1
|
Xun J, Zhang X, Guo S, Lu H, Chen J. Editing out HIV: application of gene editing technology to achieve functional cure. Retrovirology 2021; 18:39. [PMID: 34922576 PMCID: PMC8684261 DOI: 10.1186/s12977-021-00581-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 11/05/2021] [Indexed: 03/01/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) successfully suppresses human immunodeficiency virus (HIV) replication and improves the quality of life of patients living with HIV. However, current HAART does not eradicate HIV infection because an HIV reservoir is established in latently infected cells and is not recognized by the immune system. The successful curative treatment of the Berlin and London patients following bone marrow transplantation inspired researchers to identify an approach for the functional cure of HIV. As a promising technology, gene editing-based strategies have attracted considerable attention and sparked much debate. Herein, we discuss the development of different gene editing strategies in the functional cure of HIV and highlight the potential for clinical applications prospects. ![]()
Collapse
Affiliation(s)
- Jingna Xun
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Shuyan Guo
- Shanghai Foreign Language School, Shanghai International Studies University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.
| |
Collapse
|
2
|
Bolhassani A, Milani A. Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections. Curr Mol Pharmacol 2021; 13:173-181. [PMID: 31760929 DOI: 10.2174/1874467212666191023120954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Small interfering RNAs (siRNAs) have rapidly developed into biomedical research as a novel tool for the potential treatment of various human diseases. They are based on altered gene expression. In spite of the availability of highly active antiretroviral therapy (HAART), there is a specific interest in developing siRNAs as a therapeutic agent for human immunodeficiency virus (HIV) due to several problems including toxicity and drug resistance along with long term treatment. The successful use of siRNAs for therapeutic goals needs safe and effective delivery to specific cells and tissues. Indeed, the efficiency of gene silencing depends on the potency of the carrier used for siRNA delivery. The combination of siRNA and nano-carriers is a potent method to prevent the limitations of siRNA formulation. Three steps were involved in non-viral siRNA carriers such as the complex formation of siRNA with a cationic carrier, conjugation of siRNA with small molecules, and encapsulation of siRNA within nanoparticles. In this mini-review, the designed siRNAs and their carriers are described against HIV-1 infections both in vitro and in vivo.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
3
|
Could gene therapy cure HIV? Life Sci 2021; 277:119451. [PMID: 33811896 DOI: 10.1016/j.lfs.2021.119451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 02/05/2023]
Abstract
The Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) continues to be a major global public health issue, having claimed almost 33 million lives so far. According to the recent report of the World Health Organization (WHO) in 2019, about 38 million people are living with AIDS. Hence, finding a solution to overcome this life-threatening virus can save millions of lives. Scientists and medical doctors have prescribed HIV patients with specific drugs for many years. Methods such antiretroviral therapy (ART) or latency-reversing agents (LRAs) have been used for a while to treat HIV patients, however they have some side effects and drawbacks causing their application to be not quite successful. Instead, the application of gene therapy which refers to the utilization of the therapeutic delivery of nucleic acids into a patient's cells as a drug to treat disease has shown promising results to control HIV infection. Therefore, in this review, we will summarize recent advances in gene therapy approach against HIV.
Collapse
|
4
|
Rohani N, Ahmadi Moughari F, Eslahchi C. DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods. PeerJ 2021; 9:e10505. [PMID: 33680575 PMCID: PMC7919535 DOI: 10.7717/peerj.10505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/15/2020] [Indexed: 01/04/2023] Open
Abstract
The ongoing pandemic of a novel coronavirus (SARS-CoV-2) leads to international concern; thus, emergency interventions need to be taken. Due to the time-consuming experimental methods for proposing useful treatments, computational approaches facilitate investigating thousands of alternatives simultaneously and narrow down the cases for experimental validation. Herein, we conducted four independent analyses for RNA interference (RNAi)-based therapy with computational and bioinformatic methods. The aim is to target the evolutionarily conserved regions in the SARS-CoV-2 genome in order to down-regulate or silence its RNA. miRNAs are denoted to play an important role in the resistance of some species to viral infections. A comprehensive analysis of the miRNAs available in the body of humans, as well as the miRNAs in bats and many other species, were done to find efficient candidates with low side effects in the human body. Moreover, the evolutionarily conserved regions in the SARS-CoV-2 genome were considered for designing novel significant siRNA that are target-specific. A small set of miRNAs and five siRNAs were suggested as the possible efficient candidates with a high affinity to the SARS-CoV-2 genome and low side effects. The suggested candidates are promising therapeutics for the experimental evaluations and may speed up the procedure of treatment design. Materials and implementations are available at: https://github.com/nrohani/SARS-CoV-2.
Collapse
Affiliation(s)
- Narjes Rohani
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Ahmadi Moughari
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
5
|
Imrat, Labala RK, Velhal S, Bhagat S, Patel V, Jeyaram K. Small double-stranded RNA with anti-HIV activity abundantly produced by Bacillus subtilis MTCC5480 isolated from fermented soybean. Int J Biol Macromol 2020; 161:828-835. [PMID: 32553954 DOI: 10.1016/j.ijbiomac.2020.06.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022]
Abstract
Anti-viral RNA therapy is on high demand nowadays due to the emergence of several new viral infections. The small non-coding regulatory RNAs (dsRNA) from the microbial sources are not yet explored for anti-viral activity. In this study, we assessed the anti-HIV activity of the small dsRNA produced by 12 different microbial species isolated from naturally fermented foods of North-East India. For this, we selectively extracted the dsRNA from the microbial culture, confirmed its double-stranded nature by immunoblotting, and deep sequenced the cDNA library using Illumina platform. Further, we used conventional algorithms to predict the potential targets of the dsRNA sequences within the 3'-UTR region of HIV-1. A small dsRNA fragment with 34 bases in size with a sequence of 3'-UUGGUACACGAGAUGGUUCGACUCGAUGAAGGGC-5' produced abundantly (9.17% of the total dsRNA fraction) by Bacillus subtilis MTCC5480 showed a much higher base complementarity values than previously reported miRNAs analysed against HIV-1. We separated the dsRNA fraction and validated the anti-HIV activity against human peripheral blood mononuclear cells (PBMC) infected with JRCSF strain of HIV-1 virus and the EC50 value ranges from 0.2-0.3 μM. This small dsRNA abundantly produced by B. subtilis could be studied further for its application as an anti-viral therapeutic agent.
Collapse
Affiliation(s)
- Imrat
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795001, Manipur, India; Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India
| | - Rajendra Kumar Labala
- Distributed Information Sub-Centre (DISC), Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795001, Manipur, India
| | - Shilpa Velhal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai 400012, India
| | - Sharad Bhagat
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai 400012, India
| | - Vainav Patel
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai 400012, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795001, Manipur, India; Institute of Bioresources and Sustainable Development (IBSD), Mizoram Center, Nursery Veng, Khatla, Aizawl 796005, Mizoram, India.
| |
Collapse
|
6
|
Bai J, Li L, Gao Y, Li S, Zhu H, Shi M, Fan H, Wang X, Jiang P. Inhibition of encephalomyocarditis virus replication by shRNA targeting 1C and 2A genes in vitro and in vivo. Vet Microbiol 2020; 244:108664. [PMID: 32402343 DOI: 10.1016/j.vetmic.2020.108664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Encephalomyocarditis virus (EMCV) infects many mammalian species, causing myocarditis, encephalitis and reproductive disorders. The small interference RNA (siRNA) targeting to the virus has not been understood completely. Here, two out of six interference sequences were screened to inhibit significantly EMCV replication by using recombinant plasmids expressing small hairpin RNA (shRNA) targeting to the viral 1C or 2A genes in BHK-21 cells. And two recombinant adenoviruses expressing the shRNAs were constructed and named as rAd-1C-1 and rAd-2A-3. They inhibit EMCV replication in BHK-21 cells in protein levels, as well as the virus yields by approximately 1000 times. Furthermore, they provide high protective efficacy against the challenge with virulent EMCV NJ08 strain in mice. And the EMCV loads in the live mice in rAd-1C-1 and rAd-2A-3 groups decrease by more than 90 % compared with those in the dead mice in the challenge control groups at the same times. It indicates that the adenoviruses medicated shRNA targeting to 1C and 2A genes might provide a potential strategy for combating EMCV infection.
