1
|
You Y, Qian Z, Jiang Y, Chen L, Wu D, Liu L, Zhang F, Ning X, Zhang Y, Xiao J. Insights into the pathogenesis of gestational and hepatic diseases: the impact of ferroptosis. Front Cell Dev Biol 2024; 12:1482838. [PMID: 39600338 PMCID: PMC11588751 DOI: 10.3389/fcell.2024.1482838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Ferroptosis, a distinct form of non-apoptotic cell death characterized by iron dependency and lipid peroxidation, is increasingly linked to various pathological conditions in pregnancy and liver diseases. It plays a critical role throughout pregnancy, influencing processes such as embryogenesis, implantation, and the maintenance of gestation. A growing body of evidence indicates that disruptions in these processes can precipitate pregnancy-related disorders, including pre-eclampsia (PE), gestational diabetes mellitus (GDM), and intrahepatic cholestasis of pregnancy (ICP). Notably, while ICP is primarily associated with elevated maternal serum bile acid levels, its precise etiology remains elusive. Oxidative stress induced by bile acid accumulation is believed to be a significant factor in ICP pathogenesis. Similarly, the liver's susceptibility to oxidative damage underscores the importance of lipid metabolism dysregulation and impaired iron homeostasis in the progression of liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cholestatic liver injury, autoimmune hepatitis (AIH), acute liver injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). This review discusses the shared signaling mechanisms of ferroptosis in gestational and hepatic diseases, and explores recent advances in understanding the mechanisms of ferroptosis and its potential role in the pathogenesis of gestational and hepatic disorders, with the aim of identifying viable therapeutic targets.
Collapse
Affiliation(s)
- Yilan You
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhiwen Qian
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ying Jiang
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Lingyan Chen
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Danping Wu
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Lu Liu
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xin Ning
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jianping Xiao
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
3
|
Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother 2024; 174:116512. [PMID: 38574617 DOI: 10.1016/j.biopha.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yang Liu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
4
|
Liu Y, Wan Y, Yi J, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188890. [PMID: 37001616 DOI: 10.1016/j.bbcan.2023.188890] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Glutathione peroxidase 4 (GPx4) moonlights as structural protein and antioxidase that powerfully inhibits lipid oxidation. In the past years, it is considered as a key regulator of ferroptosis, which takes role in the lipid and amine acid metabolism and influences the cell aging, oncogenesis, and cell death. More and more evidences show that targeting GPX4-induced ferroptosis is a promising strategy for disease therapy, especially cancer treatment. In view of these, we generalize the function of GPX4 and regulatory mechanism between GPX4 and ferroptosis, discuss its roles in the disease pathology, and focus on the recent advances of disease therapeutic potential.
Collapse
|
5
|
Hu Q, Chen J, Yang W, Xu M, Zhou J, Tan J, Huang T. GPX3 expression was down-regulated but positively correlated with poor outcome in human cancers. Front Oncol 2023; 13:990551. [PMID: 36845676 PMCID: PMC9947857 DOI: 10.3389/fonc.2023.990551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Cancer is a crucial public health problem and one of the leading causes of death worldwide. Previous studies have suggested that GPX3 may be involved in cancer metastasis and chemotherapy resistance. However, how GPX3 affects cancer patients' outcomes and the underlying mechanism remains unclear. Methods Sequencing data and clinical data from TCGA, GTEx, HPA, and CPTAC were used to explore the relationship between GPX3 expression and clinical features. Immunoinfiltration scores were used to assess the relationship between GPX3 and the tumor immune microenvironment. Functional enrichment analysis was used to predict the role of GPX3 in tumors. Gene mutation frequency, methylation level, and histone modification were used to predict the GPX3 expression regulation method. Breast, ovarian, colon, and gastric cancer cells were used to investigate the relationship between GPX3 expression and cancer cell metastasis, proliferation, and chemotherapy sensitivity. Results GPX3 is down-regulated in various tumor tissues, and GPX3 expression level can be used as a marker for cancer diagnosis. However, GPX3 expression is associated with higher stage and lymph node metastasis, as well as poorer prognosis. GPX3 is closely related to thyroid function and antioxidant function, and its expression may be regulated by epigenetic inheritance such as methylation modification or histone modification. In vitro experiments, GPX3 expression is associated with cancer cell sensitivity to oxidant and platinum-based chemotherapy and is involved in tumor metastasis in oxidative environments. Discussion We explored the relationship between GPX3 and clinical features, immune infiltration characteristics, migration and metastasis, and chemotherapy sensitivities of human cancers. We further investigated the potential genetic and epigenetic regulation of GPX3 in cancer. Our results suggested that GPX3 plays a complicated role in the tumor microenvironment, simultaneously promoting metastasis and chemotherapy resistance in human cancers.
