1
|
Yu T, Villalona P, Khan SH, Mikeasky N, Meinert E, Magafas J, Pulahinge T, Bader A, Okafor CD. Enhanced dynamic coupling in a nuclear receptor underlies ligand activity. J Biol Chem 2024; 301:108081. [PMID: 39675705 PMCID: PMC11783427 DOI: 10.1016/j.jbc.2024.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Bile acids are signaling molecules with critical roles in cholesterol and lipid metabolism, achieved by regulating the transcriptional activity of the farnesoid X receptor (FXR, NR1H4), otherwise known as the bile acid receptor. Modifications to the C6 position of the steroidal core yield bile acid derivatives with 100× improved potency over endogenous bile acids. Prevailing hypotheses suggested increased binding affinity for FXR as the driver for this activity enhancement. Our experimental results contradict this suggestion, motivating us to investigate the underlying mechanisms of enhanced ligand activity. We combined functional assays with over 200 μs of simulations, revealing an unexpected role for helix 5 in the allosteric signaling of obeticholic acid. We uncovered dynamic coupling between adjacent helices 5 and 7, which is uniquely enhanced by the bile acid modification. Ultimately, the enhanced potency of the bile acid analog can be traced to its effect on FXR dynamics. In addition to identifying a previously unknown mechanistic role for helix 5 to helix 7 coupling in FXR, these results emphasize the inextricable linkage between the activity of nuclear receptor ligands and their effects on receptor dynamics.
Collapse
Affiliation(s)
- Tracy Yu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Priscilla Villalona
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sabab Hasan Khan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Noriko Mikeasky
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Emily Meinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jill Magafas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Thilini Pulahinge
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ameen Bader
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
2
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Beinsteiner B, Billas IML, Moras D. Structural insights into the HNF4 biology. Front Endocrinol (Lausanne) 2023; 14:1197063. [PMID: 37404310 PMCID: PMC10315846 DOI: 10.3389/fendo.2023.1197063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor (NR) family that is expressed in liver, kidney, intestine and pancreas. It is a master regulator of liver-specific gene expression, in particular those genes involved in lipid transport and glucose metabolism and is crucial for the cellular differentiation during development. Dysregulation of HNF4 is linked to human diseases, such as type I diabetes (MODY1) and hemophilia. Here, we review the structures of the isolated HNF4 DNA binding domain (DBD) and ligand binding domain (LBD) and that of the multidomain receptor and compare them with the structures of other NRs. We will further discuss the biology of the HNF4α receptors from a structural perspective, in particular the effect of pathological mutations and of functionally critical post-translational modifications on the structure-function of the receptor.
Collapse
Affiliation(s)
- Brice Beinsteiner
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M. L. Billas
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Dino Moras
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
4
|
A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genet 2021; 17:e1009492. [PMID: 33882063 PMCID: PMC8092661 DOI: 10.1371/journal.pgen.1009492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors. The origin of novelties is a central topic in evolutionary biology. A fundamental question is how organisms constrained by natural selection can divert from existing schemes to set up novel structures or pathways. Among the most important strategies are exaptations, which represent pre-adaptation strategies. Many examples exist in biology, at both morphological and molecular levels, such as the one reported here that focuses on an unusual structural feature called the π-turn. It is found in the structure of the most ancestral nuclear receptors RXR and HNF4. The analyses trace back the complex evolutionary history of the π-turn to more than 500 million years ago, before the Cambrian explosion and show that this feature was essential for the heterodimerization capacity of RXR. Nuclear receptor lineages that emerged later in evolution lost the π-turn. We demonstrate here that this loss in nuclear receptors that heterodimerize with RXR was critical for the emergence of high affinity receptors, such as the vitamin D and the thyroid hormone receptors. On the other hand, the conserved π-turn in RXR allowed it to accommodate multiple heterodimer interfaces with numerous partners. This structural exaptation allowed for the remarkable diversification of nuclear receptors.
