1
|
Delamotte P, Montagne J. Dietary Lipids and Their Metabolism in the Midgut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39565560 DOI: 10.1007/5584_2024_835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Animals use dietary lipids to sustain their growth and survival. Insects can synthesize fatty acids (FAs) and are autotroph for a number of lipids, but auxotroph for specific lipids classes (e.g. sterols, polyunsaturated FAs). Once ingested, lipids are hydrolysed in the intestinal lumen and taken up into intestinal cells within specific regions of the insect digestive tract. These lipids can be either stored in the intestinal cells or exported through the haemolymph circulation to specific organs. In this chapter, we describe the various lipids provided by insect diets, their extracellular hydrolysis in the gut lumen and their intake and metabolic fate in the intestinal cells. This chapter emphasizes the critical role of the digestive tract and its regionalization in processing dietary lipids prior to their transfer to the requiring tissues.
Collapse
Affiliation(s)
- Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Ferveur JF, Cortot J, Moussian B, Everaerts C. Population Density Affects Drosophila Male Pheromones in Laboratory-Acclimated and Natural Lines. J Chem Ecol 2024; 50:536-548. [PMID: 39186176 DOI: 10.1007/s10886-024-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
In large groups of vertebrates and invertebrates, aggregation can affect biological characters such as gene expression, physiological, immunological and behavioral responses. The insect cuticle is covered with hydrocarbons (cuticular hydrocarbons; CHCs) which reduce dehydration and increase protection against xenobiotics. Drosophila melanogaster and D. simulans flies also use some of their CHCs as contact pheromones. In these two sibling species, males also produce the volatile pheromone 11-cis-Vaccenyl acetate (cVa). To investigate the effect of insect density on the production of CHCs and cVa we compared the level of these male pheromones in groups of different sizes. These compounds were measured in six lines acclimated for many generations in our laboratory - four wild-type and one CHC mutant D. melanogaster lines plus one D. simulans line. Increasing the group size substantially changed pheromone amounts only in the four D. melanogaster wild-type lines. To evaluate the role of laboratory acclimation in this effect, we measured density-dependent pheromonal production in 21 lines caught in nature after 1, 12 and 25 generations in the laboratory. These lines showed varied effects which rarely persisted across generations. Although increasing group size often affected pheromone production in laboratory-established and freshly-caught D. melanogaster lines, this effect was not linear, suggesting complex determinants.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France.
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| |
Collapse
|
3
|
Park JS, Kim J, Kim Y, Kim KH, Kwak W, Kim I. Whole Genome Sequences of Cryptotympana atrata Fabricius, 1775 (Hemiptera: Cicadidae) in the Korean Peninsula: Insights into Population Structure with Novel Pathogenic Or Symbiotic Candidates. Curr Genomics 2024; 26:118-128. [PMID: 40433445 PMCID: PMC12105208 DOI: 10.2174/0113892029314148240820082402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 05/29/2025] Open
Abstract
Background The blackish cicada (Cryptotympana atrata) exhibits unique characteristics and is one of the model cicadas found in the Korean Peninsula. It is a species of southern origin, prefers high temperatures, and is listed as a climate-sensitive indicator species in South Korea. Therefore, this species can be utilized to study the impact of climate change on the genetic diversity and structure of populations. However, research on the genome of C. atrata is limited. Methods We sequenced the genome of an individual collected from South Korea and constructed a draft genome. Additionally, we collected ten specimens from each of the five regions in South Korea and identified single nucleotide variants (SNVs) for population genetic analysis. The sequencing library was constructed using the MGIEasy DNA Library Prep Kit and sequenced using the MGISEQ-2000 platform with 150-bp paired-end reads. Results The draft genome of C. atrata was approximately 5.0 Gb or 5.2 Gb, making it one of the largest genomes among insects. Population genetic analysis, which was conducted on four populations in South Korea, including both previously distributed and newly expanded regions, showed that Jeju Island, a remote southern island with the highest average temperature, formed an independent genetic group. However, there were no notable genetic differences among the inland populations selected based on varying average temperatures, indicating that the current population genetic composition on the Korean Peninsula is more reflective of biogeographic history rather than climate-induced genetic structures. Additionally, we unexpectedly observed that most individuals of C. atrata collected in a specific locality were infected with microbes not commonly found in insects, necessitating further research on the pathogens within C. atrata. Conclusion This study introduces the draft genome of C. atrata, a climate-sensitive indicator species in South Korea. Population analysis results indicate that the current genetic structure of C. atrata is driven by biogeographic history rather than just climate. The prevalence of widespread pathogen infections raises concerns about their impact on C. atrata. Considering the scarcity of publicly available genomic resources related to the family Cicadidae, this draft genome and population data of C. atrata are expected to serve as a valuable resource for various studies utilizing cicada genomes.
Collapse
Affiliation(s)
- Jeong Sun Park
- Department of Applied Biology, College of Agriculture & Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jina Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yeha Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | | | - Woori Kwak
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Iksoo Kim
- Department of Applied Biology, College of Agriculture & Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
4
|
Skojec C, Godfrey RK, Kawahara AY. Long read genome assembly of Automeris io (Lepidoptera: Saturniidae) an emerging model for the evolution of deimatic displays. G3 (BETHESDA, MD.) 2024; 14:jkad292. [PMID: 38324397 PMCID: PMC10917498 DOI: 10.1093/g3journal/jkad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024]
Abstract
Automeris moths are a morphologically diverse group with 135 described species that have a geographic range that spans from the New World temperate zone to the Neotropics. Many Automeris have elaborate hindwing eyespots that are thought to deter or disrupt the attack of potential predators, allowing the moth time to escape. The Io moth (Automeris io), known for its striking eyespots, is a well-studied species within the genus and is an emerging model system to study the evolution of deimatism. Existing research on the eyespot pattern development will be augmented by genomic resources that allow experimental manipulation of this emerging model. Here, we present a high-quality, PacBio HiFi genome assembly for Io moth to aid existing research on the molecular development of eyespots and future research on other deimatic traits. This 490 Mb assembly is highly contiguous (N50 = 15.78 mbs) and complete (benchmarking universal single-copy orthologs = 98.4%). Additionally, we were able to recover orthologs of genes previously identified as being involved in wing pattern formation and movement.
Collapse
Affiliation(s)
- Chelsea Skojec
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
- Department of Biology, University of Florida, 220 Bartram
Hall, Gainesville, FL 32611, USA
| | - R Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
- Department of Biology, University of Florida, 220 Bartram
Hall, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Poidevin M, Mazuras N, Bontonou G, Delamotte P, Denis B, Devilliers M, Akiki P, Petit D, de Luca L, Soulie P, Gillet C, Wicker-Thomas C, Montagne J. A fatty acid anabolic pathway in specialized-cells sustains a remote signal that controls egg activation in Drosophila. PLoS Genet 2024; 20:e1011186. [PMID: 38483976 DOI: 10.1371/journal.pgen.1011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.
Collapse
Affiliation(s)
- Mickael Poidevin
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gwénaëlle Bontonou
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maëlle Devilliers
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Perla Akiki
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Delphine Petit
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Laura de Luca
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Priscilla Soulie
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Cynthia Gillet
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Stazione L, Sambucetti PD, Norry FM. Mating success at elevated temperature is associated to thermal adaptation in a set of recombinant inbred lines of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2023; 144:104468. [PMID: 36528089 DOI: 10.1016/j.jinsphys.2022.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In insects, mating ability at elevated temperature can be relevant for adaptation to heat-stressed environments and global warming. Here, we examined copulation latency (T1), copulation duration (T2), and mating frequency (T3, an index of mating success) in two related sets of recombinant inbred lines (RIL) in Drosophila melanogaster at both elevated (33 °C) and benign (25 °C) temperatures. One of these RIL sets (RIL-SH2) was shown to be consistently more resistant in both heat knockdown and heat-shock survival assays than its related set (RIL-D48) in previous studies. Negative correlations across RILs were found between T1 and T3 in this study. Flies from the heat-resistant set of RIL (RIL-SH2) were better able to mate at elevated temperature than flies from the heat-susceptible set (RIL-D48). Quantitative trait locus (QTL) mapping identified temperature-dependent QTLs for all traits (T1, T2 and T3) on all the three major chromosomes. Mating success at elevated temperature was found to be influenced by multiple QTLs. At elevated temperature, several QTLs for mating traits co-localized with QTLs that were previously associated with thermotolerance. The genetic basis for T1, T2 and T3 at the elevated temperature was found to be largely different from the genetic basis controlling the variation for mating success at benign temperature, as there was only a very low (or even null) number of QTLs overlapping across temperatures.
