1
|
Mendoza HG, Beal PA. Structural and functional effects of inosine modification in mRNA. RNA (NEW YORK, N.Y.) 2024; 30:512-520. [PMID: 38531652 PMCID: PMC11019749 DOI: 10.1261/rna.079977.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Inosine (I), resulting from the deamination of adenosine (A), is a prominent modification in the human transcriptome. The enzymes responsible for the conversion of adenosine to inosine in human mRNAs are the ADARs (adenosine deaminases acting on RNA). Inosine modification introduces a layer of complexity to mRNA processing and function, as it can impact various aspects of RNA biology, including mRNA stability, splicing, translation, and protein binding. The relevance of this process is emphasized in the growing number of human disorders associated with dysregulated A-to-I editing pathways. Here, we describe the impact of the A-to-I conversion on the structure and stability of duplex RNA and on the consequences of this modification at different locations in mRNAs. Furthermore, we highlight specific open questions regarding the interplay between inosine formation in duplex RNA and the innate immune response.
Collapse
Affiliation(s)
- Herra G Mendoza
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, California 95616, USA
| |
Collapse
|
2
|
Jarmoskaite I, Li JB. Multifaceted roles of RNA editing enzyme ADAR1 in innate immunity. RNA (NEW YORK, N.Y.) 2024; 30:500-511. [PMID: 38531645 PMCID: PMC11019752 DOI: 10.1261/rna.079953.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- AIRNA Corporation, Cambridge, Massachusetts 02142, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
3
|
Nichols PJ, Krall JB, Henen MA, Welty R, MacFadden A, Vicens Q, Vögeli B. Z-Form Adoption of Nucleic Acid is a Multi-Step Process Which Proceeds through a Melted Intermediate. J Am Chem Soc 2024; 146:677-694. [PMID: 38131335 PMCID: PMC11155437 DOI: 10.1021/jacs.3c10406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of innate immune response proteins. Zα domains stabilize this higher-energy conformation by making specific interactions with the unique geometry of Z-DNA/Z-RNA. However, the mechanism by which a right-handed helix contorts to become left-handed in the presence of proteins, including the intermediate steps involved, is poorly understood. Through a combination of nuclear magnetic resonance (NMR) and other biophysical measurements, we have determined that in the absence of Zα, under low salt conditions at room temperature, d(CpG) and r(CpG) constructs show no observable evidence of transient Z-conformations greater than 0.5% on either the intermediate or slow NMR time scales. At higher temperatures, we observed a transient unfolded intermediate. The ease of melting a nucleic acid duplex correlates with Z-form adoption rates in the presence of Zα. The largest contributing factor to the activation energies of Z-form adoption as calculated by Arrhenius plots is the ease of flipping the sugar pucker, as required for Z-DNA and Z-RNA. Together, these data validate the previously proposed "zipper model" for Z-form adoption in the presence of Zα. Overall, Z-conformations are more likely to be adopted by double-stranded DNA and RNA regions flanked by less stable regions and by RNAs experiencing torsional/mechanical stress.
Collapse
Affiliation(s)
- Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Jeffrey B. Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Robb Welty
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- Present address: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cellular Signaling, University of Houston, Houston, Texas 77204, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
4
|
Gan WL, Ng L, Ng BYL, Chen L. Recent Advances in Adenosine-to-Inosine RNA Editing in Cancer. Cancer Treat Res 2023; 190:143-179. [PMID: 38113001 DOI: 10.1007/978-3-031-45654-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
RNA epigenetics, or epitranscriptome, is a growing group of RNA modifications historically classified into two categories: RNA editing and RNA modification. RNA editing is usually understood as post-transcriptional RNA processing (except capping, splicing and polyadenylation) that changes the RNA nucleotide sequence encoded by the genome. This processing can be achieved through the insertion or deletion of nucleotides or deamination of nucleobases, generating either standard nucleotides such as uridine (U) or the rare nucleotide inosine (I). Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent type of RNA modification in mammals and is catalyzed by adenosine deaminase acting on the RNA (ADAR) family of enzymes that recognize double-stranded RNAs (dsRNAs). Inosine mimics guanosine (G) in base pairing with cytidine (C), thereby A-to-I RNA editing alters dsRNA secondary structure. Inosine is also recognized as guanosine by the splicing and translation machineries, resulting in mRNA alternative splicing and protein recoding. Therefore, A-to-I RNA editing is an important mechanism that causes and regulates "RNA mutations" in both normal physiology and diseases including cancer. In this chapter, we reviewed current paradigms and developments in the field of A-to-I RNA editing in the context of cancer.
Collapse
Affiliation(s)
- Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Larry Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Bryan Y L Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Kokot KE, Kneuer JM, John D, Rebs S, Möbius-Winkler MN, Erbe S, Müller M, Andritschke M, Gaul S, Sheikh BN, Haas J, Thiele H, Müller OJ, Hille S, Leuschner F, Dimmeler S, Streckfuss-Bömeke K, Meder B, Laufs U, Boeckel JN. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res Cardiol 2022; 117:32. [PMID: 35737129 PMCID: PMC9226085 DOI: 10.1007/s00395-022-00940-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.
Collapse
Affiliation(s)
- Karoline E Kokot
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe-University Hospital, Theodor Stern Kai 7, Frankfurt, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Sabine Rebs
- Institute of Pharmacology and Toxicology, Versbacher-Str. 9, Würzburg, Germany
- Heartcenter - Clinic for Cardiology and Pneumology, University Medicine Goettingen, Robert-Koch-Str. 40, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | | | - Stephan Erbe
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Marion Müller
- Department of General and Interventional Cardiology/Angiology, Ruhr University of Bochum, Heart-and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Michael Andritschke
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Institute, Leipzig, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe-University Hospital, Theodor Stern Kai 7, Frankfurt, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, Versbacher-Str. 9, Würzburg, Germany
- Heartcenter - Clinic for Cardiology and Pneumology, University Medicine Goettingen, Robert-Koch-Str. 40, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany.
| |
Collapse
|
6
|
Zuber J, Schroeder SJ, Sun H, Turner DH, Mathews DH. Nearest neighbor rules for RNA helix folding thermodynamics: improved end effects. Nucleic Acids Res 2022; 50:5251-5262. [PMID: 35524574 PMCID: PMC9122537 DOI: 10.1093/nar/gkac261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
Nearest neighbor parameters for estimating the folding stability of RNA secondary structures are in widespread use. For helices, current parameters penalize terminal AU base pairs relative to terminal GC base pairs. We curated an expanded database of helix stabilities determined by optical melting experiments. Analysis of the updated database shows that terminal penalties depend on the sequence identity of the adjacent penultimate base pair. New nearest neighbor parameters that include this additional sequence dependence accurately predict the measured values of 271 helices in an updated database with a correlation coefficient of 0.982. This refined understanding of helix ends facilitates fitting terms for base pair stacks with GU pairs. Prior parameter sets treated 5′GGUC3′ paired to 3′CUGG5′ separately from other 5′GU3′/3′UG5′ stacks. The improved understanding of helix end stability, however, makes the separate treatment unnecessary. Introduction of the additional terms was tested with three optical melting experiments. The average absolute difference between measured and predicted free energy changes at 37°C for these three duplexes containing terminal adjacent AU and GU pairs improved from 1.38 to 0.27 kcal/mol. This confirms the need for the additional sequence dependence in the model.
