1
|
Lefranc MP, Lefranc G. Using IMGT unique numbering for IG allotypes and Fc-engineered variants of effector properties and half-life of therapeutic antibodies. Immunol Rev 2024. [PMID: 39367563 DOI: 10.1111/imr.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Therapeutic monoclonal antibodies (mAb) are usually of the IgG1, IgG2, and IgG4 classes, and their heavy chains may be modified by amino acid (aa) changes involved in antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and/or half-life. Allotypes and Fc-engineered variants are classified using IMGT/HGNC gene nomenclature (e.g., Homo sapiens IGHG1). Allotype names follow the WHO/IMGT nomenclature. IMGT-engineered variant names use the IMGT nomenclature (e.g., Homsap G1v1), which comprises species and gene name (both abbreviated) followed by the letter v (for variant) and a number. Both allotypes and engineered variants are defined by their aa changes and positions, based on the IMGT unique numbering for C domain, identified in sequence motifs, referred to as IMGT topological motifs, as their limits and length are standardized and correspond to a structural feature (e.g., strand or loop). One hundred twenty-six variants are displayed with their type, IMGT numbering, Eu-IMGT positions, motifs before and after changes, and their property and function (effector and half-life). Three motifs characterize effector variants, CH2 1.6-3, 23-BC-41, and the FG loop, whereas three different motifs characterize half-life variants, two on CH2 13-AB-18 and 89-96 with H93, and one on CH3 the FG loop with H115.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002 Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier Cedex 5, France
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002 Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier Cedex 5, France
| |
Collapse
|
2
|
Autour A, Merten CA. Fluorescence-activated droplet sequencing (FAD-seq) directly provides sequences of screening hits in antibody discovery. Proc Natl Acad Sci U S A 2024; 121:e2405342121. [PMID: 39240970 PMCID: PMC11406258 DOI: 10.1073/pnas.2405342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/04/2024] [Indexed: 09/08/2024] Open
Abstract
Droplet microfluidics has become a very powerful tool in high-throughput screening, including antibody discovery. Screens are usually carried out by physically sorting droplets hosting cells of the desired phenotype, breaking them, recovering the encapsulated cells, and sequencing the paired antibody light and heavy chain genes at the single-cell level. This series of multiple consecutive manipulation steps of rare screening hits is complex and challenging, resulting in a significant loss of clones with the desired phenotype or large fractions of cells with incomplete antibody information. Here, we present fluorescence-activated droplet sequencing, in which droplets showing the desired phenotype are selectively picoinjected with reagents for RT-PCR. Subsequently, light and heavy chain genes are natively paired, fused into a single-chain fragment variant format, and amplified before off-chip transfer and downstream nanopore sequencing. This workflow is sufficiently sensitive for obtaining different paired full-length antibody sequences from as little as five droplets, fulfilling the desired phenotype. Replacing physical sorting by specific sequencing overcomes a general bottleneck in droplet microfluidic screening and should be compatible with many more applications.
Collapse
Affiliation(s)
- Alexis Autour
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Christoph A Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Wei YC, Pospiech M, Meng Y, Alachkar H. Development and characterization of human T-cell receptor (TCR) alpha and beta clones' library as biological standards and resources for TCR sequencing and engineering. Biol Methods Protoc 2024; 9:bpae064. [PMID: 39507623 PMCID: PMC11540440 DOI: 10.1093/biomethods/bpae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024] Open
Abstract
Characterization of T-cell receptors (TCRs) repertoire was revolutionized by next-generation sequencing technologies; however, standardization using biological controls to facilitate precision of current alignment and assembly tools remains a challenge. Additionally, availability of TCR libraries for off-the-shelf cloning and engineering TCR-specific T cells is a valuable resource for TCR-based immunotherapies. We established nine human TCR α and β clones that were evaluated using the 5'-rapid amplification of cDNA ends-like RNA-based TCR sequencing on the Illumina platform. TCR sequences were extracted and aligned using MiXCR, TRUST4, and CATT to validate their sensitivity and specificity and to validate library preparation methods. The correlation between actual and expected TCR ratios within libraries confirmed accuracy of the approach. Our findings established the development of biological standards and library of TCR clones to be leveraged in TCR sequencing and engineering. The remaining human TCR clones' libraries for a more diverse biological control will be generated.
Collapse
Affiliation(s)
- Yu-Chun Wei
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Mateusz Pospiech
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Yiting Meng
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, United States
| |
Collapse
|
4
|
Rollins ZA, Widatalla T, Cheng AC, Metwally E. AbMelt: Learning antibody thermostability from molecular dynamics. Biophys J 2024; 123:2921-2933. [PMID: 38851888 PMCID: PMC11393704 DOI: 10.1016/j.bpj.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/16/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
Antibody thermostability is challenging to predict from sequence and/or structure. This difficulty is likely due to the absence of direct entropic information. Herein, we present AbMelt where we model the inherent flexibility of homologous antibody structures using molecular dynamics simulations at three temperatures and learn the relevant descriptors to predict the temperatures of aggregation (Tagg), melt onset (Tm,on), and melt (Tm). We observed that the radius of gyration deviation of the complementarity determining regions at 400 K is the highest Pearson correlated descriptor with aggregation temperature (rp = -0.68 ± 0.23) and the deviation of internal molecular contacts at 350 K is the highest correlated descriptor with both Tm,on (rp = -0.74 ± 0.04) as well as Tm (rp = -0.69 ± 0.03). Moreover, after descriptor selection and machine learning regression, we predict on a held-out test set containing both internal and public data and achieve robust performance for all endpoints compared with baseline models (Tagg R2 = 0.57 ± 0.11, Tm,on R2 = 0.56 ± 0.01, and Tm R2 = 0.60 ± 0.06). In addition, the robustness of the AbMelt molecular dynamics methodology is demonstrated by only training on <5% of the data and outperforming more traditional machine learning models trained on the entire data set of more than 500 internal antibodies. Users can predict thermostability measurements for antibody variable fragments by collecting descriptors and using AbMelt, which has been made available.
Collapse
Affiliation(s)
- Zachary A Rollins
- Modeling and Informatics, Merck & Co., Inc., South San Francisco, California
| | - Talal Widatalla
- Modeling and Informatics, Merck & Co., Inc., South San Francisco, California
| | - Alan C Cheng
- Modeling and Informatics, Merck & Co., Inc., South San Francisco, California
| | - Essam Metwally
- Modeling and Informatics, Merck & Co., Inc., South San Francisco, California.
| |
Collapse
|
5
|
Bombaci M, Fassi EMA, Gobbini A, Mileto D, Cassaniti I, Pesce E, Casali E, Mancon A, Sammartino J, Ferrari A, Percivalle E, Grande R, Marchisio E, Gismondo MR, Abrignani S, Baldanti F, Colombo G, Grifantini R. High-throughput peptide array analysis and computational techniques for serological profiling of flavivirus infections: Implications for diagnostics and vaccine development. J Med Virol 2024; 96:e29923. [PMID: 39291820 DOI: 10.1002/jmv.29923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Arthropod-borne viruses, such as dengue virus (DENV), pose significant global health threats, with DENV alone infecting around 400 million people annually and causing outbreaks beyond endemic regions. This study aimed to enhance serological diagnosis and discover new drugs by identifying immunogenic protein regions of DENV. Utilizing a comprehensive approach, the study focused on peptides capable of distinguishing DENV from other flavivirus infections through serological analyses. Over 200 patients with confirmed arbovirus infection were profiled using high-density pan flavivirus peptide arrays comprising 6253 peptides and the computational method matrix of local coupling energy (MLCE). Twenty-four peptides from nonstructural and structural viral proteins were identified as specifically recognized by individuals with DENV infection. Six peptides were confirmed to distinguish DENV from Zika virus (ZIKV), West Nile virus (WNV), Yellow Fever virus (YFV), Usutu virus (USUV), and Chikungunya virus (CHIKV) infections, as well as healthy controls. Moreover, the combination of two immunogenic peptides emerged as a potential serum biomarker for DENV infection. These peptides, mapping to highly accessible regions on protein structures, show promise for diagnostic and prophylactic strategies against flavivirus infections. The described methodology holds broader applicability in the serodiagnosis of infectious diseases.
Collapse
Affiliation(s)
- Mauro Bombaci
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
| | | | - Andrea Gobbini
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy
| | - Irene Cassaniti
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Pesce
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milano, Milano, Italy
| | | | - Alessandro Mancon
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy
| | - Jose' Sammartino
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Romualdo Grande
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy
| | | | - Maria Rita Gismondo
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milano, Milano, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
| |
Collapse
|
6
|
Eshak F, Pion L, Scholler P, Nevoltris D, Chames P, Rondard P, Pin JP, Acher FC, Goupil-Lamy A. Epitope Identification of an mGlu5 Receptor Nanobody Using Physics-Based Molecular Modeling and Deep Learning Techniques. J Chem Inf Model 2024; 64:4436-4461. [PMID: 38423996 DOI: 10.1021/acs.jcim.3c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The world has witnessed a revolution in therapeutics with the development of biological medicines such as antibodies and antibody fragments, notably nanobodies. These nanobodies possess unique characteristics including high specificity and modulatory activity, making them promising candidates for therapeutic applications. Identifying their binding mode is essential for their development. Experimental structural techniques are effective to get such information, but they are expensive and time-consuming. Here, we propose a computational approach, aiming to identify the epitope of a nanobody that acts as an agonist and a positive allosteric modulator at the rat metabotropic glutamate receptor 5. We employed multiple structure modeling tools, including various artificial intelligence algorithms for epitope mapping. The computationally identified epitope was experimentally validated, confirming the success of our approach. Additional dynamics studies provided further insights on the modulatory activity of the nanobody. The employed methodologies and approaches initiate a discussion on the efficacy of diverse techniques for epitope mapping and later nanobody engineering.
Collapse
Affiliation(s)
- Floriane Eshak
- SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Léo Pion
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Damien Nevoltris
- Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Patrick Chames
- Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | | | - Anne Goupil-Lamy
- BIOVIA Science Council, Dassault Systèmes, 78140 Vélizy-Villacoublay, France
| |
Collapse
|
7
|
Rollins ZA, Widatalla T, Waight A, Cheng AC, Metwally E. AbLEF: antibody language ensemble fusion for thermodynamically empowered property predictions. Bioinformatics 2024; 40:btae268. [PMID: 38627249 PMCID: PMC11256947 DOI: 10.1093/bioinformatics/btae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
MOTIVATION Pre-trained protein language and/or structural models are often fine-tuned on drug development properties (i.e. developability properties) to accelerate drug discovery initiatives. However, these models generally rely on a single structural conformation and/or a single sequence as a molecular representation. We present a physics-based model, whereby 3D conformational ensemble representations are fused by a transformer-based architecture and concatenated to a language representation to predict antibody protein properties. Antibody language ensemble fusion enables the direct infusion of thermodynamic information into latent space and this enhances property prediction by explicitly infusing dynamic molecular behavior that occurs during experimental measurement. RESULTS We showcase the antibody language ensemble fusion model on two developability properties: hydrophobic interaction chromatography retention time and temperature of aggregation (Tagg). We find that (i) 3D conformational ensembles that are generated from molecular simulation can further improve antibody property prediction for small datasets, (ii) the performance benefit from 3D conformational ensembles matches shallow machine learning methods in the small data regime, and (iii) fine-tuned large protein language models can match smaller antibody-specific language models at predicting antibody properties. AVAILABILITY AND IMPLEMENTATION AbLEF codebase is available at https://github.com/merck/AbLEF.
