1
|
Dutta P, Lõhmus A, Ahola T, Mäkinen K. The Replicase Protein of Potato Virus X Is Able to Recognize and Trans-Replicate Its RNA Component. Viruses 2024; 16:1611. [PMID: 39459944 PMCID: PMC11512358 DOI: 10.3390/v16101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The trans-replication system explores the concept of separating the viral RNA involved in the translation of the replicase protein from the replication of the viral genome and has been successfully used to study the replication mechanisms of alphaviruses. We tested the feasibility of this system with potato virus X (PVX), an alpha-like virus, in planta. A viral RNA template was designed which does not produce the replicase and prevents virion formation but remains recognizable by the replicase. The replicase construct encodes for the replicase protein, while lacking other virus-specific recognition sequences. Both the constructs were delivered into Nicotiana benthamiana leaves via Agrobacterium-mediated infiltration. Templates of various lengths were tested, with the longer templates not replicating at 4 and 6 days post inoculation, when the replicase protein was provided in trans. Co-expression of helper component proteinase with the short template led to its trans-replication. The cells where replication had been initiated were observed to be scattered across the leaf lamina. This study established that PVX is capable of trans-replicating and can likely be further optimized, and that the experimental freedom offered by the system can be utilized to delve deeper into understanding the replication mechanism of the virus.
Collapse
Affiliation(s)
- Pinky Dutta
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Andres Lõhmus
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Kristiina Mäkinen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| |
Collapse
|
2
|
Chen D, Shi C, Xu W, Rong Q, Wu Q. Regulation of phase separation and antiviral activity of Cactin by glycolytic enzyme PGK via phosphorylation in Drosophila. mBio 2024; 15:e0137823. [PMID: 38446061 PMCID: PMC11005415 DOI: 10.1128/mbio.01378-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) plays a crucial role in various biological processes in eukaryotic organisms, including immune responses in mammals. However, the specific function of LLPS in immune responses in Drosophila melanogaster remains poorly understood. Cactin, a highly conserved protein in eukaryotes, is involved in a non-canonical signaling pathway associated with Nuclear factor-κB (NF-κB)-related pathways in Drosophila. In this study, we investigated the role of Cactin in LLPS and its implications for immune response modulation. We discovered that Cactin undergoes LLPS, forming droplet-like particles, primarily mediated by its intrinsically disordered region (IDR). Utilizing immunoprecipitation and mass spectrometry analysis, we identified two phosphorylation sites at serine residues 99 and 104 within the IDR1 domain of Cactin. Co-immunoprecipitation and mass spectrometry further revealed phosphoglycerate kinase (PGK) as a Cactin-interacting protein responsible for regulating its phosphorylation. Phosphorylation of Cactin by PGK induced a transition from stable aggregates to dynamic liquid droplets, enhancing its ability to interact with other components in the cellular environment. Overexpression of PGK inhibited Drosophila C virus (DCV) replication, while PGK knockdown increased replication. DCV infection also increased Cactin phosphorylation. We also found that phosphorylation enhances the antiviral ability of Cactin by promoting liquid-phase droplet formation. These findings demonstrate the role of Cactin-phase separation in regulating DCV replication and highlight the modulation of its antiviral function through phosphorylation, providing insights into the interplay between LLPS and antiviral defense mechanisms. IMPORTANCE Liquid-liquid phase separation (LLPS) plays an integral role in various biological processes in eukaryotic organisms. Although several studies have highlighted its crucial role in modulating immune responses in mammals, its function in immune responses in Drosophila melanogaster remains poorly understood. Our study investigated the role of Cactin in LLPS and its implications for immune response modulation. We identified that phosphoglycerate kinase (PGK), an essential enzyme in the glycolytic pathway, phosphorylates Cactin, facilitating its transition from a relatively stable aggregated state to a more dynamic liquid droplet phase during the phase separation process. This transformation allows Cactin to rapidly interact with other cellular components, enhancing its antiviral properties and ultimately inhibiting virus replication. These findings expand our understanding of the role of LLPS in the antiviral defense mechanism, shedding light on the intricate mechanisms underlying immune responses in D. melanogaster.
Collapse
Affiliation(s)
- Dongchao Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Chang Shi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiqi Rong
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| |
Collapse
|
3
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Wegener M, Dietz KJ. The mutual interaction of glycolytic enzymes and RNA in post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2022; 28:1446-1468. [PMID: 35973722 PMCID: PMC9745834 DOI: 10.1261/rna.079210.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
About three decades ago, researchers suggested that metabolic enzymes participate in cellular processes that are unrelated to their catalytic activity, and the term "moonlighting functions" was proposed. Recently developed advanced technologies in the field of RNA interactome capture now unveil the unexpected RNA binding activity of many metabolic enzymes, as exemplified here for the enzymes of glycolysis. Although for most of these proteins a precise binding mechanism, binding conditions, and physiological relevance of the binding events still await in-depth clarification, several well explored examples demonstrate that metabolic enzymes hold crucial functions in post-transcriptional regulation of protein synthesis. This widely conserved RNA-binding function of glycolytic enzymes plays major roles in controlling cell activities. The best explored examples are glyceraldehyde 3-phosphate dehydrogenase, enolase, phosphoglycerate kinase, and pyruvate kinase. This review summarizes current knowledge about the RNA-binding activity of the ten core enzymes of glycolysis in plant, yeast, and animal cells, its regulation and physiological relevance. Apparently, a tight bidirectional regulation connects core metabolism and RNA biology, forcing us to rethink long established functional singularities.
