1
|
Mittal D, Gautam JK, Varma M, Laie A, Mishra S, Behera S, Vadassery J. External jasmonic acid isoleucine mediates amplification of plant elicitor peptide receptor (PEPR) and jasmonate-based immune signalling. PLANT, CELL & ENVIRONMENT 2024; 47:1397-1415. [PMID: 38229005 DOI: 10.1111/pce.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Jasmonic acid-isoleucine (JA-Ile) is a plant defence hormone whose cellular levels are elevated upon herbivory and regulate defence signalling. Despite their pivotal role, our understanding of the rapid cellular perception of bioactive JA-Ile is limited. This study identifies cell type-specific JA-Ile-induced Ca2+ signal and its role in self-amplification and plant elicitor peptide receptor (PEPR)-mediated signalling. Using the Ca2+ reporter, R-GECO1 in Arabidopsis, we have characterized a monophasic and sustained JA-Ile-dependent Ca2+ signature in leaf epidermal cells. The rapid Ca2+ signal is independent of positive feedback by the JA-Ile receptor, COI1 and the transporter, JAT1. Microarray analysis identified up-regulation of receptors, PEPR1 and PEPR2 upon JA-Ile treatment. The pepr1 pepr2 double mutant in R-GECO1 background exhibits impaired external JA-Ile induced Ca2+ cyt elevation and impacts the canonical JA-Ile responsive genes. JA responsive transcription factor, MYC2 binds to the G-Box motif of PEPR1 and PEPR2 promoter and activates their expression upon JA-Ile treatment and in myc2 mutant, this is reduced. External JA-Ile amplifies AtPep-PEPR pathway by increasing the AtPep precursor, PROPEP expression. Our work shows a previously unknown non-canonical PEPR-JA-Ile-Ca2+ -MYC2 signalling module through which plants sense JA-Ile rapidly to amplify both AtPep-PEPR and jasmonate signalling in undamaged cells.
Collapse
Affiliation(s)
- Deepika Mittal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | | | - Mahendra Varma
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Amrutha Laie
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Smrutisanjita Behera
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | |
Collapse
|
2
|
Manrique S, Cavalleri A, Guazzotti A, Villarino GH, Simonini S, Bombarely A, Higashiyama T, Grossniklaus U, Mizzotti C, Pereira AM, Coimbra S, Sankaranarayanan S, Onelli E, Masiero S, Franks RG, Colombo L. HISTONE DEACETYLASE19 Controls Ovule Number Determination and Transmitting Tract Differentiation. PLANT PHYSIOLOGY 2024; 194:2117-2135. [PMID: 38060625 PMCID: PMC10980524 DOI: 10.1093/plphys/kiad629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/29/2023] [Indexed: 04/01/2024]
Abstract
The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.
Collapse
Affiliation(s)
- Silvia Manrique
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Alex Cavalleri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Andrea Guazzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Gonzalo H Villarino
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606, USA
| | - Sara Simonini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich CH-8008, Switzerland
| | - Aureliano Bombarely
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich CH-8008, Switzerland
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Ana Marta Pereira
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Universidade do Porto, rua do Campo Alegre, Porto 4169-007, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto 4169-007, Portugal
| | - Silvia Coimbra
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Universidade do Porto, rua do Campo Alegre, Porto 4169-007, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto 4169-007, Portugal
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606, USA
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| |
Collapse
|
3
|
Rodríguez-Bolaños M, Martínez T, Juárez S, Quiroz S, Domínguez A, Garay-Arroyo A, Sanchez MDLP, Álvarez-Buylla ER, García-Ponce B. XAANTAL1 Reveals an Additional Level of Flowering Regulation in the Shoot Apical Meristem in Response to Light and Increased Temperature in Arabidopsis. Int J Mol Sci 2023; 24:12773. [PMID: 37628953 PMCID: PMC10454237 DOI: 10.3390/ijms241612773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Light and photoperiod are environmental signals that regulate flowering transition. In plants like Arabidopsis thaliana, this regulation relies on CONSTANS, a transcription factor that is negatively posttranslational regulated by phytochrome B during the morning, while it is stabilized by PHYA and cryptochromes 1/2 at the end of daylight hours. CO induces the expression of FT, whose protein travels from the leaves to the apical meristem, where it binds to FD to regulate some flowering genes. Although PHYB delays flowering, we show that light and PHYB positively regulate XAANTAL1 and other flowering genes in the shoot apices. Also, the genetic data indicate that XAL1 and FD participate in the same signaling pathway in flowering promotion when plants are grown under a long-day photoperiod at 22 °C. By contrast, XAL1 functions independently of FD or PIF4 to induce flowering at higher temperatures (27 °C), even under long days. Furthermore, XAL1 directly binds to FD, SOC1, LFY, and AP1 promoters. Our findings lead us to propose that light and temperature influence the floral network at the meristem level in a partially independent way of the signaling generated from the leaves.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Tania Martínez
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Saray Juárez
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Stella Quiroz
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
- Laboratory of Pathogens and Host Immunity, University of Montpellier, 34 090 Montpellier, France
| | - Andrea Domínguez
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Adriana Garay-Arroyo
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - María de la Paz Sanchez
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Elena R. Álvarez-Buylla
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| | - Berenice García-Ponce
- Instituto de Ecologίa, Departamento de Ecologίa Funcional, Universidad Nacional Autónoma de México, Circuito ext. s/no. Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
| |
Collapse
|
4
|
Khadem A, Moshtaghi N, Bagheri A. Regulatory networks of hormone-involved transcription factors and their downstream pathways during somatic embryogenesis of Arabidopsis thaliana. 3 Biotech 2023; 13:132. [PMID: 37091499 PMCID: PMC10115918 DOI: 10.1007/s13205-023-03546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Somatic embryogenesis (SE) depends on a variety of developmental pathways that are influenced by several environmental factors. Therefore, it is important to understand the relationship between environmental and genetic factors by identifying the gene networks involved in SE through gene set enrichment analysis (GSEA). For determination of SE effective transcription factors, upstream sequences of core-enriched genes were analyzed. The results indicated that response to hormones is one of the biological pathways activated by the enriched TFs at all stages of somatic embryogenesis and about half of the hormonal pathways were enriched. On the fifth day after 2,4-Dichlorophenoxyacetic acid (2,4-D) treatment, the activity of hormone-affecting genes reached its maximum. At this time, more transcription factors regulated the enriched genes compared to the other stages of somatic embryogenesis. MYBs, AT-HOOKs, and HSFs are the main families of transcription factors which affect core-enriched genes during SE. CCA1, PRR7, and TOC1 and their related genes at the center of protein-protein interaction of SE-key transcription factors, involved in the regulation of the circadian clock. Gene expression analysis of CCA1, PRR7, and TOC1 revealed that the genes involved in circadian clock reached their maximum activity when embryonic cells formed. Also, auxin response elements were identified at the upstream of SE-circadian clock transcription factors, indicating that they might mediate between auxin signaling and SE-related hormonal pathways as well as SE marker genes such as AGL15, BBM, and LECs. Based on these results, it is possible that the cellular circadian rhythm activates various developmental pathways under the influence of auxin signal transduction and their interactions determine the induction of somatic embryogenesis. According to the results of this study, modifying pathways affected by SE-related transcription factors such as circadian rhythm may result in cell reprogramming and increase somatic embryogenesis efficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03546-7.
Collapse
Affiliation(s)
- Azadeh Khadem
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Latif A, Azam S, Shahid N, Javed MR, Haider Z, Yasmeen A, Sadaqat S, Shad M, Husnain T, Rao AQ. Overexpression of the AGL42 gene in cotton delayed leaf senescence through downregulation of NAC transcription factors. Sci Rep 2022; 12:21093. [PMID: 36473939 PMCID: PMC9727159 DOI: 10.1038/s41598-022-25640-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Premature leaf senescence negatively influences the physiology and yield of cotton plants. The conserved IDLNL sequence in the C-terminal region of AGL42 MADS-box determines its repressor potential for the down regulation of senescence-related genes. To determine the delay in premature leaf senescence, Arabidopsis AGL42 gene was overexpressed in cotton plants. The absolute quantification of transgenic cotton plants revealed higher mRNA expression of AGL42 compared to that of the non-transgenic control. The spatial expression of GUS fused with AGL42 and the mRNA level was highest in the petals, abscission zone (flower and bud), 8 days post anthesis (DPA) fiber, fresh mature leaves, and senescenced leaves. The mRNA levels of different NAC senescence-promoting genes were significantly downregulated in AGL42 transgenic cotton lines than those in the non-transgenic control. The photosynthetic rate and chlorophyll content were higher in AGL42 transgenic cotton lines than those in the non-transgenic control. Fluorescence in situ hybridization of the AG3 transgenic cotton line revealed a fluorescent signal on chromosome 1 in the hemizygous form. Moreover, the average number of bolls in the transgenic cotton lines was significantly higher than that in the non-transgenic control because of the higher retention of floral buds and squares, which has the potential to improve cotton fiber yield.
Collapse
Affiliation(s)
- Ayesha Latif
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Saira Azam
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Naila Shahid
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad R. Javed
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, (GCUF), Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Zeshan Haider
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, (GCUF), Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Aneela Yasmeen
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sahar Sadaqat
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Mohsin Shad
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Abdul Q. Rao
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Arndt LC, Heine S, Wendt L, Wegele E, Schomerus JT, Schulze J, Hehl R. Genomic distribution and context dependent functionality of novel WRKY transcription factor binding sites. BMC Genomics 2022; 23:673. [PMID: 36167502 PMCID: PMC9513909 DOI: 10.1186/s12864-022-08877-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background The WT-boxes NGACTTTN are novel microbe-associated molecular pattern (MAMP)-responsive cis-regulatory sequences. Many of them are uncommon WRKY transcription factor (TF) binding sites. Results To understand their functional relevance, a genomic distribution analysis of the 16 possible WT-boxes and a functional analysis of a WT-box rich promoter was done. The genomic distribution analysis shows an enrichment of specific WT-boxes within 500 bp upstream of all Arabidopsis thaliana genes. Those that harbour a T 5′ to the core sequence GACTTT can also be part of the classic WRKY binding site the W-box TTGACT/C. The MAMP-responsive gene ATEP3, a class IV chitinase, harbours seven WT-boxes within its 1000 bp upstream region. In the context of synthetic promoters, the four proximal WT-boxes confer MAMP responsivity while the three WT-boxes further upstream have no effect. Rendering the nucleotides adjacent and in the vicinity of the WT-box core sequence reveals their functional importance for gene expression. A 158 bp long ATEP3 minimal promoter harbouring the two WT-boxes CGACTTTT, confers WT-box-dependent basal and MAMP-responsive reporter gene expression. The ATEP3 gene is a proposed target of WRKY50 and WRKY70. WRKY50 negatively regulates MAMP responsivity of the two WT-boxes CGACTTTT, while WRKY70 activates gene expression in a WT-box dependent manner. Both WRKY factors bind directly to the WT-box CGACTTTT. Conclusion In summary, WT-boxes are enriched in promoter regions and comprise novel and uncommon WRKY binding sites required for basal and MAMP-induced gene expression. WT-boxes not being part of a W-box may be a missing link for WRKY target gene prediction when these genes do not harbour a W-box. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08877-y.
