwinding junction and prevents its dissociation. These results suggest a potential role for either cellular or virus-encoded SSB protein in improving the processivity of the NS3 in vivo.
Collapse
|
16
|
Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M, Davies J, Jensen PR, Vujaklija D. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 2006; 34:1588-96. [PMID: 16549871 PMCID: PMC1405823 DOI: 10.1093/nar/gkj514] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (ScSSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation of SSBs is a conserved process of post-translational modification in taxonomically distant bacteria.
Collapse
Affiliation(s)
| | | | - Boris Macek
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern DenmarkDK-5230 Odense M, Denmark
| | - Tina Cepo
- Department of Molecular Biology, Rudjer Boskovic Institute10002 Zagreb, Croatia
| | - Matthias Mann
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern DenmarkDK-5230 Odense M, Denmark
| | - Julian Davies
- Department of Microbiology and Immunology, University of British ColumbiaVancouver, British Columbia, V6T 1Z3, Canada
| | | | - Dusica Vujaklija
- Department of Molecular Biology, Rudjer Boskovic Institute10002 Zagreb, Croatia
- To whom correspondence should be addresed. Tel: +385 14 57 12 58; Fax: +385 14 56 91 77;
| |
Collapse
|
17
|
Pradhan A, Chauhan VS, Tuteja R. Plasmodium falciparum DNA helicase 60 is a schizont stage specific, bipolar and dual helicase stimulated by PKC phosphorylation. Mol Biochem Parasitol 2005; 144:133-41. [PMID: 16165232 DOI: 10.1016/j.molbiopara.2005.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/07/2005] [Accepted: 08/08/2005] [Indexed: 11/28/2022]
Abstract
The fundamental biology and the biochemical processes at different developmental stages of the malaria parasite Plasmodium falciparum have not been explored in detail. As a step toward understanding the various mechanisms engaged in nucleic acid metabolism of this pathogen, particularly the essential enzymes involved in nucleic acid unwinding, recently, we have reported the isolation of the first P. falciparum DEAD-box DNA helicase 60 (PfDH60), which contained striking homology with p68 protein [Pradhan A, Chauhan VS, Tuteja R. A novel 'DEAD-box' DNA helicase from Plasmodium falciparum is homologous to p68. Mol Biochem Parasitol 2005;140:55-60]. In this study, we show novel important properties of PfDH60. Immunofluorescence assay studies revealed that the peak expression of PfDH60 is mainly in the schizont stages of the development of P. falciparum, where DNA replication is active. Interestingly, this is a bipolar DNA helicase, which unwinds dsDNA in both the directions. PfDH60 can also unwind RNA-DNA and RNA-RNA duplexes. PfDH60 is phosphorylated by protein kinase C at the Ser and Thr residues. The helicase and ATPase activities of PfDH60 were stimulated after this phosphorylation. The cell-cycle dependent expression, bipolar translocation and dual nature collectively suggest that PfDH60 may be involved in the process of DNA replication and distinct cellular processes in the parasite and this study should make an important contribution in our better understanding of DNA metabolic pathways such as repair, recombination and replication.
Collapse
Affiliation(s)
- Arun Pradhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
18
|
Tuteja R, Tuteja N, Malhotra P, Singh Chauhan V. Replication fork-stimulated eIF-4A from Plasmodium cynomolgi unwinds DNA in the 3' to 5' direction and is inhibited by DNA-interacting compounds. Arch Biochem Biophys 2003; 414:108-14. [PMID: 12745261 DOI: 10.1016/s0003-9861(03)00176-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plasmodium cynomolgi DEAD-box DNA helicase 45 (PcDDH45) is an ATP-dependent DNA-unwinding enzyme with intrinsic DNA-dependent ATPase activity and is highly homologous to eIF-4A. In this study, we have further characterized and tested the effect of various DNA-interacting compounds on the DNA-unwinding activity of PcDDH45. The results show that PcDDH45 translocates in the 3' to 5' direction along the bound strand, a replication fork-like structure of the substrate stimulates its DNA-unwinding activity, and it failed to unwind blunt-ended duplex DNA. Of various compounds tested, only cisplatin, 4',6'-diamidino-2-phenylindole, daunorubicin, and nogalamycin were inhibitory to the unwinding activity of PcDDH45 with apparent IC(50) values of 1.0, 4.0, 7.5, and 1.7 microM, respectively. These results suggest that the interaction of these compounds with duplex DNA generate a complex that probably impedes the translocation of PcDDH45, resulting in inhibition of unwinding activity. This study is one of the first to demonstrate the effect of various DNA-binding compounds on a malaria parasite DNA helicase and should make an important contribution to our better understanding of the nucleic acid transactions in the parasite.
Collapse
Affiliation(s)
- Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | | | |
Collapse
|