Collapse
Affiliation(s)
- Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009,PR China.
| | - Liang Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009,PR China
| | - Shihai Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixin Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Shi
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - XianWei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009,PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009,PR China
| |
Collapse
|
7
|
Lieberman J. Tapping the RNA world for therapeutics. Nat Struct Mol Biol 2018; 25:357-364. [PMID: 29662218 DOI: 10.1038/s41594-018-0054-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023]
Abstract
A recent revolution in RNA biology has led to the identification of new RNA classes with unanticipated functions, new types of RNA modifications, an unexpected multiplicity of alternative transcripts and widespread transcription of extragenic regions. This development in basic RNA biology has spawned a corresponding revolution in RNA-based strategies to generate new types of therapeutics. Here, I review RNA-based drug design and discuss barriers to broader applications and possible ways to overcome them. Because they target nucleic acids rather than proteins, RNA-based drugs promise to greatly extend the domain of 'druggable' targets beyond what can be achieved with small molecules and biologics.
Collapse
Affiliation(s)
- Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Six Highly Conserved Targets of RNAi Revealed in HIV-1-Infected Patients from Russia Are Also Present in Many HIV-1 Strains Worldwide. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:330-344. [PMID: 28918033 PMCID: PMC5537207 DOI: 10.1016/j.omtn.2017.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
RNAi has been suggested for use in gene therapy of HIV/AIDS, but the main problem is that HIV-1 is highly variable and could escape attack from the small interfering RNAs (siRNAs) due to even single nucleotide substitutions in the potential targets. To exhaustively check the variability in selected RNA targets of HIV-1, we used ultra-deep sequencing of six regions of HIV-1 from the plasma of two independent cohorts of patients from Russia. Six RNAi targets were found that are invariable in 82%-97% of viruses in both cohorts and are located inside the domains specifying reverse transcriptase (RT), integrase, vpu, gp120, and p17. The analysis of mutation frequencies and their characteristics inside the targets suggests a likely role for APOBEC3G (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G, A3G) in G-to-A mutations and a predominant effect of RT biases in the detected variability of the virus. The lowest frequency of mutations was detected in the central part of all six targets. We also discovered that the identical RNAi targets are present in many HIV-1 strains from many countries and from all continents. The data are important for both the understanding of the patterns of HIV-1 mutability and properties of RT and for the development of gene therapy approaches using RNAi for the treatment of HIV/AIDS.
Collapse
|
9
|
Construction and Application of Random dsRNA Interference Library for Functional Genetic Screens in Embryonic Stem Cells. Methods Mol Biol 2017. [PMID: 28674802 DOI: 10.1007/978-1-4939-7108-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA interference (RNAi) libraries have been proven to be a powerful tool for large-scale functional genetic screens. To facilitate high-throughput functional genetic screens in embryonic stem cells, a system for construction of random dsRNA-expressing RNAi libraries was developed. Previous studies have demonstrated that sequence-specific gene silencing could be induced by long dsRNA in mouse embryos, mouse oocytes, embryonic stem cells, and some other mammalian cells. Our study demonstrated that the dsRNA interference library can be used for functional genetic screens of genes involved in self-renewal of embryonic stem cells (ES cells). The random RNAi library is easy to construct and provides a useful tool for investigation of molecular mechanisms of cellular development and differentiation.
Collapse
|
10
|
Abstract
Short interfering RNAs (siRNAs) are as effective at targeting and silencing genes by RNA interference (RNAi) as long double-stranded RNAs (dsRNAs). siRNAs are widely used for assessing gene function in cultured mammalian cells or early developing vertebrate embryos. siRNAs are also promising reagents for developing gene-specific therapeutics. Specifically, the inhibition of HIV-1 replication is particularly well-suited to RNAi, as several stages of the viral life cycle and many viral and cellular genes can be targeted. The future success of this approach will depend on recent advances in siRNA-based silencing technologies.
Collapse
Affiliation(s)
- Hiroshi Takaku
- Department of Life & Environmental Sciences and High Technology Research Center, Chiba Institute of Technology, Chiba, Japan.
| |
Collapse
|
11
|
Li Y, Zheng S, Liang X, Jin Y, Wu Y, Bai H, Liu R, Dai Z, Liang Z, Shi T. Doping Hydroxylated Cationic Lipid into PEGylated Cerasome Boosts in Vivo siRNA Transfection Efficacy. Bioconjug Chem 2014; 25:2055-66. [DOI: 10.1021/bc500414e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanyan Li
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
- Nanomedicine
and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Shuquan Zheng
- Laboratory
of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, P.R. China
| | - Xiaolong Liang
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Yushen Jin
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
- Nanomedicine
and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yidi Wu
- Laboratory
of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, P.R. China
| | - Huichen Bai
- Suzhou Ribo Life Science Co. Ltd., Jiangsu 215300, China
| | - Renfa Liu
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Zhifei Dai
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Zicai Liang
- Laboratory
of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, P.R. China
| | - Tiejun Shi
- School
of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
12
|
Mishra V, Kesharwani P, Jain NK. siRNA nanotherapeutics: a Trojan horse approach against HIV. Drug Discov Today 2014; 19:1913-20. [PMID: 25281591 DOI: 10.1016/j.drudis.2014.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 01/19/2023]
Abstract
The concept of RNA interference (RNAi) is gaining popularity for the better management of various diseases, including HIV. Currently, the successful biomedical utilization of siRNA therapeutics is hampered, both in vivo and in vitro, mainly by the inherent inability of naked siRNA to cross the cell membrane. RNAi can potentially improve the weakness of current highly active antiretroviral therapy (HAART) by diminishing the chances of the appearance of antiHIV-resistant strains. Here, we discuss the nanocarrier-mediated delivery of siRNA delivery as well as highlighted the scope of siRNA-mediated gene-silencing technology for improved HIV treatment.
Collapse
Affiliation(s)
- Vijay Mishra
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Central University, Sagar, MP, India
| | - Prashant Kesharwani
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Central University, Sagar, MP, India
| | - Narendra K Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Central University, Sagar, MP, India.
| |
Collapse
|
13
|
Nur SM, Al Amin M, Alam R, Hasan MA, Hossain MA, Mannan A. An in silico approach to design potential siRNA molecules for ICP22 (US1) gene silencing of different strains of human herpes simplex 1. J Young Pharm 2013; 5:46-9. [PMID: 24023453 DOI: 10.1016/j.jyp.2013.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/16/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The herpes simplex virus (HSV-1) is a virus that manifests itself in viral infection with painful, watery blisters in the skin or on the genitals as well as mucous membrane such as the mouth or lips. During an outbreak, the disease is contagious particularly and is irredeemable with present technology. Genetic studies of HSV-1 have shown that ICP22 (US1) gene is an immediate early gene and is responsible for genome replication and also has contribution in viral infection. METHOD For disease diagnosis, ICP22 (US1) gene may be suitable target. Viral activity can be controlled through RNA interference technology, a significant method for the post-transcriptional gene silencing. However, in different viral isolates there is a genetic variability; it is very challenging to design possible siRNA molecules which can silence the respective target genes. The work was done by using various computational tools as similarity search, target alignment, secondary structure prediction and RNA interaction evaluation. RESULT In our study two effective siRNA molecules for ICP22 (US1) gene silencing of seven different strains of HSV-1 were rationally designed and authenticated using computational methods, which might lead to knockdown the viral activity. CONCLUSION siRNA molecules were foreseen against ICP22 (US1) gene of different strains of HSV-1 as effective aspirant using computational methods. Thus, the approach may deliver a vision for the chemical synthesis of antiviral RNA molecule for treatment of HSV-1, at genomic level.