Collapse
|
5
|
Ng NHJ, Jasmen JB, Lim CS, Lau HH, Krishnan VG, Kadiwala J, Kulkarni RN, Ræder H, Vallier L, Hoon S, Teo AKK. HNF4A Haploinsufficiency in MODY1 Abrogates Liver and Pancreas Differentiation from Patient-Derived Induced Pluripotent Stem Cells. iScience 2019; 16:192-205. [PMID: 31195238 PMCID: PMC6562146 DOI: 10.1016/j.isci.2019.05.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/20/2018] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Maturity-onset diabetes of the young 1 (MODY1) is a monogenic diabetes condition caused by heterozygous HNF4A mutations. We investigate how HNF4A haploinsufficiency from a MODY1/HNF4A mutation influences the development of foregut-derived liver and pancreatic cells through differentiation of human induced pluripotent stem cells from a MODY1 family down the foregut lineage. In MODY1-derived hepatopancreatic progenitors, which expressed reduced HNF4A levels and mislocalized HNF4A, foregut genes were downregulated, whereas hindgut-specifying HOX genes were upregulated. MODY1-derived hepatocyte-like cells were found to exhibit altered morphology. Hepatic and β cell gene signatures were also perturbed in MODY1-derived hepatocyte-like and β-like cells, respectively. As mutant HNF4A (p.Ile271fs) did not undergo complete nonsense-mediated decay or exert dominant negativity, HNF4A-mediated loss of function is likely due to impaired transcriptional activation of target genes. Our results suggest that in MODY1, liver and pancreas development is perturbed early on, contributing to altered hepatic proteins and β cell defects in patients. HNF4A is downregulated and predominantly mislocalized in the cytoplasm in MODY1 Foregut markers, pancreatic and hepatic genes, were downregulated in MODY1-HPPs A reciprocal upregulation of hindgut HOX genes was observed in MODY1-HPPs Mutant HNF4A resulted in loss of transcriptional activation of target genes
Collapse
Affiliation(s)
- Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Joanita Binte Jasmen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Chang Siang Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Juned Kadiwala
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | - Helge Ræder
- Department of Pediatrics, Haukeland University Hospital, 5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Shawn Hoon
- Molecular Engineering Lab, A*STAR, Singapore 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
6
|
Zhou L, Irani S, Sirwi A, Hussain MM. MicroRNAs regulating apolipoprotein B-containing lipoprotein production. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2062-2068. [PMID: 26923435 DOI: 10.1016/j.bbalip.2016.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) are small, non-coding RNAs that regulate gene expression and have been implicated in many pathological conditions. Significant progress has been made to unveil their role in lipid metabolism. This review aims at summarizing the role of different miRs that regulate hepatic assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins. Overproduction and/or impaired clearance of these lipoproteins from circulation increase plasma concentrations of lipids enhancing risk for cardiovascular disease. So far, three miRs, miR-122, miR-34a, and miR-30c have been shown to modulate hepatic production of apoB-containing low density lipoproteins. In this review, we will first provide a brief overview of lipid metabolism and apoB-containing lipoprotein assembly to orient readers to different steps that have been shown to be regulated by miRs. Then, we will discuss the role of each miR on plasma lipids and atherosclerotic burden. Furthermore, we will summarize mechanistic studies explaining how these miRs regulate hepatic lipid synthesis, fatty acid oxidation, and lipoprotein secretion. Finally, we will briefly highlight the potential use of each miR as a therapeutic drug for treating cardiovascular diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Liye Zhou
- School of Graduate Studies, Molecular and Cell Biology Program, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Sara Irani
- School of Graduate Studies, Molecular and Cell Biology Program, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Alaa Sirwi
- School of Graduate Studies, Molecular and Cell Biology Program, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA; VA New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
7
|
Salgado MC, Metón I, Anemaet IG, González JD, Fernández F, Baanante IV. Hepatocyte nuclear factor 4α transactivates the mitochondrial alanine aminotransferase gene in the kidney of Sparus aurata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:46-62. [PMID: 21607544 DOI: 10.1007/s10126-011-9386-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5'-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of L: -alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture.