Collapse
Affiliation(s)
- Melanie Wegener
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Uranga M, Daròs JA. Tools and targets: The dual role of plant viruses in CRISPR-Cas genome editing. THE PLANT GENOME 2022:e20220. [PMID: 35698891 DOI: 10.1002/tpg2.20220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The recent emergence of tools based on the clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins have revolutionized targeted genome editing, thus holding great promise to both basic plant science and precision crop breeding. Conventional approaches for the delivery of editing components rely on transformation technologies or transient delivery to protoplasts, both of which are time-consuming, laborious, and can raise legal concerns. Alternatively, plant RNA viruses can be used as transient delivery vectors of CRISPR-Cas reaction components, following the so-called virus-induced genome editing (VIGE). During the last years, researchers have been able to engineer viral vectors for the delivery of CRISPR guide RNAs and Cas nucleases. Considering that each viral vector is limited to its molecular biology properties and a specific host range, here we review recent advances for improving the VIGE toolbox with a special focus on strategies to achieve tissue-culture-free editing in plants. We also explore the utility of CRISPR-Cas technology to enhance biotic resistance with a special focus on plant virus diseases. This can be achieved by either targeting the viral genome or modifying essential host susceptibility genes that mediate in the infection process. Finally, we discuss the challenges and potential that VIGE holds in future breeding technologies.
Collapse
Affiliation(s)
- Mireia Uranga
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - University. Politècnica de València, Valencia, 46022, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - University. Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
6
|
Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes. Viruses 2022; 14:v14061245. [PMID: 35746717 PMCID: PMC9228606 DOI: 10.3390/v14061245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
The development of recessive resistance by loss of susceptibility is a consistent strategy to combat and limit damages caused by plant viruses. Susceptibility genes can be turned into resistances, a feat that can either be selected among the plant’s natural diversity or engineered by biotechnology. Here, we summarize the current knowledge on the phosphoglycerate kinases (PGK), which have emerged as a new class of susceptibility factors to single-stranded positive RNA viruses, including potyviruses. PGKs are metabolic enzymes involved in glycolysis and the carbon reduction cycle, encoded by small multigene families in plants. To fulfil their role in the chloroplast and in the cytosol, PGKs genes encode differentially addressed proteins. Here, we assess the diversity and homology of chloroplastic and cytosolic PGKs sequences in several crops and review the current knowledge on their redundancies during plant development, taking Arabidopsis as a model. We also show how PGKs have been shown to be involved in susceptibility—and resistance—to viruses. Based on this knowledge, and drawing from the experience with the well-characterized translation initiation factors eIF4E, we discuss how PGKs genes, in light of their subcellular localization, function in metabolism, and susceptibility to viruses, could be turned into efficient genetic resistances using genome editing techniques.
Collapse
|
7
|
Chen I, Chen X, Chiu G, Huang Y, Hsu Y, Tsai C. The function of chloroplast ferredoxin-NADP + oxidoreductase positively regulates the accumulation of bamboo mosaic virus in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:503-515. [PMID: 34918877 PMCID: PMC8916203 DOI: 10.1111/mpp.13174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 05/08/2023]
Abstract
A gene down-regulated in Nicotiana benthamiana after bamboo mosaic virus (BaMV) infection had high identity to the nuclear-encoded chloroplast ferredoxin NADP+ oxidoreductase gene (NbFNR). NbFNR is a flavoenzyme involved in the photosynthesis electron transport chain, catalysing the conversion of NADP+ into NADPH. To investigate whether NbFNR is involved in BaMV infection, we used virus-induced gene silencing to reduce the expression of NbFNR in leaves and protoplasts. After BaMV inoculation, the accumulation of BaMV coat protein and RNA was significantly reduced. The transient expression of NbFNR fused with orange fluorescent protein (OFP) localized in the chloroplasts and elevated the level of BaMV coat protein. These results suggest that NbFNR could play a positive role in regulating BaMV accumulation. Expressing a mutant that failed to translocate to the chloroplast did not assist in BaMV accumulation. Another mutant with a catalytic site mutation could support BaMV accumulation to some extent, but accumulation was significantly lower than that of the wild type. In an in vitro replication assay, the replicase complex with FNR inhibitor, heparin, the RdRp activity was reduced. Furthermore, BaMV replicase was revealed to interact with NbFNR in yeast two-hybrid and co-immunoprecipitation experiments. Overall, these results suggest that NbFNR localized in the chloroplast with functional activity could efficiently assist BaMV accumulation.
Collapse
Affiliation(s)
- I‐Hsuan Chen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Xiang‐Yu Chen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Guan‐Zhi Chiu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Ying‐Ping Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advaced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Ching‐Hsiu Tsai
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advaced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
8
|
Lee HC, Huang YP, Huang YW, Hu CC, Lee CW, Chang CH, Lin NS, Hsu YH. Voltage-dependent anion channel proteins associate with dynamic Bamboo mosaic virus-induced complexes. PLANT PHYSIOLOGY 2022; 188:1061-1080. [PMID: 34747475 PMCID: PMC8825239 DOI: 10.1093/plphys/kiab519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Infection cycles of viruses are highly dependent on membrane-associated host factors. To uncover the infection cycle of Bamboo mosaic virus (BaMV) in detail, we purified the membrane-associated viral complexes from infected Nicotiana benthamiana plants and analyzed the involved host factors. Four isoforms of voltage-dependent anion channel (VDAC) proteins on the outer membrane of mitochondria were identified due to their upregulated expression in the BaMV complex-enriched membranous fraction. Results from loss- and gain-of-function experiments indicated that NbVDAC2, -3, and -4 are essential for efficient BaMV accumulation. During BaMV infection, all NbVDACs concentrated into larger aggregates, which overlapped and trafficked with BaMV virions to the structure designated as the "dynamic BaMV-induced complex." Besides the endoplasmic reticulum and mitochondria, BaMV replicase and double-stranded RNAs were also found in this complex, suggesting the dynamic BaMV-induced complex is a replication complex. Yeast two-hybrid and pull-down assays confirmed that BaMV triple gene block protein 1 (TGBp1) could interact with NbVDACs. Confocal microscopy revealed that TGBp1 is sufficient to induce NbVDAC aggregates, which suggests that TGBp1 may play a pivotal role in the NbVDAC-virion complex. Collectively, these findings indicate that NbVDACs may associate with the dynamic BaMV-induced complex via TGBp1 and NbVDAC2, -3, or -4 and can promote BaMV accumulation. This study reveals the involvement of mitochondrial proteins in a viral complex and virus infection.
