1
|
Gu L, Zheng J, Zhang Y, Wang D, Liu J. Selection and Characterization of DNA Aptamers for Cytidine and Uridine. Chembiochem 2024; 25:e202300656. [PMID: 38180305 DOI: 10.1002/cbic.202300656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Cytidine and uridine are two essential pyrimidine ribonucleotides, and accurate detection of these nucleosides holds significant biological importance. While many aptamers were reported to bind purines, little success was achieved for pyrimidine binding. This study employs the library-immobilization capture-SELEX technique to isolate aptamers capable of selectively binding to cytidine and uridine. First, a selection was performed using a mixture of cytidine and uridine as the target. This selection led to the isolation of a highly selective aptamer for cytidine with a dissociation constant (Kd ) of 0.9 μM as determined by isothermal titration calorimetry (ITC). In addition, a dual-recognition aptamer was also discovered, which exhibited selective binding to both cytidine and uridine. Subsequently, a separate selection was carried out using uridine as the sole target, and the resulting uridine aptamer displayed a Kd of 4 μM based on a thioflavin T fluorescence assay and a Kd of 102 μM based on ITC. These aptamers do not have a strict requirement of metal ions for binding, and they showed excellent selectivity since no binding was observed with their nucleobases or nucleotides. This study has resulted three aptamers for pyrimidines, which can be employed in biosensors and DNA switches.
Collapse
Affiliation(s)
- Lide Gu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jiajie Zheng
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
2
|
Benckendorff CMM, Sanghvi YS, Miller GJ. Preparation of a 4'-Thiouridine Building-Block for Solid-Phase Oligonucleotide Synthesis. Curr Protoc 2023; 3:e878. [PMID: 37747330 PMCID: PMC10946921 DOI: 10.1002/cpz1.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Starting from a commercially available thioether, we report a nine-step synthesis of a 4'-thiouridine phosphoramidite building-block. We install the uracil nucleobase using Pummerer-type glycosylation of a sulfoxide intermediate followed by a series of protecting group manipulations to deliver the desired phosphite. Notably, we introduce a 3',5'-O-di-tert-butylsilylene protecting group within a 4'-thiosugar framework, harnessing this to ensure regiospecific installation of the 2'-O-silyl protecting group. We envisage this methodology will be generally applicable to other 4'-thionucleosides and duly support the exploration of their inclusion within related nucleic acid syntheses. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: (2R,3S,4R)-2,3-O-Isopopropylidene-5-O-tert-butyldiphenylsilyl-1-(4-sulfinyl)cyclopentane: Sulfoxidation Basic Protocol 2: 2',3'-O-Isopropylidene-5'-O-tert-butyldiphenylsilyl-4'-thiouridine: Pummerer glycosylation Basic Protocol 3: 4'-Thiouridine: Deprotection Basic Protocol 4: 2'-O-tert-Butyldimethylsilyl-3',5'-di-tert-butylsiloxy-4'-thiouridine: 2',3',5'-O-silylation Basic Protocol 5: 2'-O-tert-Butyldimethylsilyl-4'-thiouridine: Selective 3'-5'-desilylation Basic Protocol 6: 2'-O-tert-Butyldimethylsilyl-5'-O-dimethoxytrityl-4'-thiouridine: 5'-O-dimethoxytritylation Basic Protocol 7: 2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethoxy)(N,N-diisopropylamino)phosphino]-5'-O-dimethoxytrityl-4'-thiouridine: 3'-O-phosphitylation.
Collapse
Affiliation(s)
- Caecilie M. M. Benckendorff
- Centre for GlycoscienceKeele UniversityKeeleStaffordshireUnited Kingdom
- Lennard‐Jones Laboratory, School of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireUnited Kingdom
| | | | - Gavin J. Miller
- Centre for GlycoscienceKeele UniversityKeeleStaffordshireUnited Kingdom
- Lennard‐Jones Laboratory, School of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireUnited Kingdom
| |
Collapse
|
3
|
Chen Z, Luo H, Gubu A, Yu S, Zhang H, Dai H, Zhang Y, Zhang B, Ma Y, Lu A, Zhang G. Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding. Front Cell Dev Biol 2023; 11:1091809. [PMID: 36910146 PMCID: PMC9996316 DOI: 10.3389/fcell.2023.1091809] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Nucleic acid aptamers are ssDNA or ssRNA fragments that specifically recognize targets. However, the pharmacodynamic properties of natural aptamers consisting of 4 naturally occurring nucleosides (A, G, C, T/U) are generally restricted for inferior binding affinity than the cognate antibodies. The development of high-affinity modification strategies has attracted extensive attention in aptamer applications. Chemically modified aptamers with stable three-dimensional shapes can tightly interact with the target proteins via enhanced non-covalent bonding, possibly resulting in hundreds of affinity enhancements. This review overviewed high-affinity modification strategies used in aptamers, including nucleobase modifications, fluorine modifications (2'-fluoro nucleic acid, 2'-fluoro arabino nucleic acid, 2',2'-difluoro nucleic acid), structural alteration modifications (locked nucleic acid, unlocked nucleic acid), phosphate modifications (phosphorothioates, phosphorodithioates), and extended alphabets. The review emphasized how these high-affinity modifications function in effect as the interactions with target proteins, thereby refining the pharmacodynamic properties of aptamers.
Collapse
Affiliation(s)
- Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Hang Luo
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hong Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, Hong Kong SAR, China
| |
Collapse
|
4
|
Ota M, Takahashi H, Nogi Y, Kagotani Y, Saito-Tarashima N, Kondo J, Minakawa N. Synthesis and properties of fully-modified 4'-selenoRNA, an endonuclease-resistant RNA analog. Bioorg Med Chem 2022; 76:117093. [PMID: 36434923 DOI: 10.1016/j.bmc.2022.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
A large number of chemically modified oligonucleotides (ONs) have been developed for RNA-based technologies. In most modified RNAs, the characteristic 2'-hydroxyl (2'-OH) groups are removed to enhance both nuclease resistance and hybridization ability. However, the importance of the 2'-OH group in RNA structure and function is well known. Here, we report the synthesis and properties of 4'-selenoRNA in which all four nucleoside units retain the 2'-OH groups but contain a selenium atom instead of an oxygen atom at the 4'-position of the furanose ring. 4'-SelenoRNA has enhanced ability to form duplexes with RNA, and high endonuclease resistance despite the presence of the 2'-OH groups. X-ray crystallography analysis showed that the 4'-selenoRNA duplex adopts an A-conformation, similar to natural RNA, although one 4'-selenocytidine residue has unusual South-type sugar puckering. Furthermore, preliminary studies using 4'-seleno-modified siRNAs suggest that 4'-selenoRNA may be applicable to RNA interference technology. Collectively, our results raise the possibility of a new class of modified RNA in which 2'-OH groups do not need to be masked.