Collapse
Affiliation(s)
- Suza Mohammad Nur
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | | | | | | | | | | |
Collapse
|
14
|
RNA interference--a silent but an efficient therapeutic tool. Appl Biochem Biotechnol 2013; 169:1774-89. [PMID: 23340870 DOI: 10.1007/s12010-013-0098-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/10/2013] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) is an evolutionary conserved gene regulation pathway that has emerged as an important discovery in the field of molecular biology. One of the important advantages of RNAi in therapy is that it brings about efficient downregulation of gene expression by targeting complementary transcripts in comparison with other antisense-based techniques. RNAi can be can be achieved by introducing chemically synthesized small interfering RNAs (siRNAs) into a cell system. A more stable knockdown effect can be brought about by the use of plasmid or viral vectors encoding the siRNA. RNAi has been used in reverse genetics to understand the function of specific genes and also as a therapeutic tool in treating human diseases. This review provides a brief insight into the therapeutic applications of RNAi against debilitating diseases.
Collapse
|
15
|
Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. J Control Release 2013; 167:29-39. [PMID: 23298612 DOI: 10.1016/j.jconrel.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
The vaginal tract is a suitable site for the administration of both local and systemic acting drugs. There are numerous vaginal products on the market such as those approved for contraception, treatment of yeast infection, hormonal replacement therapy, and feminine hygiene. Despite the potential in drug delivery, the vagina is a complex and dynamic organ that requires greater understanding. The recent discovery that injections of double stranded RNA (dsRNA) in Caenorhabditis elegans (C. elegans) results in potent gene specific silencing, was a major scientific revolution. This phenomenon known as RNA interference (RNAi), is believed to protect host genome against invasion by mobile genetic elements such as transposons and viruses. Gene silencing or RNAi has opened new potential opportunities to study the function of a gene in an organism. Furthermore, its therapeutic potential is being investigated in the field of sexually transmitted infections such as human immunodeficiency virus (HIV) and other diseases such as age-related macular degeneration (AMD), diabetes, hypercholesterolemia, respiratory disease, and cancer. This review will focus on the therapeutic potential of siRNA for the treatment and/or prevention of infectious diseases such as HIV, HPV, and HSV within the vaginal tract. Specifically, formulation design parameters to improve siRNA stability and therapeutic efficacy in the vaginal tract will be discussed along with challenges, advancements, and future directions of the field.
Collapse
Affiliation(s)
- Sidi Yang
- Faculty of Pharmacy, University of Manitoba, 750 McDermot Ave, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
16
|
Hoque KMA, Azim MF, Mia MR, Kayesh R, Ali MH, Islam MJ, Shakil SK, Shuvra TM. Design of potential siRNA molecules for T antigen gene silencing of Merkel Cell Polyomavirus. Bioinformation 2012; 8:924-30. [PMID: 23144552 PMCID: PMC3488834 DOI: 10.6026/97320630008924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/19/2012] [Indexed: 11/23/2022] Open
Abstract
Merkel cell carcinoma (MCC) is the most aggressive skin cancer. Recently, it was demonstrated that human Merkel cell polyomavirus (MCV) is clonally integrated in 80% of MCC tumors. Genetic studies of MCV have shown that T antigen protein is responsible for replication of genome and play a foremost role in viral infection. Therefore, T antigen protein may be used as suitable target for disease diagnosis. Viral activity can be restrained through RNA interference (RNAi) technology, an influential method for post transcriptional gene silencing in a sequence specific manner. In current study four effective siRNA molecules for silencing of MCV were rationally designed and validated using computational methods, which may lead to knockdown the activity of virus. Thus, this approach may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of MCC at genome level.
Collapse
Affiliation(s)
- Kazi Muhammad Ahasanul Hoque
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Md Faisal Azim
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - M Robin Mia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Rafidin Kayesh
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Md Hazrat Ali
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Md Jahidul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Shahriar Kabir Shakil
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Tonmay Modak Shuvra
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| |
Collapse
|
17
|
Singh S, Gupta SK, Nischal A, Khattri S, Nath R, Pant KK, Seth PK. Design of potential siRNA molecules for hepatitis delta virus gene silencing. Bioinformation 2012; 8:749-57. [PMID: 23055625 PMCID: PMC3449391 DOI: 10.6026/97320630008749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 07/26/2012] [Indexed: 01/07/2023] Open
Abstract
Hepatitis D is a liable reason of mortality and morbidity worldwide. It is caused by an RNA virus known as Hepatitis Delta Virus (HDV). Genetic studies of HDV have shown that delta antigen protein is responsible for replication of genome and play a foremost role in viral infection. Therefore, delta antigen protein may be used as suitable target for disease diagnosis. Viral activity can be restrained through RNA interference (RNAi) technology, an influential method for post transcriptional gene silencing in a sequence specific manner. However, there is a genetic variability in different viral isolates; it is a great challenge to design potential siRNA molecules which can silence the respective target genes rather than any other viral gene simultaneously. In current study two effective siRNA molecules for silencing of HDV were rationally designed and validated using computational methods, which may lead to knockdown the activity of virus. Thus, this approach may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of hepatitis D, at genome level.
Collapse
Affiliation(s)
- Sarita Singh
- Department of Pharmacology & Therapeutics, Chhatrapati Shahuji Maharaj Medical University, Chowk Lucknow-226003, Uttar Pradesh, India
- Bioinformatics Centre, Biotech Park, Sector-G, Jankipuram, Lucknow-226021, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Department of Pharmacology & Therapeutics, Chhatrapati Shahuji Maharaj Medical University, Chowk Lucknow-226003, Uttar Pradesh, India
- Bioinformatics Centre, Biotech Park, Sector-G, Jankipuram, Lucknow-226021, Uttar Pradesh, India
| | - Anuradha Nischal
- Department of Pharmacology & Therapeutics, Chhatrapati Shahuji Maharaj Medical University, Chowk Lucknow-226003, Uttar Pradesh, India
| | - Sanjay Khattri
- Department of Pharmacology & Therapeutics, Chhatrapati Shahuji Maharaj Medical University, Chowk Lucknow-226003, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, Chhatrapati Shahuji Maharaj Medical University, Chowk Lucknow-226003, Uttar Pradesh, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology & Therapeutics, Chhatrapati Shahuji Maharaj Medical University, Chowk Lucknow-226003, Uttar Pradesh, India
| | - Prahlad Kishore Seth
- Bioinformatics Centre, Biotech Park, Sector-G, Jankipuram, Lucknow-226021, Uttar Pradesh, India
| |
Collapse
|
18
|
The effects of CD59 gene as a target gene on breast cancer cells. Cell Immunol 2011; 272:61-70. [PMID: 22000275 DOI: 10.1016/j.cellimm.2011.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/02/2011] [Accepted: 09/19/2011] [Indexed: 01/03/2023]
Abstract
The retroviral-vector-targeted CD59 gene (pSUPER-siCD59) was constructed and transfected into breast cells (MCF-7). The results demonstrated that the retroviral vector-mediated RNAi successfully suppressed human CD59 gene. The expression of CD59 decreased at both mRNA and protein levels. Knockdown of CD59 abrogated its protective effect on complement-mediated cytolysis. Fas and caspase-3 were remarkably upregulated, which induced apoptosis and tumor growth suppression in MCF-7 cells. In addition, overexpression of CD59 promoted the proliferation of MCF-7 cells and inhibited anti-apoptotic Bcl-2 expression. In conclusion, CD59 may be a promising target in the gene therapy of breast cancer.