Collapse
Affiliation(s)
- Jeffrey Zuber
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Susan J Schroeder
- Department of Chemistry and Biochemistry, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Hongying Sun
- Department of Biochemistry & Biophysics, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Douglas H Turner
- Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Department of Biostatistics & Computational Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Tong J, Zhang W, Chen Y, Yuan Q, Qin NN, Qu G. The Emerging Role of RNA Modifications in the Regulation of Antiviral Innate Immunity. Front Microbiol 2022; 13:845625. [PMID: 35185855 PMCID: PMC8851159 DOI: 10.3389/fmicb.2022.845625] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Posttranscriptional modifications have been implicated in regulation of nearly all biological aspects of cellular RNAs, from stability, translation, splicing, nuclear export to localization. Chemical modifications also have been revealed for virus derived RNAs several decades before, along with the potential of their regulatory roles in virus infection. Due to the dynamic changes of RNA modifications during virus infection, illustrating the mechanisms of RNA epigenetic regulations remains a challenge. Nevertheless, many studies have indicated that these RNA epigenetic marks may directly regulate virus infection through antiviral innate immune responses. The present review summarizes the impacts of important epigenetic marks on viral RNAs, including N6-methyladenosine (m6A), 5-methylcytidine (m5C), 2ʹ-O-methylation (2ʹ-O-Methyl), and a few uncanonical nucleotides (A-to-I editing, pseudouridine), on antiviral innate immunity and relevant signaling pathways, while highlighting the significance of antiviral innate immune responses during virus infection.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuran Chen
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Qiaoling Yuan
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Ning-Ning Qin
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guosheng Qu
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
8
|
Schwartz SL, Dey D, Tanquary J, Bair CR, Lowen AC, Conn GL. Role of helical structure and dynamics in oligoadenylate synthetase 1 (OAS1) mismatch tolerance and activation by short dsRNAs. Proc Natl Acad Sci U S A 2022; 119:e2107111119. [PMID: 35017296 PMCID: PMC8784149 DOI: 10.1073/pnas.2107111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Julia Tanquary
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Camden R Bair
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| |
Collapse
|
9
|
Quin J, Sedmík J, Vukić D, Khan A, Keegan LP, O'Connell MA. ADAR RNA Modifications, the Epitranscriptome and Innate Immunity. Trends Biochem Sci 2021; 46:758-771. [PMID: 33736931 DOI: 10.1016/j.tibs.2021.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Modified bases act as marks on cellular RNAs so that they can be distinguished from foreign RNAs, reducing innate immune responses to endogenous RNA. In humans, mutations giving reduced levels of one base modification, adenosine-to-inosine deamination, cause a viral infection mimic syndrome, a congenital encephalitis with aberrant interferon induction. These Aicardi-Goutières syndrome 6 mutations affect adenosine deaminase acting on RNA 1 (ADAR1), which generates inosines in endogenous double-stranded (ds)RNA. The inosine base alters dsRNA structure to prevent aberrant activation of antiviral cytosolic helicase RIG-I-like receptors. We review how effects of inosines, ADARs, and other modified bases have been shown to be important in innate immunity and cancer.
Collapse
Affiliation(s)
- Jaclyn Quin
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Jiří Sedmík
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Anzer Khan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| |
Collapse
|
10
|
Hopfinger MC, Kirkpatrick CC, Znosko BM. Predictions and analyses of RNA nearest neighbor parameters for modified nucleotides. Nucleic Acids Res 2020; 48:8901-8913. [PMID: 32810273 PMCID: PMC7498315 DOI: 10.1093/nar/gkaa654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
The most popular RNA secondary structure prediction programs utilize free energy (ΔG°37) minimization and rely upon thermodynamic parameters from the nearest neighbor (NN) model. Experimental parameters are derived from a series of optical melting experiments; however, acquiring enough melt data to derive accurate NN parameters with modified base pairs is expensive and time consuming. Given the multitude of known natural modifications and the continuing use and development of unnatural nucleotides, experimentally characterizing all modified NNs is impractical. This dilemma necessitates a computational model that can predict NN thermodynamics where experimental data is scarce or absent. Here, we present a combined molecular dynamics/quantum mechanics protocol that accurately predicts experimental NN ΔG°37 parameters for modified nucleotides with neighboring Watson–Crick base pairs. NN predictions for Watson-Crick and modified base pairs yielded an overall RMSD of 0.32 kcal/mol when compared with experimentally derived parameters. NN predictions involving modified bases without experimental parameters (N6-methyladenosine, 2-aminopurineriboside, and 5-methylcytidine) demonstrated promising agreement with available experimental melt data. This procedure not only yields accurate NN ΔG°37 predictions but also quantifies stacking and hydrogen bonding differences between modified NNs and their canonical counterparts, allowing investigators to identify energetic differences and providing insight into sources of (de)stabilization from nucleotide modifications.
Collapse
Affiliation(s)
| | | | - Brent M Znosko
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
11
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
12
|
Špačková N, Réblová K. Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes. Genes (Basel) 2018; 9:genes9070324. [PMID: 29958383 PMCID: PMC6070904 DOI: 10.3390/genes9070324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Adenosine to inosine (A–I) editing is the most common modification of double-stranded RNA (dsRNA). This change is mediated by adenosine deaminases acting on RNA (ADARs) enzymes with a preference of U>A>C>G for 5′ neighbor and G>C=A>U or G>C>U=A for 3′ neighbor. A–I editing occurs most frequently in the non-coding regions containing repetitive elements such as ALUs. It leads to disruption of RNA duplex structure, which prevents induction of innate immune response. We employed standard and biased molecular dynamics (MD) simulations to analyze the behavior of RNA duplexes with single and tandem inosine–uracil (I–U) base pairs in different sequence context. Our analysis showed that the I–U pairs induce changes in base pair and base pair step parameters and have different dynamics when compared with standard canonical base pairs. In particular, the first I–U pair from tandem I–U/I–U systems exhibited increased dynamics depending on its neighboring 5′ base. We discovered that UII sequence, which is frequently edited, has lower flexibility compared with other sequences (AII, GII, CII), hence it only modestly disrupts dsRNA. This might indicate that the UAA motifs in ALUs do not have to be sufficiently effective in preventing immune signaling.