Collapse
Affiliation(s)
- Zachary A Rollins
- Modeling and Informatics, Merck & Co., Inc, South San Francisco, CA, 94080, United States
| | - Talal Widatalla
- Modeling and Informatics, Merck & Co., Inc, South San Francisco, CA, 94080, United States
| | - Andrew Waight
- Discovery Biologics, Merck & Co., Inc, South San Francisco, CA, 94080, United States
| | - Alan C Cheng
- Modeling and Informatics, Merck & Co., Inc, South San Francisco, CA, 94080, United States
| | - Essam Metwally
- Modeling and Informatics, Merck & Co., Inc, South San Francisco, CA, 94080, United States
| |
Collapse
|
8
|
Korenkov M, Zehner M, Cohen-Dvashi H, Borenstein-Katz A, Kottege L, Janicki H, Vanshylla K, Weber T, Gruell H, Koch M, Diskin R, Kreer C, Klein F. Somatic hypermutation introduces bystander mutations that prepare SARS-CoV-2 antibodies for emerging variants. Immunity 2023; 56:2803-2815.e6. [PMID: 38035879 DOI: 10.1016/j.immuni.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Somatic hypermutation (SHM) drives affinity maturation and continues over months in SARS-CoV-2-neutralizing antibodies (nAbs). However, several potent SARS-CoV-2 antibodies carry no or only a few mutations, leaving the question of how ongoing SHM affects neutralization unclear. Here, we reverted variable region mutations of 92 antibodies and tested their impact on SARS-CoV-2 binding and neutralization. Reverting higher numbers of mutations correlated with decreasing antibody functionality. However, for some antibodies, including antibodies of the public clonotype VH1-58, neutralization of Wu01 remained unaffected. Although mutations were dispensable for Wu01-induced VH1-58 antibodies to neutralize Alpha, Beta, and Delta variants, they were critical for Omicron BA.1/BA.2 neutralization. We exploited this knowledge to convert the clinical antibody tixagevimab into a BA.1/BA.2 neutralizer. These findings broaden our understanding of SHM as a mechanism that not only improves antibody responses during affinity maturation but also contributes to antibody diversification, thus increasing the chances of neutralizing viral escape variants.
Collapse
Affiliation(s)
- Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hadas Cohen-Dvashi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Aliza Borenstein-Katz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lisa Kottege
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
9
|
Benotmane JK, Kueckelhaus J, Will P, Zhang J, Ravi VM, Joseph K, Sankowski R, Beck J, Lee-Chang C, Schnell O, Heiland DH. High-sensitive spatially resolved T cell receptor sequencing with SPTCR-seq. Nat Commun 2023; 14:7432. [PMID: 37973846 PMCID: PMC10654577 DOI: 10.1038/s41467-023-43201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Spatial resolution of the T cell repertoire is essential for deciphering cancer-associated immune dysfunction. Current spatially resolved transcriptomic technologies are unable to directly annotate T cell receptors (TCR). We present spatially resolved T cell receptor sequencing (SPTCR-seq), which integrates optimized target enrichment and long-read sequencing for highly sensitive TCR sequencing. The SPTCR computational pipeline achieves yield and coverage per TCR comparable to alternative single-cell TCR technologies. Our comparison of PCR-based and SPTCR-seq methods underscores SPTCR-seq's superior ability to reconstruct the entire TCR architecture, including V, D, J regions and the complementarity-determining region 3 (CDR3). Employing SPTCR-seq, we assess local T cell diversity and clonal expansion across spatially discrete niches. Exploration of the reciprocal interaction of the tumor microenvironmental and T cells discloses the critical involvement of NK and B cells in T cell exhaustion. Integrating spatially resolved omics and TCR sequencing provides as a robust tool for exploring T cell dysfunction in cancers and beyond.
Collapse
Affiliation(s)
- Jasim Kada Benotmane
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
| | - Paulina Will
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
- Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, Freiburg University, Freiburg, Germany.
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Shah M, Woo HG. Assessment of neutralization susceptibility of Omicron subvariants XBB.1.5 and BQ.1.1 against broad-spectrum neutralizing antibodies through epitopes mapping. Front Mol Biosci 2023; 10:1236617. [PMID: 37828918 PMCID: PMC10565033 DOI: 10.3389/fmolb.2023.1236617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
The emergence of new variants of the SARS-CoV-2 virus has posed a significant challenge in developing broadly neutralizing antibodies (nAbs) with guaranteed therapeutic potential. Some nAbs, such as Sotrovimab, have exhibited varying levels of efficacy against different variants, while others, such as Bebtelovimab and Bamlanivimab-etesevimab are ineffective against specific variants, including BQ.1.1 and XBB. This highlights the urgent need for developing broadly active monoclonal antibodies (mAbs) providing prophylactic and therapeutic benefits to high-risk patients, especially in the face of the risk of reinfection from new variants. Here, we aimed to investigate the feasibility of redirecting existing mAbs against new variants of SARS-CoV-2, as well as to understand how BQ.1.1 and XBB.1.5 can evade broadly neutralizing mAbs. By mapping epitopes and escape sites, we discovered that the new variants evade multiple mAbs, including FDA-approved Bebtelovimab, which showed resilience against other Omicron variants. Our approach, which included simulations, endpoint free energy calculation, and shape complementarity analysis, revealed the possibility of identifying mAbs that are effective against both BQ.1.1 and XBB.1.5. We identified two broad-spectrum mAbs, R200-1F9 and R207-2F11, as potential candidates with increased binding affinity to XBB.1.5 and BQ.1.1 compared to the reference (Wu01) strain. Additionally, we propose that these mAbs do not interfere with Angiotensin Converting Enzyme 2 (ACE2) and bind to conserved epitopes on the receptor binding domain of Spike that are not-overlapping, potentially providing a solution to neutralize these new variants either independently or as part of a combination (cocktail) treatment.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
11
|
Hu Z, Cohen S, Swanson SJ. The immunogenicity of human-origin therapeutic antibodies are associated with V gene usage. Front Immunol 2023; 14:1237754. [PMID: 37720227 PMCID: PMC10502710 DOI: 10.3389/fimmu.2023.1237754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Therapeutic antibodies can elicit unwanted immune responses in a subset of patients, which leads to the production of anti-drug antibodies (ADA). Some of these ADAs have been reported to effect the pharmacokinetics, efficacy and/or safety of the therapeutic antibodies. The sequence diversity of antibodies are generated by VDJ recombination and mutagenesis. While the antibody generation process can create a large candidate pool for identifying high-affinity antibodies, it also could produce sequences that are foreign to the human immune system. However, it is not clear how VDJ recombination and mutagenesis impact the clinical ADA rate of therapeutic antibodies. In this study, we identified a positive correlation between the clinical ADA rate and the number of introduced mutations in the antibody sequences. We also found that the use of rare V alleles in human-origin antibody therapeutics is associated with higher risk of immunogenicity. The results suggest that antibody engineering projects should start with frameworks that contain commonly used V alleles and prioritize antibody candidates with low number of mutations to reduce the risk of immunogenicity.
Collapse
|
12
|
Keppeke GD, Diogenes L, Gomes K, Andrade LEC. "Untargeting" autoantibodies using genome editing, a proof-of-concept study. Clin Immunol 2023; 251:109343. [PMID: 37094742 DOI: 10.1016/j.clim.2023.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Autoantibodies (AAbs) are useful biomarkers and many have direct pathogenic role. Current standard therapies for elimination of specific B/plasma-cell clones are not fully efficient. We apply CRISPR/Cas9 genome-editing to knockout V(D)J rearrangements that produce pathogenic AAbs in vitro. HEK293T cell-lines were established stably expressing a humanized anti-dsDNA Ab (clone 3H9) and a human-derived anti-nAChR-α1 Ab (clone B12L). For each clone, five CRISPR/Cas9 heavy-chain's CDR2/3-targeting guided-RNAs (T-gRNAs) were designed. Non-Target-gRNA (NT-gRNA) was control. After editing, levels of secreted Abs were evaluated, as well as 3H9 anti-dsDNA and B12L anti-AChR reactivities. T-gRNAs editing decreased expression of heavy-chain genes to ~50-60%, compared to >90% in NT-gRNA, although secreted Abs levels and reactivity to their respective antigens in T-gRNAs decreased ~90% and ~ 95% compared with NT-gRNA for 3H9 and B12L, respectively. Sequencing indicated indels at Cas9 cut-site, which could lead to codon jam, and consequently, knockout. Additionally, remaining secreted 3H9-Abs presented variable dsDNA reactivity among the five T-gRNA, suggesting the exact Cas9 cut-site and indels further interfere with antibody-antigen interaction. CRISPR/Cas9 genome-editing was very effective to knockout the Heavy-Chain-IgG genes, considerably affecting AAbs secretion and binding capacity, fostering application of this concept to in vivo models as a potential novel therapeutic approach for AAb-mediated diseases.
Collapse
Affiliation(s)
| | - Larissa Diogenes
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil
| | - Kethellen Gomes
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil
| | - Luis Eduardo Coelho Andrade
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil; Immunology Division, Fleury Laboratory, Sao Paulo, Brazil
| |
Collapse
|
13
|
Ciacchi L, van de Garde MDB, Ladell K, Farenc C, Poelen MCM, Miners KL, Llerena C, Reid HH, Petersen J, Price DA, Rossjohn J, van Els CACM. CD4 + T cell-mediated recognition of a conserved cholesterol-dependent cytolysin epitope generates broad antibacterial immunity. Immunity 2023; 56:1082-1097.e6. [PMID: 37100059 DOI: 10.1016/j.immuni.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/31/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023]
Abstract
CD4+ T cell-mediated immunity against Streptococcus pneumoniae (pneumococcus) can protect against recurrent bacterial colonization and invasive pneumococcal diseases (IPDs). Although such immune responses are common, the pertinent antigens have remained elusive. We identified an immunodominant CD4+ T cell epitope derived from pneumolysin (Ply), a member of the bacterial cholesterol-dependent cytolysins (CDCs). This epitope was broadly immunogenic as a consequence of presentation by the pervasive human leukocyte antigen (HLA) allotypes DPB1∗02 and DPB1∗04 and recognition via architecturally diverse T cell receptors (TCRs). Moreover, the immunogenicity of Ply427-444 was underpinned by core residues in the conserved undecapeptide region (ECTGLAWEWWR), enabling cross-recognition of heterologous bacterial pathogens expressing CDCs. Molecular studies further showed that HLA-DP4-Ply427-441 was engaged similarly by private and public TCRs. Collectively, these findings reveal the mechanistic determinants of near-global immune focusing on a trans-phyla bacterial epitope, which could inform ancillary strategies to combat various life-threatening infectious diseases, including IPDs.
Collapse
Affiliation(s)
- Lisa Ciacchi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Carine Farenc
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Carmen Llerena
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK.
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK.