Collapse
|
19
|
Angaji SA, Hedayati SS, Poor RH, Madani S, Poor SS, Panahi S. Application of RNA interference in treating human diseases. J Genet 2011; 89:527-37. [PMID: 21273705 DOI: 10.1007/s12041-010-0073-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gene silencing can occur either through repression of transcription, termed transcriptional gene silencing (TGS), or through translation repression andmRNA degradation, termed posttranscriptional gene silencing (PTGS). PTGS results from sequence-specific mRNA degradation in the cytoplasm without dramatic changes in transcription of corresponding gene in nucleus. Both TGS and PTGS are used to regulate endogenous genes. Interestingly, mechanisms for gene silencing also protect the genome from transposons and viruses. In this paper, we first review RNAi mechanism and then focus on some of its applications in biomedical research such as treatment for HIV, viral hepatitis, cardiovascular and cerebrovascular diseases, metabolic disease, neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- S Abdolhamid Angaji
- Department of Biology, Tarbiat Moallem University, 31979-37551, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
20
|
Berkhout B, Sanders RW. Molecular strategies to design an escape-proof antiviral therapy. Antiviral Res 2011; 92:7-14. [PMID: 21513746 DOI: 10.1016/j.antiviral.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023]
Abstract
Two antiviral approaches against the human immunodeficiency virus type 1 (HIV-1) were presented at the Antivirals Congress in Amsterdam. The common theme among these two separate therapeutic research lines is the wish to develop a durable therapy that prevents viral escape. We will present a brief overview of these two research lines and focus on our efforts to design an escape-proof anti-HIV therapy. The first topic concerns the class of HIV-1 fusion inhibitors, including the prototype T20 peptide and the improved versions T1249 and T2635, which were all developed by Trimeris-Roche. The selection of T20-resistant HIV-1 strains is a fairly easy evolutionary process that requires a single amino acid substitution in the peptide binding site of the viral envelope glycoprotein (Env) target. The selection of T1249-resistant HIV-1 strains was shown to require a more dramatic amino acid substitution in the viral Env protein, in particular the introduction of charged amino acid residues that cause resistance by charge-repulsion of the antiviral peptide. The third generation peptide T2635 remains active against all these HIV-1 escape variants because the charged residues within this peptide are "masked" by an introduced intra-helical salt bridge. This charge masking concept could facilitate the future design of escape-proof antiviral peptides. The second topic concerns the mechanism of RNA interference (RNAi) that we are currently employing to develop an antiviral gene therapy. One can make human T cells resistant to HIV-1 infection by a stable RNAi-inducing gene transfer, but the virus escapes under therapeutic pressure of a single inhibitor. Several options for a combinatorial RNAi attack to prevent viral escape will be discussed. The simultaneous use of multiple RNAi inhibitors turns out to be the most effective and durable strategy.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
21
|
Haddad R, Kashima S, Rodrigues ES, Azevedo R, Palma PVB, de Magalhães DAR, Zago MA, Covas DT. Silencing of HTLV-1 gag and env genes by small interfering RNAs in HEK 293 cells. J Virol Methods 2011; 173:92-8. [PMID: 21277903 PMCID: PMC7112899 DOI: 10.1016/j.jviromet.2011.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/02/2010] [Accepted: 01/17/2011] [Indexed: 01/09/2023]
Abstract
Since the discovery of RNAi technology, several functional genomic and disease therapy studies have been conducted using this technique in the field of oncology and virology. RNAi-based antiviral therapies are being studied for the treatment of retroviruses such as HIV-1. These studies include the silencing of regulatory, infectivity and structural genes. The HTLV-1 structural genes are responsible for the synthesis of proteins involved in the entry, assembly and release of particles during viral infection. To examine the possibility of silencing HTLV-1 genes gag and env by RNA interference technology, these genes were cloned into reporter plasmids. These vectors expressed the target mRNAs fused to EGFP reporter genes. Three small interference RNAs (siRNAs) corresponding to gag and three corresponding to env were designed to analyze the effect of silencing by RNAi technology. The plasmids and siRNAs were co-transfected into HEK 293 cells. The results demonstrated that the expression of the HTLV-1 gag and env genes decreased significantly in vitro. Thus, siRNAs can be used to inhibit HTLV-1 structural genes in transformed cells, which could provide a tool for clarifying the roles of HTLV-1 structural genes, as well as a therapy for this infection.
Collapse
Affiliation(s)
- Rodrigo Haddad
- Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Toward a durable treatment of HIV-1 infection using RNA interference. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:141-63. [PMID: 21846571 DOI: 10.1016/b978-0-12-415795-8.00001-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that mediates sequence-specific gene silencing at the posttranscriptional level. RNAi can be used as an antiviral approach against human pathogens. An attractive target for RNAi therapeutics is the human immunodeficiency virus type 1 (HIV-1), and the first clinical trial using a lentiviral gene therapy was initiated in early 2008. In this chapter, we focus on some basic principles of such an RNAi-based gene therapy against HIV-1. This includes the subjects of target site selection within the viral RNA genome, the phenomenon of viral escape, and therapeutic strategies to prevent viral escape. The latter antiescape strategies include diverse combinatorial RNAi approaches that are all directed against the HIV-1 RNA genome. As an alternative strategy, we also discuss the possibilities and restrictions of targeting cellular cofactors that are essential for virus replication, but less important for cell physiology.
Collapse
|
23
|
Cheng X, Jian R. Construction and application of random dsRNA interference library for functional genetic screens in embryonic stem cells. Methods Mol Biol 2010; 650:65-74. [PMID: 20686943 DOI: 10.1007/978-1-60761-769-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
RNA interference (RNAi) libraries have been proven to be a powerful tool for large-scale functional genetic screens. To facilitate high-throughput functional genetic screens in embryonic stem cells, a system for construction of random dsRNA expressing RNAi libraries was developed. Previous studies have demonstrated that sequence-specific gene silencing could be induced by long dsRNA in mouse embryos, mouse oocytes, embryonic stem cells, and some other mammalian cells. Our study demonstrated that the dsRNA interference library can be used for functional genetic screens of genes involved in self-renewal of embryonic stem cells (ES cells). The random RNAi library is easy to construct and provides a useful tool for investigation of molecular mechanisms of cellular development and differentiation.
Collapse
Affiliation(s)
- Xiaoxing Cheng
- Division of Research, Beijing 309 Hospital, 17 Heishanhu Street, Haidian, Beijing 100091, China
| | | |
Collapse
|
24
|
Singh SK, Gaur RK. Progress towards Therapeutic Application of RNA Interference for HIV Infection. BioDrugs 2009; 23:269-76. [DOI: 10.2165/11317120-000000000-00000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009; 61:721-31. [PMID: 19328215 DOI: 10.1016/j.addr.2009.03.003] [Citation(s) in RCA: 352] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/10/2009] [Indexed: 01/13/2023]
Abstract
RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories-kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review.
Collapse
|
26
|
Von Eije KJ, Berkhout B. RNA-interference-based Gene Therapy Approaches to HIV Type-1 Treatment: Tackling the Hurdles from Bench to Bedside. ACTA ACUST UNITED AC 2009; 19:221-33. [DOI: 10.1177/095632020901900602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs (siRNAs) to mediate sequence-specific gene silencing by cleavage of the targeted messenger RNA. RNAi can be used as an antiviral approach to silence HIV type-1 (HIV-1) through stable expression of precursors, such as short hairpin RNAs (shRNAs), which are processed into siRNAs that can elicit degradation of HIV-1 RNAs. At the beginning of 2008, the first clinical trial using a lentivirus with an RNA-based gene therapy against HIV-1 was initiated. The antiviral molecules in this gene therapy consist of three RNA effectors, one of which triggers the RNAi pathway. This review article focuses on the basic principles of an RNAi-based gene therapy against HIV-1, including delivery methods, target selection, viral escape possibilities, systems for multiplexing siRNAs to achieve a durable therapy and the in vitro and in vivo test systems to evaluate the efficacy and safety of such a therapy.