Collapse
Affiliation(s)
- Naďa Špačková
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Kamila Réblová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
13
|
Li CL, Yang WZ, Shi Z, Yuan HS. Tudor staphylococcal nuclease is a structure-specific ribonuclease that degrades RNA at unstructured regions during microRNA decay. RNA (NEW YORK, N.Y.) 2018; 24:739-748. [PMID: 29440319 PMCID: PMC5900569 DOI: 10.1261/rna.064501.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Tudor staphylococcal nuclease (TSN) is an evolutionarily conserved ribonuclease in eukaryotes that is composed of five staphylococcal nuclease-like domains (SN1-SN5) and a Tudor domain. TSN degrades hyper-edited double-stranded RNA, including primary miRNA precursors containing multiple I•U and U•I pairs, and mature miRNA during miRNA decay. However, how TSN binds and degrades its RNA substrates remains unclear. Here, we show that the C. elegans TSN (cTSN) is a monomeric Ca2+-dependent ribonuclease, cleaving RNA chains at the 5'-side of the phosphodiester linkage to produce degraded fragments with 5'-hydroxyl and 3'-phosphate ends. cTSN degrades single-stranded RNA and double-stranded RNA containing mismatched base pairs, but is not restricted to those containing multiple I•U and U•I pairs. cTSN has at least two catalytic active sites located in the SN1 and SN3 domains, since mutations of the putative Ca2+-binding residues in these two domains strongly impaired its ribonuclease activity. We further show by small-angle X-ray scattering that rice osTSN has a flexible two-lobed structure with open to closed conformations, indicating that TSN may change its conformation upon RNA binding. We conclude that TSN is a structure-specific ribonuclease targeting not only single-stranded RNA, but also unstructured regions of double-stranded RNA. This study provides the molecular basis for how TSN cooperates with RNA editing to eliminate duplex RNA in cell defense, and how TSN selects and degrades RNA during microRNA decay.
Collapse
Affiliation(s)
- Chia-Lung Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Zhonghao Shi
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, ROC
| |
Collapse
|
14
|
RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat Commun 2017; 8:1440. [PMID: 29129909 PMCID: PMC5682290 DOI: 10.1038/s41467-017-01458-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/19/2017] [Indexed: 11/09/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is the master RNA editor, catalyzing the deamination of adenosine to inosine. RNA editing is vital for preventing abnormal activation of cytosolic nucleic acid sensing pathways by self-double-stranded RNAs. Here we determine, by parallel analysis of RNA secondary structure sequencing (PARS-seq), the global RNA secondary structure changes in ADAR1 deficient cells. Surprisingly, ADAR1 silencing resulted in a lower global double-stranded to single-stranded RNA ratio, suggesting that A-to-I editing can stabilize a large subset of imperfect RNA duplexes. The duplexes destabilized by editing are composed of vastly complementary inverted Alus found in untranslated regions of genes performing vital biological processes, including housekeeping functions and type-I interferon responses. They are predominantly cytoplasmic and generally demonstrate higher ribosomal occupancy. Our findings imply that the editing effect on RNA secondary structure is context dependent and underline the intricate regulatory role of ADAR1 on global RNA secondary structure.
Collapse
|
15
|
Stamm S, Gruber SB, Rabchevsky AG, Emeson RB. The activity of the serotonin receptor 2C is regulated by alternative splicing. Hum Genet 2017; 136:1079-1091. [PMID: 28664341 PMCID: PMC5873585 DOI: 10.1007/s00439-017-1826-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/17/2017] [Indexed: 01/28/2023]
Abstract
The central nervous system-specific serotonin receptor 2C (5HT2C) controls key physiological functions, such as food intake, anxiety, and motoneuron activity. Its deregulation is involved in depression, suicidal behavior, and spasticity, making it the target for antipsychotic drugs, appetite controlling substances, and possibly anti-spasm agents. Through alternative pre-mRNA splicing and RNA editing, the 5HT2C gene generates at least 33 mRNA isoforms encoding 25 proteins. The 5HT2C is a G-protein coupled receptor that signals through phospholipase C, influencing the expression of immediate/early genes like c-fos. Most 5HT2C isoforms show constitutive activity, i.e., signal without ligand binding. The constitutive activity of 5HT2C is decreased by pre-mRNA editing as well as alternative pre-mRNA splicing, which generates a truncated isoform that switches off 5HT2C receptor activity through heterodimerization; showing that RNA processing regulates the constitutive activity of the 5HT2C system. RNA processing events influencing the constitutive activity target exon Vb that forms a stable double stranded RNA structure with its downstream intron. This structure can be targeted by small molecules and oligonucleotides that change exon Vb alternative splicing and influence 5HT2C signaling in mouse models, leading to a reduction in food intake. Thus, the 5HT2C system is a candidate for RNA therapy in multiple models of CNS disorders.
Collapse
Affiliation(s)
- Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
| | - Samuel B Gruber
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Alexander G Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Ronald B Emeson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Keegan L, Khan A, Vukic D, O'Connell M. ADAR RNA editing below the backbone. RNA (NEW YORK, N.Y.) 2017; 23:1317-1328. [PMID: 28559490 PMCID: PMC5558901 DOI: 10.1261/rna.060921.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
ADAR RNA editing enzymes (adenosine deaminases acting on RNA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster, which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems.
Collapse
Affiliation(s)
- Liam Keegan
- CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Anzer Khan
- CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Dragana Vukic
- CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Mary O'Connell
- CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic
| |
Collapse
|
17
|
Chemical and structural effects of base modifications in messenger RNA. Nature 2017; 541:339-346. [PMID: 28102265 DOI: 10.1038/nature21351] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022]
Abstract
A growing number of nucleobase modifications in messenger RNA have been revealed through advances in detection and RNA sequencing. Although some of the biochemical pathways that involve modified bases have been identified, research into the world of RNA modification - the epitranscriptome - is still in an early phase. A variety of chemical tools are being used to characterize base modifications, and the structural effects of known base modifications on RNA pairing, thermodynamics and folding are being determined in relation to their putative biological roles.