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands; Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584CL, the Netherlands.
| |
Collapse
|
14
|
Ghorbani A, Khataeipour SJ, Solbakken MH, Huebert DNG, Khoddami M, Eslamloo K, Collins C, Hori T, Jentoft S, Rise ML, Larijani M. Ancestral reconstruction reveals catalytic inactivation of activation-induced cytidine deaminase concomitant with cold water adaption in the Gadiformes bony fish. BMC Biol 2022; 20:293. [PMID: 36575514 PMCID: PMC9795746 DOI: 10.1186/s12915-022-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - S. Javad Khataeipour
- grid.25055.370000 0000 9130 6822Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Monica H. Solbakken
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David N. G. Huebert
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Minasadat Khoddami
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Khalil Eslamloo
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Cassandra Collins
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tiago Hori
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Sissel Jentoft
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L. Rise
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Mani Larijani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
15
|
Xu Z, Ismanto HS, Zhou H, Saputri DS, Sugihara F, Standley DM. Advances in antibody discovery from human BCR repertoires. FRONTIERS IN BIOINFORMATICS 2022; 2:1044975. [PMID: 36338807 PMCID: PMC9631452 DOI: 10.3389/fbinf.2022.1044975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Antibodies make up an important and growing class of compounds used for the diagnosis or treatment of disease. While traditional antibody discovery utilized immunization of animals to generate lead compounds, technological innovations have made it possible to search for antibodies targeting a given antigen within the repertoires of B cells in humans. Here we group these innovations into four broad categories: cell sorting allows the collection of cells enriched in specificity to one or more antigens; BCR sequencing can be performed on bulk mRNA, genomic DNA or on paired (heavy-light) mRNA; BCR repertoire analysis generally involves clustering BCRs into specificity groups or more in-depth modeling of antibody-antigen interactions, such as antibody-specific epitope predictions; validation of antibody-antigen interactions requires expression of antibodies, followed by antigen binding assays or epitope mapping. Together with innovations in Deep learning these technologies will contribute to the future discovery of diagnostic and therapeutic antibodies directly from humans.
Collapse
Affiliation(s)
- Zichang Xu
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hendra S. Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hao Zhou
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Dianita S. Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department Systems Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
16
|
Frimpong A, Ofori MF, Degoot AM, Kusi KA, Gershom B, Quartey J, Kyei-Baafour E, Nguyen N, Ndifon W. Perturbations in the T cell receptor β repertoire during malaria infection in children: A preliminary study. Front Immunol 2022; 13:971392. [PMID: 36311775 PMCID: PMC9606469 DOI: 10.3389/fimmu.2022.971392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The changes occurring in the T cell repertoire during clinical malaria infection in children remain unknown. In this study, we undertook the first detailed comparative study of the T cell repertoire in African children with and without clinical malaria to test the hypothesis that clonotypic expansions that occur during P. falciparum infection will contribute to the generation of a T cell repertoire that is unique to each disease state. We profiled the complementarity-determining region 3 (CDR3) of the TCRβ chain sequences from children with Plasmodium falciparum infections (asymptomatic, uncomplicated and severe malaria) and compared these with sequences from healthy children. Interestingly, we discovered that children with symptomatic malaria have a lower TCR diversity and frequency of shared (or “public”) TCR sequences compared to asymptomatic children. Also, TCR diversity was inversely associated with parasitemia. Furthermore, by clustering TCR sequences based on their predicted antigen specificities, we identified a specificity cluster, with a 4-mer amino acid motif, that is overrepresented in the asymptomatic group compared to the diseased groups. Further investigations into this finding may help in delineating important antigenic targets for vaccine and therapeutic development. The results show that the T cell repertoire in children is altered during malaria, suggesting that exposure to P. falciparum antigens disrupts the adaptive immune response, which is an underlying feature of the disease.
Collapse
Affiliation(s)
- Augustina Frimpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- African Institute for Mathematical Sciences, Accra, Ghana
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| | - Michael Fokuo Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abdoelnaser M. Degoot
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
| | - Kwadwo Asamoah Kusi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Buri Gershom
- African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jacob Quartey
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Kyei-Baafour
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Wilfred Ndifon
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
- African Institute for Mathematical Sciences, Cape Town, South Africa
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| |
Collapse
|
17
|
Lan X, Ruminy P, Bohers E, Marchand V, Viennot M, Viailly PJ, Etancelin P, Tilly H, Mihailescu S, Bouclet F, Leprêtre S, Jardin F. 5’ Rapid amplification of cDNA ends (5’RACE): A simpler method to analyze immunoglobulin genes and discover the value of the light chain in chronic lymphocytic leukemia. Leuk Res 2022; 123:106952. [DOI: 10.1016/j.leukres.2022.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022]
|
18
|
Grimholt U, Sundaram AYM, Bøe CA, Dahle MK, Lukacs M. Tetraploid Ancestry Provided Atlantic Salmon With Two Paralogue Functional T Cell Receptor Beta Regions Whereof One Is Completely Novel. Front Immunol 2022; 13:930312. [PMID: 35784332 PMCID: PMC9247247 DOI: 10.3389/fimmu.2022.930312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Protective cellular immune responses have been difficult to study in fish, due to lack of basic understanding of their T cell populations, and tools to study them. Cellular immunity is thus mostly ignored in vaccination and infection studies compared to humoral responses. High throughput sequencing, as well as access to well assembled genomes, now advances studies of cellular responses. Here we have used such resources to describe organization of T cell receptor beta genes in Atlantic salmon. Salmonids experienced a unique whole genome duplication approximately 94 million years ago, which provided these species with many functional duplicate genes, where some duplicates have evolved new functions or sub-functions of the original gene copy. This is also the case for T cell receptor beta, where Atlantic salmon has retained two paralogue T cell receptor beta regions on chromosomes 01 and 09. Compared to catfish and zebrafish, the genomic organization in both regions is unique, each chromosomal region organized with dual variable- diversity- joining- constant genes in a head to head orientation. Sequence identity of the chromosomal constant sequences between TRB01 and TRB09 is suggestive of rapid diversification, with only 67 percent as opposed to the average 82-90 percent for other duplicated genes. Using virus challenged samples we find both regions expressing bona fide functional T cell receptor beta molecules. Adding the 292 variable T cell receptor alpha genes to the 100 variable TRB genes from 14 subgroups, Atlantic salmon has one of the most diverse T cell receptor alpha beta repertoire of any vertebrate studied so far. Perhaps salmonid cellular immunity is more advanced than we have imagined.
Collapse
Affiliation(s)
- Unni Grimholt
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
- *Correspondence: Unni Grimholt,
| | - Arvind Y. M. Sundaram
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Maria K. Dahle
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| | - Morten Lukacs
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
19
|
Bunnoy A, Na-Nakorn U, Srisapoome P. Mystifying Molecular Structure, Expression and Repertoire Diversity of IgM Heavy Chain Genes (Ighμ) in Clarias Catfish and Hybrids: Two Novel Transcripts in Vertebrates. Front Immunol 2022; 13:884434. [PMID: 35784299 PMCID: PMC9247300 DOI: 10.3389/fimmu.2022.884434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Two novel immunoglobulin heavy chain (Ighμ) transcripts encoding membrane-bound forms of IgM (mIgM) were discovered in bighead catfish, Clarias macrocephalus. The first transcript contains four constant and two transmembrane domains [Cμ1-Cμ2-Cμ3-Cμ4-TM1-TM2] that have never been reported in teleosts, and the second transcript is an unusual mIgM that has never been identified in any vertebrate [Cμ1-(Cδ2-Cδ3-Cδ4-Cδ5)-Cμ2-Cμ3-TM1-TM2]. Fluorescence in situ hybridization (FISH) in bighead catfish, North African catfish (C. gariepinus) and hybrid catfish revealed a single copy of Ighμ in individual parent catfish, while two gene copies were found in diploid hybrid catfish. Intensive sequence analysis demonstrated multiple distinct structural variabilities in the VH domain in Clarias, and hybrid catfish were defined and used to generate diversity with various mechanisms. Expression analysis of Ighμ in Aeromonas hydrophila infection of the head kidney, peripheral blood leukocytes and spleen revealed significantly higher levels in North African catfish and hybrid catfish than in bighead catfish.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- *Correspondence: Prapansak Srisapoome,
| |
Collapse
|
20
|
Contribution of rare mutational outcomes to broadly neutralizing antibodies. Acta Biochim Biophys Sin (Shanghai) 2022; 54:820-827. [PMID: 35713319 PMCID: PMC9828561 DOI: 10.3724/abbs.2022065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antibodies are important immune molecules that are elicited by B cells to protect our bodies during viral infections or vaccinations. In humans, the antibody repertoire is diversified by programmed DNA lesion processes to ensure specific and high affinity binding to various antigens. Broadly neutralizing antibodies (bnAbs) are antibodies that have strong neutralizing activities against different variants of a virus. bnAbs such as anti-HIV bnAbs often have special characteristics including insertions and deletions, long complementarity determining region 3 (CDR3), and high frequencies of mutations, often at improbable sites of the variable regions. These unique features are rare mutational outcomes that are acquired during antibody diversification processes. In this review, we will discuss possible mechanisms that generate these rare antibody mutational outcomes. The understanding of the mechanisms that generate these rare mutational outcomes during antibody diversification will have implications in vaccine design strategies to elicit bnAbs.
Collapse
|
21
|
Lefranc MP, Lefranc G. IMGT ®Homo sapiens IG and TR Loci, Gene Order, CNV and Haplotypes: New Concepts as a Paradigm for Jawed Vertebrates Genome Assemblies. Biomolecules 2022; 12:381. [PMID: 35327572 PMCID: PMC8945572 DOI: 10.3390/biom12030381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
IMGT®, the international ImMunoGeneTics information system®, created in 1989, by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science which emerged at the interface between immunogenetics and bioinformatics for the study of the adaptive immune responses. IMGT® is based on a standardized nomenclature of the immunoglobulin (IG) and T cell receptor (TR) genes and alleles from fish to humans and on the IMGT unique numbering for the variable (V) and constant (C) domains of the immunoglobulin superfamily (IgSF) of vertebrates and invertebrates, and for the groove (G) domain of the major histocompatibility (MH) and MH superfamily (MhSF) proteins. IMGT® comprises 7 databases, 17 tools and more than 25,000 pages of web resources for sequences, genes and structures, based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts. IMGT® reference directories are used for the analysis of the NGS high-throughput expressed IG and TR repertoires (natural, synthetic and/or bioengineered) and for bridging sequences, two-dimensional (2D) and three-dimensional (3D) structures. This manuscript focuses on the IMGT®Homo sapiens IG and TR loci, gene order, copy number variation (CNV) and haplotypes new concepts, as a paradigm for jawed vertebrates genome assemblies.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’Immuno Génétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), UMR 9002 CNRS-UM, 141 rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’Immuno Génétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), UMR 9002 CNRS-UM, 141 rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
22
|
Lim SY, Yamaguchi K, Itakura M, Chikazawa M, Matsuda T, Uchida K. Unique B-1 cells specific for both N-pyrrolated proteins and DNA evolve with apolipoprotein E deficiency. J Biol Chem 2022; 298:101582. [PMID: 35031322 PMCID: PMC8844855 DOI: 10.1016/j.jbc.2022.101582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Lysine N-pyrrolation, a posttranslational modification, which converts lysine residues to Nε-pyrrole-L-lysine, imparts electronegative properties to proteins, causing them to mimic DNA. Apolipoprotein E (apoE) has been identified as a soluble receptor for pyrrolated proteins (pyrP), and accelerated lysine N-pyrrolation has been observed in apoE-deficient (apoE−/−) hyperlipidemic mice. However, the impact of pyrP accumulation consequent to apoE deficiency on the innate immune response remains unclear. Here, we investigated B-1a cells known to produce germline-encoded immunoglobulin M (IgM) from mice deficient in apoE and identified a particular cell population that specifically produces IgM antibodies against pyrP and DNA. We demonstrated an expansion of B-1a cells involved in IgM production in the peritoneal cavity of apoE−/− mice compared with wild-type mice, consistent with a progressive increase of IgM response in the mouse sera. We found that pyrP exhibited preferential binding to B-1a cells and facilitated the production of IgM. B cell receptor analysis of pyrP-specific B-1a cells showed restricted usage of gene segments selected from the germline gene set; most sequences contained high levels of non-templated-nucleotide additions (N-additions) that could contribute to junctional diversity of B cell receptors. Finally, we report that a subset of monoclonal IgM antibodies against pyrP/DNA established from the apoE−/− mice also contained abundant N-additions. These results suggest that the accumulation of pyrP due to apoE deficiency may influence clonal diversity in the pyrP-specific B cell repertoire. The discovery of these unique B-1a cells for pyrP/DNA provides a key link connecting covalent protein modification, lipoprotein metabolism, and innate immunity.