Collapse
Affiliation(s)
- Karin J Von Eije
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Abstract
Therapeutic options against the human immunodeficiency virus type 1 (HIV-1) continue to expand with the development of new drugs and new therapeutic strategies. Nevertheless, management of HIV-1 infected individuals has become increasingly complex. The emergence of drug-resistant variants, the growing recognition of the long-term toxicity of antiretroviral therapies and the persistence of viral reservoirs justify the continued efforts to develop new anti-HIV-1 strategies. Recent advances regarding the utility of RNA-mediated interference (RNAi) to specifically inhibit HIV-1 replication have opened new possibilities for the development of gene-based therapies against HIV-1 infection. Here, the recent advances in siRNA-based therapies are reviewed.
Collapse
|
28
|
Pengyan W, Yan R, Zhiru G, Chuangfu C. Inhibition of foot-and-mouth disease virus replication in vitro and in vivo by small interfering RNA. Virol J 2008; 5:86. [PMID: 18652701 PMCID: PMC2515107 DOI: 10.1186/1743-422x-5-86] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/25/2008] [Indexed: 01/12/2023] Open
Abstract
By using bioinformatics computer programs, all foot-and-mouth disease virus (FMDV) genome sequences in public-domain databases were analyzed. Based on the results of homology analysis, 2 specific small interfering RNA (siRNA) targeting homogenous 3D and 2B1 regions of 7 serotypes of FMDV were prepared and 2 siRNA-expression vectors, pSi-FMD2 and pSi-FMD3, were constructed. The siRNA-expressing vectors were used to test the ability of siRNAs to inhibit virus replication in baby hamster kidney (BHK-21) cells and suckling mice, a commonly used small animal model. The results demonstrated that transfection of BHK-21 cells with siRNA-expressing plasmids significantly weakened the cytopathic effect (CPE). Moreover, BHK-21 cells transiently transfected with short hairpin RNA (shRNA)-expressing plasmids were specifically resistant to the infection of the FMDV serotypes A, O, and Asia I and this the antiviral effects persisted for almost 48 hours. We measured the viral titers, the 50% tissue culture infective dose (TCID50) in cells transfected with anti-FMDV siRNAs was found to be lower than that of the control cells. Furthermore, subcutaneous injection of siRNA-expressing plasmids in the neck of the suckling mice made them less susceptible to infection with O, and Asia I serotypes of FMDV.
Collapse
Affiliation(s)
- Wang Pengyan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | | | | | | |
Collapse
|
29
|
Saayman S, Barichievy S, Capovilla A, Morris KV, Arbuthnot P, Weinberg MS. The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-expressed long hairpin RNA. PLoS One 2008; 3:e2602. [PMID: 18596982 PMCID: PMC2434202 DOI: 10.1371/journal.pone.0002602] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 06/06/2008] [Indexed: 11/24/2022] Open
Abstract
RNA Interference (RNAi) effectors have been used to inhibit rogue RNAs in mammalian cells. However, rapidly evolving sequences such as the human immunodeficiency virus type 1 (HIV-1) require multiple targeting approaches to prevent the emergence of escape variants. Expressed long hairpin RNAs (lhRNAs) have recently been used as a strategy to produce multiple short interfering RNAs (siRNAs) targeted to highly variant sequences. We aimed to characterize the ability of expressed lhRNAs to generate independent siRNAs that silence three non-contiguous HIV-1 sites by designing lhRNAs comprising different combinations of siRNA-encoding sequences. All lhRNAs were capable of silencing individual target sequences. However, silencing efficiency together with concentrations of individual lhRNA-derived siRNAs diminished from the stem base (first position) towards the loop side of the hairpin. Silencing efficacy against HIV-1 was primarily mediated by siRNA sequences located at the base of the stem. Improvements could be made to first and second position siRNAs by adjusting spacing arrangements at their junction, but silencing of third position siRNAs remained largely ineffective. Although lhRNAs offer advantages for combinatorial RNAi, we show that good silencing efficacy across the span of the lhRNA duplex is difficult to achieve with sequences that encode more than two adjacent independent siRNAs.
Collapse
Affiliation(s)
- Sheena Saayman
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Samantha Barichievy
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Alexio Capovilla
- HIV Pathogenesis Lab, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Kevin V. Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrick Arbuthnot
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Marc S. Weinberg
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
30
|
Mahmood-ur-Rahman, Ali I, Husnain T, Riazuddin S. RNA interference: The story of gene silencing in plants and humans. Biotechnol Adv 2008; 26:202-9. [DOI: 10.1016/j.biotechadv.2007.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/22/2007] [Accepted: 12/04/2007] [Indexed: 01/27/2023]
|
31
|
Singh SK. RNA interference and its therapeutic potential against HIV infection. Expert Opin Biol Ther 2008; 8:449-61. [PMID: 18352849 DOI: 10.1517/14712598.8.4.449] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND HIV-1 infection is the major cause of AIDS. RNA interference (RNAi) has great potential to work as a powerful tool against HIV infection. Therefore, the possibilities of use of siRNA (small-interfering RNA) as a tool to deal with HIV infection are discussed in this article. OBJECTIVE Highly active anti retroviral therapy (HAART) has been successful in reducing the rate of progression to AIDS, but HIV utilizes various tricks to escape from the inhibitory effect of HAART. Therefore, new tools are required to delay progression of infection or block the replication cycle of HIV. METHODS This article has been written on the basis of informations available in the form of published literature in various journals. CONCLUSION RNAi is a very promising strategy that in principle will provide many new targets against HIV infection. The mechanism of sequence complementarity utilized by siRNAs against their targets provides a new approach to fight against HIV infection. However, this technology still needs many fine refinements before its potential for HIV treatment strategies can be utilized. This review discusses the possibilities of using siRNA as a therapeutic tool for HIV treatment.
Collapse
Affiliation(s)
- Sunit K Singh
- Centre for Cellular and Molecular Biology, Section of Infectious Diseases & Immunobiology, Room No: S107, South Wing (Ground Floor), Uppal Road, Hyderabad-500007, AP, India.
| |
Collapse
|
32
|
Shrivastava N, Srivastava A. RNA interference: an emerging generation of biologicals. Biotechnol J 2008; 3:339-53. [PMID: 18320564 PMCID: PMC7161898 DOI: 10.1002/biot.200700215] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double‐stranded RNA molecules. RNAi has now been demonstrated to function in mammalian cells to alter gene expression, and has been used as a means for genetic discovery as well as a possible strategy for genetic correction. RNAi was first described in animal cells by Fire and colleagues in the nematode, Caenorhabditis elegans. Knowledge of RNAi mechanism in mammalian cell in 2001 brought a storm in the field of drug discovery. During the past few years scientists all over the world are focusing on exploiting the therapeutic potential of RNAi for identifying a new class of therapeutics. The applications of RNAi in medicine are unlimited because all cells possess RNAi machinery and hence all genes can be potential targets for therapy. RNAi can be developed as an endogenous host defense mechanism against many infections and diseases. Several studies have demonstrated therapeutic benefits of small interfering RNAs and micro RNAs in animal models. This has led to the rapid advancement of the technique from research discovery to clinical trials.