Collapse
|
18
|
Dillman AA, Cookson MR, Galter D. ADAR2 affects mRNA coding sequence edits with only modest effects on gene expression or splicing in vivo. RNA Biol 2016; 13:15-24. [PMID: 26669816 DOI: 10.1080/15476286.2015.1110675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adenosine deaminases bind double stranded RNA and convert adenosine to inosine. Editing creates multiple isoforms of neurotransmitter receptors, such as with Gria2. Adar2 KO mice die of seizures shortly after birth, but if the Gria2 Q/R editing site is mutated to mimic the edited version then the animals are viable. We performed RNA-Seq on frontal cortices of Adar2(-/-) Gria2(R/R) mice and littermates. We found 56 editing sites with significantly diminished editing levels in Adar2 deficient animals with the majority in coding regions. Only two genes and 3 exons showed statistically significant differences in expression levels. This work illustrates that ADAR2 is important in site-specific changes of protein coding sequences but has relatively modest effects on gene expression and splicing in the adult mouse frontal cortex.
Collapse
Affiliation(s)
- Allissa A Dillman
- a Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health , Bethesda , MD , USA.,b Department of Neuroscience , Karolinska Institute , 171 77 Stockholm , Sweden.,c Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute , Bethesda , MD , USA
| | - Mark R Cookson
- a Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health , Bethesda , MD , USA
| | - Dagmar Galter
- b Department of Neuroscience , Karolinska Institute , 171 77 Stockholm , Sweden
| |
Collapse
|
19
|
Dallmann A, Beribisky AV, Gnerlich F, Rübbelke M, Schiesser S, Carell T, Sattler M. Site-Specific Isotope-Labeling of Inosine Phosphoramidites and NMR Analysis of an Inosine-Containing RNA Duplex. Chemistry 2016; 22:15350-15359. [DOI: 10.1002/chem.201602784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Andre Dallmann
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstraße 1 85764 Neuherberg Germany
- Center for Integrated Protein Science Munich at Chair Biomolecular NMR; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Germany
- Department of Chemistry; Humboldt Universität zu Berlin; 12489 Berlin Germany
| | - Alexander V. Beribisky
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstraße 1 85764 Neuherberg Germany
- Center for Integrated Protein Science Munich at Chair Biomolecular NMR; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Germany
| | - Felix Gnerlich
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 Munich Germany
| | - Martin Rübbelke
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstraße 1 85764 Neuherberg Germany
- Center for Integrated Protein Science Munich at Chair Biomolecular NMR; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Germany
| | - Stefan Schiesser
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 Munich Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 Munich Germany
| | - Michael Sattler
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstraße 1 85764 Neuherberg Germany
- Center for Integrated Protein Science Munich at Chair Biomolecular NMR; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
20
|
Zhang Z, Shen M, Gresch PJ, Ghamari-Langroudi M, Rabchevsky AG, Emeson RB, Stamm S. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake. EMBO Mol Med 2016; 8:878-94. [PMID: 27406820 PMCID: PMC4967942 DOI: 10.15252/emmm.201506030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.
Collapse
Affiliation(s)
- Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Paul J Gresch
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Ronald B Emeson
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Abstract
Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I) RNA editing by the adenine deaminase acting on RNA (ADAR) enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.
Collapse
Affiliation(s)
- Mary A. O’Connell
- CEITEC Masaryk University, Brno, Czech Republic
- * E-mail: (MAO); (LPK)
| | - Niamh M. Mannion
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liam P. Keegan
- CEITEC Masaryk University, Brno, Czech Republic
- * E-mail: (MAO); (LPK)
| |
Collapse
|
22
|
Gu X, Mooers BHM, Thomas LM, Malone J, Harris S, Schroeder SJ. Structures and Energetics of Four Adjacent G·U Pairs That Stabilize an RNA Helix. J Phys Chem B 2015; 119:13252-61. [PMID: 26425937 DOI: 10.1021/acs.jpcb.5b06970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Consecutive G·U base pairs inside RNA helices can be destabilizing, while those at the ends of helices are thermodynamically stabilizing. To determine if this paradox could be explained by differences in base stacking, we determined the high-resolution (1.32 Å) crystal structure of (5'-GGUGGCUGUU-3')2 and studied three sequences with four consecutive terminal G·U pairs by NMR spectroscopy. In the crystal structure of (5'-GGUGGCUGUU-3')2, the helix is overwound but retains the overall features of A-form RNA. The penultimate base steps at each end of the helix have high base overlap and contribute to the unexpectedly favorable energetic contribution for the 5'-GU-3'/3'-UG-5' motif in this helix position. The balance of base stacking and helical twist contributes to the positional dependence of G·U pair stabilities. The energetic stabilities and similarity to A-form RNA helices suggest that consecutive G·U pairs would be recognized by RNA helix binding proteins, such as Dicer and Ago. Thus, these results will aid future searches for target sites of small RNAs in gene regulation.
Collapse
Affiliation(s)
- Xiaobo Gu
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Blaine H M Mooers
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Leonard M Thomas
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Joshua Malone
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Steven Harris
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Susan J Schroeder
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
23
|
Conflict RNA modification, host-parasite co-evolution, and the origins of DNA and DNA-binding proteins1. Biochem Soc Trans 2015; 42:1159-67. [PMID: 25110019 DOI: 10.1042/bst20140147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nearly 150 different enzymatically modified forms of the four canonical residues in RNA have been identified. For instance, enzymes of the ADAR (adenosine deaminase acting on RNA) family convert adenosine residues into inosine in cellular dsRNAs. Recent findings show that DNA endonuclease V enzymes have undergone an evolutionary transition from cleaving 3' to deoxyinosine in DNA and ssDNA to cleaving 3' to inosine in dsRNA and ssRNA in humans. Recent work on dsRNA-binding domains of ADARs and other proteins also shows that a degree of sequence specificity is achieved by direct readout in the minor groove. However, the level of sequence specificity observed is much less than that of DNA major groove-binding helix-turn-helix proteins. We suggest that the evolution of DNA-binding proteins following the RNA to DNA genome transition represents the major advantage that DNA genomes have over RNA genomes. We propose that a hypothetical RNA modification, a RRAR (ribose reductase acting on genomic dsRNA) produced the first stretches of DNA in RNA genomes. We discuss why this is the most satisfactory explanation for the origin of DNA. The evolution of this RNA modification and later steps to DNA genomes are likely to have been driven by cellular genome co-evolution with viruses and intragenomic parasites. RNA modifications continue to be involved in host-virus conflicts; in vertebrates, edited cellular dsRNAs with inosine-uracil base pairs appear to be recognized as self RNA and to suppress activation of innate immune sensors that detect viral dsRNA.