Collapse
Affiliation(s)
- Sei-Young Lim
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kosuke Yamaguchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Masanori Itakura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Miho Chikazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan; Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
23
|
Cai G, Guan Z, Jin Y, Su Z, Chen X, Liu Q, Wang C, Yin X, Zhang L, Ye G, Luo W. Circulating T-Cell Repertoires Correlate With the Tumor Response in Patients With Breast Cancer Receiving Neoadjuvant Chemotherapy. JCO Precis Oncol 2022; 6:e2100120. [PMID: 35025620 PMCID: PMC8769146 DOI: 10.1200/po.21.00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Neoadjuvant chemotherapy (NAC) has been widely used in patients with breast cancer to minish tumor burden and increase resection rate of cancer. T-cell repertoire has been believed to be able to monitor antitumor immune responses. This study aimed to explore the dynamic change of T-cell repertoire and its clinical value in evaluating the tumor response in patients with breast cancer receiving NAC. MATERIALS AND METHODS Ninety-four patients who underwent NAC before surgery were recruited, and peripheral blood samples were collected at multiple time points during NAC. High-throughput T-cell receptor (TCR)-β sequencing was used to characterize the T-cell repertoire of every sample and analyzed the changes in circulating T-cell repertoire during NAC. RESULTS We found that the diversity of TCR repertoires was associated with age and clinical stage of the patients with breast cancer. The distribution of Vβ and Jβ genes in TCR repertoires was skewed in patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer. Vβ20.1 and Vβ30 expression levels before NAC correlate with tumor response after all cycles of NAC in HER2- and HER2+ patients, respectively. Some CDR3 motifs that correlated with clinical response in either HER2+ or HER2- patients were identified. Besides, TCR repertoire evolved during NAC and the diversity of TCR repertoire decreased more after two cycles of NAC in patients with good tumor response after all cycles of NAC (P = .0061). CONCLUSION Our results demonstrated that TCR repertoire correlated with the characteristics of the tumor, such as the expression status of HER2. Moreover, some characteristics of TCR repertoires that correlated with clinical response were identified and they might provide useful information to tailor therapeutic regimens at the early cycle of NAC.
Collapse
Affiliation(s)
- Gengxi Cai
- The First People's Hospital of Foshan, Foshan, China
| | - Zhanwen Guan
- The First People's Hospital of Foshan, Foshan, China
| | - Yabin Jin
- The First People's Hospital of Foshan, Foshan, China
| | - Zuhui Su
- The First People's Hospital of Foshan, Foshan, China
| | | | - Qing Liu
- The First People's Hospital of Foshan, Foshan, China
| | | | - Xiaoxia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
| | - Lifang Zhang
- The First People's Hospital of Foshan, Foshan, China
| | - Guolin Ye
- The First People's Hospital of Foshan, Foshan, China
| | - Wei Luo
- The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
24
|
Khatri I, Berkowska MA, van den Akker EB, Teodosio C, Reinders MJT, van Dongen JJM. Population matched (pm) germline allelic variants of immunoglobulin (IG) loci: Relevance in infectious diseases and vaccination studies in human populations. Genes Immun 2021; 22:172-186. [PMID: 34120151 PMCID: PMC8196923 DOI: 10.1038/s41435-021-00143-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Immunoglobulin (IG) loci harbor inter-individual allelic variants in many different germline IG variable, diversity and joining genes of the IG heavy (IGH), kappa (IGK) and lambda (IGL) loci, which together form the genetic basis of the highly diverse antigen-specific B-cell receptors. These allelic variants can be shared between or be specific to human populations. The current immunogenetics resources gather the germline alleles, however, lack the population specificity of the alleles which poses limitations for disease-association studies related to immune responses in different human populations. Therefore, we systematically identified germline alleles from 26 different human populations around the world, profiled by "1000 Genomes" data. We identified 409 IGHV, 179 IGKV, and 199 IGLV germline alleles supported by at least seven haplotypes. The diversity of germline alleles is the highest in Africans. Remarkably, the variants in the identified novel alleles show strikingly conserved patterns, the same as found in other IG databases, suggesting over-time evolutionary selection processes. We could relate the genetic variants to population-specific immune responses, e.g. IGHV1-69 for flu in Africans. The population matched IG (pmIG) resource will enhance our understanding of the SHM-related B-cell receptor selection processes in (infectious) diseases and vaccination within and between different human populations.
Collapse
Affiliation(s)
- Indu Khatri
- Department Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Erik B van den Akker
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Department Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Cristina Teodosio
- Department Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
25
|
Sullivan LC, Nguyen THO, Harpur CM, Stankovic S, Kanagarajah AR, Koutsakos M, Saunders PM, Cai Z, Gray JA, Widjaja JML, Lin J, Pietra G, Mingari MC, Moretta L, Samir J, Luciani F, Westall GP, Malmberg KJ, Kedzierska K, Brooks AG. Natural killer cell receptors regulate responses of HLA-E-restricted T cells. Sci Immunol 2021; 6:eabe9057. [PMID: 33893172 DOI: 10.1126/sciimmunol.abe9057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Human cytomegalovirus (CMV) infection can stimulate robust human leukocyte antigen (HLA)-E-restricted CD8+ T cell responses. These T cells recognize a peptide from UL40, which differs by as little as a single methyl group from self-peptides that also bind HLA-E, challenging their capacity to avoid self-reactivity. Unexpectedly, we showed that the UL40/HLA-E T cell receptor (TCR) repertoire included TCRs that had high affinities for HLA-E/self-peptide. However, paradoxically, lower cytokine responses were observed from UL40/HLA-E T cells bearing TCRs with high affinity for HLA-E. RNA sequencing and flow cytometric analysis revealed that these T cells were marked by the expression of inhibitory natural killer cell receptors (NKRs) KIR2DL1 and KIR2DL2/L3. On the other hand, UL40/HLA-E T cells bearing lower-affinity TCRs expressed the activating receptor NKG2C. Activation of T cells bearing higher-affinity TCRs was regulated by the interaction between KIR2D receptors and HLA-C. These findings identify a role for NKR signaling in regulating self/non-self discrimination by HLA-E-restricted T cells, allowing for antiviral responses while avoiding contemporaneous self-reactivity.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
- Lung Transplant Service, The Alfred Hospital and Monash University Melbourne, Victoria 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Christopher M Harpur
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Abbie R Kanagarajah
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Zhangying Cai
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - James A Gray
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Jacqueline M L Widjaja
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES). University of Genoa, Genoa 16132, Italy
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES). University of Genoa, Genoa 16132, Italy
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, Genoa 16132, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa 16132, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy
| | - Jerome Samir
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Glen P Westall
- Lung Transplant Service, The Alfred Hospital and Monash University Melbourne, Victoria 3000, Australia
| | - Karl J Malmberg
- KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo 0310, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
| |
Collapse
|
26
|
Genuardi E, Klous P, Mantoan B, Drandi D, Ferrante M, Cavallo F, Alessandria B, Dogliotti I, Grimaldi D, Ragaini S, Clerico M, Lo Schirico M, Saraci E, Yilmaz M, Zaccaria GM, Cortelazzo S, Vitolo U, Luminari S, Federico M, Boccadoro M, van Min M, Splinter E, Ladetto M, Ferrero S. Targeted locus amplification to detect molecular markers in mantle cell and follicular lymphoma. Hematol Oncol 2021; 39:293-303. [PMID: 33742718 PMCID: PMC8451873 DOI: 10.1002/hon.2864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022]
Abstract
Minimal residual disease (MRD) monitoring by PCR methods is a strong and standardized predictor of clinical outcome in mantle cell lymphoma (MCL) and follicular lymphoma (FL). However, about 20% of MCL and 40% of FL patients lack a reliable molecular marker, being thus not eligible for MRD studies. Recently, targeted locus amplification (TLA), a next‐generation sequencing (NGS) method based on the physical proximity of DNA sequences for target selection, identified novel gene rearrangements in leukemia. The aim of this study was to test TLA in MCL and FL diagnostic samples lacking a classical, PCR‐detectable, t(11; 14) MTC (BCL1/IGH), or t(14; 18) major breakpoint region and minor cluster region (BCL2/IGH) rearrangements. Overall, TLA was performed on 20 MCL bone marrow (BM) or peripheral blood (PB) primary samples and on 20 FL BM, identifying a novel BCL1 or BCL2/IGH breakpoint in 16 MCL and 8 FL patients (80% and 40%, respectively). These new breakpoints (named BCL1‐TLA and BCL2‐TLA) were validated by ASO primers design and compared as MRD markers to classical IGH rearrangements in eight MCL: overall, MRD results by BCL1‐TLA were superimposable (R Pearson = 0.76) to the standardized IGH‐based approach. Moreover, MRD by BCL2‐TLA reached good sensitivity levels also in FL and was predictive of a primary refractory case. In conclusion, this study offers the proof of principle that TLA is a promising and reliable NGS‐based technology for the identification of novel molecular markers, suitable for further MRD analysis in previously not traceable MCL and FL patients.