Collapse
Affiliation(s)
- Neeta Shrivastava
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.
| | | |
Collapse
|
33
|
Barichievy S, Saayman S, von Eije KJ, Morris KV, Arbuthnot P, Weinberg MS. The inhibitory efficacy of RNA POL III-expressed long hairpin RNAs targeted to untranslated regions of the HIV-1 5' long terminal repeat. Oligonucleotides 2008; 17:419-31. [PMID: 17896874 DOI: 10.1089/oli.2007.0095] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a lentivirus that causes persistent infection resulting in the demise of immune regulatory cells, and ensuing diseases associated with acquired immune deficiency syndrome (AIDS). Although current therapeutic modalities have had a significant impact on mortality rates, novel therapies are constantly needed to prevent the emergence of resistant viral variants that escape the effects of antivirals. RNA Interference (RNAi) is a promising therapeutic modality for the inhibition of HIV-1 RNAs. Traditionally, RNAi effector sequences include expressed short hairpin RNAs (shRNAs) or short interfering RNAs (siRNAs). Recently, expressed long hairpin RNAs (lhRNAs) have been used with the aim of generating multiple independent siRNAs, which simultaneously target different susceptible sites on HIV-1. Here, modified lhRNAs expressed from U6 RNA Pol III promoters were targeted to sites within the first transcribed sequences of the HIV-1 5' long terminal repeat (LTR) region. Both Tat-dependent and independent suppressive efficacy was demonstrated against subtype B and C reporter sequences; however, lhRNAs complementary to the TAR stem-loop were refractory to silencing. None of the lhRNAs induced an unwanted interferon response as measured by interferon beta levels. Silencing by the lhRNAs was not equal across the extent of its cognate sequence, with the greatest efficacy observed for sequences located at the base of the stem. Nevertheless, direct antireplicative activity was seen when targeting lhRNAs to a subtype B HIV clone pNL4-3 Luc and a subtype C wild-type HIV-1 strain, FV5. These data highlight distinct target loci within the 5' LTR of HIV-1 that are susceptible to lhRNA targeting, and may prove to have an important advantage over other RNAi target sites within HIV-1. Although lhRNAs themselves require further manipulation to improve their overall efficacy in generating multiple functioning siRNAs, they may prove useful in any combinatorial-based approach to treating HIV-1 infection.
Collapse
Affiliation(s)
- Samantha Barichievy
- Antiviral Gene Therapy Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.
Collapse
Affiliation(s)
- Yan Ma
- Stanley Ho Centre for Emerging Infectious Diseases, and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | |
Collapse
|
35
|
Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007; 59:75-86. [PMID: 17449137 PMCID: PMC1978219 DOI: 10.1016/j.addr.2007.03.005] [Citation(s) in RCA: 626] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 03/04/2007] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) was discovered less than a decade ago and already there are human clinical trials in progress or planned. A major advantage of RNAi versus other antisense based approaches for therapeutic applications is that it utilizes cellular machinery that efficiently allows targeting of complementary transcripts, often resulting in highly potent down-regulation of gene expression. Despite the excitement about this remarkable biological process for sequence specific gene regulation, there are a number of hurdles and concerns that must be overcome prior to making RNAi a real therapeutic modality, which include off-target effects, triggering of type I interferon responses, and effective delivery in vivo. This review discusses mechanistic aspects of RNAi, the potential problem areas and solutions and therapeutic applications. It is anticipated that RNAi will be a major therapeutic modality within the next several years, and clearly warrants intense investigation to fully understand the mechanisms involved.
Collapse
Affiliation(s)
- Lars Aagaard
- Division of Molecular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
36
|
Jian R, Cheng X, Jiang J, Deng S, Hu F, Zhang J. A cDNA-based random RNA interference library for functional genetic screens in embryonic stem cells. Stem Cells 2007; 25:1904-12. [PMID: 17379769 DOI: 10.1634/stemcells.2006-0448] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To facilitate high-throughput functional genetic screens in embryonic stem cells, a simple and efficient system to construct cDNA-based random RNA interference (RNAi) library was developed in the study. Previous studies have demonstrated that sequence-specific gene silencing could be induced by long double-stranded RNA (dsRNA) in mouse embryos, mouse oocytes, embryonic stem cells, and other mammalian cells. Based on these findings, a dsRNA-expressing RNAi vector system was designed. This study provided evidence that the vector design could induce efficient knockdown of expression of both exogenous egfp gene and endogenous MTM1 gene in mouse embryonic stem cells. A random RNAi library was established by cloning enzyme-digested cDNA of mouse embryonic stem (ES) cells into the BamHI site of the convergent dual promoter RNAi vector. Sequencing of 20 randomly selected clones from the library showed that 17 contained inserts and that all of them were unique sequences. A functional genetic screen of genes involving in self-renewal and differentiation with the random RNAi library identified ubiquitin. The ubiquitin knockdown ES cell line generated 20%-30% of undifferentiated colonies in the absence of leukemia inhibitor factor, whereas parental ES cells and control vector pDCont transfectants produced less than 5% of colonies of undifferentiated cells, suggesting that ubiquitin plays a role in ES cell differentiation. The random RNAi library provides a useful tool for investigation of molecular mechanisms of cellular development and differentiation.
Collapse
Affiliation(s)
- Rui Jian
- Laboratory of Infection Immunity, Department of Microbiology, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Konstantinova P, ter Brake O, Haasnoot J, de Haan P, Berkhout B. Trans-inhibition of HIV-1 by a long hairpin RNA expressed within the viral genome. Retrovirology 2007; 4:15. [PMID: 17331227 PMCID: PMC1819390 DOI: 10.1186/1742-4690-4-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 03/01/2007] [Indexed: 11/24/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) can be inhibited by means of RNA silencing or interference (RNAi) using synthetic short interfering RNAs (siRNAs) or gene constructs encoding short hairpin RNAs (shRNAs) or long hairpin RNAs (lhRNAs). The use of siRNA and shRNA as antiviral therapeutic is limited because of the emergence of viral escape mutants. This problem is theoretically prevented by intracellular expression of lhRNAs generating multiple siRNAs that target the virus simultaneously, thus reducing the chance of viral escape. However, gene constructs encoding lhRNA molecules face problems with delivery to the right cells in an infected individual. In order to solve this problem, we constructed an HIV-1 variant with a 300 bp long hairpin structure in the 3' part of the genome corresponding to the Nef gene (HIV-lhNef). Results Intriguingly, HIV-lhNef potently inhibited wild-type HIV-1 production in trans. However, HIV-lhNef demonstrated a severe production and replication defect, which we were able to solve by selecting spontaneous virus variants with truncated hairpin structures. Although these escape variants lost the ability to trans-inhibit HIV-1, they effectively outgrew the wild-type virus in competition experiments in SupT1 cells. Conclusion Expression of the lhNef hairpin within the HIV-1 genome results in potent trans-inhibition of wild-type HIV-1. Although the mechanism of trans-inhibition is currently unknown, it remains of interest to study the molecular details because the observed effect is extremely potent. This may have implications for the development of virus strains to be used as live-attenuated virus vaccines.
Collapse
Affiliation(s)
- Pavlina Konstantinova
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Olivier ter Brake
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Joost Haasnoot
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Peter de Haan
- Viruvation B. V. Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
38
|
Hayafune M, Miyano-Kurosaki N, Park WS, Moori Y, Takaku H. Silencing of HIV-1 gene expression by two types of siRNA expression systems. Antivir Chem Chemother 2007; 17:241-9. [PMID: 17176628 DOI: 10.1177/095632020601700501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The RNA interference (RNAi) phenomenon is a recently discovered process in which the introduction of a double-stranded RNA (dsRNA) into cells causes the specific degradation of mRNA containing the same sequence. We designed mammalian expression vectors that direct the synthesis of small interfering RNA (siRNA)-like transcripts and examined them for their siRNA-mediated gene interference targeting the env gene (NL4-3:7490-7508, E7490). We constructed siRNA expression vectors for two different strands (sense and antisense; tandem promoter) and for siRNA expressed from the short hairpin RNA (shRNA). The inhibition efficacy on HIV-1 replication differed between these two vectors. Notably, the shRNA vector pU6-env-shRNA inhibited p24 production more effectively than the tandem promoter expression vector pU6-env-siRNA. Furthermore, we examined the ability of lentiviral vectors expressing shRNA to suppress HIV-1 expression in HIV-1-infected SupT1 cells. The env-shRNA (E 7490) almost completely suppressed HIV-1 expression in infected cells for up to 15 days.