Collapse
|
24
|
Dillman AA, Hauser DN, Gibbs JR, Nalls MA, McCoy MK, Rudenko IN, Galter D, Cookson MR. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci 2013; 16:499-506. [PMID: 23416452 PMCID: PMC3609882 DOI: 10.1038/nn.3332] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022]
Abstract
The complexity of the adult brain is a result of both developmental processes and experience-dependent circuit formation. One way to look at the differences between embryonic and adult brain is to examine gene expression. Previous studies have used microarrays to address this in a global manner. However, the transcriptome is more complex than gene expression levels alone, as alternative splicing and RNA editing generate a diverse set of mature transcripts. Here we report a high-resolution transcriptome data set of mouse cerebral cortex at embryonic and adult stages using RNA sequencing (RNA-Seq). We found many differences in gene expression, splicing and RNA editing between embryonic and adult cerebral cortex. Each data set was validated technically and biologically, and in each case we found our RNA-Seq observations to have predictive validity. We provide this data set and analysis as a resource for understanding gene expression in the embryonic and adult cerebral cortex.
Collapse
Affiliation(s)
- Allissa A Dillman
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fashe T, Saarikettu J, Isomäki P, Yang J, Silvennoinen O. Expression analysis of Tudor-SN protein in mouse tissues. Tissue Cell 2012; 45:21-31. [PMID: 23068188 DOI: 10.1016/j.tice.2012.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 12/26/2022]
Abstract
Tudor-SN (SND1, p100) has been shown to function as a transcriptional coactivator as well as a modulator of RNA metabolism and biogenesis and a component in the RNA-induced silencing complex (RISC). Tudor-SN consists of five repeats of staphylococcus nuclease-like domains (SN1-SN5) and, a Tudor domain implicated in binding to methylated ligands. The protein is highly conserved through evolution from fission yeast to mammals and it exists as a single gene without any close homologs. Tudor-SN is found to be overexpressed in several cancers such as colon adenocarcinomas and prostate cancer. The conservation of Tudor-SN along evolution suggests it may have important functions; however, the physiological function of Tudor-SN has not yet been characterized. In this study we analyzed the expression and localization of Tudor-SN in mouse tissues and organs by immunohistochemistry, fluorescent immunostaining, Western blotting and RT-qPCR. Expression analysis indicated that Tudor-SN is widely expressed in most organs with the exception of muscle cells. Up-regulated expression was observed in rapidly dividing cells and progenitor cells such as in spermatogonial cells in testis, in the follicular cells of ovary, in the cells of crypts of Lieberkühn of ileum and basal keratinocytes of skin and hair follicle when compared to more differentiated or terminally differentiated cells in the respective organs. Moreover, Tudor-SN was robustly expressed in T-cells and Tudor-SN was co-expressed with CD3 in T-cells in the Peyer's patch, spleen and lymph node. The wide expression pattern of Tudor-SN and high expression in proliferating and self-differentiating cells suggests that the protein serves functions related to activated state of cells.
Collapse
Affiliation(s)
- Tekele Fashe
- Laboratory of Molecular Immunology, Institute of Biomedical Technology, Biomeditech, 33014 University of Tampere, Tampere, Finland
| | | | | | | | | |
Collapse
|
26
|
Fukuda M, Kurihara K, Tanaka Y, Deshimaru M. A strategy for developing a hammerhead ribozyme for selective RNA cleavage depending on substitutional RNA editing. RNA (NEW YORK, N.Y.) 2012; 18:1735-1744. [PMID: 22798264 PMCID: PMC3425787 DOI: 10.1261/rna.033399.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 06/07/2012] [Indexed: 06/01/2023]
Abstract
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.
Collapse
Affiliation(s)
- Masatora Fukuda
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | | | |
Collapse
|
27
|
Rodriguez J, Menet JS, Rosbash M. Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila. Mol Cell 2012; 47:27-37. [PMID: 22658416 DOI: 10.1016/j.molcel.2012.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/08/2012] [Accepted: 04/16/2012] [Indexed: 01/31/2023]
Abstract
The RNA editing enzyme ADAR chemically modifies adenosine (A) to inosine (I), which is interpreted by the ribosome as a guanosine. Here we assess cotranscriptional A-to-I editing in Drosophila by isolating nascent RNA from adult fly heads and subjecting samples to high throughput sequencing. There are a large number of edited sites within nascent exons. Nascent RNA from an ADAR-null strain was also sequenced, indicating that almost all A-to-I events require ADAR. Moreover, mRNA editing levels correlate with editing levels within the cognate nascent RNA sequence, indicating that the extent of editing is set cotranscriptionally. Surprisingly, the nascent data also identify an excess of intronic over exonic editing sites. These intronic sites occur preferentially within introns that are poorly spliced cotranscriptionally, suggesting a link between editing and splicing. We conclude that ADAR-mediated editing is more widespread than previously indicated and largely occurs cotranscriptionally.
Collapse
Affiliation(s)
- Joseph Rodriguez
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | | | |
Collapse
|
28
|
Chen J, Dishler AL, Kennedy SD, Yildirim I, Liu B, Turner DH, Serra MJ. Testing the nearest neighbor model for canonical RNA base pairs: revision of GU parameters. Biochemistry 2012; 51:3508-22. [PMID: 22490167 PMCID: PMC3335265 DOI: 10.1021/bi3002709] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Indexed: 11/30/2022]
Abstract
Thermodynamic parameters for GU pairs are important for predicting the secondary structures of RNA and for finding genomic sequences that code for structured RNA. Optical melting curves were measured for 29 RNA duplexes with GU pairs to improve nearest neighbor parameters for predicting stabilities of helixes. The updated model eliminates a prior penalty assumed for terminal GU pairs. Six additional duplexes with the 5'GG/3'UU motif were added to the single representation in the previous database. This revises the ΔG°(37) for the 5'GG/3'UU motif from an unfavorable 0.5 kcal/mol to a favorable -0.2 kcal/mol. Similarly, the ΔG°(37) for the 5'UG/3'GU motif changes from 0.3 to -0.6 kcal/mol. The correlation coefficients between predicted and experimental ΔG°(37), ΔH°, and ΔS° for the expanded database are 0.95, 0.89, and 0.87, respectively. The results should improve predictions of RNA secondary structure.