Collapse
Affiliation(s)
- Leonel Stazione
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Pablo D Sambucetti
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Fabian M Norry
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina.
| |
Collapse
|
7
|
Sun S, Wang J, Liu W, Chen J, Zhou L, Wu C, Yu H, Hu J. Regulatory roles of Bxy-laf-1 in reproductive behaviour of Bursaphelenchus xylophilus. Front Physiol 2022; 13:1024409. [PMID: 36467707 PMCID: PMC9714631 DOI: 10.3389/fphys.2022.1024409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/02/2022] [Indexed: 06/28/2024] Open
Abstract
Bursaphelenchus xylophilu is a worldwide quarantine nematode, causing huge economic losses and ecological disasters in many countries. The sex ratio of B. xylophilus plays an important role in the nematode infestation. The laf-1-related genes are highly conserved in animals, playing crucial roles in sex determination. Therefore, we investigated the expression pattern and biological function of its orthologue, Bxy-laf-1 in B. xylophilus. Bxy-laf-1 has two typical conserved DNA-binding domains, DEAD and Helicase C. The real-time quantitative PCR data revealed that Bxy-laf-1 expression was required throughout the entire life of B. xylophilus, with the maximum expression in the J2 stage and the lowest expression in the adult stage. mRNA in situ hybridization showed that Bxy-laf-1 is mainly located in the cephalopharynx and reproductive organs of B. xylophilus. RNA interference (RNAi) indicated that the head swing frequency was dramatically decreased. The RNA interference results displayed that a significant reduction in motility was observed in the hatched larvae. The female to male sex ratio was also decreased in the F0 and F1 generations, but recovered in the F2 generation. The tail of female adults with eggs in the belly appeared deformities. This phenomenon appeared in the F0 and F1 generations, but recovered in the F2 generation. Bxy-laf-1 is a typical sex-determination gene with distinct expression patterns in males and females. As demonstrated in other species, the sex ratio was altered after knocking down Bxy-laf-1 expression. The results of this study contribute to our understanding of the molecular processes of Bxy-laf-1 in B. xylophilus, which may provide clues about how to control pine wilt disease by inhibiting ontogenic growth and reducing nematode fertility.
Collapse
Affiliation(s)
- Shimiao Sun
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinghan Wang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jing Chen
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Lifeng Zhou
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Hongshi Yu
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
8
|
Wang Z, Pan N, Yan J, Wan J, Wan C. Systematic Identification of Microproteins during the Development of Drosophila melanogaster. J Proteome Res 2022; 21:1114-1123. [PMID: 35227063 DOI: 10.1021/acs.jproteome.2c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Short open reading frame-encoded peptides (SEPs) are microproteins with less than 100 amino acids that play an essential role in the growth and development of organisms. There are plenty of short open reading frames in Drosophila melanogaster that potentially code polypeptides. We chose 11 time points during the life cycle of Drosophila to investigate microproteins, particularly those related to development. Finally, we identified a total of 410 microproteins, of which 27 were noncoding RNA-encoded proteins. Of the 410 microproteins, 74 were expressed in all stages from embryo to adults, whereas 300 microproteins were only found in one or two time points. Approximately, one-third of the microproteins were not reported previously and 44 were obtained from de novo sequencing, validated by synthetic peptides. These microproteins are related to the main bioprocesses of growth and development, such as multicellular organism reproduction, postmating behavior, and oviposition. Over half of the microproteins have predicted functional domains and are conserved across species, suggesting that these microproteins have critical functions in fly development. This work enriches the D. melanogaster proteome and provides a significant data resource for growth and development research.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Ni Pan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jiahao Yan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jian Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
9
|
Schulz C. Employing the CRISPR Technology for Studying Notch Signaling in the Male Gonad of Drosophila melanogaster. Methods Mol Biol 2022; 2472:159-172. [PMID: 35674899 DOI: 10.1007/978-1-0716-2201-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Notch (N) signaling pathway plays versatile roles in development and disease of many model organisms (Andersson et al., Development 138, 3593-3612, 2011; Hori et al., J Cell Sci, 126, 2135-2140, 2013). However, studying a role for N in adult tissue of Drosophila melanogaster is challenging, because the gene is located on the X-chromosome. To reduce the expression of N specifically in either the germline or the somatic cells of the adult gonad, we used the CRISPR technology in combination with the UAS/Gal4 expression system. After generation of the flies, gonads were investigated for germline survival. Here, we outline our detailed protocol.
Collapse
Affiliation(s)
- Cordula Schulz
- Department of Cellular Biology, Univeristy of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Montino A, Balakrishnan K, Dippel S, Trebels B, Neumann P, Wimmer EA. Mutually Exclusive Expression of Closely Related Odorant-Binding Proteins 9A and 9B in the Antenna of the Red Flour Beetle Tribolium castaneum. Biomolecules 2021; 11:1502. [PMID: 34680135 PMCID: PMC8533528 DOI: 10.3390/biom11101502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Olfaction is crucial for insects to find food sources, mates, and oviposition sites. One of the initial steps in olfaction is facilitated by odorant-binding proteins (OBPs) that translocate hydrophobic odorants through the aqueous olfactory sensilla lymph to the odorant receptor complexes embedded in the dendritic membrane of olfactory sensory neurons. The Tribolium castaneum (Coleoptera, Tenebrionidae) OBPs encoded by the gene pair TcasOBP9A and TcasOBP9B represent the closest homologs to the well-studied Drosophila melanogaster OBP Lush (DmelOBP76a), which mediates pheromone reception. By an electroantennographic analysis, we can show that these two OBPs are not pheromone-specific but rather enhance the detection of a broad spectrum of organic volatiles. Both OBPs are expressed in the antenna but in a mutually exclusive pattern, despite their homology and gene pair character by chromosomal location. A phylogenetic analysis indicates that this gene pair arose at the base of the Cucujiformia, which dates the gene duplication event to about 200 Mio years ago. Therefore, this gene pair is not the result of a recent gene duplication event and the high sequence conservation in spite of their expression in different sensilla is potentially the result of a common function as co-OBPs.
Collapse
Affiliation(s)
- Alice Montino
- GZMB, Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Ernst-Caspari-Haus, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany; (A.M.); (S.D.)
- Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, Georg-August University School of Science, University of Goettingen, 37077 Goettingen, Germany
| | - Karthi Balakrishnan
- Department of Forest Zoology and Forest Conservation, Buesgen-Institute, Georg-August-University Goettingen, Buesgenweg 3, 37077 Goettingen, Germany;
| | - Stefan Dippel
- GZMB, Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Ernst-Caspari-Haus, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany; (A.M.); (S.D.)
- Department of Biology—Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany;
| | - Björn Trebels
- Department of Biology—Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany;
| | - Piotr Neumann
- GZMB, Department of Molecular Structural Biology, Institute of Microbiology & Genetics, Ernst-Caspari-Haus, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany;
| | - Ernst A. Wimmer
- GZMB, Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Ernst-Caspari-Haus, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany; (A.M.); (S.D.)
- Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, Georg-August University School of Science, University of Goettingen, 37077 Goettingen, Germany
| |
Collapse
|
11
|
Ingham VA, Brown F, Ranson H. Transcriptomic analysis reveals pronounced changes in gene expression due to sub-lethal pyrethroid exposure and ageing in insecticide resistance Anopheles coluzzii. BMC Genomics 2021; 22:337. [PMID: 33971808 PMCID: PMC8111724 DOI: 10.1186/s12864-021-07646-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control is heavily reliant on the use of insecticides that target and kill the adult female Anopheline vector. The intensive use of insecticides of the pyrethroid class has led to widespread resistance in mosquito populations. The intensity of pyrethroid resistance in some settings in Africa means mosquitoes can contact bednets treated with this insecticide class multiple times with minimal mortality effects. Furthermore, both ageing and diel cycle have been shown to have large impacts on the resistance phenotype. Together, these traits may affect other aspects of vector biology controlling the vectorial capacity or fitness of the mosquito. RESULTS Here we show that sublethal exposure of a highly resistant Anopheles coluzzii population originally from Burkina Faso to the pyrethroid deltamethrin results in large and sustained changes to transcript expression. We identify five clear patterns in the data showing changes to transcripts relating to: DNA repair, respiration, translation, behaviour and oxioreductase processes. Further, we highlight differential regulation of transcripts from detoxification families previously linked with insecticide resistance, in addition to clear down-regulation of the oxidative phosphorylation pathway both indicative of changes in metabolism post-exposure. Finally, we show that both ageing and diel cycle have major effects on known insecticide resistance related transcripts. CONCLUSION Sub-lethal pyrethroid exposure, ageing and the diel cycle results in large-scale changes in the transcriptome of the major malaria vector Anopheles coluzzii. Our data strongly supports further phenotypic studies on how transcriptional changes such as reduced expression of the oxidative phosphorylation pathway or pyrethroid induced changes to redox state might impact key mosquito traits, such as vectorial capacity and life history traits.
Collapse
Affiliation(s)
- V A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK. .,Present Address: Parasitology Unit, Centre for Infectious Diseases, Universitätsklinikum, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - F Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK.,Department of Epidemiology and Population Health, Institute of Infection and Global Health, Faculty of Health and Life Sciences, Leahurst Campus, University of Liverpool, Neston, CH647TE, UK
| | - H Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| |
Collapse
|
12
|
Ingham VA, Elg S, Nagi SC, Dondelinger F. Capturing the transcription factor interactome in response to sub-lethal insecticide exposure. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:None. [PMID: 34977825 PMCID: PMC8702396 DOI: 10.1016/j.cris.2021.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant Anopheles coluzzii population. The model accounts for circadian rhythm and ageing effects allowing high confidence identification of transcription factors with key roles in pesticide response. The associations generated by this model show high concordance with lab-based validation and identifies 44 transcription factors putatively regulating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest species.
Collapse
|
13
|
Hybrid larval lethality of Drosophila is caused by parent-of-origin expression: an insight from imaginal discs morphogenesis of Lhr pausing rescue hybrids of D. melanogaster and D. simulans. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
Moulton MJ, Humphreys GB, Kim A, Letsou A. O-GlcNAcylation Dampens Dpp/BMP Signaling to Ensure Proper Drosophila Embryonic Development. Dev Cell 2020; 53:330-343.e3. [DOI: 10.1016/j.devcel.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
|
15
|
Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning. J Neurosci 2020; 40:4240-4250. [PMID: 32277043 DOI: 10.1523/jneurosci.1756-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022] Open
Abstract
Aminergic signaling modulates associative learning and memory. Substantial advance has been made in Drosophila on the dopamine receptors and circuits mediating olfactory learning; however, our knowledge of other aminergic modulation lags behind. To address this knowledge gap, we investigated the role of octopamine in olfactory conditioning. Here, we report that octopamine activity through the β-adrenergic-like receptor Octβ1R drives aversive and appetitive learning: Octβ1R in the mushroom body αβ neurons processes aversive learning, whereas Octβ1R in the projection neurons mediates appetitive learning. Our genetic interaction and imaging studies pinpoint cAMP signaling as a key downstream effector for Octβ1R function. The rutabaga-adenylyl cyclase synthesizes cAMP in a Ca2+/calmodulin-dependent manner, serving as a coincidence detector for associative learning and likely representing a downstream target for Octβ1R. Supporting this notion, the double heterozygous rutabaga/+;octβ1r/+ flies perform poorly in both aversive and appetitive conditioning, while individual heterozygous rutabaga/+ and octβ1r/+ flies behave like the wild-type control. Consistently, the mushroom body and projection neurons in the octβ1r brain exhibit blunted responses to octopamine when cAMP levels are monitored through the cAMP sensor. We previously demonstrated the pivotal functions of the D1 receptor dDA1 in aversive and appetitive learning, and the α1 adrenergic-like receptor OAMB in appetitive learning. As expected, octβ1r genetically interacts with dumb (dDA1 mutant) in aversive and appetitive learning, but it interacts with oamb only in appetitive learning. This study uncovers the indispensable contributions of dopamine and octopamine signaling to aversive and appetitive learning. All experiments were performed on mixed sex unless otherwise noted.SIGNIFICANCE STATEMENT Animals make flexible behavioral choices that are constantly shaped by experience. This plasticity is vital for animals to appropriately respond to the cues predicting benefit or harm. In Drosophila, dopamine is known to mediate both reward-based and punishment-based learning while octopamine function is important only for reward. Here, we demonstrate that the octopamine-Octβ1R-cAMP pathway processes both aversive and appetitive learning in distinct neural sites of the olfactory circuit. Furthermore, we show that the octopamine-Octβ1R and dopamine-dDA1 signals together drive both aversive and appetitive learning, whereas the octopamine-Octβ1R and octopamine-OAMB pathways jointly facilitate appetitive, but not aversive, learning. This study identifies the cognate actions of octopamine and dopamine signaling as a key neural mechanism for associative learning.
Collapse
|
16
|
Malpe MS, McSwain LF, Kudyba K, Ng CL, Nicholson J, Brady M, Qian Y, Choksi V, Hudson AG, Parrott BB, Schulz C. G-protein signaling is required for increasing germline stem cell division frequency in response to mating in Drosophila males. Sci Rep 2020; 10:3888. [PMID: 32127590 PMCID: PMC7054589 DOI: 10.1038/s41598-020-60807-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Adult stem cells divide to renew the stem cell pool and replenish specialized cells that are lost due to death or usage. However, little is known about the mechanisms regulating how stem cells adjust to a demand for specialized cells. A failure of the stem cells to respond to this demand can have serious consequences, such as tissue loss, or prolonged recovery post injury. Here, we challenge the male germline stem cells (GSCs) of Drosophila melanogaster for the production of specialized cells, sperm cells, using mating experiments. We show that repeated mating reduced the sperm pool and increased the percentage of GSCs in M- and S-phase of the cell cycle. The increase in dividing GSCs depended on the activity of the highly conserved G-proteins. Germline expression of RNA-Interference (RNA-i) constructs against G-proteins, or a dominant negative G-protein eliminated the increase in GSC division frequency in mated males. Consistent with a role for the G-proteins in regulating GSC division frequency, RNA-i against seven out of 35 G-protein coupled receptors (GPCRs) within the germline cells also eliminated the capability of males to increase the numbers of dividing GSCs in response to mating.