Collapse
Affiliation(s)
- Laureen Christin Arndt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Susanne Heine
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Lino Wendt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Emilia Wegele
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Jan Titus Schomerus
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Jutta Schulze
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstr. 1, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
7
|
Xiao X, Zhang J, Satheesh V, Meng F, Gao W, Dong J, Zheng Z, An GY, Nussaume L, Liu D, Lei M. SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis. NATURE PLANTS 2022; 8:1074-1081. [PMID: 36050464 DOI: 10.1038/s41477-022-01231-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The coordinated distribution of inorganic phosphate (Pi) between roots and shoots is an important process that plants use to maintain Pi homeostasis. SHORT-ROOT (SHR) is well characterized for its function in root radial patterning. Here we demonstrate a role of SHR in controlling Pi allocation from root to shoot by regulating PHOSPHATE1 in the root differentiation zone. We recovered a weak mutant allele of SHR in Arabidopsis that accumulates much less Pi in the shoot and shows a constitutive Pi starvation response under Pi-sufficient conditions. In addition, Pi starvation suppresses SHR protein accumulation and releases its inhibition on the HD-ZIP III transcription factor PHB. PHB accumulates and directly binds the promoter of PHOSPHATE2 to upregulate its transcription, resulting in PHOSPHATE1 degradation in the xylem-pole pericycle cells. Our findings reveal a previously unrecognized mechanism of how plants regulate Pi translocation from roots to shoots.
Collapse
Affiliation(s)
- Xinlong Xiao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jieqiong Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fanxiao Meng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlan Gao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinsong Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zai Zheng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guo-Yong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Laurent Nussaume
- Aix Marseille University, CEA, CNRS, BIAM, UMR7265, EBM (Bioénergies et microalgues), Saint-Paul lez Durance, France
| | - Dong Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
8
|
Ruengsrichaiya B, Nukoolkit C, Kalapanulak S, Saithong T. Plant-DTI: Extending the landscape of TF protein and DNA interaction in plants by a machine learning-based approach. FRONTIERS IN PLANT SCIENCE 2022; 13:970018. [PMID: 36082286 PMCID: PMC9445498 DOI: 10.3389/fpls.2022.970018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
As a sessile organism, plants hold elaborate transcriptional regulatory systems that allow them to adapt to variable surrounding environments. Current understanding of plant regulatory mechanisms is greatly constrained by limited knowledge of transcription factor (TF)-DNA interactions. To mitigate this problem, a Plant-DTI predictor (Plant DBD-TFBS Interaction) was developed here as the first machine-learning model that covered the largest experimental datasets of 30 plant TF families, including 7 plant-specific DNA binding domain (DBD) types, and their transcription factor binding sites (TFBSs). Plant-DTI introduced a novel TFBS feature construction, called TFBS base-preference, which enhanced the specificity of TFBS to DBD types. The proposed model showed better predictive performance with the TFBS base-preference than the simple binary representation. Plant-DTI was validated with 22 independent ChIP-seq datasets. It accurately predicted the measured DBD-TFBS pairs along with their TFBS motifs, and effectively predicted interactions of other TFs containing similar DBD types. Comparing to the existing state-of-art methods, Plant-DTI prediction showed a figure of merit in sensitivity and specificity with respect to the position weight matrix (PWM) and TSPTFBS methods. Finally, the proposed Plant-DTI model helped to fill the knowledge gap in the regulatory mechanisms of the cassava sucrose synthase 1 gene (MeSUS1). Plant-DTI predicted MeERF72 as a regulator of MeSUS1 in consistence with the yeast one-hybrid (Y1H) experiment. Taken together, Plant-DTI would help facilitate the prediction of TF-TFBS and TF-target gene (TG) interactions, thereby accelerating the study of transcriptional regulatory systems in plant species.
Collapse
Affiliation(s)
- Bhukrit Ruengsrichaiya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
| | - Chakarida Nukoolkit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
- School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
| |
Collapse
|
9
|
Vaseva II, Simova-Stoilova L, Kirova E, Mishev K, Depaepe T, Van Der Straeten D, Vassileva V. Ethylene signaling in salt-stressed Arabidopsis thaliana ein2-1 and ctr1-1 mutants - A dissection of molecular mechanisms involved in acclimation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:999-1010. [PMID: 34592706 DOI: 10.1016/j.plaphy.2021.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
To pinpoint ethylene-mediated molecular mechanisms involved in the adaptive response to salt stress we conducted a comparative study of Arabidopsis thaliana wild type (Col-0), ethylene insensitive (ein2-1), and constitutive signaling (ctr1-1) mutant plants. Reduced germination and survival rates were observed in ein2-1 plants at increasing NaCl concentrations. By contrast, ctr1-1 mutation conferred salt stress tolerance during early vegetative development, corroborating earlier studies. Аll genotypes experienced strong stress as evidenced by the accumulation of reactive oxygen species (ROS) and increased membrane lipid peroxidation. However, the isoenzyme profiles of ROS scavenging enzymes demonstrated a higher peroxidase (POX) activity in ctr1-1 individuals under control and salt stress conditions. A markedly elevated free L-Proline (L-Pro) content was detected in the ethylene constitutive mutant. This coincided with the increased levels of Delta-1-Pyrroline-5-Carboxylate Synthase (P5CS) which is the rate-limiting enzyme from the proline biosynthetic pathway. A stabilized upregulation of a stress-induced P5CS1 splice variant was observed in the ctr1-1 background, which was not documented in the ethylene insensitive mutant ein2-1. Transcript profiling of the major SALT OVERLY SENSITIVE (SOS) pathway players (SOS1, SOS2, and SOS3) revealed altered gene expression in the organs of the ethylene signaling mutants. Overall suppressed SOS expression was observed in the ein2-1 mutants while only the SOS transcript profiles in the ctr1-1 roots were similar to the wild type. Altogether, we provide experimental evidence for ethylene-mediated molecular mechanisms implicated in the acclimation response to salt stress in Arabidopsis, which operate mainly through the regulation of free proline accumulation and enhanced ROS scavenging.
Collapse
Affiliation(s)
- Irina I Vaseva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria.
| | - Lyudmila Simova-Stoilova
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria
| | - Elisaveta Kirova
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000, Ghent, Belgium
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria
| |
Collapse
|
10
|
Serrano-Ron L, Perez-Garcia P, Sanchez-Corrionero A, Gude I, Cabrera J, Ip PL, Birnbaum KD, Moreno-Risueno MA. Reconstruction of lateral root formation through single-cell RNA sequencing reveals order of tissue initiation. MOLECULAR PLANT 2021; 14:1362-1378. [PMID: 34062316 PMCID: PMC8338891 DOI: 10.1016/j.molp.2021.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 05/13/2023]
Abstract
Postembryonic organogenesis is critical for plant development. Underground, lateral roots (LRs) form the bulk of mature root systems, yet the ontogeny of the LR primordium (LRP) is not clear. In this study, we performed the single-cell RNA sequencing through the first four stages of LR formation in Arabidopsis. Our analysis led to a model in which a single group of precursor cells, with a cell identity different from their pericycle origins, rapidly reprograms and splits into a mixed ground tissue/stem cell niche fate and a vascular precursor fate. The ground tissue and stem cell niche fates soon separate and a subset of more specialized vascular cells form sucrose transporting phloem cells that appear to connect to the primary root. We did not detect cells resembling epidermis or root cap, suggesting that outer tissues may form later, preceding LR emergence. At this stage, some remaining initial precursor cells form the primordium flanks, while the rest create a reservoir of pluripotent cells that are able to replace the LR if damaged. Laser ablation of the central and lateral LRP regions showed that remaining cells restart the sequence of tissue initiation to form a LR. Collectively, our study reveals an ontological hierarchy for LR formation with an early and sequential split of main root tissues and stem cells.
Collapse
Affiliation(s)
- Laura Serrano-Ron
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Pablo Perez-Garcia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Alvaro Sanchez-Corrionero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Inmaculada Gude
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pui-Leng Ip
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain.
| |
Collapse
|
11
|
Vaseva II, Mishev K, Depaepe T, Vassileva V, Van Der Straeten D. The Diverse Salt-Stress Response of Arabidopsis ctr1-1 and ein2-1Ethylene Signaling Mutants Is Linked to Altered Root Auxin Homeostasis. PLANTS 2021; 10:plants10030452. [PMID: 33673672 PMCID: PMC7997360 DOI: 10.3390/plants10030452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using Arabidopsisthaliana wild-type plants (Col-0), and the ethylene-signaling mutants ctr1-1 (constitutive) and ein2-1 (insensitive). The negative effect of salt stress was less pronounced in ctr1-1 individuals, which was concomitant with augmented auxin signaling both in the ctr1-1 controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive ein2-1 plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis (pTAR2::GUS) and polar transport (pLAX3::GUS, pAUX1::AUX1-YFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP, pPIN3::GUS) in the mutants. The constantly operating ethylene-signaling pathway in ctr1-1 was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of ctr1-1 mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.
Collapse
Affiliation(s)
- Irina I. Vaseva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
- Correspondence: or
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium; (T.D.); (D.V.D.S.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium; (T.D.); (D.V.D.S.)
| |
Collapse
|
12
|
Kanofsky K, Rusche J, Eilert L, Machens F, Hehl R. Unusual DNA-binding properties of the Arabidopsis thaliana WRKY50 transcription factor at target gene promoters. PLANT CELL REPORTS 2021; 40:69-83. [PMID: 33006643 PMCID: PMC7811519 DOI: 10.1007/s00299-020-02611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 05/29/2023]
Abstract
WRKY50 from A. thaliana requires WT-boxes at target gene promoters for activation and binding. Based on the genome-wide prediction of WRKY50 target genes and the similarity of a WRKY50 binding site to WT-boxes in microbe-associated molecular pattern (MAMP)-responsive cis-regulatory modules (CRM), four WT-box containing CRMs from the promoter region of three WRKY50 target genes were investigated for their interaction with WRKY50. These target genes are DJ1E, WRKY30 and ATBBE4. Two of the four CRMs, one from DJ1E and one from WRKY30, were able to activate reporter gene expression in the presence of WRKY50. Activation requires the WT-boxes GGACTTTT, GGACTTTG from DJ1E and GGACTTTC from WRKY30. WRKY50 does not activate a second CRM from WRKY30 and the CRM from ATBBE4, both containing the WT-box TGACTTTT. In vitro gel-shift assays demonstrate WT-box-specific binding of the WRKY50 DNA-binding domain to all four CRMs. This work shows a high flexibility of WRKY50 binding site recognition beyond the classic W-box TTGACC/T.