Collapse
Affiliation(s)
| | | | | | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Tan
- *Correspondence: Tao Huang, ; Jie Tan,
| | - Tao Huang
- *Correspondence: Tao Huang, ; Jie Tan,
| |
Collapse
|
6
|
Chen M, Shi Z, Sun Y, Ning H, Gu X, Zhang L. Prospects for Anti-Tumor Mechanism and Potential Clinical Application Based on Glutathione Peroxidase 4 Mediated Ferroptosis. Int J Mol Sci 2023; 24:1607. [PMID: 36675129 PMCID: PMC9864218 DOI: 10.3390/ijms24021607] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis, characterized by excessive iron accumulation and lipid peroxidation, is a novel form of iron-dependent cell death, which is morphologically, genetically, and biochemically distinct from other known cell death types, such as apoptosis, necrosis, and autophagy. Emerging evidence shows that glutathione peroxidase 4 (GPX4), a critical core regulator of ferroptosis, plays an essential role in protecting cells from ferroptosis by removing the product of iron-dependent lipid peroxidation. The fast-growing studies on ferroptosis in cancer have boosted a perspective on its use in cancer therapeutics. In addition, significant progress has been made in researching and developing tumor therapeutic drugs targeting GPX4 based on ferroptosis, especially in acquired drug resistance. Selenium modulates GPX4-mediated ferroptosis, and its existing form, selenocysteine (Sec), is the active center of GPX4. This review explored the structure and function of GPX4, with the overarching goal of revealing its mechanism and potential application in tumor therapy through regulating ferroptosis. A deeper understanding of the mechanism and application of GPX4-mediated ferroptosis in cancer therapy will provide new strategies for the research and development of antitumor drugs.
Collapse
Affiliation(s)
- Mingliang Chen
- School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Zhihao Shi
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Yuqiu Sun
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Haoran Ning
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Xinyu Gu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- School of Basic Medical Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Ursini F, Bosello Travain V, Cozza G, Miotto G, Roveri A, Toppo S, Maiorino M. A white paper on Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) forty years later. Free Radic Biol Med 2022; 188:117-133. [PMID: 35718302 DOI: 10.1016/j.freeradbiomed.2022.06.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022]
Abstract
The purification of a protein inhibiting lipid peroxidation led to the discovery of the selenoperoxidase GPx4 forty years ago. Thus, the evidence of the enzymatic activity was reached after identifying the biological effect and unambiguously defined the relationship between the biological function and the enzymatic activity. In the syllogism where GPx4 inhibits lipid peroxidation and its inhibition is lethal, cell death is operated by lipid peroxidation. Based on this rationale, this form of cell death emerged as regulated iron-enforced oxygen toxicity and was named ferroptosis in 2012. In the last decades, we learned that reduction of lipid hydroperoxides is indispensable and, in cooperation with prooxidant systems, controls the critical steady state of lipid peroxidation. This concept defined the GPx4 reaction as both the target for possible anti-cancer therapy and if insufficient, as cause of degenerative diseases. We know the reaction mechanism, but the details of the interaction at the membrane cytosol interface are still poorly defined. We know the gene structure, but the knowledge about expression control is still limited. The same holds true for post-transcriptional modifications. Reverse genetics indicate that GPx4 has a role in inflammation, immunity, and differentiation, but the observations emerging from these studies need a more specifically addressed biochemical evidence. Finally, the role of GPx4 in spermatogenesis disclosed an area unconnected to lipid peroxidation. In its mitochondrial and nuclear form, the peroxidase catalyzes the oxidation of protein thiols in two specific aspects of sperm maturation: stabilization of the mid-piece and chromatin compaction. Thus, although available evidence converges to the notion that GPx4 activity is vital due to the inhibition of lipid peroxidation, it is reasonable to foresee other unknown aspects of the GPx4 reaction to be disclosed.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | | | - Giorgio Cozza
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Antonella Roveri
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
8
|
Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood 2021; 138:871-884. [PMID: 33876201 DOI: 10.1182/blood.2020009404] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Despite the development of novel targeted drugs, the molecular heterogeneity of diffuse large B-cell lymphoma (DLBCL) still poses a major therapeutic challenge. DLBCL can be classified into at least two major subtypes, i.e. germinal center B-cell-like (GCB) and the aggressive activated B-cell-like (ABC) DLBCL, each characterized by specific gene expression profiles and mutation patterns. Here we demonstrate a broad anti-tumor effect of dimethyl fumarate (DMF) on both DLBCL subtypes, which is mediated by the induction of ferroptosis, a form of cell death driven by the peroxidation of phospholipids. Due to high expression of arachidonate 5-lipoxygenase in concert with low glutathione and glutathione peroxidase 4 levels, DMF induces lipid peroxidation and thus ferroptosis particularly in GCB DLBCL. In ABC DLBCL cells, which are addicted to NF-κB and STAT3 survival signaling, DMF treatment efficiently inhibits the activity of the IKK complex and JAK kinases. Interestingly, the BCL-2 specific BH3 mimetic ABT-199 and an inhibitor of ferroptosis suppressor protein 1 synergize with DMF in inducing cell death in DLBCL. Collectively, our findings identify the clinically approved drug DMF as a promising novel therapeutic option in the treatment of both GCB and ABC DLBCL.