Collapse
Affiliation(s)
- Masaaki Hayafune
- Department of Life and Environmental Science, Chiba Institute of Technology, Narashino-shi, Chiba, Japan
| | | | | | | | | |
Collapse
|
39
|
Ikeda M, Habu Y, Miyano-Kurosaki N, Takaku H. Suppression of HIV-1 replication by a combination of endonucleolytic ribozymes (RNase P and tRNnase ZL). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:427-37. [PMID: 16838836 DOI: 10.1080/01457630600684120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We examined the combinatorial action of RNase P and tRNase ZL-mediated specific inhibition of HIV-1 in cultured cells. We designed two short extra guide sequences (sEGS) that specifically recognize the tat and vifregions of HIV-1 mRNA and mediate the subsequent cleavage of hybridized mRNA by the RNase P and tRNase ZL components. We constructed an RNase P and tRNase ZL-associated vif and tat sEGS expression vector; which used the RNA-polymerase III dependent U6 promoter, as an expression cassette for EGS. Together, the RNase P and tRNase ZL-associated sEGS molecules allow more efficient suppression of HIV-1 mRNA production when separately applied. The possibilities offered by the vector to encode sEGS will provide a powerful tool for gene therapy.
Collapse
Affiliation(s)
- Masahiro Ikeda
- Department of Life and Environmental Science, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba, Japan
| | | | | | | |
Collapse
|
40
|
Zhao ZF, Yang H, Han DW, Zhao LF, Zhang GY, Zhang Y, Liu MS. Inhibition of hepatitis B virus expression and replication by RNA interference in HepG2.2.15. World J Gastroenterol 2006; 12:6046-9. [PMID: 17009407 PMCID: PMC4124416 DOI: 10.3748/wjg.v12.i37.6046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesil-HBV X targeting HBV X gene region into HepG2.2.15 cells.
METHODS: pGenesil-HBV X was constructed and transfected into HepG2.2.15 cells via lipofection. HBV antigen secretion was determined 24, 48, and 72 h after transfection by time-resolved immunofluorometric assays (TRFIA). HBV replication was examined by fluorescence quantitative PCR, and the expression of cytoplasmic viral proteins was determined by immunohistochemistry.
RESULTS: The secretion of HBsAg and HBeAg into the supernatant was found to be inhibited by 28.5% and 32.2% (P < 0.01), and by 38.67% (P < 0.05) and 42.86% (P < 0.01) at 48 h and 72 h after pGenesil-HBV X transfection, respectively. Immunohistochemical staining for cytoplasmic HBsAg showed a similar decline in HepG2.2.15 cells 48 h after transfection. The number of HBV genomes within culture supernatants was also significantly decreased 48 h and 72 h post-transfection as quantified by fluorescence PCR (P < 0.05).
CONCLUSION: In HepG2.2.15 cells, HBV replication and expression is inhibited by vector-based siRNA pGenesil-HBV X targeting the HBV X coding region.
Collapse
Affiliation(s)
- Zhong-Fu Zhao
- Institute of Hepatology, Changzhi Medical College, Changzhi 046000, Shanxi Province, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Silencing gene expression through a process known as RNA interference (RNAi) has been known in the plant world for many years. In recent years, knowledge of the prevalence of RNAi and the mechanism of gene silencing through RNAi has started to unfold. It is now believed that RNAi serves in part as an innate response against invading viral pathogens and, indeed, counter silencing mechanisms aimed at neutralizing RNAi have been found in various viral pathogens. During the past few years, it has been demonstrated that RNAi, induced by specifically designed double‐stranded RNA (dsRNA) molecules, can silence gene expression of human viral pathogens both in acute and chronic viral infections. Furthermore, it is now apparent that in in vitro and in some in vivo models, the prospects for this technology in developing therapeutic applications are robust. However, many key questions and obstacles in the translation of RNAi into a potential therapeutic platform still remain, including the specificity and longevity of the silencing effect, and, most importantly, the delivery of the dsRNA that induces the system. It is expected that for the specific examples in which the delivery issue could be circumvented or resolved, RNAi may hold promise for the development of gene‐specific therapeutics. Copyright © 2006 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mali Ketzinel‐Gilad
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
42
|
Hayafune M, Miyano-Kurosaki N, Takaku H, Park WS. Silencing of HIV-1 gene expression by siRNAs in transduced cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:795-9. [PMID: 16898417 DOI: 10.1080/15257770600726083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RNA interference (RNAi) phenomenon is a recently observed process in which the introduction of a double-stranded RNA (dsRNA) into cells causes the specific degradation of an mRNA containing the same sequence. To study dsRNA-mediated gene interference targeted to the env gene (NL4-3: 7490-7508) in HIV-1 infected cells, we constructed tandem-type and hairpin-type siRNA expression vectors, which were under the control of two U6 promoters. We also constructed lentiviral-based siRNA expression vectors for further assessment of their antiviral activity in transduced cells. At both the transient plasmid and lentiviral-mediated RNA expression levels, the siRNA encoding the env fragment exhibited sequence-specific suppression of target gene expression and strongly inhibited (> or = 90%) HIV-1 infection in the cells, as compared to the antisense RNA expression vector. Targeting the HIV-1 env gene with siRNAs encoding the env gene fragment (7490-7508) might be an effective strategy for gene therapy applications in HIV-1/AIDS treatment and management.
Collapse
Affiliation(s)
- Masaaki Hayafune
- Department of Life and Environmental Science, Chiba Institute of Technology, Narashino-shi, Chiba, Japan
| | | | | | | |
Collapse
|
43
|
Hamazaki H, Takahashi H, Shimotohno K, Miyano-Kurosaki N, Takaku H. Inhibition of hcv replication in HCV replicon by shRNAs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:801-5. [PMID: 16898418 DOI: 10.1080/15257770600726091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We show that the vector-derived long dsRNA specifically inhibits the replication of HCV RNA in HCV replicon. We designed a long dsRNA targeted to the full-length HCV IRES/core elements (1-to 377-nt). Our results revealed that the replication of HCV RNA was reduced to near background levels in a sequence-specific manner by the long dsRNAs in the HCV replicon. We also designed four shRNAs against several regions (120- to 139-nt, 260- to 279-nt, 330- to 349-nt, and 340- to 359-nt) of the HCV IRES/Core elements. The two HCV IRES/core-specific shRNAs, 330- to 349-nt and 340- to 359-nt, containing the AUG initiation codon sequence showed stronger HCV inhibitory effects than the other two shRNAs, 120- to 139-nt and 260- to 279-nt.