Collapse
Affiliation(s)
- Manashree S Malpe
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Leon F McSwain
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Karl Kudyba
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Chun L Ng
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennie Nicholson
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Maximilian Brady
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Yue Qian
- University of North Georgia, Department of Biology, Oakwood, GA, 30566, USA
| | - Vinay Choksi
- School of Medicine, Duke University, Durham, NC, 27708, USA
| | - Alicia G Hudson
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | | | - Cordula Schulz
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Negative genetic correlation between longevity and its hormetic extension by dietary restriction in Drosophila melanogaster. Biogerontology 2019; 21:191-201. [PMID: 31786681 DOI: 10.1007/s10522-019-09852-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022]
Abstract
Longevity is a highly malleable trait which is influenced by many genetic and environmental factors including nutrition. Mild stress of dietary restriction (DR) is often beneficial by extending longevity in many organisms. Here, DR-induced effects on longevity were tested for genetic variation in a set of recombinant inbred lines (RIL) in D. melanogaster. Genetic variability was significant in the longevity response following a DR-treatment across RIL, with detrimental effects in several RIL but beneficial effects in other RIL. One quantitative trait locus (QTL) was consistently significant in the middle of chromosome 2 for DR-induced changes in longevity, including hormesis (an increase in longevity by DR). Another QTL co-localized with a previously found QTL for starvation resistance in females. Several other QTL were also significant on most chromosomal arms. Longevity in controls was negatively correlated to DR effects across RIL for longevity in females, the sex showing higher DR-induced hormesis. This negative genetic correlation highlights the importance to further investigate the effects of genetic variation in the strength of DR-induced hormesis in longevity and its sex-specificity.
Collapse
|
18
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
19
|
Mehta AS, Luz-Madrigal A, Li JL, Tsonis PA, Singh A. Comparative transcriptomic analysis and structure prediction of novel Newt proteins. PLoS One 2019; 14:e0220416. [PMID: 31419228 PMCID: PMC6697330 DOI: 10.1371/journal.pone.0220416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus viridescens. The presence of a putative signal peptide suggests that all these proteins are secretory in nature. Here we employed iterative threading assembly refinement (I-TASSER) server to generate three-dimensional structure of these novel Newt proteins and predicted their function. Our data suggests that these proteins could act as ion transporters, and be involved in redox reaction(s). Due to absence of transgenic approaches in N. viridescens, and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress these genes. Expression of 2775 transcripts were compared between these five newly identified Newt genes. We found that genes involved in the developmental process, cell cycle, apoptosis, and immune response are among those that are highly enriched. To validate the RNA Seq. data, expression of six highly regulated genes were verified using real time Quantitative Polymerase Chain Reaction (RT-qPCR). These graded gene expression patterns provide insight into the function of novel protein family identified in Newt, and layout a map for future studies in the field.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Agustin Luz-Madrigal
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, United States of America
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, United States of America
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
20
|
Lecompte M, Cattaert D, Vincent A, Birman S, Chérif-Zahar B. Drosophila ammonium transporter Rh50 is required for integrity of larval muscles and neuromuscular system. J Comp Neurol 2019; 528:81-94. [PMID: 31273786 DOI: 10.1002/cne.24742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/30/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Rhesus glycoproteins (Rh50) have been shown to be ammonia transporters in many species from bacteria to human. They are involved in various physiological processes including acid excretion and pH regulation. Rh50 proteins can also provide a structural link between the cytoskeleton and the plasma membranes that maintain cellular integrity. Although ammonia plays essential roles in the nervous system, in particular at glutamatergic synapses, a potential role for Rh50 proteins at synapses has not yet been investigated. To better understand the function of these proteins in vivo, we studied the unique Rh50 gene of Drosophila melanogaster, which encodes two isoforms, Rh50A and Rh50BC. We found that Drosophila Rh50A is expressed in larval muscles and enriched in the postsynaptic regions of the glutamatergic neuromuscular junctions. Rh50 inactivation by RNA interference selectively in muscle cells caused muscular atrophy in larval stages and pupal lethality. Interestingly, Rh50-deficiency in muscles specifically increased glutamate receptor subunit IIA (GluRIIA) level and the frequency of spontaneous excitatory postsynaptic potentials. Our work therefore highlights a new role for Rh50 proteins in the maintenance of Drosophila muscle architecture and synaptic physiology, which could be conserved in other species.
Collapse
Affiliation(s)
- Mathilde Lecompte
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Daniel Cattaert
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Bordeaux University, Bordeaux, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, CNRS, Toulouse University, UPS, Toulouse, France
| | - Serge Birman
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Baya Chérif-Zahar
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
21
|
Mundorf J, Donohoe CD, McClure CD, Southall TD, Uhlirova M. Ets21c Governs Tissue Renewal, Stress Tolerance, and Aging in the Drosophila Intestine. Cell Rep 2019; 27:3019-3033.e5. [PMID: 31167145 PMCID: PMC6581828 DOI: 10.1016/j.celrep.2019.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Homeostatic renewal and stress-related tissue regeneration rely on stem cell activity, which drives the replacement of damaged cells to maintain tissue integrity and function. The Jun N-terminal kinase (JNK) signaling pathway has been established as a critical regulator of tissue homeostasis both in intestinal stem cells (ISCs) and mature enterocytes (ECs), while its chronic activation has been linked to tissue degeneration and aging. Here, we show that JNK signaling requires the stress-inducible transcription factor Ets21c to promote tissue renewal in Drosophila. We demonstrate that Ets21c controls ISC proliferation as well as EC apoptosis through distinct sets of target genes that orchestrate cellular behaviors via intrinsic and non-autonomous signaling mechanisms. While its loss appears dispensable for development and prevents epithelial aging, ISCs and ECs demand Ets21c function to mount cellular responses to oxidative stress. Ets21c thus emerges as a vital regulator of proliferative homeostasis in the midgut and a determinant of the adult healthspan.
Collapse
Affiliation(s)
- Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Colin D Donohoe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Colin D McClure
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
22
|
Treffkorn S, Mayer G. Expression of NK genes that are not part of the NK cluster in the onychophoran Euperipatoides rowelli (Peripatopsidae). BMC DEVELOPMENTAL BIOLOGY 2019; 19:7. [PMID: 30987579 PMCID: PMC6466738 DOI: 10.1186/s12861-019-0185-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Background NK genes are a group of homeobox transcription factors that are involved in various molecular pathways across bilaterians. They are typically divided into two subgroups, the NK cluster (NKC) and NK-linked genes (NKL). While the NKC genes have been studied in various bilaterians, corresponding data of many NKL genes are missing to date. To further investigate the ancestral roles of NK family genes, we analyzed the expression patterns of NKL genes in the onychophoran Euperipatoides rowelli. Results The NKL gene complement of E. rowelli comprises eight genes, including BarH, Bari, Emx, Hhex, Nedx, NK2.1, vax and NK2.2, of which only NK2.2 was studied previously. Our data for the remaining seven NKL genes revealed expression in different structures associated with the developing nervous system in embryos of E. rowelli. While NK2.1 and vax are expressed in distinct medial regions of the developing protocerebrum early in development, BarH, Bari, Emx, Hhex and Nedx are expressed in late developmental stages, after all major structures of the nervous system have been established. Furthermore, BarH and Nedx are expressed in distinct mesodermal domains in the developing limbs. Conclusions Comparison of our expression data to those of other bilaterians revealed similar patterns of NK2.1, vax, BarH and Emx in various aspects of neural development, such as the formation of anterior neurosecretory cells mediated by a conserved molecular mechanism including NK2.1 and vax, and the development of the central and peripheral nervous system involving BarH and Emx. A conserved role in neural development has also been reported from NK2.2, suggesting that the NKL genes might have been primarily involved in neural development in the last common ancestor of bilaterians or at least nephrozoans (all bilaterians excluding xenacoelomorphs). The lack of comparative data for many of the remaining NKL genes, including Bari, Hhex and Nedx currently hampers further evolutionary conclusions. Hence, future studies should focus on the expression of these genes in other bilaterians, which would provide a basis for comparative studies and might help to better understand the role of NK genes in the diversification of bilaterians. Electronic supplementary material The online version of this article (10.1186/s12861-019-0185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
23
|
Bouzaglo D, Chasida I, Ezra Tsur E. Distributed retrieval engine for the development of cloud-deployed biological databases. BioData Min 2018; 11:26. [PMID: 30459848 PMCID: PMC6233384 DOI: 10.1186/s13040-018-0185-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022] Open
Abstract
The integration of cloud resources with federated data retrieval has the potential of improving the maintenance, accessibility and performance of specialized databases in the biomedical field. However, such an integrative approach requires technical expertise in cloud computing, usage of a data retrieval engine and development of a unified data-model, which can encapsulate the heterogeneity of biological data. Here, a framework for the development of cloud-based biological specialized databases is proposed. It is powered by a distributed biodata retrieval system, able to interface with different data formats, as well as provides an integrated way for data exploration. The proposed framework was implemented using Java as the development environment, and MongoDB as the database manager. Syntactic analysis was based on BSON, jsoup, Apache Commons and w3c.dom open libraries. Framework is available in: http://nbel-lab.com and is distributed under the creative common agreement.