Collapse
Affiliation(s)
- Masashi Ota
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Hiromi Takahashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Yuhei Nogi
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Yuma Kagotani
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan.
| |
Collapse
|
5
|
Sun L, Ma X, Zhang B, Qin Y, Ma J, Du Y, Chen T. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chem Biol 2022; 3:1173-1197. [PMID: 36320892 PMCID: PMC9533422 DOI: 10.1039/d2cb00116k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Nucleic acids have been extensively modified in different moieties to expand the scope of genetic materials in the past few decades. While the development of unnatural base pairs (UBPs) has expanded the genetic information capacity of nucleic acids, the production of synthetic alternatives of DNA and RNA has increased the types of genetic information carriers and introduced novel properties and functionalities into nucleic acids. Moreover, the efforts of tailoring DNA polymerases (DNAPs) and RNA polymerases (RNAPs) to be efficient unnatural nucleic acid polymerases have enabled broad application of these unnatural nucleic acids, ranging from production of stable aptamers to evolution of novel catalysts. The introduction of unnatural nucleic acids into living organisms has also started expanding the central dogma in vivo. In this article, we first summarize the development of unnatural nucleic acids with modifications or alterations in different moieties. The strategies for engineering DNAPs and RNAPs are then extensively reviewed, followed by summarization of predominant polymerase mutants with good activities for synthesizing, reverse transcribing, or even amplifying unnatural nucleic acids. Some recent application examples of unnatural nucleic acids with their polymerases are then introduced. At the end, the approaches of introducing UBPs and synthetic genetic polymers into living organisms for the creation of semi-synthetic organisms are reviewed and discussed.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Xingyun Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Binliang Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yanjia Qin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| |
Collapse
|
6
|
Saito-Tarashima N, Ueno M, Murai A, Matsuo A, Minakawa N. Cas9-mediated DNA cleavage guided by enzymatically prepared 4'-thio-modified RNA. Org Biomol Chem 2022; 20:5245-5248. [PMID: 35726625 DOI: 10.1039/d2ob00742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CRISPR-Cas9-mediated DNA editing relies on guide RNAs (gRNAs) that direct site-specific DNA cleavage by the Cas endonuclease. Because natural gRNA is susceptible to intracellular degradation, it is desirable to chemically protect it for efficient editing. Using 4'-thioribonucleoside 5'-triphosphates and T7 transcription, we have prepared 4'-thio-modified gRNAs that guide Cas9-mediated DNA cleavage. This approach is a simple way to obtain chemically modified RNA suitable for CRISPR-Cas9 DNA editing.
Collapse
Affiliation(s)
- Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan.
| | - Mana Ueno
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan.
| | - Akiho Murai
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan.
| | - Ayako Matsuo
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan.
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan.
| |
Collapse
|
7
|
Saito-Tarashima N, Murai A, Minakawa N. Rewriting the Central Dogma with Synthetic Genetic Polymers. Chem Pharm Bull (Tokyo) 2022; 70:310-315. [DOI: 10.1248/cpb.c21-00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Akiho Murai
- Graduate School of Pharmaceutical Science, Tokushima University
| | | |
Collapse
|
8
|
Oliveira R, Pinho E, Sousa AL, DeStefano JJ, Azevedo NF, Almeida C. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches. Trends Biotechnol 2021; 40:549-563. [PMID: 34756455 DOI: 10.1016/j.tibtech.2021.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are structural single-stranded oligonucleotides generated in vitro to bind to a specific target molecule. Aptamers' versatility can be enhanced with nucleic acid mimics (NAMs) during or after a selection process, also known as systematic evolution of ligands by exponential enrichment (SELEX). We address advantages and limitations of the technologies used to generate NAM aptamers, especially the applicability of existing engineered polymerases to replicate NAMs and methodologies to improve aptamers after SELEX. We also discuss the limitations of existing methods for sequencing NAM sequences and bioinformatic tools to predict NAM aptamer structures. As a conclusion, we suggest that NAM aptamers might successfully compete with molecular tools based on proteins such as antibodies for future application.
Collapse
Affiliation(s)
- Ricardo Oliveira
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal
| | - Ana Luísa Sousa
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
9
|
In Vitro Selection of Short DNA Aptamers that Can Inhibit or Alleviate Cocaine and MK-801 Inhibition of Muscle-Type Nicotinic Acetylcholine Receptors. J Membr Biol 2021; 255:41-53. [PMID: 34546414 DOI: 10.1007/s00232-021-00202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Ligands of high specificity and selectivity have been selected for biological molecules of interest including nicotinic acetylcholine receptor (nAChR) using combinatorial libraries of nucleic acids. The nAChR belongs to a group of structurally related proteins that regulate signal transmission between ~ 1012 cells of the mammalian nervous system. It is inhibited by both therapeutic agents and abused drugs, including cocaine. A mechanism-based approach to alleviating noncompetitive inhibition of the mucle-type nAChR, including Torpedo, resulted in the selection of very short DNA aptamers only seven nucleotides long. By transient kinetic measurements, these DNA aptamers, which displaced cocaine from its binding site on the muscle-type nAChR, were classified into two groups based on their effects on the nAChR: Class I aptamers inhibit agonist-induced current in the muscle-type nAChR and Class II molecules alleviate inhibition by MK-801 [(+)-dizocilpine] without affecting the receptor function. The most potent Class I DNA aptamer, which inhibits the muscle-type nAChR, has an apparent dissociation constant (KIapt) of 5 μM, while the most efficient Class II DNA aptamer, which alleviates MK-801-induced inhibition, has an apparent dissociation constant (KApt) of 1.8 μM. An innovative aspect of the work is the identification of very short DNA aptamers with these properties that makes them attractive for therapeutic and diagnostic applications.
Collapse
|
10
|
Tran BT, Kim J, Ahn DR. Systemic delivery of aptamer-drug conjugates for cancer therapy using enzymatically generated self-assembled DNA nanoparticles. NANOSCALE 2020; 12:22945-22951. [PMID: 33188383 DOI: 10.1039/d0nr05652a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aptamer-drug conjugates (ApDCs) are promising anticancer therapeutics with cancer cell specificity. However, versatile in vivo applications of ApDCs are hampered by their limited serum stability and inability to reach the tumour upon systemic administration. Here, we describe DNA nanoparticles of ApDCs as a platform for tumour-targeted systemic delivery of ApDCs. DNA nanoparticles of approximately 75 nm size were fabricated by self-assembly of a polymerised floxuridine (FUdR)-incorporated AS1411 aptamer produced via rolling circle amplification. The DNA nanoparticles of ApDCs showed highly efficient cancer cell uptake, enhanced serum stability, and tumour-targeted accumulation. These properties could be successfully utilised for tumour-specific apoptotic damage by ApDCs, leading to significant suppression of tumour growth without considerable systemic toxicity. Molecular analysis revealed that the enhanced anticancer potency was due to the synergic effect induced by the simultaneous activation of p53 by AS1411 and the inhibition of thymidylate synthase by FUdR, respectively, both of which were generated from the DNA nanoparticles. We therefore expect that the DNA nanoparticles of ApDCs can be a promising platform for tumour-targeted delivery of various nucleoside-incorporated ApDCs to treat cancer.