Collapse
Affiliation(s)
- Jonathan
L. Chen
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Abigael L. Dishler
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Ilyas Yildirim
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Biao Liu
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Douglas H. Turner
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States
| | - Martin J. Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| |
Collapse
|
29
|
Weissbach R, Scadden A. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA (NEW YORK, N.Y.) 2012; 18:462-71. [PMID: 22240577 PMCID: PMC3285934 DOI: 10.1261/rna.027656.111] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Hyperediting by adenosine deaminases that acts on RNA (ADARs) may result in numerous Adenosine-to-Inosine (A-to-I) substitutions within long dsRNA. However, while countless RNAs may undergo hyperediting, the role for inosine-containing hyperedited dsRNA (IU-dsRNA) in cells is poorly understood. We have previously shown that IU-dsRNA binds specifically to various components of cytoplasmic stress granules, as well as to other proteins such as Tudor Staphylococcal Nuclease (Tudor-SN). Tudor-SN has been implicated in diverse roles in mammalian cells, including transcription, splicing, RNAi, and degradation. Moreover, we have shown that Tudor-SN interacts directly with stress granule proteins. Here we show that Tudor-SN localizes to cytoplasmic stress granules in HeLa cells undergoing arsenite-induced oxidative stress, or following transfection with long dsRNA (poly[IC]), which initiates an interferon cascade. We additionally demonstrate a novel interaction between Tudor-SN and ADAR1. Finally, we show that ADAR1 is also localized to stress granules in HeLa cells following various stresses.
Collapse
Affiliation(s)
- Rebekka Weissbach
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - A.D.J. Scadden
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
- Corresponding author.E-mail .
| |
Collapse
|
30
|
Abstract
Double-stranded RNA (dsRNA) functions both as a substrate of ADARs and also as a molecular trigger of innate immune responses. ADARs, adenosine deaminases that act on RNA, catalyze the deamination of adenosine (A) to produce inosine (I) in dsRNA. ADARs thereby can destablize RNA structures, because the generated I:U mismatch pairs are less stable than A:U base pairs. Additionally, I is read as G instead of A by ribosomes during translation and by viral RNA-dependent RNA polymerases during RNA replication. Members of several virus families have the capacity to produce dsRNA during viral genome transcription and replication. Sequence changes (A-G, and U-C) characteristic of A-I editing can occur during virus growth and persistence. Foreign viral dsRNA also mediates both the induction and the action of interferons. In this chapter our current understanding of the role and significance of ADARs in the context of innate immunity, and as determinants of the outcome of viral infection, will be considered.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
31
|
Strobl B, Leitner NR, Müller M. Multifaceted Antiviral Actions of Interferon-stimulated Gene Products. JAK-STAT SIGNALING : FROM BASICS TO DISEASE 2012. [PMCID: PMC7121797 DOI: 10.1007/978-3-7091-0891-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Interferons (IFNs) are extremely powerful cytokines for the host defence against viral infections. Binding of IFNs to their receptors activates the JAK/STAT signalling pathway with the Janus kinases JAK1, 2 and TYK2 and the signal transducer and activators of transcription (STAT) 1 and STAT2. Depending on the cellular setting, additional STATs (STAT3-6) and additional signalling pathways are activated. The actions of IFNs on infected cells and the surrounding tissue are mediated by the induction of several hundred IFN-stimulated genes (ISGs). Since the cloning of the first ISGs, considerable progress has been made in describing antiviral effector proteins and their many modes of action. Effector proteins individually target distinct steps in the viral life cycle, including blocking virus entry, inhibition of viral transcription and translation, modification of viral nucleic acids and proteins and, interference with virus assembly and budding. Novel pathways of viral inhibition are constantly being elucidated and, additionally, unanticipated functions of known antiviral effector proteins are discovered. Herein, we outline IFN-induced antiviral pathways and review recent developments in this fascinating area of research.
Collapse
|
32
|
Pfaller CK, Li Z, George CX, Samuel CE. Protein kinase PKR and RNA adenosine deaminase ADAR1: new roles for old players as modulators of the interferon response. Curr Opin Immunol 2011; 23:573-82. [PMID: 21924887 PMCID: PMC3190076 DOI: 10.1016/j.coi.2011.08.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 12/20/2022]
Abstract
Double-stranded RNA (dsRNA) plays a centrally important role in antiviral innate immunity, both for the production of interferon (IFN) and also in the actions of IFN. Among the IFN-inducible gene products are the protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA 1 (ADAR1). PKR is an established key player in the antiviral actions of IFN, through dsRNA-dependent activation and subsequent phosphorylation of protein synthesis initiation factor eIF2α thereby altering the translational pattern in cells. In addition, PKR plays an important role as a positive effector that amplifies the production of IFN. ADAR1 catalyzes the deamination of adenosine (A) in RNA with double-stranded (ds) character, leading to the destabilization of RNA duplex structures and genetic recoding. By contrast to the antiviral and proapoptotic functions associated with PKR, the actions of ADAR1 in some instances are proviral and cell protective as ADAR1 functions as a suppressor of dsRNA-mediated antiviral responses including activation of PKR and interferon regulatory factor 3.
Collapse
Affiliation(s)
- Christian K Pfaller
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
33
|
Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011; 411:180-93. [PMID: 21211811 DOI: 10.1016/j.virol.2010.12.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to be an active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence depending upon the specific virus.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
34
|
Abstract
The main type of RNA editing in mammals is the conversion of adenosine to inosine which is translated as if it were guanosine. The enzymes that catalyze this reaction are ADARs (adenosine deaminases that act on RNA), of which there are four in mammals, two of which are catalytically inactive. ADARs edit transcripts that encode proteins expressed mainly in the CNS and editing is crucial to maintain a correctly functioning nervous system. However, the majority of editing has been found in transcripts encoding Alu repeat elements and the biological role of this editing remains a mystery. This chapter describes in detail the different ADAR enzymes and the phenotype of animals that are deficient in their activity. Besides being enzymes, ADARs are also double-stranded RNA-binding proteins, so by binding alone they can interfere with other processes such as RNA interference. Lack of editing by ADARs has been implicated in disorders such as forebrain ischemia and Amyotrophic Lateral Sclerosis (ALS) and this will also be discussed.