Collapse
Affiliation(s)
- María C Salgado
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Ahn JE, Guarino LA, Zhu-Salzman K. Coordination of hepatocyte nuclear factor 4 and seven-up controls insect counter-defense cathepsin B expression. J Biol Chem 2010; 285:6573-84. [PMID: 20048156 PMCID: PMC2825453 DOI: 10.1074/jbc.m109.095596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/04/2010] [Indexed: 12/12/2022] Open
Abstract
CmCatB, a cathepsin B-type cysteine protease, is insensitive to inhibition by the soybean cysteine protease inhibitor (scN). Cowpea bruchids dramatically induce CmCatB expression when major digestive proteases are inactivated by dietary scN, which is presumably an adaptive strategy that insects use to minimize effects of nutrient deficiency. In this study, we cloned the cowpea bruchid hepatocyte nuclear factor 4 (CmHNF-4) and demonstrated its involvement in transcriptional activation of CmCatB in the digestive tract of scN-adapted bruchids. Electrophoretic mobility shift assays demonstrated that CmHNF-4 binds to a CmCatB promoter region containing two tandem chicken ovalbumin upstream promoter (COUP) sites, which is also the cis-element for Seven-up (CmSvp), a previously identified transcriptional repressor of CmCatB. Although CmSvp is predominantly expressed in unadapted insect midgut, CmHNF-4 is more abundant in adapted bruchids. When transiently expressed in Drosophila S2 cells, CmHNF-4 substantially increased CmCatB expression through COUP binding. CmSvp inhibited CmHNF-4-mediated transcriptional activation even in the absence of its DNA-binding domain. Thus antagonism resulted, at least in part, from protein-protein interactions between CmSvp and CmHNF-4. Association of the two transcription factors was subsequently confirmed by glutathione S-transferase pulldown assays. Interestingly, anti-CmHNF-4 serum caused a supershift not only with nuclear extracts of scN-adapted insect midgut but with that of unadapted control insects as well. The presence of CmHNF-4 in unadapted insects further supported the idea that interplay between CmSvp and CmHNF-4 controls CmCatB transcription activation. Together, these results suggest that coordination between CmHNF-4 and CmSvp is important in counter-defense gene regulation in insects.
Collapse
Affiliation(s)
| | | | - Keyan Zhu-Salzman
- From the Department of Entomology and
- Vegetable & Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
9
|
Wilson MD, Barbosa-Morais NL, Schmidt D, Conboy CM, Vanes L, Tybulewicz VLJ, Fisher EMC, Tavaré S, Odom DT. Species-specific transcription in mice carrying human chromosome 21. Science 2008; 322:434-8. [PMID: 18787134 PMCID: PMC3717767 DOI: 10.1126/science.1160930] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Homologous sets of transcription factors direct conserved tissue-specific gene expression, yet transcription factor-binding events diverge rapidly between closely related species. We used hepatocytes from an aneuploid mouse strain carrying human chromosome 21 to determine, on a chromosomal scale, whether interspecies differences in transcriptional regulation are primarily directed by human genetic sequence or mouse nuclear environment. Virtually all transcription factor-binding locations, landmarks of transcription initiation, and the resulting gene expression observed in human hepatocytes were recapitulated across the entire human chromosome 21 in the mouse hepatocyte nucleus. Thus, in homologous tissues, genetic sequence is largely responsible for directing transcriptional programs; interspecies differences in epigenetic machinery, cellular environment, and transcription factors themselves play secondary roles.