Collapse
Affiliation(s)
- Binh Thanh Tran
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | | | | |
Collapse
|
11
|
Saito-Tarashima N. [Chemical Approaches for RNAi Drug Development]. YAKUGAKU ZASSHI 2020; 140:1259-1268. [PMID: 32999205 DOI: 10.1248/yakushi.20-00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) is the standard method of suppressing gene expression because of its target specificity, potency, and ability to silence the expression of virtually any gene. Using 21-mer small interfering RNA (siRNA) is the general approach for inducing RNAi, as siRNA can be easily prepared using a DNA/RNA synthesizer. Synthetic siRNA can be chemically modified to increase the potency of RNAi activity and abrogate innate immune stimulation. However, designing chemically modified siRNA requires substantial experimentation. A practical method for understanding the interaction of siRNA and RNAi-related proteins and how modifications affect RNA-protein interactions is therefore needed. Plasmid DNA (pDNA) expressing short hairpin RNA (shRNA) can also be used to induce RNAi. pDNA produces numerous shRNAs that induce RNAi with potent and longterm RNAi activity, even if only one pDNA molecule is delivered to the nucleus. However, this approach has some drawbacks with regard to its therapeutic application, such as a low pDNA transfection efficiency due to its huge molecular size and innate immune responses induced by extra genes, such as CpG motifs. To overcome these issues with RNAi inducers (siRNA and pDNA), our group developed some chemical approaches using chemically modified oligonucleotides. This article focuses on our two original approaches. The first involves the groove modification of siRNA duplexes to understand siRNA-protein interactions using 7-bromo-7-deazaadenosine and 3-bromo-3-deazaadenosine as chemical probes, while the second involves the generation of RNAi medicine using chemically modified DNA, known as an intelligent shRNA expression device (iRed).
Collapse
|
12
|
Tarashima NS, Matsuo A, Minakawa N. Gene Expression of 4'-Thioguanine DNA via 4'-Thiocytosine RNA. J Am Chem Soc 2020; 142:17255-17259. [PMID: 33016701 DOI: 10.1021/jacs.0c07145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA and RNA nucleotides are ubiquitous molecules that store and transmit genetic information. The emergence of synthetic elements that fulfill the function of DNA and RNA provides an alternative gene expression system. Herein, we demonstrate the gene expression of 4'-thioguanine DNA (dSG DNA) via 4'-thiocytosine RNA (dSC RNA) to give green fluorescent protein (GFPuv) in a single test tube. In replication, transcription, and translation, DNA/RNA polymerases and Escherichia coli (E. coli) ribosome can tolerate the replacement of O4' with S4' in the nucleotide, despite the fact that sulfur has a larger atomic radius than oxygen. Additionally, dSG DNA and dSC RNA acted as alternative genetic polymers to natural DNA and RNA for protein synthesis in artificial cells comprising a reconstituted E. coli gene expression machinery. This work involved simple experiments that are widely used in molecular biology, but which underscore the feasibility of life control by substances other than DNA/RNA nucleotides.
Collapse
Affiliation(s)
- Noriko S Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan
| | - Ayako Matsuo
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan
| |
Collapse
|
13
|
Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers (Basel) 2020; 12:cancers12092534. [PMID: 32906592 PMCID: PMC7564168 DOI: 10.3390/cancers12092534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The overall survival of brain cancer patients remains grim, with conventional therapies such as chemotherapy and radiotherapy only providing marginal benefits to patient survival. Cancers are complex, with multiple pathways being dysregulated simultaneously. Non-coding RNAs such as microRNA (miRNAs) are gaining importance due to their potential in regulating a variety of targets implicated in the pathology of cancers. This could be leveraged for the development of targeted and personalized therapies for cancers. Since miRNAs can upregulate and/or downregulate proteins, this review aims to understand the role of these miRNAs in primary and metastatic brain cancers. Here, we discuss the regulatory mechanisms of ten miRNAs that are highly dysregulated in glioblastoma and metastatic brain tumors. This will enable researchers to develop miRNA-based targeted cancer therapies and identify potential prognostic biomarkers. Abstract Brain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma. The five-year survival of primary and secondary brain tumors is 34% and 2.4%, respectively. Owing to poor prognosis, tumor heterogeneity, increased tumor relapse, and resistance to therapies, brain cancers have high mortality and poor survival rates compared to other cancers. Early diagnosis, effective targeted treatments, and improved prognosis have the potential to increase the survival rate of patients with primary and secondary brain malignancies. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 18–22 nucleotides that play a significant role in the regulation of multiple genes. With growing interest in the development of miRNA-based therapeutics, it is crucial to understand the differential role of these miRNAs in the given cancer scenario. This review focuses on the differential expression of ten miRNAs (miR-145, miR-31, miR-451, miR-19a, miR-143, miR-125b, miR-328, miR-210, miR-146a, and miR-126) in glioblastoma and brain metastasis. These miRNAs are highly dysregulated in both primary and metastatic brain tumors, which necessitates a better understanding of their role in these cancers. In the context of the tumor microenvironment and the expression of different genes, these miRNAs possess both oncogenic and/or tumor-suppressive roles within the same cancer.
Collapse
|
14
|
Marnissi B, Kamali-Moghaddam M, Ghram A, Hmila I. Generation of ssDNA aptamers as diagnostic tool for Newcastle avian virus. PLoS One 2020; 15:e0237253. [PMID: 32790805 PMCID: PMC7425888 DOI: 10.1371/journal.pone.0237253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers are short single-stranded DNA (ssDNA), RNA or synthetic XNA molecules, which are used as a class of affinity binders recognizing target molecules with a very high affinity and specificity. The aim of this study was to generate and characterize ssDNA aptamers for the detection of Newcastle disease virus (NDV). These aptamers were selected using systematic evolution of ligands by exponential enrichment (SELEX) in combination with quantitative high-throughput DNA sequencing. After three rounds of selections, a highly enriched ssDNA pool was sequenced, and the results were analyzed using FASTAptamer Toolkit. Sequencing reads were sorted by copy numbers and clustered into groups, according to their sequence homology. Top aptameric sequences were used to develop a sandwich enzymatic linked aptamer assay (ELAA) for rapid and sensitive detection of NDV in farm samples. The selected aptamers have an affinity within the nanomolar range, and a high specificity with no cross-reactivity towards other avian viruses. Following optimization of the sandwich ELAA method, the results demonstrated that both selected aptamers Apt_NDV01 and Apt_NDV03 with dissociation constant values of 31 nM and 78.1 nM, respectively, showed the highest specificity and affinity for NDV detection. The ELAA results were verified by quantitative real-time PCR, demonstrating strong concordance, and showing outstanding accuracy for detection of NDV in field sample. In summary, combination of SELEX with high-throughput DNA sequencing allowed rapid screening and selection of aptamers. The selected aptamers allowed recognition of NDV with high affinities. This is the first report that uses a validated sandwich ELAA for rapid and specific detection of NDV in poultry samples.
Collapse
Affiliation(s)
- Boutheina Marnissi
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Issam Hmila
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University Tunis El Manar, Tunis, Tunisia
- * E-mail: ,
| |
Collapse
|
15
|
Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019; 25:E3. [PMID: 31861277 PMCID: PMC6982925 DOI: 10.3390/molecules25010003] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.