Collapse
Affiliation(s)
- Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Jendrik Rusche
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Lea Eilert
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Fabian Machens
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam Science Park, Am Mühlenberg 1, Golm, 14476, Potsdam, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
13
|
Hishinuma-Silva SM, Lopes-Caitar VS, Nomura RBG, Sercero BC, da Silva AG, da Cruz Gallo De Carvalho MC, de Oliveira Negrão Lopes I, Dias WP, Marcelino-Guimarães FC. The soybean gene GmHsp22.4 is involved in the resistance response to Meloidogyne javanica in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:535. [PMID: 33234121 PMCID: PMC7687995 DOI: 10.1186/s12870-020-02736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/10/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Small heat shock proteins (sHSPs) belong to the class of molecular chaperones that respond to biotic and abiotic stresses in plants. A previous study has showed strong induction of the gene GmHsp22.4 in response to the nematode Meloidogyne javanica in a resistant soybean genotype, while repression in a susceptible one. This study aimed to investigate the functional involvement of this small chaperone in response to M. javanica in Arabidopsis thaliana. First, it was evaluated the activation of the promoter region after the nematode inoculation, and the occurrence of polymorphisms between resistant and susceptible re-sequenced soybean accessions. Then functional analysis using A. thaliana lines overexpressing the soybean GmHsp22.4 gene, and knocked-out mutants were challenged with M. javanica infestation. RESULTS High expression levels of the GFP gene marker in transformed A. thaliana plants revealed that the promoter region of GmHsp22.4 was strongly activated after nematode inoculation. Moreover, the multiplication of the nematode was significantly reduced in plants overexpressing GmHsp22.4 gene in A. thaliana compared to the wild type. Additionally, the multiplication of M. javanica in the A. thaliana mutants was significantly increased mainly in the event athsp22.0-2. This increase was not that evident in the event athsp22.0-1, the one that preserved a portion of the promoter region, including the HSEs in the region around - 83 bp. However, structural analysis at sequence level among soybean resistant and susceptible genotypes did not detect any polymorphisms in the whole gene model. CONCLUSIONS The soybean chaperone GmHsp22.4 is involved in the defense response to root-knot nematode M. javanica in A. thaliana. Specifically, the promoter region covering until - 191 from the transcriptional start site (TSS) is necessary to promoter activation after nematode infection in Arabidopsis. No polymorphisms that could explain these differences in the defense response were detected in the GmHsp22.4 gene between resistant and susceptible soybean genotypes. Therefore, further investigation is needed to elucidate the triggering factor of the plant's defense mechanism, both at the sequence level of the soybean genotypes presenting contrasting reaction to root-knot nematode and by detecting cis-elements that are essential for the activation of the GmHsp22.4 gene promoter.
Collapse
Affiliation(s)
| | | | | | - Bruna Caroline Sercero
- Department of Production and Plant Protection, Agronomic Institute of Paraná-IAPAR, Londrina, Brazil
| | | | | | | | - Waldir Pereira Dias
- Department of Plant Biotechnology, Brazilian Agricultural Research Corporation EMBRAPA Soybean, Londrina, PR, Brazil
| | | |
Collapse
|
14
|
Bychkov IA, Kudryakova NV, Kuznetsov VV, Kusnetsov VV. Cold Stress Activates the Expression of Genes of the Chloroplast Transcription Apparatus in Arabidopsis thaliana Plants. DOKL BIOCHEM BIOPHYS 2020; 494:235-239. [PMID: 33119824 DOI: 10.1134/s160767292005004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 11/23/2022]
Abstract
The physiological and molecular responses of Arabidopsis thaliana plants to cold stress were studied. Exposure to a low non-freezing temperature (4°C, 5 days) caused a decrease in the physiological functions and activity of a number of photosynthetic genes and elevation in expression of the cold stress gene COR15a, the product of which protects chloroplasts. It was shown for the first time that in parallel to a general inhibition of physiological functions under hypothermia, an increase in the expression of most genes for the chloroplast transcription apparatus was observed. This is obviously one of the compensatory mechanisms of adaptation aimed to maintain cellular homeostasis and physiological functions under hypothermia.
Collapse
Affiliation(s)
- I A Bychkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - N V Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Vl V Kuznetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - V V Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Li B, Fang J, Singh RM, Zi H, Lv S, Liu R, Dogra V, Kim C. FATTY ACID DESATURASE5 Is Required to Induce Autoimmune Responses in Gigantic Chloroplast Mutants of Arabidopsis. THE PLANT CELL 2020; 32:3240-3255. [PMID: 32796124 PMCID: PMC7534476 DOI: 10.1105/tpc.20.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Chloroplasts mediate genetically controlled cell death via chloroplast-to-nucleus retrograde signaling. To decipher the mechanism, we examined chloroplast-linked lesion-mimic mutants of Arabidopsis (Arabidopsis thaliana) deficient in plastid division, thereby developing gigantic chloroplasts (GCs). These GC mutants, including crumpled leaf (crl), constitutively express immune-related genes and show light-dependent localized cell death (LCD), mirroring typical autoimmune responses. Our reverse genetic approach excludes any potential role of immune/stress hormones in triggering LCD. Instead, transcriptome and in silico analyses suggest that reactive electrophile species (RES) generated via oxidation of polyunsaturated fatty acids (PUFAs) or lipid peroxidation-driven signaling may induce LCD. Consistent with these results, the one of the suppressors of crl, dubbed spcrl4, contains a causative mutation in the nuclear gene encoding chloroplast-localized FATTY ACID DESATURASE5 (FAD5) that catalyzes the conversion of palmitic acid (16:0) to palmitoleic acid (16:1). The loss of FAD5 in the crl mutant might attenuate the levels of RES and/or lipid peroxidation due to the reduced levels of palmitic acid-driven PUFAs, which are prime targets of reactive oxygen species. The fact that fad5 also compromises the expression of immune-related genes and the development of LCD in other GC mutants substantiates the presence of an intrinsic retrograde signaling pathway, priming the autoimmune responses in a FAD5-dependent manner.
Collapse
Affiliation(s)
- Bingqi Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Fang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shanshan Lv
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Shim S, Seo PJ. EAT-UpTF: Enrichment Analysis Tool for Upstream Transcription Factors of a Group of Plant Genes. Front Genet 2020; 11:566569. [PMID: 33024441 PMCID: PMC7516213 DOI: 10.3389/fgene.2020.566569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022] Open
Abstract
EAT-UpTF (Enrichment Analysis Tool for Upstream Transcription Factors of a group of plant genes) is an open-source Python script that analyzes the enrichment of upstream transcription factors (TFs) in a group of genes-of-interest (GOIs). EAT-UpTF utilizes genome-wide lists of TF-target genes generated by DNA affinity purification followed by sequencing (DAP-seq) or chromatin immunoprecipitation followed by sequencing (ChIP-seq). Unlike previous methods based on the two-step prediction of cis-motifs and DNA-element-binding TFs, our EAT-UpTF analysis enabled a one-step identification of enriched upstream TFs in a set of GOIs using lists of empirically determined TF-target genes. The tool is designed particularly for plant researches, due to the lack of analytic tools for upstream TF enrichment, and available at https://github.com/sangreashim/EAT-UpTF and http://chromatindynamics.snu.ac.kr:8080/EatupTF.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Holalu SV, Reddy SK, Blackman BK, Finlayson SA. Phytochrome interacting factors 4 and 5 regulate axillary branching via bud abscisic acid and stem auxin signalling. PLANT, CELL & ENVIRONMENT 2020; 43:2224-2238. [PMID: 32542798 DOI: 10.1111/pce.13824] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 05/21/2023]
Abstract
The ratio of red light to far-red light (R:FR) is perceived by phytochrome B (phyB) and informs plants of nearby competition. A low R:FR indicative of competition induces the shade avoidance syndrome and suppresses branching by incompletely understood mechanisms. Phytochrome interacting factors (PIFs) are transcription factors targeted by phytochromes to evoke photomorphogenic responses. PIF4 and PIF5 promote shade avoidance responses and become inactivated by direct interaction with active phyB in the nucleus. Here, genetic and physiological assays show that PIF4 and PIF5 contribute to the suppression of branching resulting from phyB loss of function and a low R:FR, although roles for other PIFs or pathways may exist. The suppression of branching is associated with PIF4/PIF5 promotion of the expression of the branching inhibitor BRANCHED 1 and abscisic acid (ABA) accumulation in axillary buds and is dependent on the function of the key ABA biosynthetic enzyme Nine-cis-epoxycarotenoid dioxygenase 3. However, PIF4/PIF5 function is not confined to a single hormonal pathway, as they also promote stem indole-3-acetic acid accumulation and stimulate systemic auxin signalling, which contribute to the suppression of bud growth when phyB is inactive.
Collapse
Affiliation(s)
- Srinidhi V Holalu
- Department of Plant and Microbial Biology, University of California Berkeley, California, USA
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
| | - Srirama K Reddy
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
- Valent BioSciences LLC, Biorational Research Center, Libertyville, Illinois, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California Berkeley, California, USA
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
18
|
To A, Joubès J, Thueux J, Kazaz S, Lepiniec L, Baud S. AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:660-676. [PMID: 32246506 DOI: 10.1111/tpj.14759] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 05/11/2023]
Abstract
Acyl lipids are important constituents of the plant cell. Depending on the cell type, requirements in acyl lipids vary greatly, implying a tight regulation of fatty acid and lipid metabolism. The discovery of the WRINKLED1 (WRI1) transcription factors, members of the AP2-EREBP (APETALA2-ethylene-responsive element binding protein) family, has emphasized the importance of transcriptional regulation for adapting the rate of acyl chain production to cell requirements. Here, we describe the identification of another activator of the fatty acid biosynthetic pathway, the Arabidopsis MYB92 transcription factor. This MYB and all the members of the subgroups S10 and S24 of MYB transcription factors can directly activate the promoter of BCCP2 that encodes a component of the fatty acid biosynthetic pathway. Two adjacent MYB cis-regulatory elements are essential for the binding and activation of the BCCP2 promoter by MYB92. Overexpression of MYB92 or WRI1 in Nicotiana benthamiana induces the expression of fatty acid biosynthetic genes but results in the accumulation of different types of acyl lipids. In the presence of WRI1, triacylglycerol biosynthetic enzymes coded by constitutively expressed genes efficiently channel the excess fatty acids toward reserve lipid accumulation. By contrast, MYB92 activates both fatty acid and suberin biosynthetic genes; hence, the remarkable increase in suberin monomers measured in leaves expressing MYB92. These results provide additional insight into the molecular mechanisms that control the biosynthesis of an important cell wall-associated acylglycerol polymer playing critical roles in plants.