Collapse
Affiliation(s)
- Hsiang-Chi Lee
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-Hao Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
9
|
Huang YW, Sun CI, Hu CC, Tsai CH, Meng M, Lin NS, Hsu YH. NbPsbO1 Interacts Specifically with the Bamboo Mosaic Virus (BaMV) Subgenomic RNA (sgRNA) Promoter and Is Required for Efficient BaMV sgRNA Transcription. J Virol 2021; 95:e0083121. [PMID: 34379502 PMCID: PMC8475527 DOI: 10.1128/jvi.00831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022] Open
Abstract
Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.
Collapse
Affiliation(s)
- Ying Wen Huang
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chu I Sun
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
| | - Chung Chi Hu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
| | - Na Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
11
|
Huang YP, Huang YW, Hsiao YJ, Li SC, Hsu YH, Tsai CH. Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4657-4670. [PMID: 31552430 PMCID: PMC6760330 DOI: 10.1093/jxb/erz244] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 05/20/2023]
Abstract
Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Jen Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Siou-Cen Li
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Huei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
12
|
Li R, Qiu Z, Wang X, Gong P, Xu Q, Yu QB, Guan Y. Pooled CRISPR/Cas9 reveals redundant roles of plastidial phosphoglycerate kinases in carbon fixation and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1078-1089. [PMID: 30834637 DOI: 10.1111/tpj.14303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 05/07/2023]
Abstract
Phosphoglycerate kinase (PGK) is a highly conserved reversible enzyme that participates in both glycolysis and photosynthesis. In Arabidopsis thaliana, one cytosolic PGK (PGKc) and two plastidial PGKs (PGKp) are known. It remains debatable whether the two PGKp isozymes are functionally redundant or specialized in plastidial carbon metabolism and fixation. Here, using a pooled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) strategy, we found that plants with single mutations in pgkp1 or pgkp2 were not significantly affected, whereas a pgkp1pgkp2 double mutation was lethal due to retarded carbon fixation, suggesting that PGKp isozymes play redundant functional roles. Metabolomic analysis demonstrated that the sugar-deficient pgkp1pgkp2 double mutation was partially complemented by exogenous sugar, although respiration intermediates were not rescued. Chloroplast development was defective in pgkp1pgkp2, due to a deficiency in glycolysis-dependent galactoglycerolipid biosynthesis. Ectopic expression of a plastid targeting PGKc did not reverse the pgkp1pgkp2 double-mutant phenotypes. Therefore, PGKp1 and PGKp2 play redundant roles in carbon fixation and metabolism, whereas the molecular function of PGKc is more divergent. Our study demonstrated the functional conservation and divergence of glycolytic enzymes.
Collapse
Affiliation(s)
- Ruizi Li
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhimin Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoguo Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Pingping Gong
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinzhen Xu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qing-Bo Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
13
|
Das PP, Chua GM, Lin Q, Wong SM. iTRAQ-based analysis of leaf proteome identifies important proteins in secondary metabolite biosynthesis and defence pathways crucial to cross-protection against TMV. J Proteomics 2019; 196:42-56. [PMID: 30726703 DOI: 10.1016/j.jprot.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Cross-protection is a phenomenon in which infection with a mild virus strain protects host plants against subsequent infection with a closely related severe virus strain. This study showed that a mild strain mutant virus, Tobacco mosaic virus (TMV)-43A could cross protect Nicotiana benthamiana plants against wild-type TMV. Furthermore, we investigated the host responses at the proteome level to identify important host proteins involved in cross-protection. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyze the proteome profiles of TMV, TMV-43A and cross-protected plants at different time-points. Our results showed that TMV-43A can cross-protect N. benthamiana plants from TMV. In cross-protected plants, photosynthetic activities were augmented, as supported by the increased accumulation of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) enzymes, which are crucial for chlorophyll biosynthesis. The increased abundance of ROS scavenging enzymes like thioredoxins and L-ascorbate peroxidase would prevent oxidative damage in cross-protected plants. Interestingly, the abundance of defence-related proteins (14-3-3 and NbSGT1) decreased, along with a reduction in virus accumulation during cross-protection. In conclusion, we have identified several important host proteins that are crucial in cross-protection to counter TMV infection in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: TMV is the most studied model for host-virus interaction in plants. It can infect wide varieties of plant species, causing significant economic losses. Cross protection is one of the methods to combat virus infection. A few cross-protection mechanisms have been proposed, including replicase/coat protein-mediated resistance, RNA silencing, and exclusion/spatial separation between virus strains. However, knowledge on host responses at the proteome level during cross protection is limited. To address this knowledge gap, we have leveraged on a global proteomics analysis approach to study cross protection. We discovered that TMV-43A (protector) protects N. benthamiana plants from TMV (challenger) infection through multiple host pathways: secondary metabolite biosynthesis, photosynthesis, defence, carbon metabolism, protein translation and processing and amino acid biosynthesis. In the secondary metabolite biosynthesis pathway, enzymes 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) play crucial roles in chlorophyll biosynthesis during cross protection. In addition, accumulation of ROS scavenging enzymes was also found in cross-protected plants, providing rescues from excessive oxidative damage. Reduced abundance of plant defence proteins is correlated to reduced virus accumulation in host plants. These findings have increased our knowledge in host responses during cross-protection.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Gao Ming Chua