Collapse
|
9
|
Abstract
Significance: The selenium-containing Glutathione peroxidases (GPxs)1-4 protect against oxidative challenge, inhibit inflammation and oxidant-induced regulated cell death. Recent Advances: GPx1 and GPx4 dampen phosphorylation cascades predominantly via prevention of inactivation of phosphatases by H2O2 or lipid hydroperoxides. GPx2 regulates the balance between regeneration and apoptotic cell shedding in the intestine. It inhibits inflammation-induced carcinogenesis in the gut but promotes growth of established cancers. GPx3 deficiency facilitates platelet aggregation likely via disinhibition of thromboxane biosynthesis. It is also considered a tumor suppressor. GPx4 is expressed in three different forms. The cytosolic form proved to inhibit interleukin-1-driven nuclear factor κB activation and leukotriene biosynthesis. Moreover, it is a key regulator of ferroptosis, because it reduces hydroperoxy groups of complex lipids and silences lipoxygenases. By alternate substrate use, the nuclear form contributes to chromatin compaction. Mitochondrial GPx4 forms the mitochondrial sheath of spermatozoa and, thus, guarantees male fertility. Out of the less characterized GPxs, the cysteine-containing GPx7 and GPx8 are unique in contributing to oxidative protein folding in the endoplasmic reticulum by reacting with protein isomerase as an alternate substrate. A yeast 2-Cysteine glutathione peroxidase equipped with CP and CR was reported to sense H2O2 for inducing an adaptive response. Critical Issues: Most of the findings compiled are derived from tissue culture and/or animal studies only. Their impact on human physiology is sometimes questionable. Future Directions: The expression of individual GPxs and GPx-dependent regulatory phenomena are to be further investigated, in particular in respect to human health.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition-Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Leopold Flohé
- Depatamento de Biochímica, Universidad de la República, Montevideo, Uruguay.,Dipartimento di Medicina Moleculare, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
10
|
Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med 2020; 152:175-185. [PMID: 32165281 DOI: 10.1016/j.freeradbiomed.2020.02.027] [Citation(s) in RCA: 908] [Impact Index Per Article: 181.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Ferroptosis (FPT) is a form of cell death due to missed control of membrane lipid peroxidation (LPO). According to the axiomatic definition of non-accidental cell death, LPO takes place in a scenario of altered homeostasis. FPT, differently from apoptosis, occurs in the absence of any known specific genetically encoded death pathway or specific agonist, and thus must be rated as a regulated, although not "programmed", death pathway. It follows that LPO is under a homeostatic metabolic control and is only permitted when indispensable constraints are satisfied and the antiperoxidant machinery collapses. The activity of the selenoperoxidase Glutathione Peroxidase 4 (GPx4) is the cornerstone of the antiperoxidant defence. Converging evidence on both mechanism of LPO and GPx4 enzymology indicates that LPO is initiated by alkoxyl radicals produced by ferrous iron from the hydroperoxide derivatives of lipids (LOOH), traces of which are the unavoidable drawback of aerobic metabolism. FPT takes place when a threshold has been exceeded. This occurs when the major conditions are satisfied: i) oxygen metabolism leading to the continuous formation of traces of LOOH from phospholipid-containing polyunsaturated fatty acids; ii) missed enzymatic reduction of LOOH; iii) availability of ferrous iron from the labile iron pool. Although the effectors impacting on homeostasis and leading to FPT in physiological conditions are not known, from the available knowledge on LPO and GPx4 enzymology we propose that it is aerobic life itself that, while supporting bioenergetics, is also a critical requisite of FPT. Yet, when the homeostatic control of the steady state between LOOH formation and reduction is lost, LPO is activated and FPT is executed.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Viale G. Colombo, 3, I-35131, Padova, Italy.
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, Viale G. Colombo, 3, I-35131, Padova, Italy.
| |
Collapse
|
11
|
Hu CL, Nydes M, Shanley KL, Morales Pantoja IE, Howard TA, Bizzozero OA. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurochem 2018; 148:426-439. [PMID: 30289974 DOI: 10.1111/jnc.14604] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Glutathione peroxidase 4 (GPx4) is the only enzyme capable of reducing toxic lipid hydroperoxides in biological membranes to the corresponding alcohols using glutathione as the electron donor. GPx4 is the major inhibitor of ferroptosis, a non-apoptotic and iron-dependent programmed cell death pathway, which has been shown to occur in various neurological disorders with severe oxidative stress. In this study, we investigate whether GPx4 expression is altered in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). The results clearly show that mRNA expression for all three GPx4 isoforms (cytoplasmic, mitochondrial and nuclear) decline in multiple sclerosis gray matter and in the spinal cord of MOG35-55 peptide-induced EAE. The amount of GPx4 protein is also reduced in EAE, albeit not in all cells. Neuronal GPx4 immunostaining, mostly cytoplasmic, is lower in EAE spinal cords than in control spinal cords, while oligodendrocyte GPx4 immunostaining, mainly nuclear, is unaltered. Neither control nor EAE astrocytes and microglia cells show GPx4 labeling. In addition to GPx4, two other negative modulators of ferroptosis (γ-glutamylcysteine ligase and cysteine/glutamate antiporter), which are critical to maintain physiological levels of glutathione, are diminished in EAE. The decrease in the ability to eliminate hydroperoxides was also evidenced by the accumulation of lipid peroxidation products and the reduction in the proportion of the docosahexaenoic acid in non-myelin lipids. These findings, along with presence of abnormal neuronal mitochondria morphology, which includes an irregular matrix, disrupted outer membrane and reduced/absent cristae, are consistent with the occurrence of ferroptotic damage in inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Che-Lin Hu
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Mara Nydes
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kara L Shanley
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Itzy E Morales Pantoja
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Tamara A Howard
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Oscar A Bizzozero
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
12
|
Ufer C, Wang CC. The Roles of Glutathione Peroxidases during Embryo Development. Front Mol Neurosci 2011; 4:12. [PMID: 21847368 PMCID: PMC3148772 DOI: 10.3389/fnmol.2011.00012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/13/2011] [Indexed: 01/31/2023] Open
Abstract
Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, Charité - University Medicine Berlin Berlin, Germany
| | | |
Collapse
|
13
|
Shan Z, Li H, Bao X, He C, Yu H, Liu W, Hou L, Wang J, Zhu D, Sui L, Zhu B, Li Y. A selenium-dependent glutathione peroxidase in the Japanese scallop, Mizuhopecten yessoensis: cDNA cloning, promoter sequence analysis and mRNA expression. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:1-9. [PMID: 21276866 DOI: 10.1016/j.cbpb.2011.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 11/20/2022]
Abstract
Glutathione peroxidase (GPx) is an antioxidant enzyme that protects cells from oxidative damage in the innate immune responses against bacterial infections. GPx is also involved in immune defenses. In this study, we report cloning and characterization of a GPx (designated as MyGPx) coding sequences and promoter from Japanese scallop, Mizuhopecten yessoensis. The full-length 1081 nt MyGPx mRNA contained a 28 nt 5' untranslated region (UTR), a 603 nt open reading frame and a 450 nt 3' UTR containing a polyadenylation signal (AATAAA). Multiple sequence alignment revealed that amino acids essential to enzymatic function of MyGPx proteins were highly conserved. A 1628 nt 5'-flanking sequence of MyGPx was identified by genome walking. Here, several potential transcription factor binding sites were detected in the putative promoter region, and nine single nucleotide polymorphisms (SNPs) were found in the 5' sequence flanking the promoter region. Quantitative Real time PCR (qRT-PCR) was employed to measure GPx mRNA expression in adult tissues and monitor mRNA expression patterns during embryonic development and following stimulation by the bacteria Vibrillo anguillarum. Collectively, the results suggest that MyGPx fulfills an important function during M. yessoensis development and may be an important immune effector in adult molluscs.