Collapse
Affiliation(s)
- Michael D. Wilson
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Nuno L. Barbosa-Morais
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 0XZ, UK
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 0XZ, UK
| | - Caitlin M. Conboy
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, Minnesota, 55455, USA
| | - Lesley Vanes
- Division of Immune Cell Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Victor L. J. Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | - Simon Tavaré
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 0XZ, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WY, UK
| | - Duncan T. Odom
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 0XZ, UK
| |
Collapse
|
10
|
Lee SS, Cha EY, Jung HJ, Shon JH, Kim EY, Yeo CW, Shin JG. Genetic polymorphism of hepatocyte nuclear factor-4alpha influences human cytochrome P450 2D6 activity. Hepatology 2008; 48:635-45. [PMID: 18666237 DOI: 10.1002/hep.22396] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Hepatocyte nuclear factor-4 alpha (HNF4A) is an essential transcriptional regulator for many genes that are expressed preferentially in the liver. Among the important functions of the liver is drug metabolism in response to xenobiotic exposure. Recent studies have suggested that HNF4A regulates the expression of cytochrome P450 (CYP), including CYP2D6 and CYP3A4, which show large individual variations in their activities. To understand the genetic factors that influence individual CYP activities, a genetic variant of HNF4A and the effects of genetic variants of HNF4A on CYP activity were investigated. Here, we report the identification of a novel coding variant of HNF4A that influences CYP2D6 activity in humans. After direct sequencing, a polymorphism search revealed the HNF4A G60D variant in Koreans. This variant was unable to bind to the recognition site in the CYP2D6 promoter and therefore lacked the regulatory function for this gene. Human liver specimens with the heterozygous HNF4A G60D genotype showed a tendency toward lower levels of CYP2D6 activity than the wild-type genotype in the same genetic background of CYP2D6. Furthermore, human subjects with the HNF4A G60D genotype tended to have lower CYP2D6 activity than those with the wild-type HNF4A. The HNF4A G60D variant was detected at low frequency in Asian populations, including Koreans, Chinese, and Vietnamese, and was not found in Africans or Caucasians. CONCLUSION This is the first report to show that the genetic polymorphism of liver-enriched nuclear receptor HNF4A influences downstream CYP2D6 function in human subjects.
Collapse
Affiliation(s)
- Sang Seop Lee
- Pharmacogenimics Research Center, Inje University College of Medicine, Busanjin-gu, Busan, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Eeckhoute J, Briche I, Kurowska M, Formstecher P, Laine B. Hepatocyte nuclear factor 4 alpha ligand binding and F domains mediate interaction and transcriptional synergy with the pancreatic islet LIM HD transcription factor Isl1. J Mol Biol 2006; 364:567-81. [PMID: 17022998 DOI: 10.1016/j.jmb.2006.07.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 12/30/2022]
Abstract
The orphan nuclear receptor HNF4alpha and the LIM homeodomain factor Isl1 are co-expressed in pancreatic beta-cells and are required for the differentiation and function of these endocrine cells. HNF4alpha activates numerous genes and mutations in its gene are associated with maturity onset diabetes of the young. Cofactors and transcription factors that interact with HNF4alpha are crucial to modulate its transcriptional activity, since the latter is not regulated by conventional ligands. These transcriptional partners interact mainly through the HNF4alpha AF-1 module and the ligand binding domain, which contains the AF-2 module. Here, we showed that Isl1 could enhance the HNF4alpha-mediated activation of transcription of the HNF1alpha, PPARalpha and insulin I promoters. Isl1 interacted with the HNF4alpha AF-2 but also required the HNF4alpha carboxy-terminal F domain for optimal interaction and transcriptional synergy. More specifically, we found that naturally occurring HNF4alpha isoforms, differing only in their F domain, exhibited different abilities to interact and synergize with Isl1, extending the crucial transcriptional modulatory role of the HNF4alpha F domain. HNF4alpha interacted with both the homeodomain and the first LIM domain of Isl1. We found that the transcriptional synergy between HNF4alpha and Isl1 involved an increase in HNF4alpha loading on promoter. The effect was more pronounced on the rat insulin I promoter containing binding sites for both HNF4alpha and Isl1 than on the human HNF1alpha promoter lacking an Isl1 binding site. Moreover, Isl1 could mediate the recruitment of the cofactor CLIM2 resulting in a further transcriptional enhancement of the HNF1alpha promoter activity.