Collapse
Affiliation(s)
- David Bouzaglo
- Neuro-biomorphic Engineering Lab, Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Israel Chasida
- Neuro-biomorphic Engineering Lab, Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Elishai Ezra Tsur
- Neuro-biomorphic Engineering Lab, Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| |
Collapse
|
24
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
25
|
Gordon HB, Valdez L, Letsou A. Etiology and treatment of adrenoleukodystrophy: new insights from Drosophila. Dis Model Mech 2018; 11:dmm031286. [PMID: 29739804 PMCID: PMC6031365 DOI: 10.1242/dmm.031286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is a fatal progressive neurodegenerative disorder affecting brain white matter. The most common form of ALD is X-linked (X-ALD) and results from mutation of the ABCD1-encoded very-long-chain fatty acid (VLCFA) transporter. X-ALD is clinically heterogeneous, with the cerebral form being the most severe. Diagnosed in boys usually between the ages of 4 and 8 years, cerebral X-ALD symptoms progress rapidly (in as little as 2 years) through declines in cognition, learning and behavior, to paralysis and ultimately to a vegetative state and death. Currently, there are no good treatments for X-ALD. Here, we exploit the Drosophila bubblegum (bgm) double bubble (dbb) model of neurometabolic disease to expand diagnostic power and therapeutic potential for ALD. We show that loss of the Drosophila long-/very-long-chain acyl-CoA synthetase genes bgm and/or dbb is indistinguishable from loss of the Drosophila ABC transporter gene ABCD Shared loss-of-function phenotypes for synthetase and transporter mutants point to a lipid metabolic pathway association with ALD-like neurodegenerative disease in Drosophila; a pathway association that has yet to be established in humans. We also show that manipulation of environment increases the severity of neurodegeneration in bgm and dbb mutant flies, adding even further to a suite of new candidate ALD disease-causing genes and pathways in humans. Finally, we show that it is a lack of lipid metabolic pathway product and not (as commonly thought) an accumulation of pathway precursor that is causative of neurometabolic disease: addition of medium-chain fatty acids to the diet of bgm or dbb mutant flies prevents the onset of neurodegeneration. Taken together, our data provide new foundations both for diagnosing ALD and for designing effective, mechanism-based treatment protocols.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Lourdes Valdez
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
26
|
Aranda GP, Hinojos SJ, Sabandal PR, Evans PD, Han KA. Behavioral Sensitization to the Disinhibition Effect of Ethanol Requires the Dopamine/Ecdysone Receptor in Drosophila. Front Syst Neurosci 2017; 11:56. [PMID: 28824387 PMCID: PMC5539124 DOI: 10.3389/fnsys.2017.00056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022] Open
Abstract
Male flies under the influence of ethanol display disinhibited courtship, which is augmented with repeated ethanol exposures. We have previously shown that dopamine is important for this type of ethanol-induced behavioral sensitization but the underlying mechanism is unknown. Here we report that DopEcR, an insect G-protein coupled receptor that binds to dopamine and steroid hormone ecdysone, is a major receptor mediating courtship sensitization. Upon daily ethanol administration, dumb and damb mutant males defective in D1 (dDA1/DopR1) and D5 (DAMB/DopR2) dopamine receptors, respectively, showed normal courtship sensitization; however, the DopEcR-deficient der males exhibited greatly diminished sensitization. der mutant males nevertheless developed normal tolerance to the sedative effect of ethanol, indicating a selective function of DopEcR in chronic ethanol-associated behavioral plasticity. DopEcR plays a physiological role in behavioral sensitization since courtship sensitization in der males was reinstated when DopEcR expression was induced during adulthood but not during development. When examined for the DopEcR’s functional site, the der mutant’s sensitization phenotype was fully rescued by restored DopEcR expression in the mushroom body (MB) αβ and γ neurons. Consistently, we observed DopEcR immunoreactivity in the MB calyx and lobes in the wild-type Canton-S brain, which was barely detectable in the der brain. Behavioral sensitization to the locomotor-stimulant effect has been serving as a model for ethanol abuse and addiction. This is the first report elucidating the mechanism underlying behavioral sensitization to another stimulant effect of ethanol.
Collapse
Affiliation(s)
- Gissel P Aranda
- Neuromodulation Disorders Cluster at Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El PasoEl Paso, TX, United States
| | - Samantha J Hinojos
- Neuromodulation Disorders Cluster at Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El PasoEl Paso, TX, United States
| | - Paul R Sabandal
- Neuromodulation Disorders Cluster at Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El PasoEl Paso, TX, United States
| | - Peter D Evans
- The Inositide Laboratory, The Babraham InstituteCambridge, United Kingdom
| | - Kyung-An Han
- Neuromodulation Disorders Cluster at Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El PasoEl Paso, TX, United States
| |
Collapse
|
27
|
Mohanty S, Khanna R. Genome-wide comparative analysis of four Indian Drosophila species. Mol Genet Genomics 2017; 292:1197-1208. [DOI: 10.1007/s00438-017-1339-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/19/2017] [Indexed: 11/24/2022]
|
28
|
Ezra Tsur E. Rapid development of entity-based data models for bioinformatics with persistence object-oriented design and structured interfaces. BioData Min 2017; 10:11. [PMID: 28293298 PMCID: PMC5346198 DOI: 10.1186/s13040-017-0130-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/14/2017] [Indexed: 11/18/2022] Open
Abstract
Databases are imperative for research in bioinformatics and computational biology. Current challenges in database design include data heterogeneity and context-dependent interconnections between data entities. These challenges drove the development of unified data interfaces and specialized databases. The curation of specialized databases is an ever-growing challenge due to the introduction of new data sources and the emergence of new relational connections between established datasets. Here, an open-source framework for the curation of specialized databases is proposed. The framework supports user-designed models of data encapsulation, objects persistency and structured interfaces to local and external data sources such as MalaCards, Biomodels and the National Centre for Biotechnology Information (NCBI) databases. The proposed framework was implemented using Java as the development environment, EclipseLink as the data persistency agent and Apache Derby as the database manager. Syntactic analysis was based on J3D, jsoup, Apache Commons and w3c.dom open libraries. Finally, a construction of a specialized database for aneurysms associated vascular diseases is demonstrated. This database contains 3-dimensional geometries of aneurysms, patient's clinical information, articles, biological models, related diseases and our recently published model of aneurysms' risk of rapture. Framework is available in: http://nbel-lab.com.