Collapse
Affiliation(s)
- Fadwa Odeh
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Ezaldeen Esawi
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Baraa Qaqish
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Abeer Al Bawab
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Said I. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
- Qatar Genome Project, Qatar Foundation, Doha 5825, Qatar
| |
Collapse
|
16
|
Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019; 24:molecules24234229. [PMID: 31766318 PMCID: PMC6930564 DOI: 10.3390/molecules24234229] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides that bind to specific target molecules. The shape-forming feature of single-stranded oligonucleotides provides high affinity and excellent specificity toward targets. Hence, aptamers can be used as analogs of antibodies. In December 2004, the US Food and Drug Administration approved the first aptamer-based therapeutic, pegaptanib (Macugen), targeting vascular endothelial growth factor, for the treatment of age-related macular degeneration. Since then, however, no aptamer medication for public health has appeared. During these relatively silent years, many trials and improvements of aptamer therapeutics have been performed, opening multiple novel directions for the therapeutic application of aptamers. This review summarizes the basic characteristics of aptamers and the chemical modifications available for aptamer therapeutics.
Collapse
|
17
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
18
|
Flamme M, McKenzie LK, Sarac I, Hollenstein M. Chemical methods for the modification of RNA. Methods 2019; 161:64-82. [PMID: 30905751 DOI: 10.1016/j.ymeth.2019.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
RNA is often considered as being the vector for the transmission of genetic information from DNA to the protein synthesis machinery. However, besides translation RNA participates in a broad variety of fundamental biological roles such as gene expression and regulation, protein synthesis, and even catalysis of chemical reactions. This variety of function combined with intricate three-dimensional structures and the discovery of over 100 chemical modifications in natural RNAs require chemical methods for the modification of RNAs in order to investigate their mechanism, location, and exact biological roles. In addition, numerous RNA-based tools such as ribozymes, aptamers, or therapeutic oligonucleotides require the presence of additional chemical functionalities to strengthen the nucleosidic backbone against degradation or enhance the desired catalytic or binding properties. Herein, the two main methods for the chemical modification of RNA are presented: solid-phase synthesis using phosphoramidite precursors and the enzymatic polymerization of nucleoside triphosphates. The different synthetic and biochemical steps required for each method are carefully described and recent examples of practical applications based on these two methods are discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
19
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
20
|
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018; 154:132-155. [PMID: 30193856 DOI: 10.1016/j.biochi.2018.09.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method used to isolate high-affinity single stranded oligonucleotides from a large random sequence pool. These SELEX-derived oligonucleotides named aptamer, can be selected against a broad spectrum of target molecules including proteins, cells, microorganisms and chemical compounds. Like antibodies, aptamers have a great potential in interacting with and binding to their targets through structural recognition and are therefore called "chemical antibodies". However, aptamers offer advantages over antibodies including smaller size, better tissue penetration, higher thermal stability, lower immunogenicity, easier production, lower cost of synthesis and facilitated conjugation or modification with different functional moieties. Thus, aptamers represent an attractive substitution for protein antibodies in the fields of biomarker discovery, diagnosis, imaging and targeted therapy. Enormous interest in aptamer technology triggered the development of SELEX that has underwent numerous modifications since its introduction in 1990. This review will discuss the recent advances in SELEX methods and their advantages and limitations. Aptamer applications are also briefly outlined in this review.
Collapse
Affiliation(s)
- Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Khedri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
22
|
Shiraishi K, Saito-Tarashima N, Igata Y, Murakami K, Okamoto Y, Miyake Y, Furukawa K, Minakawa N. Synthesis and evaluation of c-di-4'-thioAMP as an artificial ligand for c-di-AMP riboswitch. Bioorg Med Chem 2017; 25:3883-3889. [PMID: 28559057 DOI: 10.1016/j.bmc.2017.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 11/26/2022]
Abstract
Cyclic-di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that binds to an RNA receptor called riboswitch and regulates its downstream genes involving cell wall metabolism, ion transport, and spore germination. Therefore, the c-di-AMP riboswitch can be a novel target of antibiotics. In this study, we synthesized c-di-4'-thioAMP (1), which possesses a sulfur atom instead of an oxygen atom in the furanose ring, as a candidate of a bioisoster for natural c-di-AMP. The resulting 1 bound to the c-di-AMP riboswitch with a micromolar affinity (34.8μM), and the phosphodiesterase resistance of 1 was >12-times higher than that of c-di-AMP. Thus, 1 can be considered to be a stable ligand against a c-di-AMP riboswitch.
Collapse
Affiliation(s)
- Kazuto Shiraishi
- Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Yosuke Igata
- Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Keiji Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Yasuko Okamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; Department of Oral Health Sciences, Faculty of Health and Welfare, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kazuhiro Furukawa
- Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
23
|
Schmid K, Adobes-Vidal M, Helm M. Alkyne-Functionalized Coumarin Compound for Analytic and Preparative 4-Thiouridine Labeling. Bioconjug Chem 2017; 28:1123-1134. [PMID: 28263563 DOI: 10.1021/acs.bioconjchem.7b00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bioconjugation of RNA is a dynamic field recently reinvigorated by a surge in research on post-transcriptional modification. This work focuses on the bioconjugation of 4-thiouridine, a nucleoside that occurs as a post-transcriptional modification in bacterial RNA and is used as a metabolic label and for cross-linking purposes in eukaryotic RNA. A newly designed coumarin compound named 4-bromomethyl-7-propargyloxycoumarin (PBC) is introduced, which exhibits remarkable selectivity for 4-thiouridine. Bearing a terminal alkyne group, it is conductive to secondary bioconjugation via "click chemistry", thereby offering a wide range of preparative and analytical options. We applied PBC to quantitatively monitor the metabolic incorporation of s4U as a label into RNA and for site-specific introduction of a fluorophore into bacterial tRNA at position 8, allowing the determination of its binding constant to an RNA-modification enzyme.
Collapse
Affiliation(s)
- Katharina Schmid
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg University Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| | - Maria Adobes-Vidal
- Electrochemistry & Interfaces Group, Department of Chemistry, University of Warwick , Coventry, CV4 7AL United Kingdom
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg University Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| |
Collapse
|
24
|
Minagawa H, Onodera K, Fujita H, Sakamoto T, Akitomi J, Kaneko N, Shiratori I, Kuwahara M, Horii K, Waga I. Selection, Characterization and Application of Artificial DNA Aptamer Containing Appended Bases with Sub-nanomolar Affinity for a Salivary Biomarker. Sci Rep 2017; 7:42716. [PMID: 28256555 PMCID: PMC5335659 DOI: 10.1038/srep42716] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
We have attained a chemically modified DNA aptamer against salivary α-amylase (sAA), which attracts researchers’ attention as a useful biomarker for assessing human psychobiological and social behavioural processes, although high affinity aptamers have not been isolated from a random natural DNA library to date. For the selection, we used the base-appended base (BAB) modification, that is, a modified-base DNA library containing (E)-5-(2-(N-(2-(N6-adeninyl)ethyl))carbamylvinyl)-uracil in place of thymine. After eight rounds of selection, a 75 mer aptamer, AMYm1, which binds to sAA with extremely high affinity (Kd < 1 nM), was isolated. Furthermore, we have successfully determined the 36-mer minimum fragment, AMYm1-3, which retains target binding activity comparable to the full-length AMYm1, by surface plasmon resonance assays. Nuclear magnetic resonance spectral analysis indicated that the minimum fragment forms a specific stable conformation, whereas the predicted secondary structures were suggested to be disordered forms. Thus, DNA libraries with BAB-modifications can achieve more diverse conformations for fitness to various targets compared with natural DNA libraries, which is an important advantage for aptamer development. Furthermore, using AMYm1, a capillary gel electrophoresis assay and lateral flow assay with human saliva were conducted, and its feasibility was demonstrated.