Collapse
|
12
|
Aggelidou E, Iordanidou P, Demetriades C, Piltsi O, Hadzopoulou-Cladaras M. Functional characterization of hepatocyte nuclear factor-4 alpha dimerization interface mutants. FEBS J 2006; 273:1948-58. [PMID: 16640558 DOI: 10.1111/j.1742-4658.2006.05208.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatocyte nuclear factor-4 (HNF-4alpha), a member of the nuclear receptor superfamily, binds DNA exclusively as a homodimer. Dimerization controls important aspects of receptor function, such as DNA binding, protein stability, ligand binding and interaction with coactivators. Crystallographic data of the HNF-4alpha ligand-binding domain (LBD) demonstrated that the homodimer interface is composed of residues in helices 7, 9 and 10 with intermolecular salt bridges, hydrogen bonds and hydrophobic interactions contributing to the stability of the interface. To investigate the importance of the proposed ionic interactions for HNF-4alpha dimerization, interactions critical for formation of the LBD homodimer interface were disrupted by introducing point mutations in residues D261N (H7), E269Q (H7), Q307L (H9), D312N (H9) and Q336L (H10). Mutants were analysed for transactivation, coactivator interaction, DNA binding and dimerization. EMSA analysis showed that the mutants are able to bind DNA as dimers and coimmunoprecipitation assays confirmed dimerization in solution. Furthermore, the mutations do not compromise HNF-4alpha activity and are responsive to PPAR-gamma coactivator-1 (PGC-1). Finally, residue R324, located in the H9/H10 loop, which was suspected to be involved in dimer stabilization via an ionic interaction with residue E276, was studied. In contrast to the conservative substitution R324H the mutation R324L abolishes HNF-4alpha transcriptional activity and coactivator recruitment, revealing that the nature of substitution may play an important role in HNF-4alpha function.
Collapse
Affiliation(s)
- Eleni Aggelidou
- Department of Genetics, Development and Molecular Biology, Laboratory of Developmental Biology, School of Biology, Aristotle University of Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
13
|
Oxombre B, Kouach M, Moerman E, Formstecher P, Laine B. The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4alpha activities and introduces a PKA phosphorylation site in its DNA-binding domain. Biochem J 2005; 383:573-80. [PMID: 15233628 PMCID: PMC1133751 DOI: 10.1042/bj20040473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HNF4alpha (hepatocyte nuclear factor 4alpha) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic beta-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4alpha gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115-->Ser) HNF4alpha mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4alpha-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic beta-cell lines, this mutation resulted in strong impairments of HNF4alpha transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1alpha, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115-->Glu) mutation mimicking phosphorylation reduced HNF4alpha DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4alpha function.
Collapse
Affiliation(s)
- Bénédicte Oxombre
- INSERM U459, Faculté de Médecine Henri Warembourg, 1 Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Eeckhoute J, Formstecher P, Laine B. Hepatocyte nuclear factor 4alpha enhances the hepatocyte nuclear factor 1alpha-mediated activation of transcription. Nucleic Acids Res 2004; 32:2586-93. [PMID: 15141028 PMCID: PMC419469 DOI: 10.1093/nar/gkh581] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 1alpha (HNF1alpha) and Hepatocyte Nuclear Factor 4alpha (HNF4alpha) are two liver-enriched transcription factors coexpressed in specific tissues where they play a crucial role through their involvement in a complex cross-regulatory network. HNF1alpha down regulates HNF4alpha-mediated activation of transcription via a direct protein-protein interaction. Here we show that HNF4alpha enhances the transcriptional activity of HNF1alpha in a DNA binding independent manner, thus indicating that it behaves as a HNF1alpha coactivator. Using mutations in the ligand binding domain (LBD) of HNF4alpha, we confirmed the involvement of the Activation Function 2 module and demonstrated the requirement of the integrity of the LBD for the interaction with HNF1alpha. Moreover, we show that HNF4alpha cooperates with p300 to achieve the highest HNF1alpha-mediated transcription rates. Our findings highlight a new way by which HNF4alpha can regulate gene expression and extend our knowledge of the complexity of the transcriptional network involving HNF4alpha and HNF1alpha.
Collapse
Affiliation(s)
- J Eeckhoute
- INSERM Unit 459, Laboratoire de Biologie Cellulaire, Faculté de Médecine H. Warembourg, 1 Place de Verdun, F 59045 Lille, France
| | | | | |
Collapse
|