Collapse
Affiliation(s)
- Elishai Ezra Tsur
- Neuro-Biomorphic Engineering lab, Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| |
Collapse
|
29
|
Norry FM, Gomez FH. Quantitative Trait Loci and Antagonistic Associations for Two Developmentally Related Traits in the Drosophila Head. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:iew115. [PMID: 28130460 PMCID: PMC5270402 DOI: 10.1093/jisesa/iew115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 06/06/2023]
Abstract
In insects, some developmentally related traits are negatively correlated. Here, we mapped Quantitative Trait Loci (QTL) for traits of eye size and head capsule, in an intercontinental set of recombinant inbred lines (RILs) of Drosophila melanogaster Composite interval mapping identified QTL on all major chromosomes. Two negatively correlated traits (size of eyes and between-eyes distance) were influenced by one QTL that appeared to be antagonistic between the traits (QTL cytological range is 25F5-30A6), consistent with a negative genetic correlation between these traits of the head capsule. Comparisons of QTL across traits indicated a nonrandom distribution over the genome, with a considerable overlap between some QTL across traits. Developmentally-related traits were influenced by QTL in a pattern that is consistent both with 1) the sign of the genetic correlation between the traits and 2) a constraint in the micro-evolutionary differentiation in the traits.
Collapse
Affiliation(s)
- Fabian M Norry
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Buenos Aires, C-1428-EGA, Argentina
| | - Federico H Gomez
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Buenos Aires, C-1428-EGA, Argentina
| |
Collapse
|
30
|
Nazario-Yepiz NO, Riesgo-Escovar JR. piragua encodes a zinc finger protein required for development in Drosophila. Mech Dev 2016; 144:171-181. [PMID: 28011160 DOI: 10.1016/j.mod.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/07/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
We isolated and characterized embryonic lethal mutations in piragua (prg). The prg locus encodes a protein with an amino terminus Zinc Finger-Associated-Domain (ZAD) and nine C2H2 zinc fingers (ZF). prg mRNA and protein expression during embryogenesis is dynamic with widespread maternal contribution, and subsequent expression in epithelial precursors. About a quarter of prg mutant embryos do not develop cuticle, and from those that do a small fraction have cuticular defects. Roughly half of prg mutants die during embryogenesis. prg mutants have an extended phenocritical period encompassing embryogenesis and first instar larval stage, since the other half of prg mutants die as first or second instar larvae. During dorsal closure, time-lapse high-resolution imaging shows defects arising out of sluggishness in closure, resolving at times in failures of closure. prg is expressed in imaginal discs, and is required for imaginal development. prg was identified in imaginal tissue in a cell super competition screen, together with other genes, like flower. We find that flower mutations are also embryonic lethal with a similar phenocritical period and strong embryonic mutant phenotypes (head involution defects, primarily). The two loci interact genetically in the embryo, as they increase embryonic mortality to close to 90% with the same embryonic phenotypes (dorsal closure and head involution defects, plus lack of cuticle). Mutant prg clones generated in developing dorsal thorax and eye imaginal tissue have strong developmental defects (lack of bristles and ommatidial malformations). prg is required in several developmental morphogenetic processes.
Collapse
Affiliation(s)
- Nestor O Nazario-Yepiz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico
| | - Juan R Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico.
| |
Collapse
|
31
|
Otero-Moreno D, Peña-Rangel MT, Riesgo-Escovar JR. CRECIMIENTO Y METABOLISMO: LA REGULACIÓN Y LA VÍA DE LA INSULINA DESDE LA MOSCA DE LA FRUTA, Drosophila melanogaster. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Singh D, Chetia H, Kabiraj D, Sharma S, Kumar A, Sharma P, Deka M, Bora U. A comprehensive view of the web-resources related to sericulture. Database (Oxford) 2016; 2016:baw086. [PMID: 27307138 PMCID: PMC4909305 DOI: 10.1093/database/baw086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 12/03/2022]
Abstract
Recent progress in the field of sequencing and analysis has led to a tremendous spike in data and the development of data science tools. One of the outcomes of this scientific progress is development of numerous databases which are gaining popularity in all disciplines of biology including sericulture. As economically important organism, silkworms are studied extensively for their numerous applications in the field of textiles, biomaterials, biomimetics, etc. Similarly, host plants, pests, pathogens, etc. are also being probed to understand the seri-resources more efficiently. These studies have led to the generation of numerous seri-related databases which are extremely helpful for the scientific community. In this article, we have reviewed all the available online resources on silkworm and its related organisms, including databases as well as informative websites. We have studied their basic features and impact on research through citation count analysis, finally discussing the role of emerging sequencing and analysis technologies in the field of seri-data science. As an outcome of this review, a web portal named SeriPort, has been created which will act as an index for the various sericulture-related databases and web resources available in cyberspace.Database URL: http://www.seriport.in/.
Collapse
Affiliation(s)
- Deepika Singh
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hasnahana Chetia
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debajyoti Kabiraj
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Swagata Sharma
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anil Kumar
- Centre for Biological Sciences (Bioinformatics), Central University of South Bihar (CUSB), Patna 800014, India
| | - Pragya Sharma
- Department of Bioengineering & Technology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Manab Deka
- Department of Bioengineering & Technology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Utpal Bora
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India Mugagen Laboratories Pvt. Ltd, Technology Incubation Centre, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
33
|
Chung VY, Konietzny R, Charles P, Kessler B, Fischer R, Turney BW. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules. Fly (Austin) 2016; 10:91-100. [PMID: 27064297 DOI: 10.1080/19336934.2016.1171947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Kidney stone disease is a major health burden with a complex and poorly understood pathophysiology. Drosophila Malpighian tubules have been shown to resemble human renal tubules in their physiological function. Herein, we have used Drosophila as a model to study the proteomic response to crystal formation induced by dietary manipulation in Malpighian tubules. Wild-type male flies were reared in parallel groups on standard medium supplemented with lithogenic agents: control, Sodium Oxalate (NaOx) and Ethylene Glycol (EG). Malpighian tubules were dissected after 2 weeks to visualize crystals with polarized light microscopy. The parallel group was dissected for protein extraction. A new method of Gel Assisted Sample Preparation (GASP) was used for protein extraction. Differentially abundant proteins (p<0.05) were identified by label-free quantitative proteomic analysis in flies fed with NaOx and EG diet compared with control. Their molecular functions were further screened for transmembrane ion transporter, calcium or zinc ion binder. Among these, 11 candidate proteins were shortlisted in NaOx diet and 16 proteins in EG diet. We concluded that GASP is a proteomic sample preparation method that can be applied to individual Drosophila Malpighian tubules. Our results may further increase the understanding of the pathophysiology of human kidney stone disease.
Collapse
Affiliation(s)
- Vera Y Chung
- a Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford , UK
| | - Rebecca Konietzny
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Philip Charles
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Benedikt Kessler
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Roman Fischer
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Benjamin W Turney
- a Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford , UK
| |
Collapse
|
34
|
Intersex (ix) mutations of Drosophila melanogaster cause nonrandom cell death in genital disc and can induce tumours in genitals in response to decapentaplegic (dpp(disk)) mutations. J Genet 2016; 94:207-20. [PMID: 26174668 DOI: 10.1007/s12041-015-0503-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In Drosophila melanogaster, the intersex (ix) is a terminally positioned gene in somatic sex determination hierarchy and function with the female specific product of double sex (DSX(F)) to implement female sexual differentiation. The null phenotype of ix is to transform diplo-X individuals into intersexes while leaving haplo-X animals unaffected. This study on the effect of different intersex mutations on genital disc development provides the following major results: (i) similar range of a characteristic array of morphological structures (from almost double sex terminalia to extreme reduction of terminal appendages) was displayed by the terminalia of XX ix(1)/ix(1) , XX ix(2)/ix(2) and XX ix(5)/ix(5) individuals; (ii) an increased number of apoptotic cells were found to occur in a localized manner in mature third instar larval genital discs of ix individuals; (iii) ix mutations can induce high frequency of neoplastic tumours in genitals in the presence of decapentaplegic (dpp(disk)) mutations; and (iv) heteroallelic combinations of dpp(disk) mutations can also induce tumours in intersex genitals with variable expressivity. On the basis of these findings, we suggest that: (i) loss of function of ix causes massive cell death in both male and female genital primordia of genital discs, resulting phenotype mimicking in male and female characteristics in genitals; and (ii) at the discs, the apoptotic cells persist as 'undead' cells that can induce oncogenic transformation in the neighbouring disc cells when dpp signalling is blocked or reduced by dpp(disk) mutations.