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
14
|
Souza PFN, Garcia-Ruiz H, Carvalho FEL. What proteomics can reveal about plant-virus interactions? Photosynthesis-related proteins on the spotlight. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2019; 31:227-248. [PMID: 31355128 PMCID: PMC6660014 DOI: 10.1007/s40626-019-00142-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant viruses are responsible for losses in worldwide production of numerous economically important food and fuel crops. As obligate cellular parasites with very small genomes, viruses rely on their hosts for replication, assembly, intra- and intercellular movement, and attraction of vectors for dispersal. Chloroplasts are photosynthesis and are the site of replication for several viruses. When viruses replicate in chloroplasts, photosynthesis, an essential process in plant physiology, is inhibited. The mechanisms underlying molecular and biochemical changes during compatible and incompatible plants-virus interactions, are only beginning to be elucidated, including changes in proteomic profiles induced by virus infections. In this review, we highlight the importance of proteomic studies to understand plant-virus interactions, especially emphasizing the changes in photosynthesis-related protein accumulation. We focus on: (a) chloroplast proteins that differentially accumulate during viral infection; (b) the significance with respect to chloroplast-virus interaction; and (c) alterations in plant's energetic metabolism and the subsequently the plant defense mechanisms to overcome viral infection.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
15
|
Lu ZS, Chen QS, Zheng QX, Shen JJ, Luo ZP, Fan K, Xu SH, Shen Q, Liu PP. Proteomic and Phosphoproteomic Analysis in Tobacco Mosaic Virus-Infected Tobacco (Nicotiana tabacum). Biomolecules 2019; 9:E39. [PMID: 30678100 PMCID: PMC6406717 DOI: 10.3390/biom9020039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Tobacco mosaic virus (TMV) is a common source of biological stress that significantly affects plant growth and development. It is also useful as a model in studies designed to clarify the mechanisms involved in plant viral disease. Plant responses to abiotic stress were recently reported to be regulated by complex mechanisms at the post-translational modification (PTM) level. Protein phosphorylation is one of the most widespread and major PTMs in organisms. Using immobilized metal ion affinity chromatography (IMAC) enrichment, high-pH C18 chromatography fraction, and high-accuracy mass spectrometry (MS), a set of proteins and phosphopeptides in both TMV-infected tobacco and control tobacco were identified. A total of 4905 proteins and 3998 phosphopeptides with 3063 phosphorylation sites were identified. These 3998 phosphopeptides were assigned to 1311 phosphoproteins, as some proteins carried multiple phosphorylation sites. Among them, 530 proteins and 337 phosphopeptides corresponding to 277 phosphoproteins differed between the two groups. There were 43 upregulated phosphoproteins, including phosphoglycerate kinase, pyruvate phosphate dikinase, protein phosphatase 2C, and serine/threonine protein kinase. To the best of our knowledge, this is the first phosphoproteomic analysis of leaves from a tobacco cultivar, K326. The results of this study advance our understanding of tobacco development and TMV action at the protein phosphorylation level.
Collapse
Affiliation(s)
- Zi-Shu Lu
- Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China.
| | - Qian-Si Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| | - Qing-Xia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| | - Juan-Juan Shen
- Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China.
| | - Zhao-Peng Luo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| | - Kai Fan
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| | - Sheng-Hao Xu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Qi Shen
- Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China.
| | - Ping-Ping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| |
Collapse
|
16
|
Souza PFN, Carvalho FEL. Killing two birds with one stone: How do Plant Viruses Break Down Plant Defenses and Manipulate Cellular Processes to Replicate Themselves? JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2019; 62:170-180. [PMID: 32218684 PMCID: PMC7090608 DOI: 10.1007/s12374-019-0056-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/15/2019] [Indexed: 05/02/2023]
Abstract
As simple organisms with a parasite nature, viruses have become masters in manipulating and subvert cellular components, including host proteins and organelles, to improve viral replication. Therefore, the understanding of viral strategies to manipulate cell function disrupting plant defenses and enhancing viral infection cycles is fundamental to the production of virus-resistant plant lines. After invading susceptible plants, viruses create conditions that favor local and systemic infections by suppressing multiple layers of innate host defenses while use cellular machinery to own benefit. Viral interference in interlinked essential cellular functions results in phenotypic changes and disease symptoms, which debilitates plants favoring infection establishment. Herein in this review, the novelty it will be the discussion about the strategies used by (+) single strand RNA viruses to affect cellular processes and components to improve viral replication, in parallel to overcome plant defenses, favoring disease establishment by applying in one action using the same viral protein to coordinate viral replication and breaking down plant defense. This focus on plant-virus interaction was never done before, and this knowledge has the potential to help in the development of new strategies to produce resistant plants.