Collapse
Affiliation(s)
- Hirotaka Minagawa
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Kentaro Onodera
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Japan
| | - Joe Akitomi
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Naoto Kaneko
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Ikuo Shiratori
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Katsunori Horii
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Iwao Waga
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| |
Collapse
|
25
|
Hmila I, Wongphatcharachai M, Laamiri N, Aouini R, Marnissi B, Arbi M, Sreevatsan S, Ghram A. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR. J Virol Methods 2017; 243:83-91. [PMID: 28159667 DOI: 10.1016/j.jviromet.2017.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 01/16/2023]
Abstract
H9N2 Influenza subtype has emerged in Tunisia causing epidemics in poultry and resulting in major economic losses. New mutations in their hemagglutinin and neuraminidase proteins were acquired, suggesting their potential to directly infect humans. Effective surveillance tools should be implemented to help prevent potential spillover of the virus across species. We have developed a highly sensitive real time immuno-polymerase chain reaction (RT-I-PCR) method for detecting H9N2 virus. The assay applies aptamers as ligands to capture and detect the virus. First, a panel of specific ssDNA aptamers was selected via a one step high stringency protocol. Next, the panel of selected aptamers was characterized for their affinities and their specificity to H9N2 virus. The aptamer showing the highest binding affinity to the virus was used as ligand to develop a highly sensitive sandwich Aptamer I-PCR. A 3-log increase in analytical sensitivity was achieved as compared to a routinely used ELISA antigen test, highlighting the potential of this approach to detect very low levels of virus particles. The test was validated using clinical samples and constitutes a rapid and a label-free platform, opening a new venue for the development of aptamer -based viability sensing for a variety of microorganisms of economic importance in Tunisia and surrounding regions.
Collapse
Affiliation(s)
- Issam Hmila
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia.
| | - Manoosak Wongphatcharachai
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota,St. Paul, MN, USA; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota,St. Paul, MN, USA; Department of Soil, Water, & Climate, and BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Nacira Laamiri
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia; University of Carthage, Faculty of Sciences Bizerte, 7021 Zarzouna Bizerte, Tunisia
| | - Rim Aouini
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia; University of Carthage, Faculty of Sciences Bizerte, 7021 Zarzouna Bizerte, Tunisia
| | - Boutheina Marnissi
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia
| | - Marwa Arbi
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota,St. Paul, MN, USA; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota,St. Paul, MN, USA
| | - Abdeljelil Ghram
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia
| |
Collapse
|
26
|
Nawaz G, Kang H. Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:871. [PMID: 28596782 PMCID: PMC5442247 DOI: 10.3389/fpls.2017.00871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 05/04/2023]
Abstract
The yields and productivity of crops are greatly diminished by various abiotic stresses, including drought, cold, heat, and high salinity. Chloroplasts and mitochondria are cellular organelles that can sense diverse environmental stimuli and alter gene expression to cope with adverse environmental stresses. Organellar gene expression is mainly regulated at posttranscriptional levels, including RNA processing, intron splicing, RNA editing, RNA turnover, and translational control, during which a variety of nucleus-encoded RNA-binding proteins (RBPs) are targeted to chloroplasts or mitochondria where they play essential roles in organellar RNA metabolism. DEAD-box RNA helicases (RHs) are enzymes that can alter RNA structures and affect RNA metabolism in all living organisms. Although a number of DEAD-box RHs have been found to play important roles in RNA metabolism in the nucleus and cytoplasm, our understanding on the roles of DEAD-box RHs in the regulation of RNA metabolism in chloroplasts and mitochondria is only at the beginning. Considering that organellar RNA metabolism and gene expression are tightly regulated by anterograde signaling from the nucleus, it is imperative to determine the functions of nucleus-encoded organellar RBPs. In this review, we summarize the emerging roles of nucleus-encoded chloroplast- or mitochondria-targeted DEAD-box RHs in organellar RNA metabolism and plant response to diverse abiotic stresses.
Collapse
|
27
|
Lipi F, Chen S, Chakravarthy M, Rakesh S, Veedu RN. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies. RNA Biol 2016; 13:1232-1245. [PMID: 27715478 PMCID: PMC5207382 DOI: 10.1080/15476286.2016.1236173] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.
Collapse
Affiliation(s)
- Farhana Lipi
- a Western Australian Neuroscience Research Institute , Perth , Australia
| | - Suxiang Chen
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| | - Madhuri Chakravarthy
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| | - Shilpa Rakesh
- a Western Australian Neuroscience Research Institute , Perth , Australia
| | - Rakesh N Veedu
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| |
Collapse
|
28
|
Benedetto G, Vestal CG, Richardson C. Aptamer-Functionalized Nanoparticles as "Smart Bombs": The Unrealized Potential for Personalized Medicine and Targeted Cancer Treatment. Target Oncol 2016; 10:467-85. [PMID: 25989948 DOI: 10.1007/s11523-015-0371-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conventional delivery of chemotherapeutic agents leads to multiple systemic side effects and toxicity, limiting the doses that can be used. The development of targeted therapies to selectively deliver anti-cancer agents to tumor cells without damaging neighboring unaffected cells would lead to higher effective local doses and improved response rates. Aptamers are single-stranded oligonucleotides that bind to target molecules with both high affinity and high specificity. The high specificity exhibited by aptamers promotes localization and uptake by specific cell populations, such as tumor cells, and their conjugation to anti-cancer drugs has been explored for targeted therapy. Advancements in the development of polymeric nanoparticles allow anti-cancer drugs to be encapsulated in protective nonreactive shells for controlled drug delivery with reduced toxicity. The conjugation of aptamers to nanoparticle-based therapeutics may further enhance direct targeting and personalized medicine. Here we present how the combinatorial use of aptamer and nanoparticle technologies has the potential to develop "smart bombs" for targeted cancer treatment, highlighting recent pre-clinical studies demonstrating efficacy for the direct targeting to particular tumor cell populations. However, despite these pre-clinical promising results, there has been little progress in moving this technology to the bedside.
Collapse
Affiliation(s)
- Gregory Benedetto
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| | - C Greer Vestal
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| | - Christine Richardson
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| |
Collapse
|
29
|
Ishii K, Saito-Tarashima N, Ota M, Yamamoto S, Okamoto Y, Tanaka Y, Minakawa N. Practical synthesis of 4′-selenopurine nucleosides by combining chlorinated purines and ‘armed’ 4-selenosugar. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Cell-targeting aptamers act as intracellular delivery vehicles. Appl Microbiol Biotechnol 2016; 100:6955-69. [PMID: 27350620 DOI: 10.1007/s00253-016-7686-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.