Collapse
Affiliation(s)
- Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, Université de Bordeaux, 33882, Villenave d'Ornon, France
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, 33882, Villenave d'Ornon, France
| | - Jean Thueux
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91400, Orsay, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
19
|
Jameel A, Noman M, Liu W, Ahmad N, Wang F, Li X, Li H. Tinkering Cis Motifs Jigsaw Puzzle Led to Root-Specific Drought-Inducible Novel Synthetic Promoters. Int J Mol Sci 2020; 21:E1357. [PMID: 32085397 PMCID: PMC7072871 DOI: 10.3390/ijms21041357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Following an in-depth transcriptomics-based approach, we first screened out and analyzed (in silico) cis motifs in a group of 63 drought-inducible genes (in soybean). Six novel synthetic promoters (SynP14-SynP19) were designed by concatenating 11 cis motifs, ABF, ABRE, ABRE-Like, CBF, E2F-VARIANT, G-box, GCC-Box, MYB1, MYB4, RAV1-A, and RAV1-B (in multiple copies and various combination) with a minimal 35s core promoter and a 222 bp synthetic intron sequence. In order to validate their drought-inducibility and root-specificity, the designed synthetic assemblies were transformed in soybean hairy roots to drive GUS gene using pCAMBIA3301. Through GUS histochemical assay (after a 72 h 6% PEG6000 treatment), we noticed higher glucuronidase activity in transgenic hairy roots harboring SynP15, SynP16, and SynP18. Further screening through GUS fluorometric assay flaunted SynP16 as the most appropriate combination of efficient drought-responsive cis motifs. Afterwards, we stably transformed SynP15, SynP16, and SynP18 in Arabidopsis and carried out GUS staining as well as fluorometric assays of the transgenic plants treated with simulated drought stress. Consistently, SynP16 retained higher transcriptional activity in Arabidopsis roots in response to drought. Thus the root-specific drought-inducible synthetic promoters designed using stimulus-specific cis motifs in a definite fashion could be exploited in developing drought tolerance in soybean and other crops as well. Moreover, the rationale of design extends our knowledge of trial-and-error based cis engineering to construct synthetic promoters for transcriptional upgradation against other stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (A.J.); (M.N.); (W.L.); (N.A.)
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (A.J.); (M.N.); (W.L.); (N.A.)
| |
Collapse
|
20
|
Inference of plant gene regulatory networks using data-driven methods: A practical overview. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194447. [PMID: 31678628 DOI: 10.1016/j.bbagrm.2019.194447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 10/31/2019] [Indexed: 11/20/2022]
Abstract
Transcriptional regulation is a complex and dynamic process that plays a vital role in plant growth and development. A key component in the regulation of genes is transcription factors (TFs), which coordinate the transcriptional control of gene activity. A gene regulatory network (GRN) is a collection of regulatory interactions between TFs and their target genes. The accurate delineation of GRNs offers a significant contribution to our understanding about how plant cells are organized and function, and how individual genes are regulated in various conditions, organs or cell types. During the past decade, important progress has been made in the identification of GRNs using experimental and computational approaches. However, a detailed overview of available platforms supporting the analysis of GRNs in plants is missing. Here, we review current databases, platforms and tools that perform data-driven analyses of gene regulation in Arabidopsis. The platforms are categorized into two sections, 1) promoter motif analysis tools that use motif mapping approaches to find TF motifs in the regulatory sequences of genes of interest and 2) network analysis tools that identify potential regulators for a set of input genes using a range of data types in order to generate GRNs. We discuss the diverse datasets integrated and highlight the strengths and caveats of different platforms. Finally, we shed light on the limitations of the above approaches and discuss future perspectives, including the need for integrative approaches to unravel complex GRNs in plants.
Collapse
|
21
|
Kusch S, Thiery S, Reinstädler A, Gruner K, Zienkiewicz K, Feussner I, Panstruga R. Arabidopsis mlo3 mutant plants exhibit spontaneous callose deposition and signs of early leaf senescence. PLANT MOLECULAR BIOLOGY 2019; 101:21-40. [PMID: 31049793 DOI: 10.1007/s11103-019-00877-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Arabidopsis thaliana mlo3 mutant plants are not affected in pathogen infection phenotypes but-reminiscent of mlo2 mutant plants-exhibit spontaneous callose deposition and signs of early leaf senescence. The family of Mildew resistance Locus O (MLO) proteins is best known for its profound effect on the outcome of powdery mildew infections: when the appropriate MLO protein is absent, the plant is fully resistant to otherwise virulent powdery mildew fungi. However, most members of the MLO protein family remain functionally unexplored. Here, we investigate Arabidopsis thaliana MLO3, the closest relative of AtMLO2, AtMLO6 and AtMLO12, which are the Arabidopsis MLO genes implicated in the powdery mildew interaction. The co-expression network of AtMLO3 suggests association of the gene with plant defense-related processes such as salicylic acid homeostasis. Our extensive analysis shows that mlo3 mutants are unaffected regarding their infection phenotype upon challenge with the powdery mildew fungi Golovinomyces orontii and Erysiphe pisi, the oomycete Hyaloperonospora arabidopsidis, and the bacterial pathogen Pseudomonas syringae (the latter both in terms of basal and systemic acquired resistance), indicating that the protein does not play a major role in the response to any of these pathogens. However, mlo3 genotypes display spontaneous callose deposition as well as signs of early senescence in 6- or 7-week-old rosette leaves in the absence of any pathogen challenge, a phenotype that is reminiscent of mlo2 mutant plants. We hypothesize that de-regulated callose deposition in mlo3 genotypes might be the result of a subtle transient aberration of salicylic acid-jasmonic acid homeostasis during development.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Susanne Thiery
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Katrin Gruner
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| |
Collapse
|
22
|
Shameer K, Naika MB, Shafi KM, Sowdhamini R. Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:19-39. [DOI: 10.1016/j.pbiomolbio.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
|
23
|
Kulkarni SR, Vaneechoutte D, Van de Velde J, Vandepoele K. TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. Nucleic Acids Res 2019; 46:e31. [PMID: 29272447 PMCID: PMC5888541 DOI: 10.1093/nar/gkx1279] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
A gene regulatory network (GRN) is a collection of regulatory interactions between transcription factors (TFs) and their target genes. GRNs control different biological processes and have been instrumental to understand the organization and complexity of gene regulation. Although various experimental methods have been used to map GRNs in Arabidopsis thaliana, their limited throughput combined with the large number of TFs makes that for many genes our knowledge about regulating TFs is incomplete. We introduce TF2Network, a tool that exploits the vast amount of TF binding site information and enables the delineation of GRNs by detecting potential regulators for a set of co-expressed or functionally related genes. Validation using two experimental benchmarks reveals that TF2Network predicts the correct regulator in 75–92% of the test sets. Furthermore, our tool is robust to noise in the input gene sets, has a low false discovery rate, and shows a better performance to recover correct regulators compared to other plant tools. TF2Network is accessible through a web interface where GRNs are interactively visualized and annotated with various types of experimental functional information. TF2Network was used to perform systematic functional and regulatory gene annotations, identifying new TFs involved in circadian rhythm and stress response.
Collapse
Affiliation(s)
- Shubhada R Kulkarni
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Dries Vaneechoutte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Jan Van de Velde
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- To whom correspondence should be addressed. Tel: +32 9 3313822; Fax: +32 9 3313809;
| |
Collapse
|
24
|
Banerjee S, Wei X, Xie H. Recursive Motif Analyses Identify Brain Epigenetic Transcription Regulatory Modules. Comput Struct Biotechnol J 2019; 17:507-515. [PMID: 31011409 PMCID: PMC6462766 DOI: 10.1016/j.csbj.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 01/26/2023] Open
Abstract
DNA methylation is an epigenetic modification modulating the structure of DNA molecule and the interactions with its binding proteins. Accumulating large-scale methylation data motivates the development of analytic tools to facilitate methylome data mining. One critical phenomenon associated with dynamic DNA methylation is the altered DNA binding affinity of transcription factors, which plays key roles in gene expression regulation. In this study, we conceived an algorithm to predict epigenetic regulatory modules through recursive motif analyses on differentially methylated loci. A two-step procedure was implemented to first group differentially methylated loci into clusters according to their correlations in methylation profiles and then to repeatedly identify the transcription factor binding motifs significantly enriched in each cluster. We applied this tool on methylome datasets generated for mouse brains which have a lack of DNA demethylation enzymes TET1 or TET2. Compared with wild type control, the differentially methylated CpG sites identified in TET1 knockout mouse brains differed significantly from those determined for TET2 knockout. Transcription factors with zinc finger DNA binding domains including Egr1, Zic3, and Zeb1 were predicted to be associated with TET1 mediated brain methylome programming, while Lhx family members with Homeobox domains were predicted to be associated with TET2 function. Interestingly, genomic loci from a co-methylated cluster often host motifs for transcription factors sharing the same DNA binding domains. Altogether, our study provided a systematic approach for epigenetic regulatory module identification and will help throw light on the interplay of DNA methylation and transcription factors.