Collapse
Affiliation(s)
- Pedro Filho Noronha Souza
- Department of Biochemistry and Molecular Biology, Center of Science, Federal University of Ceara, Fortaleza, Ceara Brazil
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska Lincoln, Lincoln, Nebraska USA
| | | |
Collapse
|
17
|
Lee C, Wu Y, Hsueh C, Huang Y, Hsu Y, Meng M. Mitogen-activated protein kinase phosphatase 1 reduces the replication efficiency of Bamboo mosaic virus in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2018; 19:2319-2332. [PMID: 29806182 PMCID: PMC6638022 DOI: 10.1111/mpp.12701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/22/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
In plants, the mitogen-activated protein kinase (MAPK) cascades are the central signaling pathways of the complicated defense network triggered by the perception of pathogen-associated molecular patterns to repel pathogens. The Arabidopsis thaliana MAPK phosphatase 1 (AtMKP1) negatively regulates the activation of MAPKs. Recently, the AtMKP1 homolog of Nicotiana benthamiana (NbMKP1) was found in association with the Bamboo mosaic virus (BaMV) replication complex. This study aimed to investigate the role of NbMKP1 in BaMV multiplication in N. benthamiana. Silencing of NbMKP1 increased accumulations of the BaMV-encoded proteins and the viral genomic RNA, although the same condition reduced the infectivity of Pseudomonas syringae pv. tomato DC3000 in N. benthamiana. On the other hand, overexpression of NbMKP1 decreased the BaMV coat protein accumulation in a phosphatase activity-dependent manner in protoplasts. NbMKP1 also negatively affected the in vitro RNA polymerase activity of the BaMV replication complex. Collectively, the activity of NbMKP1 seems to reduce BaMV multiplication, inconsistent with the negatively regulatory role of MKP1 in MAPK cascades in terms of warding off fungal and bacterial invasion. In addition, silencing of NbMKP1 increased the accumulation of Foxtail mosaic virus but decreased Potato virus X. The discrepant effects exerted by NbMKP1 on different pathogens foresee the difficulty to develop plants with broad-spectrum resistance through genetically manipulating a single player in MAPK cascades.
Collapse
Affiliation(s)
- Cheng‐Cheng Lee
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC40227
| | - Yi‐Jhen Wu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC40227
| | - Chia‐Hsin Hsueh
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC40227
| | - Yu‐Ting Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC40227
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC40227
| | - Menghsiao Meng
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC40227
| |
Collapse
|
18
|
Garcia-Ruiz H. Susceptibility Genes to Plant Viruses. Viruses 2018; 10:E484. [PMID: 30201857 PMCID: PMC6164914 DOI: 10.3390/v10090484] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
Plant viruses use cellular factors and resources to replicate and move. Plants respond to viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing, that viruses must evade or suppress. Thus, the establishment of infection is genetically determined by the availability of host factors necessary for virus replication and movement and by the balance between plant defense and viral suppression of defense responses. Host factors may have antiviral or proviral activities. Proviral factors condition susceptibility to viruses by participating in processes essential to the virus. Here, we review current advances in the identification and characterization of host factors that condition susceptibility to plant viruses. Host factors with proviral activity have been identified for all parts of the virus infection cycle: viral RNA translation, viral replication complex formation, accumulation or activity of virus replication proteins, virus movement, and virion assembly. These factors could be targets of gene editing to engineer resistance to plant viruses.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| |
Collapse
|
19
|
Rosa-Téllez S, Anoman AD, Flores-Tornero M, Toujani W, Alseek S, Fernie AR, Nebauer SG, Muñoz-Bertomeu J, Segura J, Ros R. Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth. PLANT PHYSIOLOGY 2018; 176:1182-1198. [PMID: 28951489 PMCID: PMC5813584 DOI: 10.1104/pp.17.01227] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/22/2017] [Indexed: 05/05/2023]
Abstract
In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis (Arabidopsis thaliana) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the photosynthetic isoform, while PGK2 and PGK3 were the plastidial and cytosolic glycolytic isoforms, respectively. The pgk1.1 knockdown mutant displayed reduced growth, lower photosynthetic capacity, and starch content. The pgk3.2 knockout mutant was characterized by reduced growth but higher starch levels than the wild type. The pgk1.1 pgk3.2 double mutant was bigger than pgk3.2 and displayed an intermediate phenotype between the two single mutants in all measured biochemical and physiological parameters. Expression studies in PGK mutants showed that PGK1 and PGK3 were down-regulated in pgk3.2 and pgk1.1, respectively. These results indicate that the down-regulation of photosynthetic activity could be a plant strategy when glycolysis is impaired to achieve metabolic adjustment and optimize growth. The double mutants of PGK3 and the triose-phosphate transporter (pgk3.2 tpt3) displayed a drastic growth phenotype, but they were viable. This implies that other enzymes or nonspecific chloroplast transporters could provide 3-phosphoglycerate to the cytosol. Our results highlight both the complexity and the plasticity of the plant primary metabolic network.
Collapse
Affiliation(s)
- Sara Rosa-Téllez
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, 46100 Burjassot, Spain
| | - Armand Djoro Anoman
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, 46100 Burjassot, Spain
| | - María Flores-Tornero
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, 46100 Burjassot, Spain
| | - Walid Toujani
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, 46100 Burjassot, Spain
| | - Saleh Alseek
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Sergio G Nebauer
- Departamento de Producción Vegetal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jesús Muñoz-Bertomeu
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, 46100 Burjassot, Spain
| | - Juan Segura
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, 46100 Burjassot, Spain
| | - Roc Ros
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
20
|
Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. MOLECULAR PLANT PATHOLOGY 2018; 19:504-518. [PMID: 28056496 PMCID: PMC6638057 DOI: 10.1111/mpp.12533] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The chloroplast is one of the most dynamic organelles of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, plays an active part in the defence response and is crucial for interorganelle signalling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. The chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. Indeed, large proportions of affected gene products in a virus-infected plant are closely associated with the chloroplast and the process of photosynthesis. Although the chloroplast is deficient in gene silencing machinery, it elicits the effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce an extensive network of stromules which are involved in both viral propagation and antiviral defence. From studies over the last few decades, the involvement of the chloroplast in the regulation of plant-virus interaction has become increasingly evident. This review presents an exhaustive account of these facts, with their implications for pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interactions and to explain the existing gaps in our current knowledge, which will enable virologists to utilize chloroplast genome-based antiviral resistance in economically important crops.