Collapse
|
31
|
Sawant AA, Mukherjee PP, Jangid RK, Galande S, Srivatsan SG. A clickable UTP analog for the posttranscriptional chemical labeling and imaging of RNA. Org Biomol Chem 2016; 14:5832-42. [PMID: 27173127 DOI: 10.1039/c6ob00576d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of robust tools and practical RNA labeling strategies that would facilitate the biophysical analysis of RNA in both cell-free and cellular systems will have profound implications in the discovery of new RNA diagnostic tools and therapeutic strategies. In this context, we describe the development of a new alkyne-modified UTP analog, 5-(1,7-octadinyl)uridine triphosphate (ODUTP), which serves as an efficient substrate for the introduction of a clickable alkyne label into RNA transcripts by bacteriophage T7 RNA polymerase and mammalian cellular RNA polymerases. The ODU-labeled RNA is effectively used by reverse transcriptase to produce cDNA, a property which could be utilized in expanding the chemical space of a RNA library in the aptamer selection scheme. Further, the alkyne label on RNA provides a convenient tool for the posttranscriptional chemical functionalization with a variety of biophysical tags (fluorescent, affinity, amino acid and sugar) by using alkyne-azide cycloaddition reaction. Importantly, the ability of endogenous RNA polymerases to specifically incorporate ODUTP into cellular RNA transcripts enabled the visualization of newly transcribing RNA in cells by microscopy using click reactions. In addition to a clickable alkyne group, ODU contains a Raman scattering label (internal disubstituted alkyne), which exhibits characteristic Raman shifts that fall in the Raman-silent region of cells. Our results indicate that an ODU label could potentially facilitate two-channel visualization of RNA in cells by using click chemistry and Raman spectroscopy. Taken together, ODU represents a multipurpose ribonucleoside tool, which is expected to provide new avenues to study RNA in cell-free and cellular systems.
Collapse
Affiliation(s)
- Anupam A Sawant
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | | | | | | | | |
Collapse
|
32
|
Post-SELEX optimization of aptamers. Anal Bioanal Chem 2016; 408:4567-73. [PMID: 27173394 DOI: 10.1007/s00216-016-9556-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022]
Abstract
Aptamers are functional single-stranded DNA or RNA oligonucleotides, selected in vitro by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), which can fold into stable unique three-dimensional structures that bind their target ligands with high affinity and specificity. Although aptamers show a number of favorable advantages such as better stability and easier modification when compared with the properties of antibodies, only a handful of aptamers have entered clinical trials and only one, pegaptanib, has received US Food and Drug Administration approval for clinical use. The main reasons that limit the practical application of aptamers are insufficient nuclease stability, bioavailability, thermal stability, or even affinity. Some aptamers obtained from modified libraries show better properties; however, polymerase amplification of nucleic acids containing non-natural bases is currently a primary drawback of the SELEX process. This review focuses on several post-SELEX optimization strategies of aptamers identified in recent years. We describe four common methods in detail: truncation, chemical modification, bivalent or multivalent aptamer construction, and mutagenesis. We believe that these optimization strategies should improve one or more specific properties of aptamers, and the type of feature(s) selected for improvement will be dependent on the application purpose.
Collapse
|
33
|
Dellafiore MA, Montserrat JM, Iribarren AM. Modified Nucleoside Triphosphates for In-vitro Selection Techniques. Front Chem 2016; 4:18. [PMID: 27200340 PMCID: PMC4854868 DOI: 10.3389/fchem.2016.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.
Collapse
Affiliation(s)
- María A Dellafiore
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET) Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier M Montserrat
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ciencias, Universidad Nacional de General SarmientoLos Polvorines, Argentina
| | - Adolfo M Iribarren
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Biotransformaciones, Universidad Nacional de QuilmesBernal, Argentina
| |
Collapse
|
34
|
Generation of Aptamers with an Expanded Chemical Repertoire. Molecules 2015; 20:16643-71. [PMID: 26389865 PMCID: PMC6332006 DOI: 10.3390/molecules200916643] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
The enzymatic co-polymerization of modified nucleoside triphosphates (dN*TPs and N*TPs) is a versatile method for the expansion and exploration of expanded chemical space in SELEX and related combinatorial methods of in vitro selection. This strategy can be exploited to generate aptamers with improved or hitherto unknown properties. In this review, we discuss the nature of the functionalities appended to nucleoside triphosphates and their impact on selection experiments. The properties of the resulting modified aptamers will be described, particularly those integrated in the fields of biomolecular diagnostics, therapeutics, and in the expansion of genetic systems (XNAs).
Collapse
|
35
|
Minakawa N, Matsuda A. Practical synthesis of 4'-thioribonucleosides starting from D-ribose. ACTA ACUST UNITED AC 2014; 59:14.12.1-19. [PMID: 25501591 DOI: 10.1002/0471142700.nc1412s59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A practical synthesis of 4'-thioribonucleosides, i.e., 4'-thiouridine, -cytidine, -adenosine, and -guanosine, which are versatile units for nucleic acids-based therapeutics, is described. Large-scale synthesis of 4-thiosugar starting from D-ribose was achieved (33%) in eight steps and with only three chromatographic purifications. After the appropriate chemical conversion of the 4-thiosugar, the resulting sulfoxide was subjected to the Pummerer reaction in the presence of silylated nucleobases. In reactions with silylated pyrimidine bases, the desired 4'-thioribonucleoside derivatives were obtained in good yield and β-selectively. On the other hand, N-7 isomers were obtained mainly in the Pummerer reaction with purine bases under the same conditions. However, the desired N-9 isomers were obtained in moderate yields when the reaction mixtures were subsequently heated under reflux. As a result, effective synthesis of 4'-thioribonucleosides was accomplished.
Collapse
Affiliation(s)
- Noriaki Minakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | | |
Collapse
|
36
|
Minakawa N. [Development of RNA medicine using 4'-thioDNA]. YAKUGAKU ZASSHI 2014; 133:53-60. [PMID: 23292020 DOI: 10.1248/yakushi.12-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of modified oligonucleotides prepared using a general chemical approach with the corresponding phosphoramidite units have been synthesized to evaluate their functions. An alternative enzymatic method using the corresponding nucleoside triphosphates could also be used. Since this approach affords long-chain sequences from readily available natural DNA templates, if successful it would be useful in numerous biotechnologies. This review summarizes our current results of polymerase chain reaction (PCR) amplification of 4'-thioDNA using 4'-thio-dNTPs and gene silencing using the resulting 4'-thioDNAs as a template arising from 4'-thioDNA-directed transcription in mammalian cells.
Collapse
Affiliation(s)
- Noriaki Minakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, Japan.
| |
Collapse
|
37
|
Stovall GM, Bedenbaugh RS, Singh S, Meyer AJ, Hatala PJ, Ellington AD, Hall B. In vitro selection using modified or unnatural nucleotides. ACTA ACUST UNITED AC 2014; 56:9.6.1-33. [PMID: 25606981 DOI: 10.1002/0471142700.nc0906s56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Incorporation of modified nucleotides into in vitro RNA or DNA selections offers many potential advantages, such as the increased stability of selected nucleic acids against nuclease degradation, improved affinities, expanded chemical functionality, and increased library diversity. This unit provides useful information and protocols for in vitro selection using modified nucleotides. It includes a discussion of when to use modified nucleotides; protocols for evaluating and optimizing transcription reactions, as well as confirming the incorporation of the modified nucleotides; protocols for evaluating modified nucleotide transcripts as template in reverse transcription reactions; protocols for the evaluation of the fidelity of modified nucleotides in the replication and the regeneration of the pool; and a protocol to compare modified nucleotide pools and selection conditions.