Collapse
Affiliation(s)
- Sharmi Banerjee
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaoran Wei
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Hehuang Xie
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA.,School of Neuroscience, Blacksburg, VA 24061, USA
| |
Collapse
|
25
|
She J, Yan H, Yang J, Xu W, Su Z. croFGD: Catharanthus roseus Functional Genomics Database. Front Genet 2019; 10:238. [PMID: 30967897 PMCID: PMC6438902 DOI: 10.3389/fgene.2019.00238] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 01/14/2023] Open
Abstract
Catharanthus roseus is a medicinal plant, which can produce monoterpene indole alkaloid (MIA) metabolites with biological activity and is rich in vinblastine and vincristine. With release of the scaffolded genome sequence of C. roseus, it is necessary to annotate gene functions on the whole-genome level. Recently, 53 RNA-seq datasets are available in public with different tissues (flower, root, leaf, seedling, and shoot) and different treatments (MeJA, PnWB infection and yeast elicitor). We used in-house data process pipeline with the combination of PCC and MR algorithms to construct a co-expression network exploring multi-dimensional gene expression (global, tissue preferential, and treat response) through multi-layered approaches. In the meanwhile, we added miRNA-target pairs, predicted PPI pairs into the network and provided several tools such as gene set enrichment analysis, functional module enrichment analysis, and motif analysis for functional prediction of the co-expression genes. Finally, we have constructed an online croFGD database (http://bioinformatics.cau.edu.cn/croFGD/). We hope croFGD can help the communities to study the C. roseus functional genomics and make novel discoveries about key genes involved in some important biological processes.
Collapse
Affiliation(s)
- Jiajie She
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Kanofsky K, Strauch CJ, Sandmann A, Möller A, Hehl R. Transcription factors involved in basal immunity in mammals and plants interact with the same MAMP-responsive cis-sequence from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2018; 98:565-578. [PMID: 30467788 DOI: 10.1007/s11103-018-0796-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
WRKY and NF-κB transcription factors, involved in innate immunity in plants and mammals, interact with the same cis-sequence. Novel microbe-associated molecular pattern (MAMP)-responsive cis-sequences, designated type II WT-boxes, are required for flg22-responsive gene expression in Arabidopsis thaliana protoplasts. While type I WT-boxes like TGACTTTT and CGACTTTT interact with WRKY transcription factors (TFs), the question remained which TFs bind to the type II WT-boxes GGACTTTC, GGACTTTT, and GGACTTTG. Surprisingly, a bioinformatic analysis predicts mouse (Mus musculus) NF-κB p65 as a TF interacting with type II WT-boxes. NF-κB p65, like WRKY factors in plants, plays a role in innate immunity in mammals. Therefore, the interaction of NF-κB p65 with type II WT-boxes was tested experimentally. NF-κB p65 requires the WT-boxes GGACTTTC, GGACTTTT, and GGACTTTG for activating reporter gene expression in plant cells. NF-κB p65 directly binds to WT-box containing synthetic promoters in vitro and requires the WT-box for binding. Earlier studies indicate that the sequence GGACTTTC is also required for WRKY26 mediated reporter gene activation. Here it is shown that WRKY26, like NF-κB p65, binds to the sequence GGACTTTC. Consistent with other recent studies, type II WT boxes are WRKY binding sites and the distinction between type I and type II no longer applies.
Collapse
Affiliation(s)
- Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Claudia Janina Strauch
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Alexander Sandmann
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Anika Möller
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
27
|
Wu Q, Smith NA, Zhang D, Zhou C, Wang MB. Root-Specific Expression of a Jacalin Lectin Family Protein Gene Requires a Transposable Element Sequence in the Promoter. Genes (Basel) 2018; 9:E550. [PMID: 30428604 PMCID: PMC6266147 DOI: 10.3390/genes9110550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transposable elements (TEs) are widespread in the plant genome and can impact on the expression of neighbouring genes. Our previous studies have identified a number of DNA demethylase-regulated defence-related genes that contain TE sequences in the promoter and show tissue-specific expression in Arabidopsis. In this study we investigated the role of the promoter TE insertions in the root-specific expression of a DNA demethylase-regulated gene, AT5G38550, encoding a Jacalin lectin family protein. Using a promoter:GUS fusion reporter gene approach, we first demonstrated that the full-length promoter fragment, carrying four TE sequences, contained the essential regulatory information required for root-specific expression and DNA demethylase regulation in Arabidopsis. By successive deletion of the four TE sequences, we showed that one of the four TE insertions, a 201-bp TE fragment of the hAT DNA transposon family, was required for root-specific expression: Deletion of this TE, but not the first two TE sequences, converted the root-specific expression pattern to a constitutive expression pattern in Arabidopsis plants. Our study provides an example indicating an important role of TE insertions in tissue-specific expression of plant defence-related genes.
Collapse
Affiliation(s)
- Qiong Wu
- Citrus Research Institute, Southwest University, Chongqing 400716, China.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Neil A Smith
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Daai Zhang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Chongqing 400716, China.
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia.
| |
Collapse
|
28
|
D'Alessandro S, Ksas B, Havaux M. Decoding β-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress. THE PLANT CELL 2018; 30:2495-2511. [PMID: 30262551 PMCID: PMC6241270 DOI: 10.1105/tpc.18.00578] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 05/19/2023]
Abstract
When exposed to unfavorable environmental conditions, plants can absorb light energy in excess of their photosynthetic capacities, with the surplus energy leading to the production of reactive oxygen species and photooxidative stress. Subsequent lipid peroxidation generates toxic reactive carbonyl species whose accumulation culminates in cell death. β-Cyclocitral, an oxidized by-product of β-carotene generated in the chloroplasts, mediates a protective retrograde response that lowers the levels of toxic peroxides and carbonyls, limiting damage to intracellular components. In this study, we elucidate the molecular mechanism induced by β-cyclocitral in Arabidopsis thaliana and show that the xenobiotic detoxification response is involved in the tolerance to excess light energy. The involvement of the xenobiotic response suggests a possible origin for this pathway. Furthermore, we establish the hierarchical structure of this pathway that is mediated by the β-cyclocitral-inducible GRAS protein SCARECROW LIKE14 (SCL14) and involves ANAC102 as a pivotal component upstream of other ANAC transcription factors and of many enzymes of the xenobiotic detoxification response. Finally, the SCL14-dependent protective mechanism is also involved in the low sensitivity of young leaf tissues to high-light stress.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille Université, CEA, CNRS, UMR 7265, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Brigitte Ksas
- Aix-Marseille Université, CEA, CNRS, UMR 7265, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix-Marseille Université, CEA, CNRS, UMR 7265, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
29
|
Hantzis LJ, Kroh GE, Jahn CE, Cantrell M, Peers G, Pilon M, Ravet K. A Program for Iron Economy during Deficiency Targets Specific Fe Proteins. PLANT PHYSIOLOGY 2018; 176:596-610. [PMID: 29150559 DOI: 10.1104/pp1701497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/15/2017] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is an essential element for plants, utilized in nearly every cellular process. Because the adjustment of uptake under Fe limitation cannot satisfy all demands, plants need to acclimate their physiology and biochemistry, especially in their chloroplasts, which have a high demand for Fe. To investigate if a program exists for the utilization of Fe under deficiency, we analyzed how hydroponically grown Arabidopsis (Arabidopsis thaliana) adjusts its physiology and Fe protein composition in vegetative photosynthetic tissue during Fe deficiency. Fe deficiency first affected photosynthetic electron transport with concomitant reductions in carbon assimilation and biomass production when effects on respiration were not yet significant. Photosynthetic electron transport function and protein levels of Fe-dependent enzymes were fully recovered upon Fe resupply, indicating that the Fe depletion stress did not cause irreversible secondary damage. At the protein level, ferredoxin, the cytochrome-b6f complex, and Fe-containing enzymes of the plastid sulfur assimilation pathway were major targets of Fe deficiency, whereas other Fe-dependent functions were relatively less affected. In coordination, SufA and SufB, two proteins of the plastid Fe-sulfur cofactor assembly pathway, were also diminished early by Fe depletion. Iron depletion reduced mRNA levels for the majority of the affected proteins, indicating that loss of enzyme was not just due to lack of Fe cofactors. SufB and ferredoxin were early targets of transcript down-regulation. The data reveal a hierarchy for Fe utilization in photosynthetic tissue and indicate that a program is in place to acclimate to impending Fe deficiency.
Collapse
Affiliation(s)
- Laura J Hantzis
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Gretchen E Kroh
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Courtney E Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523-1177
| | - Michael Cantrell
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Graham Peers
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Marinus Pilon
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Karl Ravet
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
- INRA, Institut de Biologie Intégrative des Plantes, 34060 Montpellier, France
| |
Collapse
|
30
|
Hantzis LJ, Kroh GE, Jahn CE, Cantrell M, Peers G, Pilon M, Ravet K. A Program for Iron Economy during Deficiency Targets Specific Fe Proteins. PLANT PHYSIOLOGY 2018; 176:596-610. [PMID: 29150559 PMCID: PMC5761800 DOI: 10.1104/pp.17.01497] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/15/2017] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is an essential element for plants, utilized in nearly every cellular process. Because the adjustment of uptake under Fe limitation cannot satisfy all demands, plants need to acclimate their physiology and biochemistry, especially in their chloroplasts, which have a high demand for Fe. To investigate if a program exists for the utilization of Fe under deficiency, we analyzed how hydroponically grown Arabidopsis (Arabidopsis thaliana) adjusts its physiology and Fe protein composition in vegetative photosynthetic tissue during Fe deficiency. Fe deficiency first affected photosynthetic electron transport with concomitant reductions in carbon assimilation and biomass production when effects on respiration were not yet significant. Photosynthetic electron transport function and protein levels of Fe-dependent enzymes were fully recovered upon Fe resupply, indicating that the Fe depletion stress did not cause irreversible secondary damage. At the protein level, ferredoxin, the cytochrome-b6f complex, and Fe-containing enzymes of the plastid sulfur assimilation pathway were major targets of Fe deficiency, whereas other Fe-dependent functions were relatively less affected. In coordination, SufA and SufB, two proteins of the plastid Fe-sulfur cofactor assembly pathway, were also diminished early by Fe depletion. Iron depletion reduced mRNA levels for the majority of the affected proteins, indicating that loss of enzyme was not just due to lack of Fe cofactors. SufB and ferredoxin were early targets of transcript down-regulation. The data reveal a hierarchy for Fe utilization in photosynthetic tissue and indicate that a program is in place to acclimate to impending Fe deficiency.