Collapse
Affiliation(s)
- Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
21
|
Lei R, Du Z, Kong J, Li G, He Y, Qiu Y, Yan J, Zhu S. Blue Native/SDS-PAGE and iTRAQ-Based Chloroplasts Proteomics Analysis of Nicotiana tabacum Leaves Infected with M Strain of Cucumber Mosaic Virus Reveals Several Proteins Involved in Chlorosis Symptoms. Proteomics 2018; 18. [PMID: 29193783 DOI: 10.1002/pmic.201700359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Indexed: 01/05/2023]
Abstract
Virus infection in plants involves necrosis, chlorosis, and mosaic. The M strain of cucumber mosaic virus (M-CMV) has six distinct symptoms: vein clearing, mosaic, chlorosis, partial green recovery, complete green recovery, and secondary mosaic. Chlorosis indicates the loss of chlorophyll which is highly abundant in plant leaves and plays essential roles in photosynthesis. Blue native/SDS-PAGE combined with mass spectrum was performed to detect the location of virus, and proteomic analysis of chloroplast isolated from virus-infected plants was performed to quantify the changes of individual proteins in order to gain a global view of the total chloroplast protein dynamics during the virus infection. Among the 438 proteins quantified, 33 showed a more than twofold change in abundance, of which 22 are involved in the light-dependent reactions and five in the Calvin cycle. The dynamic change of these proteins indicates that light-dependent reactions are down-accumulated, and the Calvin cycle was up-accumulated during virus infection. In addition to the proteins involved in photosynthesis, tubulin was up-accumulated in virus-infected plant, which might contribute to the autophagic process during plant infection. In conclusion, this extensive proteomic investigation on intact chloroplasts of virus-infected tobacco leaves provided some important novel information on chlorosis mechanisms induced by virus infection.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Zhixin Du
- Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning, Guangxi, P. R. China
| | - Jun Kong
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Guifen Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Yan He
- Animal and Plant and Food Testing Center, Tianjin Entry Exit Inspection and Quarantine Bureau, Tianjin, P. R. China
| | - Yanhong Qiu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Jin Yan
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
22
|
Chen L, Yan Z, Xia Z, Cheng Y, Jiao Z, Sun B, Zhou T, Fan Z. A Violaxanthin Deepoxidase Interacts with a Viral Suppressor of RNA Silencing to Inhibit Virus Amplification. PLANT PHYSIOLOGY 2017; 175:1774-1794. [PMID: 29021224 PMCID: PMC5717725 DOI: 10.1104/pp.17.00638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/06/2017] [Indexed: 05/22/2023]
Abstract
RNA silencing plays a critical role against viral infection. To counteract this antiviral silencing, viruses have evolved various RNA silencing suppressors. Meanwhile, plants have evolved counter-counter defense strategies against RNA silencing suppression (RSS). In this study, the violaxanthin deepoxidase protein of maize (Zea mays), ZmVDE, was shown to interact specifically with the helper component-proteinase (HC-Pro; a viral RNA silencing suppressor) of Sugarcane mosaic virus (SCMV) via its mature protein region by yeast two-hybrid assay, which was confirmed by coimmunoprecipitation in Nicotiana benthamiana cells. It was demonstrated that amino acids 101 to 460 in HC-Pro and the amino acid glutamine-292 in ZmVDE mature protein were essential for this interaction. The mRNA levels of ZmVDE were down-regulated 75% to 65% at an early stage of SCMV infection. Interestingly, ZmVDE, which normally localized in the chloroplasts and cytoplasm, could relocalize to HC-Pro-containing aggregate bodies in the presence of HC-Pro alone or SCMV infection. In addition, ZmVDE could attenuate the RSS activity of HC-Pro in a specific protein interaction-dependent manner. Subsequently, transient silencing of the ZmVDE gene facilitated SCMV RNA and coat protein accumulation. Taken together, our results suggest that ZmVDE interacts with SCMV HC-Pro and attenuates its RSS activity, contributing to decreased SCMV accumulation. This study demonstrates that a host factor can be involved in secondary defense responses against viral infection in monocot plants.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zhaoling Yan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zihao Xia
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Yuqin Cheng
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits-Key Laboratory of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Jiao
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Biao Sun
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Chen IH, Tsai AY, Huang YP, Wu IF, Cheng SF, Hsu YH, Tsai CH. Nuclear-Encoded Plastidal Carbonic Anhydrase Is Involved in Replication of Bamboo mosaic virus RNA in Nicotiana benthamiana. Front Microbiol 2017; 8:2046. [PMID: 29093706 PMCID: PMC5651272 DOI: 10.3389/fmicb.2017.02046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/06/2017] [Indexed: 01/29/2023] Open
Abstract
On inoculation of Nicotiana benthamiana with Bamboo mosaic virus (BaMV), a gene with downregulated expression was found involved in the infection cycle of BaMV. To uncover how this downregulated gene affects the accumulation of BaMV in plants, we used loss- and gain-of-function experiments. Knockdown of this gene decreased the accumulation of BaMV coat protein to approximately 60% in both plants and protoplasts of N. benthamiana but had no effect on Potato virus X and Cucumber mosaic virus infection. The full-length gene was cloned and revealed as an N. benthamiana nuclear-encoded chloroplast carbonic anhydrase (CA) and so designated NbCA. As compared with the accumulation of BaMV RNAs in NbCA-knockdown protoplasts, both plus- and minus-strand RNAs were reduced. We further fused NbCA with Orange fluorescent protein to confirm its localization in chloroplasts on confocal microscopy. However, transiently expressed NbCA in chloroplasts did not considerably increase BaMV accumulation. The addition of exogenous CA may not have any additive effect on BaMV accumulation because of the natural abundance of CA in chloroplasts. In an in vitro replication assay, the addition of Escherichia coli-expressed NbCA enhanced exogenous template level (re-initiation and elongation) but not endogenous template level (only elongation). These results suggest that NbCA is possibly involved in re-initiation step of BaMV RNA replication. Further analysis indicated that proton concentration could influence the endogenous and exogenous template activities. Hence, our results implied that NbCA could be playing a role in harnessing proton concentration and favoring the replicase with the re-initiation template.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - April Y Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - I-Fan Wu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shun-Fang Cheng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