Collapse
Affiliation(s)
- Marion Hogg
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
35
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
36
|
Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Computational approaches for RNA energy parameter estimation. RNA (NEW YORK, N.Y.) 2010; 16:2304-18. [PMID: 20940338 PMCID: PMC2995392 DOI: 10.1261/rna.1950510] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy parameter estimation: (1) the Constraint Generation (CG) method, which iteratively generates constraints that enforce known structures to have energies lower than other structures for the same molecule; and (2) the Boltzmann Likelihood (BL) method, which infers a set of RNA free-energy parameters that maximize the conditional likelihood of a set of reference RNA structures. Here, we extend these approaches in two main ways: We propose (1) a max-margin extension of CG, and (2) a novel linear Gaussian Bayesian network that models feature relationships, which effectively makes use of sparse data by sharing statistical strength between parameters. We obtain significant improvements in the accuracy of RNA minimum free-energy pseudoknot-free secondary structure prediction when measured on a comprehensive set of 2518 RNA molecules with reference structures. Our parameters can be used in conjunction with software that predicts RNA secondary structures, RNA hybridization, or ensembles of structures. Our data, software, results, and parameter sets in various formats are freely available at http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params.
Collapse
Affiliation(s)
- Mirela Andronescu
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
37
|
Vitali P, Scadden ADJ. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat Struct Mol Biol 2010; 17:1043-50. [PMID: 20694008 PMCID: PMC2935675 DOI: 10.1038/nsmb.1864] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 06/08/2010] [Indexed: 12/24/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze hyperediting of long double-stranded RNAs (dsRNAs), whereby up to 50% of adenosines are converted to inosine (I). Although hyperedited dsRNAs (IU-dsRNAs) have been implicated in various cellular functions, we now provide evidence for another role. We show that IU-dsRNA suppresses the induction of interferon-stimulated genes (ISGs) and apoptosis by poly(IC). Moreover, we show that IU-dsRNA inhibits the activation of interferon regulatory factor 3 (IRF3), which is essential for the induction of ISGs and apoptosis. Finally, we speculate that the inhibition of IRF3 results from specific binding of IU-dsRNA to MDA-5 or RIG-I, both of which are cytosolic sensors for poly(IC). Although our data are consistent with a previous study in which ADAR1 deletion resulted in increased expression of ISGs and apoptosis, we show that IU-dsRNA per se suppresses ISGs and apoptosis. We therefore propose that any IU-dsRNA generated by ADAR1 can inhibit both pathways.
Collapse
Affiliation(s)
- Patrice Vitali
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
38
|
Li CL, Yang WZ, Chen YP, Yuan HS. Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucleic Acids Res 2008; 36:3579-89. [PMID: 18453631 PMCID: PMC2441809 DOI: 10.1093/nar/gkn236] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human Tudor-SN is involved in the degradation of hyper-edited inosine-containing microRNA precursors, thus linking the pathways of RNA interference and editing. Tudor-SN contains four tandem repeats of staphylococcal nuclease-like domains (SN1–SN4) followed by a tudor and C-terminal SN domain (SN5). Here, we showed that Tudor-SN requires tandem repeats of SN domains for its RNA binding and cleavage activity. The crystal structure of a 64-kD truncated form of human Tudor-SN further shows that the four domains, SN3, SN4, tudor and SN5, assemble into a crescent-shaped structure. A concave basic surface formed jointly by SN3 and SN4 domains is likely involved in RNA binding, where citrate ions are bound at the putative RNase active sites. Additional modeling studies provide a structural basis for Tudor-SN's preference in cleaving RNA containing multiple I·U wobble-paired sequences. Collectively, these results suggest that tandem repeats of SN domains in Tudor-SN function as a clamp to capture RNA substrates.
Collapse
Affiliation(s)
- Chia-Lung Li
- Institute of Molecular Biology, Academia Sinica and Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
39
|
Scadden ADJ. Inosine-containing dsRNA binds a stress-granule-like complex and downregulates gene expression in trans. Mol Cell 2008; 28:491-500. [PMID: 17996712 PMCID: PMC2075533 DOI: 10.1016/j.molcel.2007.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/05/2007] [Accepted: 09/06/2007] [Indexed: 11/18/2022]
Abstract
Long double-stranded RNAs (dsRNAs) may undergo extensive modification (hyperediting) by adenosine deaminases that act on RNA (ADARs), where up to 50% of adenosine (A) residues are changed to inosine (I). Traditionally, consequences of A-to-I editing were thought to be limited to modified RNA itself. We show here, however, that hyperedited dsRNA (I-dsRNA) is able to downregulate gene expression in trans. Furthermore, we show that both endogenous expression and reporter gene expression were substantially reduced in the presence of I-dsRNA. This was due to a reduction in reporter mRNA levels and also translation inhibition. Importantly, we show that I-dsRNA interferes with translation initiation. We also show that I-dsRNA specifically binds a stress-granule-like complex. Stress granules (SGs) are important for translational silencing during stress. Finally, we propose a model whereby editing by ADARs results in downregulation of gene expression via SG formation.
Collapse
Affiliation(s)
- A D J Scadden
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
40
|
Abstract
A recently developed tightly bound ion model can account for the correlation and fluctuation (i.e., different binding modes) of bound ions. However, the model cannot treat mixed ion solutions, which are physiologically relevant and biologically significant, and the model was based on B-DNA helices and thus cannot directly treat RNA helices. In the present study, we investigate the effects of ion correlation and fluctuation on the thermodynamic stability of finite length RNA helices immersed in a mixed solution of monovalent and divalent ions. Experimental comparisons demonstrate that the model gives improved predictions over the Poisson-Boltzmann theory, which has been found to underestimate the roles of multivalent ions such as Mg2+ in stabilizing DNA and RNA helices. The tightly bound ion model makes quantitative predictions on how the Na+-Mg2+ competition determines helix stability and its helix length-dependence. In addition, the model gives empirical formulas for the thermodynamic parameters as functions of Na+/Mg2+ concentrations and helix length. Such formulas can be quite useful for practical applications.
Collapse
Affiliation(s)
- Zhi-Jie Tan
- Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
41
|
Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 2006; 16:270-8. [PMID: 16713706 DOI: 10.1016/j.sbi.2006.05.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/02/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
RNA secondary structure is often predicted from sequence by free energy minimization. Over the past two years, advances have been made in the estimation of folding free energy change, the mapping of secondary structure and the implementation of computer programs for structure prediction. The trends in computer program development are: efficient use of experimental mapping of structures to constrain structure prediction; use of statistical mechanics to improve the fidelity of structure prediction; inclusion of pseudoknots in secondary structure prediction; and use of two or more homologous sequences to find a common structure.