Collapse
Affiliation(s)
- Laura J Hantzis
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Gretchen E Kroh
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Courtney E Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523-1177
| | - Michael Cantrell
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Graham Peers
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Marinus Pilon
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
| | - Karl Ravet
- Biology Department, Colorado State University, Fort Collins, Colorado 80523-1878
- INRA, Institut de Biologie Intégrative des Plantes, 34060 Montpellier, France
| |
Collapse
|
31
|
De Schutter K, Tsaneva M, Kulkarni SR, Rougé P, Vandepoele K, Van Damme EJM. Evolutionary relationships and expression analysis of EUL domain proteins in rice (Oryza sativa). RICE (NEW YORK, N.Y.) 2017; 10:26. [PMID: 28560587 PMCID: PMC5449364 DOI: 10.1186/s12284-017-0164-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/16/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Lectins, defined as 'Proteins that can recognize and bind specific carbohydrate structures', are widespread among all kingdoms of life and play an important role in various biological processes in the cell. Most plant lectins are involved in stress signaling and/or defense. The family of Euonymus-related lectins (EULs) represents a group of stress-related lectins composed of one or two EUL domains. The latter protein domain is unique in that it is ubiquitous in land plants, suggesting an important role for these proteins. RESULTS Despite the availability of multiple completely sequenced rice genomes, little is known on the occurrence of lectins in rice. We identified 329 putative lectin genes in the genome of Oryza sativa subsp. japonica belonging to nine out of 12 plant lectin families. In this paper, an in-depth molecular characterization of the EUL family of rice was performed. In addition, analyses of the promoter sequences and investigation of the transcript levels for these EUL genes enabled retrieval of important information related to the function and stress responsiveness of these lectins. Finally, a comparative analysis between rice cultivars and several monocot and dicot species revealed a high degree of sequence conservation within the EUL domain as well as in the domain organization of these lectins. CONCLUSIONS The presence of EULs throughout the plant kingdom and the high degree of sequence conservation in the EUL domain suggest that these proteins serve an important function in the plant cell. Analysis of the promoter region of the rice EUL genes revealed a diversity of stress responsive elements. Furthermore analysis of the expression profiles of the EUL genes confirmed that they are differentially regulated in response to several types of stress. These data suggest a potential role for the EULs in plant stress signaling and defense.
Collapse
Affiliation(s)
- Kristof De Schutter
- Laboratory Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Mariya Tsaneva
- Laboratory Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Pierre Rougé
- UMR 152 PHARMA-DEV, Université de Toulouse, IRD, UPS, Chemin des Maraîchers 35, 31400, Toulouse, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
32
|
Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genet 2017; 13:e1006988. [PMID: 28902852 PMCID: PMC5597176 DOI: 10.1371/journal.pgen.1006988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
All eukaryotic genomes are packaged as chromatin, with DNA interlaced with both regularly patterned nucleosomes and sub-nucleosomal-sized protein structures such as mobile and labile transcription factors (TF) and initiation complexes, together forming a dynamic chromatin landscape. Whilst details of nucleosome position in Arabidopsis have been previously analysed, there is less understanding of their relationship to more dynamic sub-nucleosomal particles (subNSPs) defined as protected regions shorter than the ~150bp typical of nucleosomes. The genome-wide profile of these subNSPs has not been previously analysed in plants and this study investigates the relationship of dynamic bound particles with transcriptional control. Here we combine differential micrococcal nuclease (MNase) digestion and a modified paired-end sequencing protocol to reveal the chromatin structure landscape of Arabidopsis cells across a wide particle size range. Linking this data to RNAseq expression analysis provides detailed insight into the relationship of identified DNA-bound particles with transcriptional activity. The use of differential digestion reveals sensitive positions, including a labile -1 nucleosome positioned upstream of the transcription start site (TSS) of active genes. We investigated the response of the chromatin landscape to changes in environmental conditions using light and dark growth, given the large transcriptional changes resulting from this simple alteration. The resulting shifts in the suites of expressed and repressed genes show little correspondence to changes in nucleosome positioning, but led to significant alterations in the profile of subNSPs upstream of TSS both globally and locally. We examined previously mapped positions for the TFs PIF3, PIF4 and CCA1, which regulate light responses, and found that changes in subNSPs co-localized with these binding sites. This small particle structure is detected only under low levels of MNase digestion and is lost on more complete digestion of chromatin to nucleosomes. We conclude that wide-spectrum analysis of the Arabidopsis genome by differential MNase digestion allows detection of sensitive features hereto obscured, and the comparisons between genome-wide subNSP profiles reveals dynamic changes in their distribution, particularly at distinct genomic locations (i.e. 5'UTRs). The method here employed allows insight into the complex influence of genetic and extrinsic factors in modifying the sub-nucleosomal landscape in association with transcriptional changes.
Collapse
Affiliation(s)
- Daniel Antony Pass
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Emily Sornay
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Angela Marchbank
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Margaret R. Crawford
- Genome Centre, University of Sussex, Sussex House, Falmer, Brighton, United Kingdom
| | - Konrad Paszkiewicz
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Nicholas A. Kent
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
33
|
Kanofsky K, Bahlmann AK, Hehl R, Dong DX. Combinatorial requirement of W- and WT-boxes in microbe-associated molecular pattern-responsive synthetic promoters. PLANT CELL REPORTS 2017; 36:971-986. [PMID: 28341984 DOI: 10.1007/s00299-017-2130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/10/2017] [Indexed: 05/12/2023]
Abstract
The WT-box GGACTTTC belongs to a novel class of MAMP-responsive cis-regulatory sequences that are part of combinatorial elements. Microbe-associated molecular pattern (MAMP)-responsive synthetic promoters were generated with two cis-regulatory modules (CRM1 and CRM2) from the Arabidopsis thaliana WRKY30 promoter. Both modules harbour two W-boxes and one WT-box. Mutation analysis of the synthetic promoters and transient gene expression analysis in parsley protoplasts underline the importance of the W- and WT-boxes for MAMP-responsive gene expression and reveal the combinatorial requirement of at least two boxes for full MAMP responsivity. In the context of the native promoter, CRM1 is required for MAMP responsivity, while CRM2 alone is not sufficient. Yeast one-hybrid screenings using CRM1 with a transcription factor (TF) only prey library select only WRKY factors. Selection of WRKY26, 40, 41, and 70 requires the W-boxes. The WT-box is also required for selection of WRKY26 and 41 in yeast. In plant cells, WRKY26, 40, and 41 act as repressors of MAMP-responsive gene expression, whereas WRKY70 is an activator. To investigate whether the WT-box is also required for WRKY26 and 41 mediated gene expression in plant cells, both were converted into transcriptional activators by adding the GAL4 activating domain (AD). In contrast to yeast, transient gene expression in parsley protoplasts shows that only the W-boxes from CRM1 are required for WRKY41AD-activated reporter gene activity but not the WT-box. In addition, WRKY70-activated reporter gene activity in parsley cells does not require the WT-box of CRM1. The results demonstrate the importance of the WT-box as a new cis-regulatory sequence for MAMP-responsive gene expression. Based on these and earlier results, two types of WT-boxes are proposed.
Collapse
Affiliation(s)
- Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Ann-Kathrin Bahlmann
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| | - Do Xuan Dong
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| |
Collapse
|
34
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
35
|
Zhang X, Ivanova A, Vandepoele K, Radomiljac J, Van de Velde J, Berkowitz O, Willems P, Xu Y, Ng S, Van Aken O, Duncan O, Zhang B, Storme V, Chan KX, Vaneechoutte D, Pogson BJ, Van Breusegem F, Whelan J, De Clercq I. The Transcription Factor MYB29 Is a Regulator of ALTERNATIVE OXIDASE1a. PLANT PHYSIOLOGY 2017; 173:1824-1843. [PMID: 28167700 PMCID: PMC5338668 DOI: 10.1104/pp.16.01494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
Plants sense and integrate a variety of signals from the environment through different interacting signal transduction pathways that involve hormones and signaling molecules. Using ALTERNATIVE OXIDASE1a (AOX1a) gene expression as a model system of retrograde or stress signaling between mitochondria and the nucleus, MYB DOMAIN PROTEIN29 (MYB29) was identified as a negative regulator (regulator of alternative oxidase1a 7 [rao7] mutant) in a genetic screen of Arabidopsis (Arabidopsis thaliana). rao7/myb29 mutants have increased levels of AOX1a transcript and protein compared to wild type after induction with antimycin A. A variety of genes previously associated with the mitochondrial stress response also display enhanced transcript abundance, indicating that RAO7/MYB29 negatively regulates mitochondrial stress responses in general. Meta-analysis of hormone-responsive marker genes and identification of downstream transcription factor networks revealed that MYB29 functions in the complex interplay of ethylene, jasmonic acid, salicylic acid, and reactive oxygen species signaling by regulating the expression of various ETHYLENE RESPONSE FACTOR and WRKY transcription factors. Despite an enhanced induction of mitochondrial stress response genes, rao7/myb29 mutants displayed an increased sensitivity to combined moderate light and drought stress. These results uncover interactions between mitochondrial retrograde signaling and the regulation of glucosinolate biosynthesis, both regulated by RAO7/MYB29. This common regulator can explain why perturbation of the mitochondrial function leads to transcriptomic responses overlapping with responses to biotic stress.
Collapse
|
36
|
Merini W, Romero-Campero FJ, Gomez-Zambrano A, Zhou Y, Turck F, Calonje M. The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development. PLANT PHYSIOLOGY 2017; 173:627-641. [PMID: 27837089 PMCID: PMC5210725 DOI: 10.1104/pp.16.01259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/02/2016] [Indexed: 05/04/2023]
Abstract
Polycomb Group regulation in Arabidopsis (Arabidopsis thaliana) is required to maintain cell differentiation and allow developmental phase transitions. This is achieved by the activity of three PcG repressive complex 2s (PRC2s) and the participation of a yet poorly defined PRC1. Previous results showed that apparent PRC1 components perform discrete roles during plant development, suggesting the existence of PRC1 variants; however, it is not clear in how many processes these components participate. We show that AtBMI1 proteins are required to promote all developmental phase transitions and to control cell proliferation during organ growth and development, expanding their proposed range of action. While AtBMI1 function during germination is closely linked to B3 domain transcription factors VAL1/2 possibly in combination with GT-box binding factors, other AtBMI1 regulatory networks require participation of different factor combinations. Conversely, EMF1 and LHP1 bind many H3K27me3 positive genes up-regulated in atbmi1a/b/c mutants; however, loss of their function affects expression of a different subset, suggesting that even if EMF1, LHP1, and AtBMI1 exist in a common PRC1 variant, their role in repression depends on the functional context.
Collapse
Affiliation(s)
- Wiam Merini
- Institute of Plant Biochemistry and Photosynthesis, 41092 Seville, Spain (W.M., A.G.-Z., M.C.)
- Department of Computer Science and Artificial Intelligence, University of Seville, 41012 Seville, Spain (F.J.R.-C.); and
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, 50829 Cologne, Germany (F.T.)
| | - Francisco J Romero-Campero
- Institute of Plant Biochemistry and Photosynthesis, 41092 Seville, Spain (W.M., A.G.-Z., M.C.)
- Department of Computer Science and Artificial Intelligence, University of Seville, 41012 Seville, Spain (F.J.R.-C.); and
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, 50829 Cologne, Germany (F.T.)
| | - Angeles Gomez-Zambrano
- Institute of Plant Biochemistry and Photosynthesis, 41092 Seville, Spain (W.M., A.G.-Z., M.C.)