Collapse
Affiliation(s)
- Zhongguo Shan
- College of Life Science, Liaoning Normal University, No. 850 Huanghe Road, Shahekou District, Dalian, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal 2010; 13:833-75. [PMID: 20367257 DOI: 10.1089/ars.2009.3044] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an embryo constitutes a complex choreography of regulatory events that underlies precise temporal and spatial control. Throughout this process the embryo encounters ever changing environments, which challenge its metabolism. Oxygen is required for embryogenesis but it also poses a potential hazard via formation of reactive oxygen and reactive nitrogen species (ROS/RNS). These metabolites are capable of modifying macromolecules (lipids, proteins, nucleic acids) and altering their biological functions. On one hand, such modifications may have deleterious consequences and must be counteracted by antioxidant defense systems. On the other hand, ROS/RNS function as essential signal transducers regulating the cellular phenotype. In this context the combined maternal/embryonic redox homeostasis is of major importance and dysregulations in the equilibrium of pro- and antioxidative processes retard embryo development, leading to organ malformation and embryo lethality. Silencing the in vivo expression of pro- and antioxidative enzymes provided deeper insights into the role of the embryonic redox equilibrium. Moreover, novel mechanisms linking the cellular redox homeostasis to gene expression regulation have recently been discovered (oxygen sensing DNA demethylases and protein phosphatases, redox-sensitive microRNAs and transcription factors, moonlighting enzymes of the cellular redox homeostasis) and their contribution to embryo development is critically reviewed.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, FR Germany
| | | | | | | | | |
Collapse
|
15
|
Barnes VL, Strunk BS, Lee I, Hüttemann M, Pile LA. Loss of the SIN3 transcriptional corepressor results in aberrant mitochondrial function. BMC BIOCHEMISTRY 2010; 11:26. [PMID: 20618965 PMCID: PMC2909972 DOI: 10.1186/1471-2091-11-26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/09/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND SIN3 is a transcriptional repressor protein known to regulate many genes, including a number of those that encode mitochondrial components. RESULTS By monitoring RNA levels, we find that loss of SIN3 in Drosophila cultured cells results in up-regulation of not only nuclear encoded mitochondrial genes, but also those encoded by the mitochondrial genome. The up-regulation of gene expression is accompanied by a perturbation in ATP levels in SIN3-deficient cells, suggesting that the changes in mitochondrial gene expression result in altered mitochondrial activity. In support of the hypothesis that SIN3 is necessary for normal mitochondrial function, yeast sin3 null mutants exhibit very poor growth on non-fermentable carbon sources and show lower levels of ATP and reduced respiration rates. CONCLUSIONS The findings that both yeast and Drosophila SIN3 affect mitochondrial activity suggest an evolutionarily conserved role for SIN3 in the control of cellular energy production.
Collapse
Affiliation(s)
- Valerie L Barnes
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, Michigan 48202, USA
| | - Bethany S Strunk
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, Michigan 48202, USA
- Chemical Biology, University of Michigan, 930 N. University Ave. Rm. 4250, Ann Arbor, Michigan 48109, USA
| | - Icksoo Lee
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 E. Canfield, Detroit, Michigan 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 E. Canfield, Detroit, Michigan 48201, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, Michigan 48202, USA
| |
Collapse
|
16
|
Imai H. New Strategy of Functional Analysis of PHGPx Knockout Mice Model Using Transgenic Rescue Method and Cre-LoxP System. J Clin Biochem Nutr 2009; 46:1-13. [PMID: 20104259 PMCID: PMC2803127 DOI: 10.3164/jcbn.09-94r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/05/2009] [Indexed: 01/23/2023] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an intracellular antioxidant enzyme that directly reduces peroxidized phospholipids. PHGPx is transcribed from one gene into three types of mRNA, mitochondrial, non-mitochondrial and nucleolar PHGPx by alternative transcription. In this review, we focus on our recent experiments on the regulation of promoter activity of the types of PHGPx and on the novel strategy of functional analysis of a PHGPx knockout mice model using the transgenic rescue method and Cre-LoxP system. PHGPx is especially high in testis and spermatozoa. A deficiency is implicated in human infertility. We established spermatocyte-specific PHGPx knockout (KO) mice using a Cre-loxP system. Targeted disruption of all exons of the PHGPx gene in mice by homologous recombination caused embryonic lethality at 7.5 days post coitum. The PHGPx-loxP transgene rescued PHGPx KO mice from embryonic lethality. These rescued floxed PHGPx mice were mated with spermatocyte specific Cre expressing mice. All the spermatocyte-specific PHGPx KO male mice were infertile and displayed a significant decrease in the number of spermatozoa and significant reductions in forward motility by mitochondrial dysfunction of spermatozoa. These results demonstrate that depletion of PHGPx in spermatozoa may be one of the causes of male infertility in mice and humans.