Collapse
|
35
|
Sivachenko A, Gordon HB, Kimball SS, Gavin EJ, Bonkowsky JL, Letsou A. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases. Dis Model Mech 2016; 9:377-87. [PMID: 26893370 PMCID: PMC4852500 DOI: 10.1242/dmm.022244] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum(bgm) and double bubble(dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivois causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6(encoding a very-long-chain ACS), a human homolog of bgm and dbb.
Collapse
Affiliation(s)
- Anna Sivachenko
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Suzanne S Kimball
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin J Gavin
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
36
|
Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila. Genetics 2016; 202:1135-51. [PMID: 26801180 DOI: 10.1534/genetics.115.181438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/18/2016] [Indexed: 01/14/2023] Open
Abstract
The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.
Collapse
|
37
|
|
38
|
Adrion JR, White PS, Montooth KL. The Roles of Compensatory Evolution and Constraint in Aminoacyl tRNA Synthetase Evolution. Mol Biol Evol 2015; 33:152-61. [PMID: 26416980 PMCID: PMC4693975 DOI: 10.1093/molbev/msv206] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial protein translation requires interactions between transfer RNAs encoded by the mitochondrial genome (mt-tRNAs) and mitochondrial aminoacyl tRNA synthetase proteins (mt-aaRS) encoded by the nuclear genome. It has been argued that animal mt-tRNAs have higher deleterious substitution rates relative to their nuclear-encoded counterparts, the cytoplasmic tRNAs (cyt-tRNAs). This dynamic predicts elevated rates of compensatory evolution of mt-aaRS that interact with mt-tRNAs, relative to aaRS that interact with cyt-tRNAs (cyt-aaRS). We find that mt-aaRS do evolve at significantly higher rates (exemplified by higher dN and dN/dS) relative to cyt-aaRS, across mammals, birds, and Drosophila. While this pattern supports a model of compensatory evolution, the level at which a gene is expressed is a more general predictor of protein evolutionary rate. We find that gene expression level explains 10–56% of the variance in aaRS dN/dS, and that cyt-aaRS are more highly expressed in addition to having lower dN/dS values relative to mt-aaRS, consistent with more highly expressed genes being more evolutionarily constrained. Furthermore, we find no evidence of positive selection acting on either class of aaRS protein, as would be expected under a model of compensatory evolution. Nevertheless, the signature of faster mt-aaRS evolution persists in mammalian, but not bird or Drosophila, lineages after controlling for gene expression, suggesting some additional effect of compensatory evolution for mammalian mt-aaRS. We conclude that gene expression is the strongest factor governing differential amino acid substitution rates in proteins interacting with mitochondrial versus cytoplasmic factors, with important differences in mt-aaRS molecular evolution among taxonomic groups.
Collapse
Affiliation(s)
| | - P Signe White
- Department of Biology, Indiana University, Bloomington
| | | |
Collapse
|
39
|
Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N, Denis B, Rubin T, Parvy JP, Montagne J. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J Lipid Res 2015; 56:2094-101. [PMID: 26353752 DOI: 10.1194/jlr.m060368] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
In terrestrial insects, cuticular hydrocarbons (CHCs) provide protection from desiccation. Specific CHCs can also act as pheromones, which are important for successful mating. Oenocytes are abdominal cells thought to act as specialized units for CHC biogenesis that consists of long-chain fatty acid (LCFA) synthesis, optional desaturation(s), elongation to very long-chain fatty acids (VLCFAs), and removal of the carboxyl group. By investigating CHC biogenesis in Drosophila melanogaster, we showed that VLCFA synthesis takes place only within the oenocytes. Conversely, several pathways, which may compensate for one another, can feed the oenocyte pool of LCFAs, suggesting that this step is a critical node for regulating CHC synthesis. Importantly, flies deficient in LCFA synthesis sacrificed their triacylglycerol stores while maintaining some CHC production. Moreover, pheromone production was lower in adult flies that emerged from larvae that were fed excess dietary lipids, and their mating success was lower. Further, we showed that pheromone production in the oenocytes depends on lipid metabolism in the fat tissue and that fatty acid transport protein, a bipartite acyl-CoA synthase (ACS)/FA transporter, likely acts through its ACS domain in the oenocyte pathway of CHC biogenesis. Our study highlights the importance of environmental and physiological inputs in regulating LCFA synthesis to eventually control sexual communication in a polyphagous animal.
Collapse
Affiliation(s)
- Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Damien Garrido
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Gwénaëlle Bontonou
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Laura Napal
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Thomas Rubin
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Jean-Philippe Parvy
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France Sorbonne Universités, UPMC Univ Paris 06, UFR 927, F-75005, Paris, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| |
Collapse
|
40
|
Abstract
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens.
Collapse
|
41
|
Külshammer E, Mundorf J, Kilinc M, Frommolt P, Wagle P, Uhlirova M. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy. Dis Model Mech 2015; 8:1279-93. [PMID: 26398940 PMCID: PMC4610234 DOI: 10.1242/dmm.020719] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study delineates both unique and overlapping functions of distinct TFs that cooperatively promote aberrant expression of target genes, leading to malignant tumor phenotypes. Summary: This study provides genetic evidence that malignancy driven by oncogenic Ras and loss of polarity requires transcription factors of three distinct protein families, acting in synergy downstream of JNK signaling.
Collapse
Affiliation(s)
- Eva Külshammer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Merve Kilinc
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Peter Frommolt
- Bioinformatics Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Prerana Wagle
- Bioinformatics Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
42
|
Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks. MICROARRAYS 2015; 4:255-69. [PMID: 27600224 PMCID: PMC4996389 DOI: 10.3390/microarrays4020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/30/2015] [Indexed: 01/01/2023]
Abstract
Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.
Collapse
|
43
|
Róna G, Pálinkás HL, Borsos M, Horváth A, Scheer I, Benedek A, Nagy GN, Zagyva I, Vértessy BG. NLS copy-number variation governs efficiency of nuclear import - case study on dUTPases. FEBS J 2014; 281:5463-78. [DOI: 10.1111/febs.13086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 09/10/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Gergely Róna
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| | - Hajnalka L. Pálinkás
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Doctoral School of Multidisciplinary Medical Science; University of Szeged; Hungary
| | - Máté Borsos
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - András Horváth
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - Ildikó Scheer
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| | - András Benedek
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| | - Gergely N. Nagy
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| | - Imre Zagyva
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - Beáta G. Vértessy
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| |
Collapse
|
44
|
Zoller R, Schulz C. The Drosophila cyst stem cell lineage: Partners behind the scenes? SPERMATOGENESIS 2014; 2:145-157. [PMID: 23087834 PMCID: PMC3469438 DOI: 10.4161/spmg.21380] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has made the Drosophila testis an excellent model for studying both the roles of somatic cells in guiding germline development and the interdependence of two separate stem cell lineages. This review focuses on our current understanding of CySC specification, CySC self-renewing divisions, cyst cell differentiation, and soma-germline interactions. Many of the mechanisms guiding these processes in Drosophila testes are similarly essential for the development and function of tissues in other organisms, most importantly for gametogenesis in mammals.
Collapse
Affiliation(s)
- Richard Zoller
- Department of Cellular Biology; University of Georgia; Athens, GA USA
| | | |
Collapse
|
45
|
Hsiao HC, Gonzalez KL, Catanese DJ, Jordy KE, Matthews KS, Bondos SE. The intrinsically disordered regions of the Drosophila melanogaster Hox protein ultrabithorax select interacting proteins based on partner topology. PLoS One 2014; 9:e108217. [PMID: 25286318 PMCID: PMC4186791 DOI: 10.1371/journal.pone.0108217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/27/2014] [Indexed: 02/05/2023] Open
Abstract
Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and α-α superhelices, the regions of the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying extents, creating the potential for competition between partners and cooperative binding by partners. The ability of partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular functions in response to tissue-specific cues.