Huang YP, Huang YW, Chen IH, Shenkwen LL, Hsu YH, Tsai CH. Plasma membrane-associated cation-binding protein 1-like protein negatively regulates intercellular movement of BaMV. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4765-4774. [PMID: 28992255 PMCID: PMC5853580 DOI: 10.1093/jxb/erx307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 05/13/2023]
Abstract
To establish a successful infection, a virus needs to replicate and move cell-to-cell efficiently. We investigated whether one of the genes upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) inoculation was involved in regulating virus movement. We revealed the gene to be a plasma membrane-associated cation-binding protein 1-like protein, designated NbPCaP1L. The expression of NbPCaP1L in N. benthamiana was knocked down using Tobacco rattle virus-based gene silencing and consequently the accumulation of BaMV increased significantly to that of control plants. Further analysis indicated no significant difference in the accumulation of BaMV in NbPCaP1L knockdown and control protoplasts, suggesting NbPCaP1L may affect cell-to-cell movement of BaMV. Using a viral vector expressing green fluorescent protein in the knockdown plants, the mean area of viral focus, as determined by fluorescence, was found to be larger in NbPCaP1L knockdown plants. Orange fluorescence protein (OFP)-fused NbPCaP1L, NbPCaP1L-OFP, was expressed in N. benthamiana and reduced the accumulation of BaMV to 46%. To reveal the possible interaction of viral protein with NbPCaP1L, we performed yeast two-hybrid and co-immunoprecipitation experiments. The results indicated that NbPCaP1L interacted with BaMV replicase. The results also suggested that NbPCaP1L could trap the BaMV movement RNP complex via interaction with the viral replicase in the complex and so restricted viral cell-to-cell movement.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Lin-Ling Shenkwen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yau-Huei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
25
|
Prasanth KR, Chuang C, Nagy PD. Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes. PLoS Pathog 2017; 13:e1006689. [PMID: 29059239 PMCID: PMC5695612 DOI: 10.1371/journal.ppat.1006689] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/02/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
The intricate interactions between viruses and hosts include exploitation of host cells for viral replication by using many cellular resources, metabolites and energy. Tomato bushy stunt virus (TBSV), similar to other (+)RNA viruses, induces major changes in infected cells that lead to the formation of large replication compartments consisting of aggregated peroxisomal and ER membranes. Yet, it is not known how TBSV obtains the energy to fuel these energy-consuming processes. In the current work, the authors discovered that TBSV co-opts the glycolytic ATP-generating Pgk1 phosphoglycerate kinase to facilitate the assembly of new viral replicase complexes. The recruitment of Pgk1 into the viral replication compartment is through direct interaction with the viral replication proteins. Altogether, we provide evidence that the ATP generated locally within the replication compartment by the co-opted Pgk1 is used to fuel the ATP-requirement of the co-opted heat shock protein 70 (Hsp70) chaperone, which is essential for the assembly of new viral replicase complexes and the activation of functional viral RNA-dependent RNA polymerase. The advantage of direct recruitment of Pgk1 into the virus replication compartment could be that the virus replicase assembly does not need to intensively compete with cellular processes for access to ATP. In addition, local production of ATP within the replication compartment could greatly facilitate the efficiency of Hsp70-driven replicase assembly by providing high ATP concentration within the replication compartment.
Collapse
Affiliation(s)
- K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| | - Chingkai Chuang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| |
Collapse
|
26
|
Huang YW, Hu CC, Tsai CH, Lin NS, Hsu YH. Chloroplast Hsp70 Isoform Is Required for Age-Dependent Tissue Preference of Bamboo mosaic virus in Mature Nicotiana benthamiana Leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:631-645. [PMID: 28459172 DOI: 10.1094/mpmi-01-17-0012-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant viruses may exhibit age-dependent tissue preference in their hosts but the underlying mechanisms are not well understood. In this study, we provide several lines of evidence to reveal the determining role of a protein of the Nicotiana benthamiana chloroplast Hsp70 (NbcpHsp70) family, NbcpHsp70-2, involved in the preference of Bamboo mosaic virus (BaMV) to infect older tissues. NbcpHsp70 family proteins were identified in complexes pulled down with BaMV replicase as the bait. Among the isoforms of NbcpHsp70, only the specific silencing of NbcpHsp70-2 resulted in the significant decrease of BaMV RNA in N. benthamiana protopalsts, indicating that NbcpHsp70-2 is involved in the efficient replication of BaMV RNA. We further identified the age-dependent import regulation signal contained in the transit peptide of NbcpHsp70-2. Deletion, overexpression, and substitution experiments revealed that the signal in the transit peptide of NbcpHsp70-2 is crucial for both the import of NbcpHsp70-2 into older chloroplasts and the preference of BaMV for infecting older leaves of N. benthamiana. Together, these data demonstrated that BaMV may exploit a cellular age-dependent transportation mechanism to target a suitable environment for viral replication.