Collapse
Affiliation(s)
- Gwendolyn M Stovall
- The University of Texas at Austin, Austin, Texas; Altermune Technologies LLC, Austin, Texas
| | | | | | | | | | | | | |
Collapse
|
38
|
Smith CC, Hollenstein M, Leumann CJ. The synthesis and application of a diazirine-modified uridine analogue for investigating RNA–protein interactions. RSC Adv 2014. [DOI: 10.1039/c4ra08682a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A uridine analogue equipped with a photoactive diazirine unit was generated and incorporated into RNA either syntheticallyviaphosphoramidite chemistry or by enzymatic polymerization. The new analogue was developed to identify and investigate RNA–protein interactions.
Collapse
Affiliation(s)
- Christine C. Smith
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Marcel Hollenstein
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Christian J. Leumann
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| |
Collapse
|
39
|
Lin CY, Huang Z, Jaremko W, Niu L. High-performance liquid chromatography purification of chemically modified RNA aptamers. Anal Biochem 2013; 449:106-8. [PMID: 24373999 DOI: 10.1016/j.ab.2013.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
2'-Fluoro modified RNAs are useful as potential therapeutics and as special substrates for studying RNA function. 2'-Fluoro modified RNAs generally need to be purified after they are prepared either enzymatically or by solid-phase synthesis. Here we introduce a protocol by which 2'-fluoro modified RNAs with 57 and 58 nucleotides can be resolved and purified using ion-pair, reverse-phase high-performance liquid chromatography (HPLC). Because the size of our RNA samples is in the range of many known RNA aptamers of therapeutic values, our protocol should be generally useful.
Collapse
Affiliation(s)
- Chi-Yen Lin
- Department of Chemistry, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY 12222, USA
| | - Zhen Huang
- Department of Chemistry, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY 12222, USA
| | - William Jaremko
- Department of Chemistry, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY 12222, USA
| | - Li Niu
- Department of Chemistry, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY 12222, USA.
| |
Collapse
|
40
|
Kaur M, Rob A, Caton-Williams J, Huang Z. Biochemistry of Nucleic Acids Functionalized with Sulfur, Selenium, and Tellurium: Roles of the Single-Atom Substitution. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1152.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Manindar Kaur
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Abdur Rob
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
41
|
Shigdar S, Macdonald J, O'Connor M, Wang T, Xiang D, Al.Shamaileh H, Qiao L, Wei M, Zhou SF, Zhu Y, Kong L, Bhattacharya S, Li C, Duan W. Aptamers as theranostic agents: modifications, serum stability and functionalisation. SENSORS 2013; 13:13624-37. [PMID: 24152925 PMCID: PMC3859083 DOI: 10.3390/s131013624] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 02/07/2023]
Abstract
Aptamers, and the selection process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) used to generate them, were first described more than twenty years ago. Since then, there have been numerous modifications to the selection procedures. This review discusses the use of modified bases as a means of enhancing serum stability and producing effective therapeutic tools, as well as functionalising these nucleic acids to be used as potential diagnostic agents.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (W.D.)
| | - Joanna Macdonald
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Michael O'Connor
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Tao Wang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Dongxi Xiang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Hadi Al.Shamaileh
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Liang Qiao
- Storr Liver Unit, at the Westmead Millennium Institute, The University of Sydney at the Westmead Hospital, Westmead NSW 2145, Australia; E-Mail:
| | - Ming Wei
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast Campus, Southport 4222, Australia; E-Mail:
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; E-Mail:
| | - Yimin Zhu
- Suzhou Key Laboratory of Nanobiomedicine, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China; E-Mail:
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3217, Australia; E-Mail:
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India; E-Mail:
| | - ChunGuang Li
- Centre for Complimentary Medicine Research, National Institute of Complementary Medicine, University of Western Sydney, Campbelltown Campus, Penrith, NSW 2751, Australia; E-Mail:
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (W.D.)
| |
Collapse
|
42
|
Kojima T, Furukawa K, Maruyama H, Inoue N, Tarashima N, Matsuda A, Minakawa N. PCR amplification of 4'-thioDNA using 2'-deoxy-4'-thionucleoside 5'-triphosphates. ACS Synth Biol 2013; 2:529-36. [PMID: 23957635 DOI: 10.1021/sb400074w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
2'-Deoxy-4'-thioribonucleic acid (4'-thioDNA) having a sulfur atom instead of an oxygen atom in the furanose ring has a nuclease resistance and hybridization ability higher than that of natural DNA. Despite its great potential for various biological applications, a long 4'-thioDNA having all four kinds of 2'-deoxy-4'-thionucleosides has not been reported. In this study, we describe systematic analysis of the incorporation of 2'-deoxy-4'-thionucleoside 5'-triphosphates (dSNTPs) using various DNA polymerases. We found that family B DNA polymerases, which do not have 3'→5' exonuclease activity, could efficiently incorporate dSNTPs via single nucleotide insertion and primer extension. Moreover, 104-mer PCR product was obtained even under the conditions in the presence of all four kinds of dSNTPs when KOD Dash DNA polymerase was used. The resulting PCR product was converted into a natural dsDNA by using PCR with dNTPs, and sequencing of the natural dsDNA revealed that the PCR cycle successfully proceeded without losing the sequence information of the template. To the best of our knowledge, this is the first example of accurate PCR amplification of highly modified DNA in the presence of only unnatural dNTPs.
Collapse
Affiliation(s)
- Takamitsu Kojima
- Graduate School of Pharmaceutical
Sciences, The University of Tokushima,
Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Kazuhiro Furukawa
- Graduate School of Pharmaceutical
Sciences, The University of Tokushima,
Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Hideto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Naonori Inoue
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Noriko Tarashima
- Graduate School of Pharmaceutical
Sciences, The University of Tokushima,
Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical
Sciences, The University of Tokushima,
Shomachi 1-78-1, Tokushima 770-8505, Japan
| |
Collapse
|
43
|
Miyazawa T, Umezaki K, Tarashima N, Furukawa K, Ooi T, Minakawa N. Synthesis of a novel 1,2-dithianenucleoside via Pummerer-like reaction, followed by Vorbruggen glycosylation between a 1,2-dithiane derivative and uracil. Chem Commun (Camb) 2013; 49:7851-3. [PMID: 23892645 DOI: 10.1039/c3cc44848g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel 1,2-dithianenucleoside was designed as a hybrid type of modification between 4'-thioribonucleoside and altritol nucleoside. The desired compound, i.e., 1-[(3R,4R,5S,6R)-4,5-dihydroxy-6-hydroxymethyl-1,2-dithianyl]uracil (20), was prepared via the Pummerer-like reaction, followed by Vorbruggen glycosylation between an appropriately protected 1,2-dithiane derivative and silylated uracil.