Collapse
Affiliation(s)
- Hao-Ching Hsiao
- Reynolds Medical Building, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Kim L. Gonzalez
- Reynolds Medical Building, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Daniel J. Catanese
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Kristopher E. Jordy
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Kathleen S. Matthews
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Sarah E. Bondos
- Reynolds Medical Building, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| |
Collapse
|
46
|
Ecdysone signaling opposes epidermal growth factor signaling in regulating cyst differentiation in the male gonad of Drosophila melanogaster. Dev Biol 2014; 394:217-27. [PMID: 25169192 DOI: 10.1016/j.ydbio.2014.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/21/2022]
Abstract
The development of stem cell daughters into the differentiated state normally requires a cascade of proliferation and differentiation steps that are typically regulated by external signals. The germline cells of most animals, in specific, are associated with somatic support cells and depend on them for normal development. In the male gonad of Drosophila melanogaster, germline cells are completely enclosed by cytoplasmic extensions of somatic cyst cells, and these cysts form a functional unit. Signaling from the germline to the cyst cells via the Epidermal Growth Factor Receptor (EGFR) is required for germline enclosure and has been proposed to provide a temporal signature promoting early steps of differentiation. A temperature-sensitive allele of the EGFR ligand Spitz (Spi) provides a powerful tool for probing the function of the EGRF pathway in this context and for identifying other pathways regulating cyst differentiation via genetic interaction studies. Using this tool, we show that signaling via the Ecdysone Receptor (EcR), a known regulator of developmental timing during larval and pupal development, opposes EGF signaling in testes. In spi mutant animals, reducing either Ecdysone synthesis or the expression of Ecdysone signal transducers or targets in the cyst cells resulted in a rescue of cyst formation and cyst differentiation. Despite of this striking effect in the spi mutant background and the expression of EcR signaling components within the cyst cells, activity of the EcR pathway appears to be dispensable in a wildtype background. We propose that EcR signaling modulates the effects of EGFR signaling by promoting an undifferentiated state in early stage cyst cells.
Collapse
|
47
|
Lim J, Sabandal PR, Fernandez A, Sabandal JM, Lee HG, Evans P, Han KA. The octopamine receptor Octβ2R regulates ovulation in Drosophila melanogaster. PLoS One 2014; 9:e104441. [PMID: 25099506 PMCID: PMC4123956 DOI: 10.1371/journal.pone.0104441] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
Oviposition is induced upon mating in most insects. Ovulation is a primary step in oviposition, representing an important target to control insect pests and vectors, but limited information is available on the underlying mechanism. Here we report that the beta adrenergic-like octopamine receptor Octβ2R serves as a key signaling molecule for ovulation and recruits protein kinase A and Ca2+/calmodulin-sensitive kinase II as downstream effectors for this activity. We found that the octβ2r homozygous mutant females are sterile. They displayed normal courtship, copulation, sperm storage and post-mating rejection behavior but were unable to lay eggs. We have previously shown that octopamine neurons in the abdominal ganglion innervate the oviduct epithelium. Consistently, restored expression of Octβ2R in oviduct epithelial cells was sufficient to reinstate ovulation and full fecundity in the octβ2r mutant females, demonstrating that the oviduct epithelium is a major site of Octβ2R’s function in oviposition. We also found that overexpression of the protein kinase A catalytic subunit or Ca2+/calmodulin-sensitive protein kinase II led to partial rescue of octβ2r’s sterility. This suggests that Octβ2R activates cAMP as well as additional effectors including Ca2+/calmodulin-sensitive protein kinase II for oviposition. All three known beta adrenergic-like octopamine receptors stimulate cAMP production in vitro. Octβ1R, when ectopically expressed in the octβ2r’s oviduct epithelium, fully reinstated ovulation and fecundity. Ectopically expressed Octβ3R, on the other hand, partly restored ovulation and fecundity while OAMB-K3 and OAMB-AS that increase Ca2+ levels yielded partial rescue of ovulation but not fecundity deficit. These observations suggest that Octβ2R have distinct signaling capacities in vivo and activate multiple signaling pathways to induce egg laying. The findings reported here narrow the knowledge gap and offer insight into novel strategies for insect control.
Collapse
Affiliation(s)
- Junghwa Lim
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Paul R. Sabandal
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ana Fernandez
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - John Martin Sabandal
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Hyun-Gwan Lee
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Peter Evans
- The Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Kyung-An Han
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 2014; 15:182. [PMID: 24925680 PMCID: PMC4074385 DOI: 10.1186/1471-2105-15-182] [Citation(s) in RCA: 1017] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. RESULTS To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. CONCLUSIONS Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
Collapse
Affiliation(s)
- Hongshan Jiang
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Huixinli 241, Beijing, 100029 China.
| | | | | | | |
Collapse
|
49
|
A temporal signature of epidermal growth factor signaling regulates the differentiation of germline cells in testes of Drosophila melanogaster. PLoS One 2013; 8:e70678. [PMID: 23940622 PMCID: PMC3734272 DOI: 10.1371/journal.pone.0070678] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023] Open
Abstract
Tissue replenishment from stem cells follows a precise cascade of events, during which stem cell daughters first proliferate by mitotic transit amplifying divisions and then enter terminal differentiation. Here we address how stem cell daughters are guided through the early steps of development. In Drosophila testes, somatic cyst cells enclose the proliferating and differentiating germline cells and the units of germline and surrounding cyst cells are commonly referred to as cysts. By characterizing flies with reduced or increased Epidermal Growth Factor (EGF) signaling we show that EGF triggers different responses in the cysts dependent on its dose. In addition to the previously reported requirement for EGF signaling in cyst formation, a low dose of EGF signaling is required for the progression of the germline cells through transit amplifying divisions, and a high dose of EGF signaling promotes terminal differentiation. Terminal differentiation was promoted in testes expressing a constitutively active EGF Receptor (EGFR) and in testes expressing both a secreted EGF and the EGFR in the cyst cells, but not in testes expressing either only EGF or only EGFR. We propose that as the cysts develop, a temporal signature of EGF signaling is created by the coordinated increase of both the production of active ligands by the germline cells and the amount of available receptor molecules on the cyst cells.
Collapse
|
50
|
Abstract
RNA interference (RNAi) is a widely adopted tool for loss-of-function studies but RNAi results only have biological relevance if the reagents are appropriately mapped to genes. Several groups have designed and generated RNAi reagent libraries for studies in cells or in vivo for Drosophila and other species. At first glance, matching RNAi reagents to genes appears to be a simple problem, as each reagent is typically designed to target a single gene. In practice, however, the reagent-gene relationship is complex. Although the sequences of oligonucleotides used to generate most types of RNAi reagents are static, the reference genome and gene annotations are regularly updated. Thus, at the time a researcher chooses an RNAi reagent or analyzes RNAi data, the most current interpretation of the RNAi reagent-gene relationship, as well as related information regarding specificity (e.g., predicted off-target effects), can be different from the original interpretation. Here, we describe a set of strategies and an accompanying online tool, UP-TORR (for Updated Targets of RNAi Reagents; www.flyrnai.org/up-torr), useful for accurate and up-to-date annotation of cell-based and in vivo RNAi reagents. Importantly, UP-TORR automatically synchronizes with gene annotations daily, retrieving the most current information available, and for Drosophila, also synchronizes with the major reagent collections. Thus, UP-TORR allows users to choose the most appropriate RNAi reagents at the onset of a study, as well as to perform the most appropriate analyses of results of RNAi-based studies.
Collapse
|