- Department of Computer Science and Artificial Intelligence, University of Seville, 41012 Seville, Spain (F.J.R.-C.); and
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, 50829 Cologne, Germany (F.T.)
| | - Yue Zhou
- Institute of Plant Biochemistry and Photosynthesis, 41092 Seville, Spain (W.M., A.G.-Z., M.C.)
- Department of Computer Science and Artificial Intelligence, University of Seville, 41012 Seville, Spain (F.J.R.-C.); and
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, 50829 Cologne, Germany (F.T.)
| | - Franziska Turck
- Institute of Plant Biochemistry and Photosynthesis, 41092 Seville, Spain (W.M., A.G.-Z., M.C.)
- Department of Computer Science and Artificial Intelligence, University of Seville, 41012 Seville, Spain (F.J.R.-C.); and
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, 50829 Cologne, Germany (F.T.)
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis, 41092 Seville, Spain (W.M., A.G.-Z., M.C.);
- Department of Computer Science and Artificial Intelligence, University of Seville, 41012 Seville, Spain (F.J.R.-C.); and
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, 50829 Cologne, Germany (F.T.)
| |
Collapse
|
37
|
Schumann U, Lee J, Kazan K, Ayliffe M, Wang MB. DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns. FRONTIERS IN PLANT SCIENCE 2017; 8:1449. [PMID: 28894455 PMCID: PMC5581395 DOI: 10.3389/fpls.2017.01449] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/04/2017] [Indexed: 05/12/2023]
Abstract
Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ulrike Schumann
- CSIRO Agriculture and Food, CanberraACT, Australia
- *Correspondence: Ming-Bo Wang, Ulrike Schumann,
| | - Joanne Lee
- CSIRO Agriculture and Food, CanberraACT, Australia
| | - Kemal Kazan
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. LuciaQLD, Australia
| | | | - Ming-Bo Wang
- CSIRO Agriculture and Food, CanberraACT, Australia
- *Correspondence: Ming-Bo Wang, Ulrike Schumann,
| |
Collapse
|
38
|
Van Leene J, Blomme J, Kulkarni SR, Cannoot B, De Winne N, Eeckhout D, Persiau G, Van De Slijke E, Vercruysse L, Vanden Bossche R, Heyndrickx KS, Vanneste S, Goossens A, Gevaert K, Vandepoele K, Gonzalez N, Inzé D, De Jaeger G. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5825-5840. [PMID: 27660483 PMCID: PMC5066499 DOI: 10.1093/jxb/erw347] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant bZIP group I transcription factors have been reported mainly for their role during vascular development and osmosensory responses. Interestingly, bZIP29 has been identified in a cell cycle interactome, indicating additional functions of bZIP29 in plant development. Here, bZIP29 was functionally characterized to study its role during plant development. It is not present in vascular tissue but is specifically expressed in proliferative tissues. Genome-wide mapping of bZIP29 target genes confirmed its role in stress and osmosensory responses, but also identified specific binding to several core cell cycle genes and to genes involved in cell wall organization. bZIP29 protein complex analyses validated interaction with other bZIP group I members and provided insight into regulatory mechanisms acting on bZIP dimers. In agreement with bZIP29 expression in proliferative tissues and with its binding to promoters of cell cycle regulators, dominant-negative repression of bZIP29 altered the cell number in leaves and in the root meristem. A transcriptome analysis on the root meristem, however, indicated that bZIP29 might regulate cell number through control of cell wall organization. Finally, ectopic dominant-negative repression of bZIP29 and redundant factors led to a seedling-lethal phenotype, pointing to essential roles for bZIP group I factors early in plant development.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Bernard Cannoot
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nancy De Winne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Leen Vercruysse
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ken S Heyndrickx
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Gent, Belgium Department of Biochemistry, Ghent University, B-9000 Gent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
39
|
Castro PH, Couto D, Freitas S, Verde N, Macho AP, Huguet S, Botella MA, Ruiz-Albert J, Tavares RM, Bejarano ER, Azevedo H. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 92:143-59. [PMID: 27325215 DOI: 10.1007/s11103-016-0500-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Sumoylation is an essential post-translational regulator of plant development and the response to environmental stimuli. SUMO conjugation occurs via an E1-E2-E3 cascade, and can be removed by SUMO proteases (ULPs). ULPs are numerous and likely to function as sources of specificity within the pathway, yet most ULPs remain functionally unresolved. In this report we used loss-of-function reverse genetics and transcriptomics to functionally characterize Arabidopsis thaliana ULP1c and ULP1d SUMO proteases. GUS reporter assays implicated ULP1c/d in various developmental stages, and subsequent defects in growth and germination were uncovered using loss-of-function mutants. Microarray analysis evidenced not only a deregulation of genes involved in development, but also in genes controlled by various drought-associated transcriptional regulators. We demonstrated that ulp1c ulp1d displayed diminished in vitro root growth under low water potential and higher stomatal aperture, yet leaf transpirational water loss and whole drought tolerance were not significantly altered. Generation of a triple siz1 ulp1c ulp1d mutant suggests that ULP1c/d and the SUMO E3 ligase SIZ1 may display separate functions in development yet operate epistatically in response to water deficit. We provide experimental evidence that Arabidopsis ULP1c and ULP1d proteases act redundantly as positive regulators of growth, and operate mainly as isopeptidases downstream of SIZ1 in the control of water deficit responses.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Daniel Couto
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- The Sainsbury Laboratory, Colney Lane, Norwich, NR4 7UH, UK
| | - Sara Freitas
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno Verde
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alberto P Macho
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 201602, Shanghai, China
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, 2 rue G. Crémieux, CP 5708, 91057, Evry Cedex, France
| | - Miguel Angel Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Molecular y Bioquímica, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Rui Manuel Tavares
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Herlânder Azevedo
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
40
|
Porco S, Larrieu A, Du Y, Gaudinier A, Goh T, Swarup K, Swarup R, Kuempers B, Bishopp A, Lavenus J, Casimiro I, Hill K, Benkova E, Fukaki H, Brady SM, Scheres B, Péret B, Bennett MJ. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development 2016; 143:3340-9. [PMID: 27578783 DOI: 10.1242/dev.136283] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.
Collapse
Affiliation(s)
- Silvana Porco
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Antoine Larrieu
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yujuan Du
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tatsuaki Goh
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kamal Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Britta Kuempers
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Julien Lavenus
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Institute of Plant Sciences, 21 Altenbergrain, Bern 3006, Switzerland
| | - Ilda Casimiro
- Departamento Anatomia, Biologia Celular Y Zoologia, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06006, Spain
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ben Scheres
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Benjamin Péret
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Centre National de la Recherche Scientifique, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro, 2 Place Pierre Viala, Montpellier 34060, France
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| |
Collapse
|
41
|
Van de Velde J, Van Bel M, Vaneechoutte D, Vandepoele K. A Collection of Conserved Noncoding Sequences to Study Gene Regulation in Flowering Plants. PLANT PHYSIOLOGY 2016; 171:2586-98. [PMID: 27261064 PMCID: PMC4972296 DOI: 10.1104/pp.16.00821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 05/03/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding cis-regulatory elements, of which the identification remains an ongoing challenge owing to the prevalence of large numbers of nonfunctional TF binding sites. Powerful comparative genomics methods, such as phylogenetic footprinting, can be used for the detection of conserved noncoding sequences (CNSs), which are functionally constrained and can greatly help in reducing the number of false-positive elements. In this study, we applied a phylogenetic footprinting approach for the identification of CNSs in 10 dicot plants, yielding 1,032,291 CNSs associated with 243,187 genes. To annotate CNSs with TF binding sites, we made use of binding site information for 642 TFs originating from 35 TF families in Arabidopsis (Arabidopsis thaliana). In three species, the identified CNSs were evaluated using TF chromatin immunoprecipitation sequencing data, resulting in significant overlap for the majority of data sets. To identify ultraconserved CNSs, we included genomes of additional plant families and identified 715 binding sites for 501 genes conserved in dicots, monocots, mosses, and green algae. Additionally, we found that genes that are part of conserved mini-regulons have a higher coherence in their expression profile than other divergent gene pairs. All identified CNSs were integrated in the PLAZA 3.0 Dicots comparative genomics platform (http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_dicots/) together with new functionalities facilitating the exploration of conserved cis-regulatory elements and their associated genes. The availability of this data set in a user-friendly platform enables the exploration of functional noncoding DNA to study gene regulation in a variety of plant species, including crops.
Collapse
Affiliation(s)
- Jan Van de Velde
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.V.d.V., M.V.B., D.V., K.V.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.V.d.V., M.V.B., D.V., K.V.)
| | - Michiel Van Bel
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.V.d.V., M.V.B., D.V., K.V.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.V.d.V., M.V.B., D.V., K.V.)
| | - Dries Vaneechoutte
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.V.d.V., M.V.B., D.V., K.V.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.V.d.V., M.V.B., D.V., K.V.)
| | - Klaas Vandepoele
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.V.d.V., M.V.B., D.V., K.V.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.V.d.V., M.V.B., D.V., K.V.)
| |
Collapse
|
42
|
Romero-Campero FJ, Perez-Hurtado I, Lucas-Reina E, Romero JM, Valverde F. ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage. BMC Genomics 2016; 17:227. [PMID: 26968660 PMCID: PMC4788957 DOI: 10.1186/s12864-016-2564-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/02/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Chlamydomonas reinhardtii is the model organism that serves as a reference for studies in algal genomics and physiology. It is of special interest in the study of the evolution of regulatory pathways from algae to higher plants. Additionally, it has recently gained attention as a potential source for bio-fuel and bio-hydrogen production. The genome of Chlamydomonas is available, facilitating the analysis of its transcriptome by RNA-seq data. This has produced a massive amount of data that remains fragmented making necessary the application of integrative approaches based on molecular systems biology. RESULTS We constructed a gene co-expression network based on RNA-seq data and developed a web-based tool, ChlamyNET, for the exploration of the Chlamydomonas transcriptome. ChlamyNET exhibits a scale-free and small world topology. Applying clustering techniques, we identified nine gene clusters that capture the structure of the transcriptome under the analyzed conditions. One of the most central clusters was shown to be involved in carbon/nitrogen metabolism and signalling, whereas one of the most peripheral clusters was involved in DNA replication and cell cycle regulation. The transcription factors and regulators in the Chlamydomonas genome have been identified in ChlamyNET. The biological processes potentially regulated by them as well as their putative transcription factor binding sites were determined. The putative light regulated transcription factors and regulators in the Chlamydomonas genome were analyzed in order to provide a case study on the use of ChlamyNET. Finally, we used an independent data set to cross-validate the predictive power of ChlamyNET. CONCLUSIONS The topological properties of ChlamyNET suggest that the Chlamydomonas transcriptome posseses important characteristics related to error tolerance, vulnerability and information propagation. The central part of ChlamyNET constitutes the core of the transcriptome where most authoritative hub genes are located interconnecting key biological processes such as light response with carbon and nitrogen metabolism. Our study reveals that key elements in the regulation of carbon and nitrogen metabolism, light response and cell cycle identified in higher plants were already established in Chlamydomonas. These conserved elements are not only limited to transcription factors, regulators and their targets, but also include the cis-regulatory elements recognized by them.