Collapse
Affiliation(s)
- Elisa Genuardi
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | | | - Barbara Mantoan
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - Daniela Drandi
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - Martina Ferrante
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy.,Division of Hematology 1, AOU "Città della Salute e della Scienza di Torino", Torino, Italy
| | - Beatrice Alessandria
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - Irene Dogliotti
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy.,Division of Hematology 1, AOU "Città della Salute e della Scienza di Torino", Torino, Italy
| | - Daniele Grimaldi
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy.,Division of Hematology 1, AOU "Città della Salute e della Scienza di Torino", Torino, Italy
| | - Simone Ragaini
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy.,Division of Hematology 1, AOU "Città della Salute e della Scienza di Torino", Torino, Italy
| | - Michele Clerico
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy.,Division of Hematology 1, AOU "Città della Salute e della Scienza di Torino", Torino, Italy
| | - Mariella Lo Schirico
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | | | | | - Gian Maria Zaccaria
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | | | - Umberto Vitolo
- Department of Oncology, Division of Hematology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Stefano Luminari
- Hematology Unit, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy.,Medical Oncology, CHIMOMO department, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Federico
- Medical Oncology, CHIMOMO department, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Boccadoro
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy.,Division of Hematology 1, AOU "Città della Salute e della Scienza di Torino", Torino, Italy
| | | | | | - Marco Ladetto
- Division of Hematology, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Simone Ferrero
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Torino, Torino, Italy.,Division of Hematology 1, AOU "Città della Salute e della Scienza di Torino", Torino, Italy
| |
Collapse
|
27
|
Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, Yu Y, Park J, Raghava S, Welsh J, Rauscher M, Raghunathan G, Hsieh M, Chen YL, Nguyen HT, Nguyen N, Cipriano D, Fayadat-Dilman L. Predicting Antibody Developability Profiles Through Early Stage Discovery Screening. MAbs 2021; 12:1743053. [PMID: 32249670 PMCID: PMC7153844 DOI: 10.1080/19420862.2020.1743053] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies play an increasingly important role for the development of new drugs across multiple therapy areas. The term 'developability' encompasses the feasibility of molecules to successfully progress from discovery to development via evaluation of their physicochemical properties. These properties include the tendency for self-interaction and aggregation, thermal stability, colloidal stability, and optimization of their properties through sequence engineering. Selection of the best antibody molecule based on biological function, efficacy, safety, and developability allows for a streamlined and successful CMC phase. An efficient and practical high-throughput developability workflow (100 s-1,000 s of molecules) implemented during early antibody generation and screening is crucial to select the best lead candidates. This involves careful assessment of critical developability parameters, combined with binding affinity and biological properties evaluation using small amounts of purified material (<1 mg), as well as an efficient data management and database system. Herein, a panel of 152 various human or humanized monoclonal antibodies was analyzed in biophysical property assays. Correlations between assays for different sets of properties were established. We demonstrated in two case studies that physicochemical properties and key assay endpoints correlate with key downstream process parameters. The workflow allows the elimination of antibodies with suboptimal properties and a rank ordering of molecules for further evaluation early in the candidate selection process. This enables any further engineering for problematic sequence attributes without affecting program timelines.
Collapse
Affiliation(s)
- Marc Bailly
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Carl Mieczkowski
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Veronica Juan
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Essam Metwally
- Computation and Structural Chemistry, South San Francisco, CA, USA
| | - Daniela Tomazela
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Jeanne Baker
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Makiko Uchida
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Ester Kofman
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Fahimeh Raoufi
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Soha Motlagh
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Yao Yu
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Jihea Park
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Smita Raghava
- Pharmaceutical Sciences, Sterile FormulationSciences, Kenilworth, NJ, USA
| | - John Welsh
- Downstream Process Development andEngineering, Kenilworth, NJ, USA
| | - Michael Rauscher
- Downstream Process Development andEngineering, Kenilworth, NJ, USA
| | | | - Mark Hsieh
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Yi-Ling Chen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Hang Thu Nguyen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Nhung Nguyen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Dan Cipriano
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | | |
Collapse
|
28
|
Perdiguero P, Martín-Martín A, Benedicenti O, Díaz-Rosales P, Morel E, Muñoz-Atienza E, García-Flores M, Simón R, Soleto I, Cerutti A, Tafalla C. Teleost IgD +IgM - B Cells Mount Clonally Expanded and Mildly Mutated Intestinal IgD Responses in the Absence of Lymphoid Follicles. Cell Rep 2020; 29:4223-4235.e5. [PMID: 31875534 PMCID: PMC6941218 DOI: 10.1016/j.celrep.2019.11.101] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/19/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin D (IgD) is an ancient antibody with dual membrane-bound and fluid-phase antigen receptor functions. The biology of secreted IgD remains elusive. Here, we demonstrate that teleost IgD+IgM− plasmablasts constitute a major lymphocyte population in some mucosal surfaces, including the gut mucosa. Remarkably, secreted IgD binds to gut commensal bacteria, which in turn stimulate IgD gene transcription in gut B cells. Accordingly, secreted IgD from gut as well as gill mucosae, but not the spleen, show a V(D)J gene configuration consistent with microbiota-driven clonal expansion and diversification, including mild somatic hypermutation. By showing that secreted IgD establishes a mutualistic relationship with commensals, our findings suggest that secreted IgD may play an evolutionary conserved role in mucosal homeostasis. IgD+IgM− B cells constitute the main non-IgT B cell subset in rainbow trout guts Gut IgD responses establish a two-way interaction with the local microbiota Mucosal but not splenic IgD undergoes clonal expansion and diversification Despite the lack of germinal centers, mucosal IgD is mildly mutated in rainbow trout
Collapse
Affiliation(s)
- Pedro Perdiguero
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Alba Martín-Martín
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - Esther Morel
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - Rocío Simón
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Andrea Cerutti
- Catalan Institute for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain; Inflammatory and Cardiovascular Disorders Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| |
Collapse
|
29
|
Lefranc MP, Lefranc G. Immunoglobulins or Antibodies: IMGT ® Bridging Genes, Structures and Functions. Biomedicines 2020; 8:E319. [PMID: 32878258 PMCID: PMC7555362 DOI: 10.3390/biomedicines8090319] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics® information system founded in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science at the interface between immunogenetics and bioinformatics. For the first time, the immunoglobulin (IG) or antibody and T cell receptor (TR) genes were officially recognized as 'genes' as well as were conventional genes. This major breakthrough has allowed the entry, in genomic databases, of the IG and TR variable (V), diversity (D) and joining (J) genes and alleles of Homo sapiens and of other jawed vertebrate species, based on the CLASSIFICATION axiom. The second major breakthrough has been the IMGT unique numbering and the IMGT Collier de Perles for the V and constant (C) domains of the IG and TR and other proteins of the IG superfamily (IgSF), based on the NUMEROTATION axiom. IMGT-ONTOLOGY axioms and concepts bridge genes, sequences, structures and functions, between biological and computational spheres in the IMGT® system (Web resources, databases and tools). They provide the IMGT Scientific chart rules to identify, to describe and to analyse the IG complex molecular data, the huge diversity of repertoires, the genetic (alleles, allotypes, CNV) polymorphisms, the IG dual function (paratope/epitope, effector properties), the antibody humanization and engineering.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
30
|
Apgar JR, Tam ASP, Sorm R, Moesta S, King AC, Yang H, Kelleher K, Murphy D, D’Antona AM, Yan G, Zhong X, Rodriguez L, Ma W, Ferguson DE, Carven GJ, Bennett EM, Lin L. Modeling and mitigation of high-concentration antibody viscosity through structure-based computer-aided protein design. PLoS One 2020; 15:e0232713. [PMID: 32379792 PMCID: PMC7205207 DOI: 10.1371/journal.pone.0232713] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
For an antibody to be a successful therapeutic many competing factors require optimization, including binding affinity, biophysical characteristics, and immunogenicity risk. Additional constraints may arise from the need to formulate antibodies at high concentrations (>150 mg/ml) to enable subcutaneous dosing with reasonable volume (ideally <1.0 mL). Unfortunately, antibodies at high concentrations may exhibit high viscosities that place impractical constraints (such as multiple injections or large needle diameters) on delivery and impede efficient manufacturing. Here we describe the optimization of an anti-PDGF-BB antibody to reduce viscosity, enabling an increase in the formulated concentration from 80 mg/ml to greater than 160 mg/ml, while maintaining the binding affinity. We performed two rounds of structure guided rational design to optimize the surface electrostatic properties. Analysis of this set demonstrated that a net-positive charge change, and disruption of negative charge patches were associated with decreased viscosity, but the effect was greatly dependent on the local surface environment. Our work here provides a comprehensive study exploring a wide sampling of charge-changes in the Fv and CDR regions along with targeting multiple negative charge patches. In total, we generated viscosity measurements for 40 unique antibody variants with full sequence information which provides a significantly larger and more complete dataset than has previously been reported.
Collapse
Affiliation(s)
- James R. Apgar
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Amy S. P. Tam
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Rhady Sorm
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Sybille Moesta
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Amy C. King
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Han Yang
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Kerry Kelleher
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Denise Murphy
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Aaron M. D’Antona
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Guoying Yan
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Xiaotian Zhong
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Linette Rodriguez
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Weijun Ma
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Darren E. Ferguson
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Gregory J. Carven
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Eric M. Bennett
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Laura Lin
- BioMedicine Design, Pfizer Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
31
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
32
|
Ko TM, Kiyotani K, Chang JS, Park JH, Yin Yew P, Chen YT, Wu JY, Nakamura Y. Immunoglobulin profiling identifies unique signatures in patients with Kawasaki disease during intravenous immunoglobulin treatment. Hum Mol Genet 2019; 27:2671-2677. [PMID: 29771320 PMCID: PMC6048982 DOI: 10.1093/hmg/ddy176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/01/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022] Open
Abstract
Identifying the causes of high fever syndromes such as Kawasaki disease (KD) remains challenging. To investigate pathogen exposure signatures in suspected pathogen-mediated diseases such as KD, we performed immunoglobulin (Ig) profiling using a next-generation sequencing method. After intravenous Ig (IVIG) treatment, we observed disappearance of clonally expanded IgM clonotypes, which were dominantly observed in acute-phase patients. The complementary-determining region 3 (CDR3) sequences of dominant IgM clonotypes in acute-phase patients were commonly observed in other Ig isotypes. In acute-phase KD patients, we identified 32 unique IgM CDR3 clonotypes shared in three or more cases. Furthermore, before the IVIG treatment, the sums of dominant IgM clonotypes in IVIG-resistant KD patients were significantly higher than those of IVIG-sensitive KD patients. Collectively, we demonstrate a novel approach for identifying certain Ig clonotypes for potentially interacting with pathogens involved in KD; this approach could be applied for a wide variety of fever-causing diseases of unknown origin.
Collapse
Affiliation(s)
- Tai-Ming Ko
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Kazuma Kiyotani
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jeng-Sheng Chang
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Jae-Hyun Park
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Poh Yin Yew
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Schwartz GW, Shauli T, Linial M, Hershberg U. Serine substitutions are linked to codon usage and differ for variable and conserved protein regions. Sci Rep 2019; 9:17238. [PMID: 31754132 PMCID: PMC6872785 DOI: 10.1038/s41598-019-53452-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/01/2019] [Indexed: 11/11/2022] Open
Abstract
Serine is the only amino acid that is encoded by two disjoint codon sets (TCN & AGY) so that a tandem substitution of two nucleotides is required to switch between the two sets. We show that these codon sets underlie distinct substitution patterns at positions subject to purifying and diversifying selections. We found that in humans, positions that are conserved among ~100 vertebrates, and thus subjected to purifying selection, are enriched for substitutions involving serine (TCN, denoted S'), proline, and alanine, (S'PA). In contrast, the less conserved positions are enriched for serine encoded with AGY codons (denoted S″), glycine and asparagine, (GS″N). We tested this phenomenon in the HIV envelope glycoprotein (gp120), and the V-gene that encodes B-cell receptors/antibodies. These fast evolving proteins both have hypervariable positions, which are under diversifying selection, closely adjacent to highly conserved structural regions. In both instances, we identified an opposite abundance of two groups of serine substitutions, with enrichment of S'PA in the conserved positions, and GS″N in the hypervariable regions. Finally, we analyzed the substitutions across 60,000 individual human exomes to show that, when serine has a specific functional constraint of phosphorylation capability, S' codons are 32-folds less prone than S″ to substitutions to Threonine or Tyrosine that could potentially retain the phosphorylation site capacity. Combined, our results, that cover evolutionary signals at different temporal scales, demonstrate that through its encoding by two codon sets, serine allows for the existence of alternating substitution patterns within positions of functional maintenance versus sites of rapid diversification.