Collapse
Affiliation(s)
- Tadashi Miyazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Takahashi M, Yamada N, Hatakeyama H, Murata M, Sato Y, Minakawa N, Harashima H, Matsuda A. In vitro optimization of 2'-OMe-4'-thioribonucleoside-modified anti-microRNA oligonucleotides and its targeting delivery to mouse liver using a liposomal nanoparticle. Nucleic Acids Res 2013; 41:10659-67. [PMID: 24030710 PMCID: PMC3905841 DOI: 10.1093/nar/gkt823] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. Previous studies, which characterized miRNA function, revealed their involvement in fundamental biological processes. Importantly, miRNA expression is deregulated in many human diseases. Specific inhibition of miRNAs using chemically modified anti-miRNA oligonucleotides (AMOs) can be a potential therapeutic strategy for diseases in which a specific miRNA is overexpressed. 2′-O-Methyl (2′-OMe)-4′-thioRNA is a hybrid type of chemically modified oligonucleotide, exhibiting high binding affinity to complementary RNAs and high resistance to nuclease degradation. Here, we evaluate 2′-OMe-4′-thioribonucleosides for chemical modification on AMOs. Optimization of the modification pattern using a variety of chemically modified AMOs that are perfectly complementary to mature miR-21 revealed that the uniformly 2′-OMe-4′-thioribonucleoside–modified AMO was most potent. Further investigation showed that phosphorothioate modification contributed to long-term miR-122 inhibition by the 2′-OMe-4′-thioribonucleoside–modified AMO. Moreover, systemically administrated AMOs to mouse using a liposomal delivery system, YSK05-MEND, showed delivery to the liver and efficient inhibition of miR-122 activity at a low dose in vivo.
Collapse
Affiliation(s)
- Mayumi Takahashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kikuchi Y, Yamazaki N, Tarashima N, Furukawa K, Takiguchi Y, Itoh K, Minakawa N. Gene suppression via U1 small nuclear RNA interference (U1i) machinery using oligonucleotides containing 2'-modified-4'-thionucleosides. Bioorg Med Chem 2013; 21:5292-6. [PMID: 23871495 DOI: 10.1016/j.bmc.2013.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 10/26/2022]
Abstract
Gene suppression via U1 small nuclear RNA interference (U1i) is considered to be one of the most attractive approaches, and takes the place of general antisense, RNA interference (RNAi), and anti-micro RNA machineries. Since the U1i can be induced by short oligonucleotides (ONs), namely U1 adaptors consisting of a 'target domain' and a 'U1 domain', we prepared adaptor ONs using 2'-modified-4'-thionucleosides developed by our group, and evaluated their U1i activity. As a result, the desired gene suppression via U1i was observed in ONs prepared as a combination of 2'-fluoro-4'-thionucleoside and 2'-fluoronucleoside units as well as only 2'-fluoronucleoside units, while those prepared as combination of 2'-OMe nucleoside/2'-OMe-4'-thionucleoside and 2'-fluoronucleoside units did not show significant activity. Measurement of Tm values indicated that a higher hybridization ability of adaptor ONs with complementary RNA is one of the important factors to show potent U1i activity.
Collapse
Affiliation(s)
- Yusaku Kikuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Lönne M, Zhu G, Stahl F, Walter JG. Aptamer-modified nanoparticles as biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:121-54. [PMID: 23824145 DOI: 10.1007/10_2013_231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are short oligonucleotides that are capable of selectively binding to their corresponding target. Therefore, they can be thought of as a nucleic acid-based alternative to antibodies and can substitute for their amino acid-based counterparts in analytical applications, including as receptors in biosensors. Here they offer several advantages because their nucleic acid nature and their binding via an induced fit mechanism enable novel sensing strategies. In this article, the utilization of aptamers as novel bio-receptors in combination with nanoparticles as transducer elements is reviewed. In addition to these analytical applications, the medical relevance of aptamer-modified nanoparticles is described.
Collapse
Affiliation(s)
- Maren Lönne
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 5, 30167, Hannover, Germany
| | | | | | | |
Collapse
|
47
|
Pardi N, Muramatsu H, Weissman D, Karikó K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol 2013; 969:29-42. [PMID: 23296925 DOI: 10.1007/978-1-62703-260-5_2] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The in vitro synthesis of long RNA can be accomplished using phage RNA polymerase and template DNA. However, the in vitro synthesized RNA, unlike those transcribed in vivo in cells, lacks nucleoside modifications. Introducing modified nucleosides into in vitro transcripts is important because they reduce the potential of RNA to activate RNA sensors and translation of such nucleoside-modified RNA is increased in cell lines, primary cells, and after in vivo delivery. Here, we describe the in vitro synthesis of nucleoside-modified RNA with enhanced translational capacity and reduced ability to activate immune sensors.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
48
|
Binning JM, Leung DW, Amarasinghe GK. Aptamers in virology: recent advances and challenges. Front Microbiol 2012; 3:29. [PMID: 22347221 PMCID: PMC3274758 DOI: 10.3389/fmicb.2012.00029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/17/2012] [Indexed: 01/23/2023] Open
Abstract
Aptamers generated from randomized libraries of nucleic acids have found utility in a wide variety of fields and in the clinic. Aptamers can be used to target both intracellular and extracellular components, including small molecules, proteins, cells, and viruses. With recent technological developments in stringent selection and rapid isolation strategies, it is likely that aptamers will continue to make an impact as useful tools and reagents. Although many recently developed aptamers are intended for use as therapeutic and diagnostic agents, use of aptamers for basic research, including target validation, remains an active area with high potential to impact our understanding of molecular mechanisms and for drug discovery. In this brief review, we will discuss recent aptamer discoveries, their potential role in structural virology, as well as challenges and future prospects.
Collapse
Affiliation(s)
- Jennifer M Binning
- Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
49
|
Taniike H, Inagaki Y, Matsuda A, Minakawa N. Practical synthesis of 4′-selenopyrimidine nucleosides using hypervalent iodine. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Matsuda A. [Development of highly nuclease-resistant chemically-modified oligonucleotides]. YAKUGAKU ZASSHI 2011; 131:285-98. [PMID: 21297374 DOI: 10.1248/yakushi.131.285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemical modification of therapeutic oligodeoxyribonucleotides (ODNs) is necessary to avoid not only degradation by endo- and exo-nucleases but also recognition by sensors such as an innate immune system. We have been developing modified nucleosides having an aminoalky linker at the pyrimidine nucleobase or sugar moiety. ODNs containing 5-N-(6-aminohexyl)carbamoyl-2'-deoxyuridine (7) were thermally stabilized about 3°C per modification and were about 160 times more stable to hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) than unmodified ODNs, but not by endonucleases. On the other hand, ODNs containing 4'-C-(aminoethyl)thymidine (14b), which was synthesized by a newly developed radical cyclization-ring-enlargement reaction by us, were 87 times more stable to hydrolysis by DNase I (an endonuclease) and 133 times more stable in 50% human serum than unmodified ODNs. The highly stereoselective synthesis of 4'-thioribonuclesides ((S)Ns) was also developed using a Pummerer reaction. Human thrombin RNA aptamer (CII-1-37) containing 4'-thiouridine and 4'-thiocytidine was obtained by SELEX with a K(d) value of 4.7 nM, while a previously known RNA aptamer (RNA-24) has a K(d) value of 85 nM. Studies of the modification pattern-RNAi activity relationships by using (S)Ns have been carried out against luciferase genes. We found that siRNAs, which have 4 residues of (S)Ns on both ends of the sense strand and 4 residues on the 3'-end of the antisense strand, were the most effective. 4'-ThioRNA is about 1100 times more stable in 50% human plasma than unmodified RNA. However, oligoribonucleotides ((SM)ONs) containing 2'-O-methyl-4'-thioribonucleosides were 9800 times more stable in 50% human plasma than unmodified RNA. Since (SM)ON duplexes were thermally more stable than unmodified ON duplexes, therefore they would be quite suitable to use for oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University.
| |
Collapse
|