Collapse
Affiliation(s)
- Francisco J. Romero-Campero
- />Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla, Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Ignacio Perez-Hurtado
- />Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla, Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Eva Lucas-Reina
- />Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Americo Vespucio 49, 41092 Sevilla, Spain
| | - Jose M. Romero
- />Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Americo Vespucio 49, 41092 Sevilla, Spain
| | - Federico Valverde
- />Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Americo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
43
|
Narsai R. Databases and informatics resources for analysis of plant mitochondria. Methods Mol Biol 2016; 1305:263-79. [PMID: 25910741 DOI: 10.1007/978-1-4939-2639-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
As more omics data is generated from various plant species, it is becoming increasingly possible to carry out a range of in silico analyses to gain insight into mitochondrial function in plants. From the use of software tools for DNA motif analyses and transcript expression visualization to proteomic and subcellular localization resources, it is possible to carry out significant in silico analyses that are highly informative to researchers and can help to guide experimental design for further mitochondrial study. Databases specific to plant mitochondrial analyses have been developed in recent years, revealing mitochondria-specific information. This chapter outlines the databases and informatics resources that are useful for plant mitochondrial studies, with specific examples presented to indicate how these resources can be used to gain insight into plant mitochondrial function(s).
Collapse
Affiliation(s)
- Reena Narsai
- Department of Botany, Australian Research Council Centre of Excellence Plant Energy Biology, School of Life Sciences, La Trobe University, 5 Ring Road, Bundoora, VIC, 3086, Australia,
| |
Collapse
|
44
|
Hehl R, Norval L, Romanov A, Bülow L. Boosting AthaMap Database Content with Data from Protein Binding Microarrays. PLANT & CELL PHYSIOLOGY 2016; 57:e4. [PMID: 26542109 DOI: 10.1093/pcp/pcv156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/19/2015] [Indexed: 05/24/2023]
Abstract
The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) and small RNA target sites for the whole Arabidopsis thaliana genome. With the advent of protein binding microarrays (PBM), the number of known TFBS for A. thaliana transcription factors (TFs) has increased dramatically. Using 113 positional weight matrices (PWMs) generated from a single PBM study and representing a total number of 68 different TFs, the number of predicted TFBS in AthaMap was now increased by about 3.8 × 10(7) to 4.9 × 10(7). The number of TFs with PWM-predicted TFBS annotated in AthaMap has increased to 126, representing a total of 29 TF families and newly including ARF, AT-Hook, YABBY, LOB/AS2 and SRS. Furthermore, links from all Arabidopsis TFs and genes to the newly established Arabidopsis Information Portal (AIP) have been implemented. With this qualitative and quantitative update, the improved AthaMap increases its value as a resource for the analysis of A. thaliana gene expression regulation at www.athamap.de.
Collapse
Affiliation(s)
- Reinhard Hehl
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Leo Norval
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Artyom Romanov
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Lorenz Bülow
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, D-06484 Quedlinburg, Germany
| |
Collapse
|
45
|
Lehmeyer M, Kanofsky K, Hanko EKR, Ahrendt S, Wehrs M, Machens F, Hehl R. Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:61-71. [PMID: 25819608 DOI: 10.1111/pbi.12357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Synthetic promoters are important for temporal and spatial gene expression in transgenic plants. To identify novel microbe-associated molecular pattern (MAMP)-responsive cis-regulatory sequences for synthetic promoter design, a combination of bioinformatics and experimental approaches was employed. One cis-sequence was identified which confers strong MAMP-responsive reporter gene activity with low background activity. The 35-bp-long cis-sequence was identified in the promoter of the Arabidopsis thaliana DJ1E gene, a homologue of the human oncogene DJ1. In this study, this cis-sequence is shown to be a tripartite cis-regulatory module (CRM). A synthetic promoter with four copies of the CRM linked to a minimal promoter increases MAMP-responsive reporter gene expression compared to the wild-type DJ1E promoter. The CRM consists of two WT-boxes (GGACTTTT and GGACTTTG) and a variant of the GCC-box (GCCACC), all required for MAMP and salicylic acid (SA) responsivity. Yeast one-hybrid screenings using a transcription factor (TF)-only prey library identified two AP2/ERFs, ORA59 and ERF10, interacting antagonistically with the CRM. ORA59 activates reporter gene activity and requires the consensus core sequence GCCNCC for gene expression activation. ERF10 down-regulates MAMP-responsive gene expression. No TFs interacting with the WT-boxes GGACTTTT and GGACTTTG were selected in yeast one-hybrid screenings with the TF-only prey library. In transgenic Arabidopsis, the synthetic promoter confers strong and specific reporter gene activity in response to biotrophs and necrotrophs as well as SA.
Collapse
Affiliation(s)
- Mona Lehmeyer
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Erik K R Hanko
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sarah Ahrendt
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Wehrs
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Fabian Machens
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
46
|
Gasch P, Fundinger M, Müller JT, Lee T, Bailey-Serres J, Mustroph A. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. THE PLANT CELL 2016; 28:160-80. [PMID: 26668304 PMCID: PMC4746684 DOI: 10.1105/tpc.15.00866] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/01/2015] [Indexed: 05/08/2023]
Abstract
The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species.
Collapse
Affiliation(s)
- Philipp Gasch
- Plant Physiology, University Bayreuth, 95440 Bayreuth, Germany
| | | | - Jana T Müller
- Plant Physiology, University Bayreuth, 95440 Bayreuth, Germany
| | - Travis Lee
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | | |
Collapse
|
47
|
Wang F, Muto A, Van de Velde J, Neyt P, Himanen K, Vandepoele K, Van Lijsebettens M. Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development. PLANT PHYSIOLOGY 2015; 169:2200-14. [PMID: 26417009 PMCID: PMC4634101 DOI: 10.1104/pp.15.01310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/26/2015] [Indexed: 05/05/2023]
Abstract
TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses.
Collapse
Affiliation(s)
- Feng Wang
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.); andDepartment of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata of Rende, Italy (A.M.)
| | - Antonella Muto
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.); andDepartment of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata of Rende, Italy (A.M.)
| | - Jan Van de Velde
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.); andDepartment of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata of Rende, Italy (A.M.)
| | - Pia Neyt
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.); andDepartment of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata of Rende, Italy (A.M.)
| | - Kristiina Himanen
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.); andDepartment of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata of Rende, Italy (A.M.)
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.); andDepartment of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata of Rende, Italy (A.M.)
| | - Mieke Van Lijsebettens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (F.W, A.M., J.V.d.V., P.N., K.H., K.V., M.V.L.); andDepartment of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata of Rende, Italy (A.M.)
| |
Collapse
|
48
|
Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba. Int J Genomics 2015; 2015:607185. [PMID: 26351628 PMCID: PMC4553201 DOI: 10.1155/2015/607185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/07/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022] Open
Abstract
WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5'-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter.
Collapse
|
49
|
Djami-Tchatchou AT, Dubery IA. Lipopolysaccharide perception leads to dynamic alterations in the microtranscriptome of Arabidopsis thaliana cells and leaf tissues. BMC PLANT BIOLOGY 2015; 15:79. [PMID: 25848807 PMCID: PMC4354979 DOI: 10.1186/s12870-015-0465-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding RNA molecules which have recently emerged as important gene regulators in plants and their gene expression analysis is becoming increasingly important. miRNAs regulate gene expression at the post-transcriptional level by translational repression or target degradation of specific mRNAs and gene silencing. In order to profile the microtranscriptome of Arabidopsis thaliana leaf and callus tissues in response to bacterial lipopolysaccharide (LPS), small RNA libraries were constructed at 0 and 3 h post induction with LPS and sequenced by Illumina sequencing technology. RESULTS Differential regulation of subset of miRNAs in response to LPS treament was observed. Small RNA reads were mapped to the miRNA database and 358 miRNAs belonging to 49 miRNA families in the callus tissues and 272 miRNAs belonging to 40 miRNA families in the leaf tissues were identified. Moreover, target genes for all the identified miRNAs families in the leaf tissues and 44 of the 49 miRNAs families in the callus tissues were predicted. The sequencing analysis showed that in both callus and leaf tissues, various stress regulated-miRNAs were differentially expressed and real time PCR validated the expression profile of miR156, miR158, miR159, miR169, miR393, miR398, miR399 and miR408 along with their target genes. CONCLUSION A. thaliana callus and leaf callus tissues respond to LPS as a microbe-associated molecular pattern molecule through dynamic changes to the microtranscriptome associated with differential transcriptional regulation in support of immunity and basal resistance.
Collapse
Affiliation(s)
- Arnaud T Djami-Tchatchou
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| |
Collapse
|
50
|
Mantegazza O, Gregis V, Chiara M, Selva C, Leo G, Horner DS, Kater MM. Gene coexpression patterns during early development of the native Arabidopsis reproductive meristem: novel candidate developmental regulators and patterns of functional redundancy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:861-77. [PMID: 24923650 DOI: 10.1111/tpj.12585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 05/16/2023]
Abstract
During very early stages of flower development in Arabidopsis thaliana, a series of key decisions are taken. Indeed, the position and the basic patterning of new flowers are determined in less than 4 days. Given that the scientific literature provides hard evidence for the function of only 10% of A. thaliana genes, we hypothesized that although many essential genes have already been identified, many poorly characterized genes are likely to be involved in floral patterning. In the current study, we use high-throughput sequencing to describe the transcriptome of the native inflorescence meristem, the floral meristem and the new flower immediately after the start of organ differentiation. We provide evidence that our experimental system is reliable and less affected by experimental artefacts than a widely used floral induction system. Furthermore, we show how these data can be used to identify candidate genes for functional studies, and to generate hypotheses of functional redundancies and regulatory interactions.
Collapse
Affiliation(s)
- Otho Mantegazza
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|