Collapse
Affiliation(s)
- Gregory W Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Tair Shauli
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri Hershberg
- Drexel School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA.
- Department of Microbiology and Immunology, Drexel College of Medicine, Drexel University, Philadelphia, USA.
- Department of Human Biology, Faculty of Science, University of Haifa, Haifa, Israel.
| |
Collapse
|
34
|
Kuo HC, Pan CT, Huang YH, Huang FC, Lin YS, Li SC, Huang LH. Global Investigation of Immune Repertoire Suggests Kawasaki Disease Has Infectious Cause. Circ J 2019; 83:2070-2078. [PMID: 31378745 DOI: 10.1253/circj.cj-19-0206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Kawasaki disease (KD) severely threatens young children's health worldwide. The pathogenic mechanism of KD has not yet been solved, so there is still debate over whether KD is an infectious disease or an autoimmune disease.Methods and Results:To solve this problem, an immune repertoire analysis of KD was conducted. We collected blood cell RNA samples and prepared them into amplicons with iRepertoire kits. The amplicons were sequenced and analyzed with the iRepertoire pipeline. We first identified KD-specific VJ and VDJ forms that had the potential to serve as biomarkers of KD. In addition, the KD-specific VDJ forms were contributed mostly by immunoglobulin G. The D50 value analysis showed that B-cell diversity in KD is decreased, suggesting unique immunoglobulins are produced in KD. Moreover, V, D and J segment usage in IgA, IgG and IgM was consistent with previous KD studies. Further comparison showed no difference in CDR3 peptide length between KD and fever controls (subjects with fever but not diagnosed as KD), indicting KD had B-cell selection phenomenon that has a non-autoimmune pattern. The comparison of amino acid usage of the CDR3 region demonstrated a preference for hydrophilic amino acids in KD. CONCLUSIONS The results of D50 value, VDJ usage and CDR3 peptide length analyses suggested the characteristics of infectious disease for KD.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Cheng-Tsung Pan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Fu-Chen Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Yeong-Shin Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University.,Department of Biological Science and Technology, National Chiao Tung University
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Lien-Hung Huang
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| |
Collapse
|
35
|
Enrichment of melanoma-associated T cells in 6-thioguanine-resistant T cells from metastatic melanoma patients. Melanoma Res 2019; 30:52-61. [PMID: 31135600 DOI: 10.1097/cmr.0000000000000625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examines whether 6-thioguanine resistant T cells (mutant) from metastatic melanoma patients are enriched for melanoma-associated T cells compared to T cells obtained analogously without thioguanine selection (wild-type). Melanoma-associated antigen pentamer staining was performed on 5 tumour and 9 peripheral blood samples from metastatic melanoma patients. T cell receptor beta chain repertoire was examined via Sanger sequencing of mutant and wild-type in blood and tumour from metastatic melanoma patients at times of tumour progression (n = 8) and via Illumina sequencing in tumour derived T cells and in uncultured T cells (uncultured), wild-type and mutant from blood before and after immune checkpoint blockade (n = 1). Mutant from tumour (3 of 5; P < 0.001), but not blood (0 of 9), were enriched compared to wild-type for binding melanoma-associated antigen pentamers. T cell receptor beta analysis in patients with tumour progression (n = 8) detected increased melanoma associated T cells in mutant compared to wild-type from blood (Monte Carlo P = 10). Comparison of blood samples before and after immune checkpoint blockade with prior tumor from one metastatic melanoma patient detected increased T cell receptor beta sharing between tumour and mutant compared to tumour and wild-type or tumour and uncultured: 11.0% (72/656), 1.5% (206/13 639) and 1.3% (381/29 807), respectively (Monte Carlo P = 10 for mutant versus wild-type and mutant versus uncultured). These data demonstrate that mutant in metastatic melanoma patients are enriched for melanoma-associated T cells and are candidate probes to study in vivo melanoma-reactive T cells.
Collapse
|
36
|
Zhang Q, Zhang L, Zhou C, Yang Y, Yin Z, Wu D, Tang K, Cao Z. DSab-origin: a novel IGHD sensitive VDJ mapping method and its application on antibody response after influenza vaccination. BMC Bioinformatics 2019; 20:137. [PMID: 30871465 PMCID: PMC6417009 DOI: 10.1186/s12859-019-2715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2019] [Indexed: 12/04/2022] Open
Abstract
Background Functional antibody genes are often assembled by VDJ recombination and then diversified by somatic hypermutation. Identifying the combination of sourcing germline genes is critical to understand the process of antibody maturation, which may facilitate the diagnostics and rapid generation of human monoclonal antibodies in therapeutics. Despite of successful efforts in V and J fragment assignment, method in D segment tracing remains weak for immunoglobulin heavy diversity (IGHD). Results In this paper, we presented a D-sensitive mapping method called DSab-origin with accuracies around 90% in human monoclonal antibody data and average 95.8% in mouse data. Besides, DSab-origin achieved the best performance in holistic prediction of VDJ segments assignment comparing with other methods commonly used in simulation data. After that, an application example was explored on the antibody response based on a time-series antibody sequencing data after influenza vaccination. The result indicated that, despite the personal response among different donors, IGHV3–7 and IGHD4–17 were likely to be dominated gene segments in these three donors. Conclusions This work filled in a computational gap in D segment assignment for VDJ germline gene identification in antibody research. And it offered an application example of DSab-origin for studying the antibody maturation process after influenza vaccination. Electronic supplementary material The online version of this article (10.1186/s12859-019-2715-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingchen Zhang
- Shanghai 10th people's hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Lu Zhang
- Shanghai 10th people's hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Chen Zhou
- Shanghai 10th people's hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yiyan Yang
- Shanghai 10th people's hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zuojing Yin
- Shanghai 10th people's hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Dingfeng Wu
- Shanghai 10th people's hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Kailin Tang
- Shanghai 10th people's hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhiwei Cao
- Shanghai 10th people's hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
37
|
Vaks L, Litvak-Greenfeld D, Dror S, Shefet-Carasso L, Matatov G, Nahary L, Shapira S, Hakim R, Alroy I, Benhar I. Design Principles for Bispecific IgGs, Opportunities and Pitfalls of Artificial Disulfide Bonds. Antibodies (Basel) 2018; 7:E27. [PMID: 31544879 PMCID: PMC6640675 DOI: 10.3390/antib7030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Bispecific antibodies (bsAbs) are antibodies with two binding sites directed at different antigens, enabling therapeutic strategies not achievable with conventional monoclonal antibodies (mAbs). Since bispecific antibodies are regarded as promising therapeutic agents, many different bispecific design modalities have been evaluated, but as many of them are small recombinant fragments, their utility could be limited. For some therapeutic applications, full-size IgGs may be the optimal format. Two challenges should be met to make bispecific IgGs; one is that each heavy chain will only pair with the heavy chain of the second specificity and that homodimerization be prevented. The second is that each heavy chain will only pair with the light chain of its own specificity and not with the light chain of the second specificity. The first solution to the first criterion (knobs into holes, KIH) was presented in 1996 by Paul Carter's group from Genentech. Additional solutions were presented later on. However, until recently, out of >120 published bsAb formats, only a handful of solutions for the second criterion that make it possible to produce a bispecific IgG by a single expressing cell were suggested. We present a solution for the second challenge-correct pairing of heavy and light chains of bispecific IgGs; an engineered (artificial) disulfide bond between the antibodies' variable domains that asymmetrically replaces the natural disulfide bond between CH1 and CL. We name antibodies produced according to this design "BIClonals". Bispecific IgGs where the artificial disulfide bond is placed in the CH1-CL interface are also presented. Briefly, we found that an artificial disulfide bond between VH position 44 to VL position 100 provides for effective and correct H-L chain pairing while also preventing the formation of wrong H-L chain pairs. When the artificial disulfide bond links the CH1 with the CL domain, effective H-L chain pairing also occurs, but in some cases, wrong H-L pairing is not totally prevented. We conclude that H-L chain pairing seems to be driven by VH-VL interfacial interactions that differ between different antibodies, hence, there is no single optimal solution for effective and precise assembly of bispecific IgGs, making it necessary to carefully evaluate the optimal solution for each new antibody.
Collapse
Affiliation(s)
- Lilach Vaks
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Dana Litvak-Greenfeld
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Stav Dror
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - LeeRon Shefet-Carasso
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Galia Matatov
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Limor Nahary
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shiran Shapira
- Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel.
| | - Rahely Hakim
- FusiMab, Ltd., 14 Shenkar St. POB 4093 Herzelia, Israel.
| | - Iris Alroy
- FusiMab, Ltd., 14 Shenkar St. POB 4093 Herzelia, Israel.
| | - Itai Benhar
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
38
|
Allergic conversion of protective mucosal immunity against nasal bacteria in patients with chronic rhinosinusitis with nasal polyposis. J Allergy Clin Immunol 2018; 143:1163-1175.e15. [PMID: 30053529 DOI: 10.1016/j.jaci.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/13/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) is characterized by eosinophilic inflammation and polyposis at the nose and paranasal sinus and a high concentration of IgE in nasal polyps (NPs). The causative antigen and pathogenesis of CRSwNP remain unknown. OBJECTIVE We aimed to identify reactive allergens of IgE antibodies produced locally in NPs of patients with CRSwNP. We also attempted to unravel the differentiation pathway of IgE-producing B cells in NPs. METHODS IgE reactivity of patients with CRSwNP was investigated by characterizing single cell-derived mAbs. T-cell response against identified allergens was investigated in vitro. NP-infiltrating lymphocytes were characterized by using flow cytometry. Immunoglobulins expressed in NPs were analyzed by using high-throughput DNA sequencing for immunoglobulin. RESULTS About 20% of isolated IgE antibodies derived from NP-residing plasmablasts specifically recognized surface determinants of nasal bacteria, such as Staphylococcus aureus, Streptococcus pyogenes, and Haemophilus influenzae. A TH2 response against S pyogenes was observed in patients with CRSwNP. Flow cytometric analysis revealed sizable germinal center B-like cell and plasmablast subsets expressing IgE on the cell surface in NPs. High-throughput DNA sequencing immunoglobulin analysis highlighted the clonal connectivity of IgE with IgG and IgA1. The Iε-Cα1 circle transcript was detected in NPs. CONCLUSIONS In patients with CRSwNP, nasal bacteria-reactive B cells differentiate into IgE-producing B cells through IgG/IgA1-IgE class switching, suggesting that allergic conversion of the mucosal response against nasal bacteria underlies disease pathogenesis.