Collapse
Affiliation(s)
- David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, NY 14642, USA
| | | |
Collapse
|
42
|
Jang SB, Hung LW, Jeong MS, Holbrook EL, Chen X, Turner DH, Holbrook SR. The crystal structure at 1.5 angstroms resolution of an RNA octamer duplex containing tandem G.U basepairs. Biophys J 2006; 90:4530-7. [PMID: 16581850 PMCID: PMC1471874 DOI: 10.1529/biophysj.106.081018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of the RNA octamer, 5'-GGCGUGCC-3' has been determined from x-ray diffraction data to 1.5 angstroms resolution. In the crystal, this oligonucleotide forms five self-complementary double-helices in the asymmetric unit. Tandem 5'GU/3'UG basepairs comprise an internal loop in the middle of each duplex. The NMR structure of this octameric RNA sequence is also known, allowing comparison of the variation among the five crystallographic duplexes and the solution structure. The G.U pairs in the five duplexes of the crystal form two direct hydrogen bonds and are stabilized by water molecules that bridge between the base of guanine (N2) and the sugar (O2') of uracil. This contrasts with the NMR structure in which only one direct hydrogen bond is observed for the G.U pairs. The reduced stability of the r(CGUG)2 motif relative to the r(GGUC)2 motif may be explained by the lack of stacking of the uracil bases between the Watson-Crick and G.U pairs as observed in the crystal structure.
Collapse
Affiliation(s)
- Se Bok Jang
- Korea Nanobiotechnology Center, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan, Korea.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Some experimental results for the thermodynamics of RNA folding cannot be explained by simple pairwise hydrogen-bonding models. Such effects include the stabilities of isoguanosine-isocytidine (iG-iC) base pairs and of various 2 x 2 nucleotide internal loops. Presumably, these results can be explained by base stacking effects, which can be partitioned into Coulombic and overlap effects. We review experimental measurements that provide benchmarks for testing the approximations and theories used for modeling nucleic acids. Quantitative agreement between experiment and theory will indicate understanding of the interactions determining RNA stability and structure.
Collapse
Affiliation(s)
| | - Douglas H. Turner
- To whom correspondence should be addressed. Phone: (585) 275-3207. Fax: (585) 506-0205.
| |
Collapse
|
44
|
Scadden ADJ, O'Connell MA. Cleavage of dsRNAs hyper-edited by ADARs occurs at preferred editing sites. Nucleic Acids Res 2005; 33:5954-64. [PMID: 16254076 PMCID: PMC1270950 DOI: 10.1093/nar/gki909] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Long double-stranded RNAs (dsRNAs) may undergo covalent modification (hyper-editing) by adenosine deaminases that act on RNA (ADARs), whereby up to 50–60% of adenosine residues are converted to inosine. Previously, we have described a ribonuclease activity in various cell extracts that specifically targets dsRNAs hyper-edited by ADARs. Such a ribonuclease may play an important role in viral defense, or may alternatively be involved in down-regulation of other RNA duplexes. Cleavage of hyper-edited dsRNA occurs within sequences containing multiple IU pairs but not in duplexes that contain either isosteric GU pairs or Watson–Crick base pairs. Here, we describe experiments aimed at further characterizing cleavage of hyper-edited dsRNA. Using various inosine-containing dsRNAs we show that cleavage occurs preferentially at a site containing both IU and UI pairs, and that inclusion of even a single GU pair inhibits cleavage. We also show that cleavage occurs on both strands within a single dsRNA molecule and requires a 2′-OH group. Strikingly, we show that ADAR1, ADAR2 or dADAR all preferentially generate the preferred cleavage site when hyper-editing a long dsRNA.
Collapse
Affiliation(s)
- A D J Scadden
- University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
45
|
Scadden ADJ. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat Struct Mol Biol 2005; 12:489-96. [PMID: 15895094 DOI: 10.1038/nsmb936] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 04/11/2005] [Indexed: 02/07/2023]
Abstract
Long perfect double-stranded RNA (dsRNA) molecules play a role in various cellular pathways. dsRNA may undergo extensive covalent modification (hyper-editing) by adenosine deaminases that act on RNA (ADARs), resulting in conversion of up to 50% of adenosine residues to inosine (I). Alternatively, dsRNA may trigger RNA interference (RNAi), resulting in silencing of the cognate mRNA. These two pathways have previously been shown to be antagonistic. We show a novel interaction between components of the ADAR and RNAi pathways. Tudor staphylococcal nuclease (Tudor-SN) is a subunit of the RNA-induced silencing complex, which is central to the mechanism of RNAi. Here we show that Tudor-SN specifically interacts with and promotes cleavage of model hyper-edited dsRNA substrates containing multiple I.U and U.I pairs. This interaction suggests a novel unsuspected interplay between the two pathways that is more complex than mutual antagonism.
Collapse
Affiliation(s)
- A D J Scadden
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
46
|
|
47
|
Valente L, Nishikura K. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:299-338. [PMID: 16096031 DOI: 10.1016/s0079-6603(04)79006-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Louis Valente
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
48
|
Kim DDY, Kim TTY, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 2004; 14:1719-25. [PMID: 15342557 PMCID: PMC515317 DOI: 10.1101/gr.2855504] [Citation(s) in RCA: 412] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
More than one million copies of the approximately 300-bp Alu element are interspersed throughout the human genome, with up to 75% of all known genes having Alu insertions within their introns and/or UTRs. Transcribed Alu sequences can alter splicing patterns by generating new exons, but other impacts of intragenic Alu elements on their host RNA are largely unexplored. Recently, repeat elements present in the introns or 3'-UTRs of 15 human brain RNAs have been shown to be targets for multiple adenosine to inosine (A-to-I) editing. Using a statistical approach, we find that editing of transcripts with embedded Alu sequences is a global phenomenon in the human transcriptome, observed in 2674 ( approximately 2%) of all publicly available full-length human cDNAs (n = 128,406), from >250 libraries and >30 tissue sources. In the vast majority of edited RNAs, A-to-I substitutions are clustered within transcribed sense or antisense Alu sequences. Edited bases are primarily associated with retained introns, extended UTRs, or with transcripts that have no corresponding known gene. Therefore, Alu-associated RNA editing may be a mechanism for marking nonstandard transcripts, not destined for translation.
Collapse
Affiliation(s)
- Dennis D Y Kim
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|