Collapse
Affiliation(s)
- Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku Tokyo 108-8641, Japan
| |
Collapse
|
17
|
Stoytcheva ZR, Berry MJ. Transcriptional regulation of mammalian selenoprotein expression. Biochim Biophys Acta Gen Subj 2009; 1790:1429-40. [PMID: 19465084 DOI: 10.1016/j.bbagen.2009.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/05/2009] [Accepted: 05/18/2009] [Indexed: 01/23/2023]
Abstract
BACKGROUND Selenoproteins contain the twenty-first amino acid, selenocysteine, and are involved in cellular defenses against oxidative damage, important metabolic and developmental pathways, and responses to environmental challenges. Elucidating the mechanisms regulating selenoprotein expression at the transcriptional level is a key to understanding how these mechanisms are called into play to respond to the changing environment. METHODS This review summarizes published studies on transcriptional regulation of selenoprotein genes, focused primarily on genes whose encoded protein functions are at least partially understood. This is followed by in silico analysis of predicted regulatory elements in selenoprotein genes, including those in the aforementioned category as well as the genes whose functions are not known. RESULTS Our findings reveal regulatory pathways common to many selenoprotein genes, including several involved in stress-responses. In addition, tissue-specific regulatory factors are implicated in regulating many selenoprotein genes. CONCLUSIONS These studies provide new insights into how selenoprotein genes respond to environmental and other challenges, and the roles these proteins play in allowing cells to adapt to these changes. GENERAL SIGNIFICANCE Elucidating the regulatory mechanisms affecting selenoprotein expression is essential for understanding their roles in human diseases, and for developing diagnostic and potential therapeutic approaches to address dysregulation of members of this gene family.
Collapse
Affiliation(s)
- Zoia R Stoytcheva
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Suite 222, Honolulu, HI 96813, USA
| | | |
Collapse
|
18
|
Lee TY, Lee KC, Chen SY, Chang HH. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide-stimulated mouse macrophages. Biochem Biophys Res Commun 2009; 382:134-9. [PMID: 19268427 DOI: 10.1016/j.bbrc.2009.02.160] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/26/2009] [Indexed: 11/15/2022]
Abstract
Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-alpha expression through suppression of I-kappaB alpha phosphorylation, NF-kappaB nuclear activation and PKC-alpha translocation, which in turn inhibits Ca(2+) mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-kappaB and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.
Collapse
Affiliation(s)
- Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan.
| | | | | | | |
Collapse
|
19
|
The effect of capillarisin on glycochenodeoxycholic acid-induced apoptosis and heme oxygenase-1 in rat primary hepatocytes. Mol Cell Biochem 2009; 325:53-9. [DOI: 10.1007/s11010-008-0019-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
|
20
|
Ufer C, Wang CC, Fähling M, Schiebel H, Thiele BJ, Billett EE, Kuhn H, Borchert A. Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev 2008; 22:1838-50. [PMID: 18593884 DOI: 10.1101/gad.466308] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a moonlighting selenoprotein, which has been implicated in basic cell functions such as anti-oxidative defense, apoptosis, and gene expression regulation. GPx4-null mice die in utero at midgestation, and developmental retardation of the brain appears to play a major role. We investigated post-transcriptional mechanisms of GPx4 expression regulation and found that the guanine-rich sequence-binding factor 1 (Grsf1) up-regulates GPx4 expression. Grsf1 binds to a defined target sequence in the 5'-untranslated region (UTR) of the mitochondrial GPx4 (m-GPx4) mRNA, up-regulates UTR-dependent reporter gene expression, recruits m-GPx4 mRNA to translationally active polysome fractions, and coimmunoprecipitates with GPx4 mRNA. During embryonic brain development, Grsf1 and m-GPx4 are coexpressed, and functional knockdown (siRNA) of Grsf1 prevents embryonic GPx4 expression. When compared with mock controls, Grsf1 knockdown embryos showed significant signs of developmental retardations that are paralleled by apoptotic alterations (TUNEL staining) and massive lipid peroxidation (isoprostane formation). Overexpression of m-GPx4 prevented the apoptotic alterations in Grsf1-deficient embryos and rescued them from developmental retardation. These data indicate that Grsf1 up-regulates translation of GPx4 mRNA and implicate the two proteins in embryonic brain development.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, D-10117 Berlin, F.R. Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Savaskan NE, Ufer C, Kühn H, Borchert A. Molecular biology of glutathione peroxidase 4: from genomic structure to developmental expression and neural function. Biol Chem 2008; 388:1007-17. [PMID: 17937614 DOI: 10.1515/bc.2007.126] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Selenoproteins have been recognized as modulators of brain function and signaling. Phospholipid hydroperoxide glutathione peroxidase (GPx4/PHGPx) is a unique member of the selenium-dependent glutathione peroxidases in mammals with a pivotal role in brain development and function. GPx4 exists as a cytosolic, mitochondrial, and nuclear isoform derived from a single gene. In mice, the GPx4 gene is located on chromosome 10 in close proximity to a functional retrotransposome that is expressed under the control of captured regulatory elements. Elucidation of crystallographic data uncovered structural peculiarities of GPx4 that provide the molecular basis for its unique enzymatic properties and substrate specificity. Monomeric GPx4 is multifunctional: it acts as a reducing enzyme of peroxidized phospholipids and thiols and as a structural protein. Transcriptional regulation of the different GPx4 isoforms requires several isoform-specific cis-regulatory sequences and trans-activating factors. Cytosolic and mitochondrial GPx4 are the major isoforms exclusively expressed by neurons in the developing brain. In stark contrast, following brain trauma, GPx4 is specifically upregulated in non-neuronal cells, i.e., reactive astrocytes. Molecular approaches to genetic modification in mice have revealed an essential and isoform-specific function for GPx4 in development and disease. Here we review recent findings on GPx4 with emphasis on its molecular structure and function and consider potential mechanisms that underlie neural development and neuropathological conditions.