Collapse
|
39
|
Lin KR, Deng FW, Jin YB, Chen XP, Pan YM, Cui JH, You ZX, Chen HW, Luo W. T cell receptor repertoire profiling predicts the prognosis of HBV-associated hepatocellular carcinoma. Cancer Med 2018; 7:3755-3762. [PMID: 29947152 PMCID: PMC6089190 DOI: 10.1002/cam4.1610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/28/2023] Open
Abstract
Tumor‐infiltrating T cell repertoire has been demonstrated to be closely associated with anti‐tumor immune response. However, the relationship between T cell repertoire in tumor tissue and prognosis has never been reported in Hepatocellular carcinoma (HCC). We performed the high‐throughput T cell receptor (TCR) sequencing to systematically characterize the infiltrating T cell repertoires of tumor and matched adjacent normal tissues from 23 HBV‐associated HCC patients. Significant differences on usage frequencies of some Vβ, Jβ, and Vβ‐Jβ paired genes have been found between the 2 groups of tissue samples, but no significant difference of TCR repertoire diversity could be found. Interestingly, the similarity of TCR repertoires between paired samples or the TNM stage alone could not be helpful to evaluate the prognosis of patients very well, but their combination could serve as an efficient prognostic indicator that the patients with early stage and high similarity showed a better prognosis. This is the first attempt to assess the potential value of TCR repertoire in HCC prognosis, and our findings could serve as a complement for the characterization of TCR repertoire in HCC.
Collapse
Affiliation(s)
- Kai-Rong Lin
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Fei-Wen Deng
- Department of Hepatobiliary Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Ya-Bin Jin
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Xiang-Ping Chen
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Ying-Ming Pan
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Jin-Huan Cui
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | | | - Huan-Wei Chen
- Department of Hepatobiliary Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Wei Luo
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| |
Collapse
|
40
|
High-Resolution HLA-Typing by Next-Generation Sequencing of Randomly Fragmented Target DNA. Methods Mol Biol 2018. [PMID: 29858802 DOI: 10.1007/978-1-4939-8546-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
PCR- or probe-based targeted capturing enables the enrichment of specific genomic loci prior to Next-Generation Sequencing (NGS). Here, we describe a probe-based protocol, which allows for high-resolution HLA typing of DNA samples by NGS. We also describe existing software tools that can be used for the subsequent HLA data analysis. Key prerequisites that warrant an accurate HLA calling are specific mappings of the sequencing reads, phasing of the mapped reads, and the possibility to perform a manual inspection/curation of the read mapping.
Collapse
|
41
|
Cui JH, Jin YB, Lin KR, Xiao P, Chen XP, Pan YM, Lin W, Wu ZC, Guo DM, Mao XF, Zhang CL, Lian WL, Luo W. Characterization of peripheral blood TCR repertoire in patients with ankylosing spondylitis by high-throughput sequencing. Hum Immunol 2018; 79:485-490. [DOI: 10.1016/j.humimm.2018.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
|
42
|
Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Díaz Rosales P, Granja AG, Secombes CJ, Holland JW, Tafalla C. Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout. Front Immunol 2018; 9:1203. [PMID: 29904385 PMCID: PMC5990594 DOI: 10.3389/fimmu.2018.01203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 11/15/2022] Open
Abstract
Proliferative kidney disease (PKD) is a widespread disease caused by the endoparasite Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea). Clinical disease, provoked by the proliferation of extrasporogonic parasite stages, is characterized by a chronic kidney pathology with underlying transcriptional changes indicative of altered B cell responses and dysregulated T-helper cell-like activities. Despite the relevance of PKD to European and North American salmonid aquaculture, no studies, to date, have focused on further characterizing the B cell response during the course of this disease. Thus, in this work, we have studied the behavior of diverse B cell populations in rainbow trout (Oncorhynchus mykiss) naturally infected with T. bryosalmonae at different stages of preclinical and clinical disease. Our results show a clear upregulation of all trout immunoglobulins (Igs) (IgM, IgD, and IgT) demonstrated by immunohistochemistry and Western blot analysis, suggesting the alteration of diverse B cell populations that coexist in the infected kidney. Substantial changes in IgM, IgD, and IgT repertoires were also identified throughout the course of the disease further pointing to the involvement of the three Igs in PKD through what appear to be independently regulated mechanisms. Thus, our results provide strong evidence of the involvement of IgD in the humoral response to a specific pathogen for the first time in teleosts. Nevertheless, it was IgT, a fish-specific Ig isotype thought to be specialized in mucosal immunity, which seemed to play a prevailing role in the kidney response to T. bryosalmonae. We found that IgT was the main Ig coating extrasporogonic parasite stages, IgT+ B cells were the main B cell subset that proliferated in the kidney with increasing kidney pathology, and IgT was the Ig for which more significant changes in repertoire were detected. Hence, although our results demonstrate a profound dysregulation of different B cell subsets during PKD, they point to a major involvement of IgT in the immune response to the parasite. These results provide further insights into the pathology of PKD that may facilitate the future development of control strategies.
Collapse
Affiliation(s)
- Beatriz Abos
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Itziar Estensoro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.,Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Madrid, Spain
| | - Pedro Perdiguero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Marc Faber
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Aitor G Granja
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| |
Collapse
|
43
|
Santa-Maria CA, Kato T, Park JH, Kiyotani K, Rademaker A, Shah AN, Gross L, Blanco LZ, Jain S, Flaum L, Tellez C, Stein R, Uthe R, Gradishar WJ, Cristofanilli M, Nakamura Y, Giles FJ. A pilot study of durvalumab and tremelimumab and immunogenomic dynamics in metastatic breast cancer. Oncotarget 2018; 9:18985-18996. [PMID: 29721177 PMCID: PMC5922371 DOI: 10.18632/oncotarget.24867] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoint inhibitors produce modest responses in metastatic breast cancer, however, combination approaches may improve responses. A single arm pilot study was designed to determine the overall response rate (ORR) of durvalumab and tremelimumab, and evaluate immunogenomic dynamics in metastatic endocrine receptor (ER) positive or triple negative breast cancer (TNBC). Simon two-stage design indicated at least four responses from the first 18 patients were needed to proceed with the second stage. T-cell receptor (TCR) sequencing and immune-gene expression profiling were conducted at baseline and two months, whole exome sequencing was conducted at baseline. Eighteen evaluable patients were accrued (11 ER-positive; seven TNBC). Only three patients had a response (ORR = 17%), thus the study did not proceed to the second stage. Responses were only observed in patients with TNBC (ORR = 43%). Responders versus non-responders had upregulation of CD8, granzyme A, and perforin 1 gene expression, and higher mutational and neoantigen burden. Patients with TNBC had an oligoclonal shift of the most abundant TCR-beta clonotypes compared to those with ER-positive disease, p = 0.004. We conclude responses are low in unselected metastatic breast cancer, however, higher rates of clinical benefit were observed in TNBC. Immunogenomic dynamics may help identify phenotypes most likely to respond to immunotherapy.
Collapse
Affiliation(s)
| | - Taigo Kato
- The University of Chicago, Department of Medicine, Chicago, Illinois, USA
| | - Jae-Hyun Park
- The University of Chicago, Department of Medicine, Chicago, Illinois, USA
| | - Kazuma Kiyotani
- The University of Chicago, Department of Medicine, Chicago, Illinois, USA
| | - Alfred Rademaker
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Ami N. Shah
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Leeaht Gross
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Luis Z. Blanco
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Sarika Jain
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Lisa Flaum
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Claudia Tellez
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Regina Stein
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Regina Uthe
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - William J. Gradishar
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Massimo Cristofanilli
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Yusuke Nakamura
- The University of Chicago, Department of Medicine, Chicago, Illinois, USA
- The University of Chicago, Department of Surgery, Chicago, Illinois, USA
| | - Francis J. Giles
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
44
|
Pristovšek N, Hansen HG, Sergeeva D, Borth N, Lee GM, Andersen MR, Kildegaard HF. Using Titer and Titer Normalized to Confluence Are Complementary Strategies for Obtaining Chinese Hamster Ovary Cell Lines with High Volumetric Productivity of Etanercept. Biotechnol J 2018; 13:e1700216. [DOI: 10.1002/biot.201700216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/15/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB); Muthgasse 11 1190 Vienna Austria
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
- Department of Biological Sciences, KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark; Søltofts Plads, Building 221 2800 Kgs. Lyngby Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kemitorvet, Building 220 2800 Kgs. Lyngby Denmark
| |
Collapse
|
45
|
Tsuruta M, Ueda S, Yew PY, Fukuda I, Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Irie A, Senju S, Yuba E, Kamba T, Eto M, Nakayama H, Nishimura Y. Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4 + T cells expressing converged T-cell receptor genes in vitro. Oncoimmunology 2018; 7:e1415687. [PMID: 29632734 DOI: 10.1080/2162402x.2017.1415687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) and M-phase phosphoprotein 1 (MPHOSPH1) are human cancer testis antigens that are frequently overexpressed in urinary bladder cancer. In a phase I/II clinical trial, a DEPDC1- and MPHOSPH1-derived short peptide vaccine demonstrated promising efficacy in preventing bladder cancer recurrence. Here, we aimed to identify long peptides (LPs) derived from DEPDC1 and MPHOSPH1 that induced both T-helper (Th) cells and tumor-reactive cytotoxic T lymphocytes (CTLs). Stimulation of peripheral blood mononuclear cells (PBMCs) from healthy donors with the synthetic DEPDC1- and MPHOSPH1-LPs predicted to bind to promiscuous human leukocyte antigen (HLA) class II molecules by a computer algorithm induced specific CD4+ T cells as revealed by interferon-γ enzyme-linked immunospot assays. Three of six LPs encompassed HLA-A2- or -A24-restricted CTL epitopes or both, and all six LPs stimulated DEPDC1- or MPHOSPH1-specific Th cells restricted by promiscuous and frequently observed HLA class II molecules in the Japanese population. Some LPs are naturally processed from the proteins in DCs, and the capacity of these LPs to cross-prime CTLs was confirmed in vivo using HLA-A2 or -A24 transgenic mice. The LP-specific and HLA class II-restricted T-cell responses were also observed in PBMCs from patients with bladder cancer. Repeated stimulation of PBMCs with DEPDC1-LPs and MPHOSPH1-LPs yielded clonal Th cells expressing specific T-cell receptor (TCR)-α and β genes. These DEPDC1- or MPHOSPH1-derived LPs may have applications in immunotherapy in patients with bladder cancer, and the TCR genes identified may be useful for monitoring of Th cells specific to LPs in vivo.