Collapse
Affiliation(s)
- Hiroyuki Hamazaki
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Chiba, Japan
| | | | | | | | | |
Collapse
|
44
|
Kim M, Shin D, Kim SI, Park M. Inhibition of hepatitis C virus gene expression by small interfering RNAs using a tri-cistronic full-length viral replicon and a transient mouse model. Virus Res 2006; 122:1-10. [PMID: 16979254 DOI: 10.1016/j.virusres.2006.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 05/09/2006] [Accepted: 05/19/2006] [Indexed: 12/27/2022]
Abstract
HCV is an ideal target for siRNA as its genome, a single-stranded RNA, is translated into a single viral polyprotein and replicated into negative-stranded RNA. In the present study, we monitored the effects of 36 different small interfering RNAs (siRNAs) transcribed from a plasmid-derived expression system on the luciferase activities expressed from a full-length HCV replicon, to identify potent siRNA target sites. Delivery of nine selected siRNA expression vectors into human hepatoma cells (Huh7) carrying a genomic HCV replicon resulted in a significant reduction in viral protein and RNA levels. Moreover, synthetic siRNAs directed to target sites (core, NS3, NS4A and NS4B coding regions) in the HCV genome efficiently suppressed viral replication in a dose-dependent manner. A transient mouse model system expressing viral structural proteins in the liver was constructed using the hydrodynamic transfection method to confirm in vivo anti-HCV activity of the selected siRNAs. A 21-nucleotide siRNA, which can hybridize to the HCV core coding region with a single G-U base pair, suppressed weakly transgene expression in mice. However, this anti-viral effect was enhanced upon substitution with a 27-mer duplex RNA. Our results will provide useful information about designing potent siRNAs against variable target sites.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacology
- Blotting, Western
- Carrier Proteins/genetics
- Cell Line, Tumor
- Disease Models, Animal
- Gene Expression Regulation, Viral
- Genes, Reporter
- Genes, Viral
- Genetic Vectors
- Hepacivirus/genetics
- Hepacivirus/growth & development
- Humans
- Intracellular Signaling Peptides and Proteins
- Luciferases/biosynthesis
- Luciferases/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Plasmids
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- RNA, Viral/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Viral Nonstructural Proteins/genetics
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Meehyein Kim
- Immunology and Virology group, Mogam Biotechnology Research Institute, 341 Pojung-ri, Guseong-eup, Yongin-city, Kyonggi-do 449-913, South Korea
| | | | | | | |
Collapse
|
45
|
Liu X, Cao S, Zhou R, Xu G, Xiao S, Yang Y, Sun M, Li Y, Chen H. Inhibition of Japanese Encephalitis Virus NS1 Protein Expression in Cell by Small Interfering RNAs. Virus Genes 2006; 33:69-75. [PMID: 16791421 DOI: 10.1007/s11262-005-0039-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 10/31/2005] [Indexed: 12/31/2022]
Abstract
Japanese encephalitis virus (JEV), a serious mosquitoborne flavivirus, causes an acute infection of the central system resulting in encephalitis of humans and many kinds of animals. A high proportion of the survivors exhibit neurogical and psychiatric sequelae. NS1 is one of important non-structural proteins, which was found to be associated with viral RNA replication. To inhibit NS1 expression, four small interfering RNAs (siRNAs) expression plasmids (pS-NS1A, pS-NS1B, pS-NS1C and pS-NS1D) were generated to target four different coding regions of the NS1 gene, and were separately co-transfected into Vero cells with an NS1-EGFP fusion expression plasmid pNS1-EGFP. NS1 expression was evaluated by fluorescence microscope, flow cytometry assay, Western blot and RT-PCR. The results revealed that pS-NS1B, pS-NS1C and pS-NS1D could effectively and specifically inhibit NS1 expression in Vero cells. Our data suggested that these siRNAs could be used to inhibit JEV replication by silencing NS1 protein expression in further study.
Collapse
Affiliation(s)
- Xueqin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Konstantinova P, de Vries W, Haasnoot J, ter Brake O, de Haan P, Berkhout B. Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA. Gene Ther 2006; 13:1403-13. [PMID: 16708080 PMCID: PMC7091653 DOI: 10.1038/sj.gt.3302786] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inhibition of virus replication by means of RNA interference has been reported for several important human pathogens, including human immunodeficiency virus type 1 (HIV-1). RNA interference against these pathogens has been accomplished by introduction of virus-specific synthetic small interfering RNAs (siRNAs) or DNA constructs encoding short-hairpin RNAs (shRNAs). Their use as therapeutic antiviral against HIV-1 is limited, because of the emergence of viral escape mutants. In order to solve this durability problem, we tested DNA constructs encoding virus-specific long-hairpin RNAs (lhRNAs) for their ability to inhibit HIV-1 production. Expression of lhRNAs in mammalian cells may result in the synthesis of many siRNAs targeting different viral sequences, thus providing more potent inhibition and reducing the chance of viral escape. The lhRNA constructs were compared with in vitro diced double-stranded RNA and a DNA construct encoding an effective nef-specific shRNA for their ability to inhibit HIV-1 production in cells. Our results show that DNA constructs encoding virus-specific lhRNAs are capable of inhibiting HIV-1 production in a sequence-specific manner, without inducing the class I interferon genes.
Collapse
Affiliation(s)
- P Konstantinova
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - W de Vries
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Viruvation BV Wassenaarseweg 72, Leiden, The Netherlands
| | - J Haasnoot
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - O ter Brake
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - P de Haan
- Viruvation BV Wassenaarseweg 72, Leiden, The Netherlands
| | - B Berkhout
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more than just a response to exogenous genetic material. Small RNAs termed microRNA (miRNA) regulate cellular gene expression programs to control diverse steps in cell development and physiology. The discovery that exogenously delivered short interfering RNA (siRNA) can trigger RNAi in mammalian cells has made it into a powerful technique for generating genetic knock-outs. It also raises the possibility to use RNAi technology as a therapeutic tool against pathogenic viruses. Indeed, inhibition of virus replication has been reported for several human pathogens including human immunodeficiency virus, the hepatitis B and C viruses and influenza virus. We reviewed the field of antiviral RNAi research in 2003 (Haasnoot et al. 2003), but many new studies have recently been published. In this review, we present a complete listing of all antiviral strategies published up to and including December 2004. The latest developments in the RNAi field and their antiviral application are described.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
49
|
Karagiannis TC, El-Osta A. RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther 2006; 12:787-95. [PMID: 15891770 DOI: 10.1038/sj.cgt.7700857] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA interference is an endogenous gene-silencing mechanism that involves double-stranded RNA-mediated sequence-specific mRNA degradation. The discovery of this pathway together with the elucidation of the structure and function of short interfering RNAs--the effector molecules of RNA interference--has had an enormous impact on experimental biology. RNA interference technologies are currently the most widely utilized techniques in functional genomic studies. Furthermore, there is an intense research effort aimed at developing short interfering RNAs for therapeutic purposes. A number of proof-of-principle experiments have demonstrated the clinical potential of appropriately designed short interfering RNAs in various diseases including viral infections, cancer and neurodegenerative disorders. Already, in such a short time from their discovery, Acuity Pharmaceuticals (August 2004) and Sirna Therapeutics (September 2004) have filed Investigational New Drug applications with the US FDA to begin clinical trials with modified siRNA molecules in patients with age-related macular degeneration. This review will give a brief overview of the mechanism of RNA interference and applications of the pathway in experimental biology will be discussed. The article will focus on recent developments related to the use of RNA interference technologies in mammalian systems and on potential clinical applications of short interfering RNA-mediated RNA interference.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Molecular Radiation Biology, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | |
Collapse
|
50
|
Berkhout B, Haasnoot J. The interplay between virus infection and the cellular RNA interference machinery. FEBS Lett 2006; 580:2896-902. [PMID: 16563388 PMCID: PMC7094296 DOI: 10.1016/j.febslet.2006.02.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 02/25/2006] [Indexed: 12/04/2022]
Abstract
RNA interference (RNAi) plays a pivotal role in the regulation of gene expression to control cell development and differentiation. In plants, insects and nematodes RNAi also functions as an innate defence response against viruses. Similarly, there is accumulating evidence that RNAi functions as an antiviral defence mechanism in mammalian cells. Viruses have evolved highly sophisticated mechanisms for interacting with the host cell machinery, and recent evidence indicates that this also involves RNAi pathways. The cellular RNAi machinery can inhibit virus replication, but viruses may also exploit the RNAi machinery for their own replication. In addition, viruses can encode proteins or RNA molecules that suppress existing RNAi pathways or trigger the silencing of specific host genes. Besides the natural interplay between RNAi and viruses, induced RNAi provides an attractive therapy approach for the fight against human pathogenic viruses. Here, we summarize the latest news on virus–RNAi interactions and RNAi based antiviral therapy.
Collapse
Affiliation(s)
- Ben Berkhout
- Department of Human Retrovirology, K3-110, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | | |
Collapse
|