Collapse
Affiliation(s)
- Nicolai E Savaskan
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, NL-1066 CX Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Savaskan NE, Borchert A, Bräuer AU, Kuhn H. Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med 2007; 43:191-201. [PMID: 17603929 DOI: 10.1016/j.freeradbiomed.2007.03.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 03/31/2007] [Indexed: 01/18/2023]
Abstract
Glutathione peroxidase-4 (GPx4) is a multifunctional selenoprotein expressed as mitochondrial, cytosolic, or nuclear isoforms. As a catalytically active enzyme it has been implicated in antioxidative defense, but during sperm development it functions as a structural protein. GPx4 null mice die in utero at midgestation and knockdown of GPx4 during embryogenesis disturbs brain development. To explore the cerebral function of GPx4 we profiled cell-specific enzyme expression at various stages of perinatal brain maturation and investigated its regulation following brain injury by immunohistochemistry, in situ hybridization, and quantitative RT-PCR. Large amounts of GPx4 mRNA were detected in all neuronal layers during perinatal brain development but expression became restricted during postnatal maturation. In adult brain mitochondrial and cytosolic GPx4 isoforms were detected in neurons of cerebral cortex, hippocampus, and cerebellum whereas glial cells were devoid of GPx4. Following selective brain injury expression of the enzyme was upregulated in reactive astrocytes of lesioned areas and deafferented regions but not in neurons. Selective knockdown of GPx4 by small interfering RNA induced depletion of phosphatidylinositol-(4,5)-bisphosphate in the neuronal plasma membrane and subsequently apoptosis as indicated by caspase-3 activation. We hypothesize that astrocytic upregulation of GPx4 in response to injury is part of a protective cascade counteracting further cell damage.
Collapse
Affiliation(s)
- Nicolai E Savaskan
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Imai H, Saito M, Kirai N, Hasegawa J, Konishi K, Hattori H, Nishimura M, Naito S, Nakagawa Y. Identification of the Positive Regulatory and Distinct Core Regions of Promoters, and Transcriptional Regulation in Three Types of Mouse Phospholipid Hydroperoxide Glutathione Peroxidase. ACTA ACUST UNITED AC 2006; 140:573-90. [PMID: 16959796 DOI: 10.1093/jb/mvj186] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is transcribed into three types of mRNA, mitochondrial, non-mitochondrial and nucleolar types, from one gene by alternative transcription using different first exons, Ia and Ib. We investigated the regulatory mechanisms of the expressions of the three types of PHGPx using promoter analysis with luciferase as the reporter gene and electrophoretical mobility shift analysis. Here we report a draft of the positive regulatory region and the core promoter regions of PHGPx in several cell lines. From promoter deletion analysis we identified the three distinct core regions of mitochondrial PHGPx, non-mitochondrial PHGPx and nucleolar PHGPx. The core promoter activity of non-mitochondrial PHGPx was high in L929 cells, but relatively low for mitochondrial and nucleolar PHGPx. We also identified the positive regulatory region of mitochondrial PHGPx by deletion and mutation analysis of 5'-flanking regions of mitochondrial PHGPx. This region could regulate the promoter activity of non-mitochondrial PHGPx; however, up-regulation by this region was normally suppressed by the upstream region in somatic cells. Electrophoretical mobility shift analysis demonstrated that a specific transcription factor complex bound to this region in adult testis, but not in young testis and different sizes of complexes bound to this region between testis and brain.