Collapse
Affiliation(s)
- Miki Tsuruta
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Shohei Ueda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Poh Yin Yew
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Isao Fukuda
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Sachiko Yoshimura
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences (Medicine), University of Toyama, Sugitani, Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Innovative Cancer Immunotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Toyama, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Nishimura Project Laboratory, Center for Resource Development and Analysis, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
46
|
Teplyakov A, Obmolova G, Malia TJ, Raghunathan G, Martinez C, Fransson J, Edwards W, Connor J, Husovsky M, Beck H, Chi E, Fenton S, Zhou H, Almagro JC, Gilliland GL. Structural insights into humanization of anti-tissue factor antibody 10H10. MAbs 2018; 10:269-277. [PMID: 29283291 PMCID: PMC5825201 DOI: 10.1080/19420862.2017.1412026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Murine antibody 10H10 raised against human tissue factor is unique in that it blocks the signaling pathway, and thus inhibits angiogenesis and tumor growth without interfering with coagulation. As a potential therapeutic, the antibody was humanized in a two-step procedure. Antigen-binding loops were grafted onto selected human frameworks and the resulting chimeric antibody was subjected to affinity maturation by using phage display libraries. The results of humanization were analyzed from the structural perspective through comparison of the structure of a humanized variant with the parental mouse antibody. This analysis revealed several hot spots in the framework region that appear to affect antigen binding, and therefore should be considered in human germline selection. In addition, some positions in the Vernier zone, e.g., residue 71 in the heavy chain, that are traditionally thought to be crucial appear to tolerate amino acid substitutions without any effect on binding. Several humanized variants were produced using both short and long forms of complementarity-determining region (CDR) H2 following the difference in the Kabat and Martin definitions. Comparison of such pairs indicated consistently higher thermostability of the variants with short CDR H2. Analysis of the binding data in relation to the structures singled out the ImMunoGeneTics information system® germline IGHV1-2*01 as dubious owing to two potentially destabilizing mutations as compared to the other alleles of the same germline and to other human germlines.
Collapse
Affiliation(s)
- Alexey Teplyakov
- a Janssen Research and Development, LLC , 1400 McKean Road, Spring House, PA , USA
| | - Galina Obmolova
- a Janssen Research and Development, LLC , 1400 McKean Road, Spring House, PA , USA
| | - Thomas J Malia
- a Janssen Research and Development, LLC , 1400 McKean Road, Spring House, PA , USA
| | - Gopalan Raghunathan
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Christian Martinez
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Johan Fransson
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Wilson Edwards
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Judith Connor
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Matthew Husovsky
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Heena Beck
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Ellen Chi
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Sandra Fenton
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Hong Zhou
- b Janssen Research and Development, LLC , 3210 Merryfield Row, San Diego , CA , USA
| | - Juan Carlos Almagro
- a Janssen Research and Development, LLC , 1400 McKean Road, Spring House, PA , USA
| | - Gary L Gilliland
- a Janssen Research and Development, LLC , 1400 McKean Road, Spring House, PA , USA
| |
Collapse
|
47
|
Sullivan LC, Walpole NG, Farenc C, Pietra G, Sum MJW, Clements CS, Lee EJ, Beddoe T, Falco M, Mingari MC, Moretta L, Gras S, Rossjohn J, Brooks AG. A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors. J Biol Chem 2017; 292:21149-21158. [PMID: 28972140 PMCID: PMC5743087 DOI: 10.1074/jbc.m117.807719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
αβ T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells
- Conserved Sequence
- Crystallography, X-Ray
- Energy Metabolism
- Epitope Mapping
- Epitopes, T-Lymphocyte
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Mutation
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/agonists
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Nicholas G Walpole
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matthew J W Sum
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Craig S Clements
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Eleanor J Lee
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Travis Beddoe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Michela Falco
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia,
| |
Collapse
|
48
|
Genuardi E, Barbero D, Dogliotti I, Mantoan B, Drandi D, Gambella M, Zaccaria GM, Monitillo L, Della Starza I, Cavalli M, De Novi LA, Ciabatti E, Grassi S, Gazzola A, Mannu C, Del Giudice I, Galimberti S, Agostinelli C, Piccaluga PP, Ladetto M, Ferrero S. Ficoll-hypaque separation vs whole blood lysis: Comparison of efficiency and impact on minimal residual disease analysis. Int J Lab Hematol 2017; 40:201-208. [PMID: 29205868 DOI: 10.1111/ijlh.12766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/26/2017] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The high-throughput era remarkably changed molecular laboratory practice. Actually, the increasing number of processed samples requires to reduce the risk of operator biases, by automating or simplifying as much as possible both the analytical and the pre-analytical phases. Minimal residual disease (MRD) studies in hematology often require a simultaneous processing of many bone marrow and peripheral blood samples from patients enrolled in prospective, multicenter, clinical trials, monitored at several planned time points. METHODS In this study, we demonstrate that red blood cell lysis (RBL) pre-analytical procedure can replace the time-consuming Ficoll stratification as cell recovering step. Here, we show a MRD comparison study using both total white blood cells and mononuclear cells recovered by the 2 procedures from 46 follicular lymphoma (FL), 15 multiple myeloma (MM), and 11 mantle cell lymphoma (MCL) patients enrolled in prospective clinical trials. RESULTS The experiments were performed in the 4 laboratories of the Fondazione Italiana Linfomi (FIL) MRD Network and showed superimposable results, in terms of good correlation (R = 0.87) of the MRD data obtained by recovering blood cells by the 2 approaches. CONCLUSION Based on these results, the FIL MRD Network suggests to optimize the pre-analytical phases introducing RBL approach for cell recovery in the clinical trials including MRD analysis.
Collapse
Affiliation(s)
- E. Genuardi
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
| | - D. Barbero
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
| | - I. Dogliotti
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
| | - B. Mantoan
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
| | - D. Drandi
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
| | - M. Gambella
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
| | - G. M. Zaccaria
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
- Division of Hematology; Department of Cellular Biotechnologies and Hematology; “Sapienza” University of Rome; Rome Italy
- Division of Hematology; Department of Oncology; Santa Chiara Hospital; Pisa Italy
- Department of Medical Biotechnologies; University of Siena; Siena Italy
- Hematopathology Section; Department of Experimental, Diagnostic, and Specialty Medicine; S. Orsola-Malpighi Hospital; Bologna University; Bologna Italy. Division of Hematology; Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo; Alessandria Italy. Department of Electronics and Telecommunications; Politecnico di Torino; Torino Italy
| | - L. Monitillo
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
| | - I. Della Starza
- Division of Hematology; Department of Cellular Biotechnologies and Hematology; “Sapienza” University of Rome; Rome Italy
| | - M. Cavalli
- Division of Hematology; Department of Cellular Biotechnologies and Hematology; “Sapienza” University of Rome; Rome Italy
| | - L. A. De Novi
- Division of Hematology; Department of Cellular Biotechnologies and Hematology; “Sapienza” University of Rome; Rome Italy
| | - E. Ciabatti
- Division of Hematology; Department of Oncology; Santa Chiara Hospital; Pisa Italy
| | - S. Grassi
- Division of Hematology; Department of Oncology; Santa Chiara Hospital; Pisa Italy
- Department of Medical Biotechnologies; University of Siena; Siena Italy
| | - A. Gazzola
- Hematopathology Section; Department of Experimental, Diagnostic, and Specialty Medicine; S. Orsola-Malpighi Hospital; Bologna University; Bologna Italy
| | - C. Mannu
- Hematopathology Section; Department of Experimental, Diagnostic, and Specialty Medicine; S. Orsola-Malpighi Hospital; Bologna University; Bologna Italy
| | - I. Del Giudice
- Division of Hematology; Department of Cellular Biotechnologies and Hematology; “Sapienza” University of Rome; Rome Italy
| | - S. Galimberti
- Division of Hematology; Department of Oncology; Santa Chiara Hospital; Pisa Italy
| | - C. Agostinelli
- Hematopathology Section; Department of Experimental, Diagnostic, and Specialty Medicine; S. Orsola-Malpighi Hospital; Bologna University; Bologna Italy
| | - P. P. Piccaluga
- Hematopathology Section; Department of Experimental, Diagnostic, and Specialty Medicine; S. Orsola-Malpighi Hospital; Bologna University; Bologna Italy
| | - M. Ladetto
- Division of Hematology; Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo; Alessandria Italy
| | - S. Ferrero
- Department of Molecular Biotechnologies and Health Sciences; Division of Hematology; University of Torino; Torino Italy
| | | |
Collapse
|
49
|
Characterization of the B-cell receptor repertoires in peanut allergic subjects undergoing oral immunotherapy. J Hum Genet 2017; 63:239-248. [PMID: 29192240 DOI: 10.1038/s10038-017-0364-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 12/12/2022]
Abstract
B-cell receptors (BCRs) play a critical role in adaptive immunity as they generate highly diverse immunoglobulin repertoires to recognize a wide variety of antigens. To better understand immune responses, it is critically important to establish a quantitative and rapid method to analyze BCR repertoire comprehensively. Here, we developed "Bcrip", a novel approach to characterize BCR repertoire by sequencing millions of BCR cDNA using next-generation sequencer. Using this method and quantitative real-time PCR, we analyzed expression levels and repertoires of BCRs in a total of 17 peanut allergic subjects' peripheral blood samples before and after receiving oral immunotherapy (OIT) or placebo. By our methods, we successfully identified all of variable (V), joining (J), and constant (C) regions, in an average of 79.1% of total reads and 99.6% of these VJC-mapped reads contained the C region corresponding to the isotypes that we aimed to analyze. In the 17 peanut allergic subjects' peripheral blood samples, we observed an oligoclonal enrichment of certain immunoglobulin heavy chain alpha (IGHA) and IGH gamma (IGHG) clones (P = 0.034 and P = 0.027, respectively) in peanut allergic subjects after OIT. This newly developed BCR sequencing and analysis method can be applied to investigate B-cell repertoires in various research areas, including food allergies as well as autoimmune and infectious diseases.
Collapse
|
50
|
Ramesh A, Darko S, Hua A, Overman G, Ransier A, Francica JR, Trama A, Tomaras GD, Haynes BF, Douek DC, Kepler TB. Structure and Diversity of the Rhesus Macaque Immunoglobulin Loci through Multiple De Novo Genome Assemblies. Front Immunol 2017; 8:1407. [PMID: 29163486 PMCID: PMC5663730 DOI: 10.3389/fimmu.2017.01407] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
The rhesus macaque is a critically important animal model in biomedical research, most recently playing a key role in the development of vaccines against human immunodeficiency virus-1. Nevertheless, the immunoglobulin (Ig) loci of macaques are as yet incompletely determined and our understanding of differences between human and macaque humoral immunity remains deficient. We completed a high-coverage, high-quality whole genome sequencing and assembly project with a single rhesus macaque of Indian origin, and partial genome assemblies using genomic molecular targeting of the Ig loci in nine other rhesus macaques of Indian origin. These data indicate that the macaque Ig loci are substantially more diverse than those in humans, including greater sequence diversity and copy-number variation between individuals. It appears likely that such copy-number variation even occurs between allelic loci within individuals. Different Ig gene families in the macaque show distinct relationships to the corresponding human gene families and appear to evolve under different mechanisms. These results raise intriguing questions about the evolution of antigen receptors in primates but also have important practical implications for the design and interpretation of biomedical studies.
Collapse
Affiliation(s)
- Akshaya Ramesh
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, MA, United States
| | - Sam Darko
- NIH Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Axin Hua
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Glenn Overman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Amy Ransier
- NIH Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph R Francica
- NIH Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ashley Trama
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Daniel C Douek
- NIH Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,Department of Mathematics and Statistics, Boston University, Boston, MA, United States
| |
Collapse
|