Collapse
Affiliation(s)
- Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Diaconu M, Tangat Y, Böhm D, Kühn H, Michelmann HW, Schreiber G, Haidl G, Glander HJ, Engel W, Nayernia K. Failure of phospholipid hydroperoxide glutathione peroxidase expression in oligoasthenozoospermia and mutations in the PHGPx gene. Andrologia 2006; 38:152-7. [PMID: 16872467 DOI: 10.1111/j.1439-0272.2006.00729.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein belonging to the family of glutathione peroxidases. PHGPx has long been considered a major antioxidant that, in cooperation with vitamin E, protects biomembranes. To determine the expression pattern of PHGPx mRNA in human, quantitative RT-polymerase chain reaction (PCR) analyses using RNA from different embryonal and adult tissues were performed. A predominant expression was found in testes. In spermatozoa, PHGPx was found to be localized in the mid-piece of spermatozoa. We studied the relationship between spermatozoa PHGPx expression, mutations in PHGPx gene and human oligoasthenozoospermia, a defect in which both the number and the motility of spermatozoa are significantly below normal. Spermatozoa specimens from 45 infertile males were analysed for fertility-related parameters according to World Health Organisation and were classified as suffering from oligoasthenozoospermia. Two patients (4.44%) showed no expression of PHGPx and in nine patients (20.00%), a reduced expression of the enzyme was observed. DNA sequences of various regions of the PHGPx gene (coding, 5'flanking region and intron 1) from these patients and 58 fertile volunteers were analysed for mutations by PCR amplification and direct sequencing. Sequence data revealed no cause/effect relationship for any of the variants. From these data it can be concluded that oligoasthenozoospermia is associated with a decrease in the level of expression of PHGPx in the spermatozoa of some infertile men (24.44%), but is not linked to mutations in PHGPx gene.
Collapse
Affiliation(s)
- M Diaconu
- Institute of Human Genetics, University of Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Borchert A, Wang CC, Ufer C, Schiebel H, Savaskan NE, Kuhn H. The role of phospholipid hydroperoxide glutathione peroxidase isoforms in murine embryogenesis. J Biol Chem 2006; 281:19655-64. [PMID: 16684775 DOI: 10.1074/jbc.m601195200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a selenocysteine-containing enzyme, and three different isoforms (cytosolic, mitochondrial, and nuclear) originate from the GPx4 gene. Homozygous GPx4-deficient mice die in utero at midgestation, since they fail to initiate gastrulation and do not develop embryonic cavities. To investigate the biological basis for embryonic lethality, we first explored expression of the GPx4 in adult murine brain and found expression of the protein in cerebral neurons. Next, we profiled mRNA expression during the time course of embryogenesis (embryonic days 6.5-17.5 (E6.5-17.5)) and detected mitochondrial and cytosolic mRNA species at high concentrations. In contrast, the nuclear isoform was only expressed in small amounts. Cytosolic GPx4 mRNA was present at constant levels (about 100 copies per 1000 copies of glyceraldehyde-3-phosphate dehydrogenase mRNA), whereas nuclear and mitochondrial isoforms were down-regulated between E14.5 and E17.5. In situ hybridization indicated expression of GPx4 isoforms in all developing germ layers during gastrulation and in the somite stage in the developing central nervous system and in the heart. When we silenced expression of GPx4 isoforms during in vitro embryogenesis using short interfering RNA technology, we observed that knockdown of mitochondrial GPx4 strongly impaired segmentation of rhombomeres 5 and 6 during hindbrain development and induced cerebral apoptosis. In contrast, silencing expression of the nuclear isoform led to retardations in atrium formation. Taken together, our data indicate specific expression of GPx4 isoforms in embryonic brain and heart and strongly suggest a role of this enzyme in organogenesis. These findings may explain in part intrauterine lethality of GPx4 knock-out mice.
Collapse
Affiliation(s)
- Astrid Borchert
- Institute of Biochemistry, University Medicine Berlin-Charité, Monbijoustrasse 2, D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Analysis of the selenoproteome identified five glutathione peroxidases (GPxs) in mammals: cytosolic GPx (cGPx, GPx1), phospholipid hydroperoxide GPx (PHGPX, GPx4), plasma GPx (pGPX, GPx3), gastrointestinal GPx (GI-GPx, GPx2) and, in humans, GPx6, which is restricted to the olfactory system. GPxs reduce hydroperoxides to the corresponding alcohols by means of glutathione (GSH). They have long been considered to only act as antioxidant enzymes. Increasing evidence, however, suggests that nature has not created redundant GPxs just to detoxify hydroperoxides. cGPx clearly acts as an antioxidant, as convincingly demonstrated in GPx1-knockout mice. PHGPx specifically interferes with NF-kappaB activation by interleukin-1, reduces leukotriene and prostanoid biosynthesis, prevents COX-2 expression, and is indispensable for sperm maturation and embryogenesis. GI-GPx, which is not exclusively expressed in the gastrointestinal system, is upregulated in colon and skin cancers and in certain cultured cancer cells. GI-GPx is a target for Nrf2, and thus is part of the adaptive response by itself, while PHGPx might prevent cancer by interfering with inflammatory pathways. In conclusion, cGPx, PHGPx and GI-GPx have distinct roles, particularly in cellular defence mechanisms. Redox sensing and redox regulation of metabolic events have become attractive paradigms to unravel the specific and in part still enigmatic roles of GPxs.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.
| |
Collapse
|
27
|
Abstract
The gastrointestinal glutathione peroxidase (GI-GPx, GPx2) is a selenoprotein that was suggested to act as barrier against hydroperoxide absorption but has also been implicated in the control of inflammation and malignant growth. In CaCo-2 cells, GI-GPx was induced by t-butyl hydroquinone (tBHQ) and sulforaphane (SFN), i.e., "antioxidants" known to activate the "antioxidant response element" (ARE) via electrophilic thiol modification of Keap1 in the Nrf2/Keap1 system. The functional significance of a putative ARE in the GI-GPx promoter was validated by transcriptional activation of reporter gene constructs upon exposure to electrophiles (tBHQ, SFN, and curcumin) or overexpression of Nrf2 and by reversal of these effects by mutation of the ARE in the promoter and by overexpressed Keap1. Binding of Nrf2 to the ARE sequence in authentic gpx2 was corroborated by chromatin immunoprecipitation. Thus, the presumed natural antioxidants sulforaphane and curcumin may exert their anti-inflammatory and anticarcinogenic effects not only by induction of phase 2 enzymes but also by the up-regulation of the selenoprotein GI-GPx.
Collapse
Affiliation(s)
- Antje Banning
- German Institute of Human Nutrition, Potsdam-Rehbruecke, Dept. of Biochemistry and Micronutrients, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | | | | | | | | |
Collapse
|
28
|
Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 2005; 21:2933-42. [PMID: 15860560 DOI: 10.1093/bioinformatics/bti473] [Citation(s) in RCA: 1573] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MOTIVATION Promoter analysis is an essential step on the way to identify regulatory networks. A prerequisite for successful promoter analysis is the prediction of potential transcription factor binding sites (TFBS) with reasonable accuracy. The next steps in promoter analysis can be tackled only with reliable predictions, e.g. finding phylogenetically conserved patterns or identifying higher order combinations of sites in promoters of co-regulated genes. RESULTS We present a new version of the program MatInspector that identifies TFBS in nucleotide sequences using a large library of weight matrices. By introducing a matrix family concept, optimized thresholds, and comparative analysis, the enhanced program produces concise results avoiding redundant and false-positive matches. We describe a number of programs based on MatInspector allowing in-depth promoter analysis (DiAlignTF, FrameWorker) and targeted design of regulatory sequences (SequenceShaper).
Collapse
Affiliation(s)
- K Cartharius
- Genomatix Software GmbH Landsberger Strasse. 6, 80339 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lin SJ, Shyue SK, Hung YY, Chen YH, Ku HH, Chen JW, Tam KB, Chen YL. Superoxide Dismutase Inhibits the Expression of Vascular Cell Adhesion Molecule-1 and Intracellular Cell Adhesion Molecule-1 Induced by Tumor Necrosis Factor-α in Human Endothelial Cells Through the JNK/p38 Pathways. Arterioscler Thromb Vasc Biol 2005; 25:334-40. [PMID: 15576639 DOI: 10.1161/01.atv.0000152114.00114.d8] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Expression of adhesion molecules on endothelial cells and subsequent leukocyte recruitment are critical early events in the development of atherosclerosis. We tried to study possible effects of Cu/Zn superoxide dismutase (SOD) on adhesion molecule expression and its underlying mechanism in the prevention and treatment of cardiovascular disorders.
Methods and Results—
Human aortic endothelial cells (HAECs) were transfected with adenovirus carrying the human SOD gene (AdSOD) to investigate whether SOD expression in HAECs attenuated tumor necrosis factor (TNF)-α–induced reactive oxygen species production and adhesion molecule expression and to define the mechanisms involved. SOD expression significantly suppressed TNF-α–induced expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 and reduced the binding of the human neutrophils to TNF-α–stimulated HAECs. SOD expression suppressed c-JUN N-terminal kinase and p38 phosphorylation. It also attenuated intracellular superoxide anion production and NADPH oxidase activity in TNF-α–treated HAECs.
Conclusions—
These results provide evidence that SOD expression in endothelial cells attenuates TNF-α–induced superoxide anion production and adhesion molecule expression, and that this protective effect is mediated by decreased JNK and p38 phosphorylation and activator protein-1 and nuclear factor κB inactivation. These results suggest that SOD has antiinflammatory properties and may play important roles in the prevention of atherosclerosis and inflammatory response.
Collapse
Affiliation(s)
- Shing-Jong Lin
- Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jin JS, Baek S, Lee H, Oh MY, Koo YE, Shim MS, Kwon SY, Jeon I, Park SY, Baek K, Yoo MA, Hatfield DL, Lee BJ. A DNA replication-related element downstream from the initiation site of Drosophila selenophosphate synthetase 2 gene is essential for its transcription. Nucleic Acids Res 2004; 32:2482-93. [PMID: 15121905 PMCID: PMC419457 DOI: 10.1093/nar/gkh569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Revised: 03/27/2004] [Accepted: 04/06/2004] [Indexed: 11/13/2022] Open
Abstract
Selenophosphate synthetase catalyzes the synthesis of selenophosphate which is a selenium donor for Sec biosynthesis. In Drosophila melanogaster, there are two types of selenophosphate synthetases designated dSPS1 and dSPS2, where dSPS2 is a selenoprotein. The mechanism of gene expression of dSPS2 as well as other selenoproteins in Drosophila has not been elucidated. Herein, we report an essential regulator system that regulates the transcription of the dSPS2 gene (dsps2). Through deletion/substitution mutagenesis, the downstream DNA replication-related element (DRE) located at +71 has been identified as an essential element for dsps2 promoter activity. Furthermore, double-stranded RNA interference (dsRNAi) experiments were performed to ablate transcription factors such as TBP, TRF1, TRF2 and DREF in Schneider cells. The dsRNAi experiments showed that dsps2 promoter activities in DREF- and TRF2-depleted cells were significantly decreased by 90% and 50%, respectively. However, the depletion of TBP or TRF1 did not affect the expression level of dsps2 even though there is a putative TATA box at -20. These results strongly suggest that the DRE/DREF system controls the basal level of transcription of dsps2 by interacting with TRF2.
Collapse
Affiliation(s)
- Jing Shun Jin
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|