Collapse
Affiliation(s)
- Ying Wen Huang
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
| | - Chung Chi Hu
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
| | - Ching Hsiu Tsai
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
| | - Na Sheng Lin
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
- 2 Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau Heiu Hsu
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
| |
Collapse
|
27
|
Chen H, Cao Y, Li Y, Xia Z, Xie J, Carr JP, Wu B, Fan Z, Zhou T. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. THE NEW PHYTOLOGIST 2017; 215:1156-1172. [PMID: 28627019 DOI: 10.1111/nph.14645] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/30/2017] [Indexed: 05/25/2023]
Abstract
Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yiqing Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zihao Xia
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jipeng Xie
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Boming Wu
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Cheng CP. Host Factors Involved in the Intracellular Movement of Bamboo mosaic virus. Front Microbiol 2017; 8:759. [PMID: 28487692 PMCID: PMC5403954 DOI: 10.3389/fmicb.2017.00759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023] Open
Abstract
Viruses move intracellularly to their replication compartments, and the newly synthesized viral complexes are transported to neighboring cells through hijacking of the host endomembrane systems. During these processes, numerous interactions occur among viral proteins, host proteins, and the cytoskeleton system. This review mainly focuses on the plant endomembrane network, which may be utilized by Bamboo mosaic virus (BaMV) to move to its replication compartment, and summarizes the host factors that may be directly involved in delivering BaMV cargoes during intracellular movement. Accumulating evidence indicates that plant endomembrane systems are highly similar but exhibit significant variations from those of other eukaryotic cells. Several Nicotiana benthamiana host proteins have recently been identified to participate in the intracellular movement of BaMV. Chloroplast phosphoglycerate kinase, a host protein transported to chloroplasts, binds to BaMV RNAs and facilitates BaMV replication. NbRABG3f is a small GTPase that plays an essential role in vesicle transportation and is also involved in BaMV replication. These two host proteins may deliver BaMV to the replication compartment. Rab GTPase activation protein 1, which switches Rab GTPase to the inactive conformation, participates in the cell-to-cell movement of BaMV, possibly by trafficking BaMV cargo to neighboring cells after replication. By analyzing the host factors involved in the intracellular movement of BaMV and the current knowledge of plant endomembrane systems, a tentative model for BaMV transport to its replication site within plant cells is proposed.
Collapse
Affiliation(s)
- Chi-Ping Cheng
- Department of Life Sciences, Tzu Chi UniversityHualien, Taiwan
| |
Collapse
|
29
|
Chen IH, Huang YW, Tsai CH. The Functional Roles of the Cis-acting Elements in Bamboo mosaic virus RNA Genome. Front Microbiol 2017; 8:645. [PMID: 28450857 PMCID: PMC5390519 DOI: 10.3389/fmicb.2017.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 02/05/2023] Open
Abstract
Bamboo mosaic virus (BaMV), which belongs to the genus Potexvirus in the family Alphaflexiviridae, has a single-stranded positive-sense RNA genome that is approximately 6400 nucleotides (nts) in length. Positive-sense RNA viruses can use genomic RNA as a template for translation and replication after entering a suitable host cell. Furthermore, such viral RNA is recognized by capsid protein for packaging and by viral movement protein(s) or the movement protein complex for cell-to-cell and systemic movement. Hence, viral RNA must contain signals for different functions to complete the viral infection cycle. In this review, we examine various cis-acting elements in the genome of BaMV. The highly structured 3' untranslated region (UTR) of the BaMV genomic RNA plays multiple roles in the BaMV infection cycle, including targeting chloroplasts for RNA replication, providing an initiation site for the synthesis of minus-strand RNA, signaling for polyadenylation, and directing viral long-distance movement. The nt at the extreme 3' end and the structure of the 3'-terminus of minus-strand RNA are involved in the initiation of plus-strand genomic RNA synthesis. Both these regions have been mapped and reported to interact with the viral-encoded RNA-dependent RNA polymerase. Moreover, the sequences upstream of open reading frames (ORFs) 2, 3, and 5 are involved in regulating subgenomic RNA synthesis. The cis-acting elements that were identified in BaMV RNA are discussed and compared with those of other potexviruses.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
30
|
Meng M, Lee CC. Function and Structural Organization of the Replication Protein of Bamboo mosaic virus. Front Microbiol 2017; 8:522. [PMID: 28400766 PMCID: PMC5368238 DOI: 10.3389/fmicb.2017.00522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae according to the Virus Taxonomy 2015 released by International Committee on Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35 known species including many agricultural important viruses, e.g., Potato virus X (PVX). Members of this genus are characterized by flexuous, filamentous virions of 13 nm in diameter and 470-580 nm in length. A potexvirus has a monopartite positive-strand RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the 5' end and a poly(A) tail at the 3' end. Besides PVX, Bamboo mosaic virus (BaMV) is another potexvirus that has received intensive attention due to the wealth of knowledge on the molecular biology of the virus. In this review, we discuss the enzymatic activities associated with each of the functional domains of the BaMV replication protein, a 155-kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may be conserved across the alphavirus superfamily, is particularly addressed. The recently identified interactions between the replication protein and the plant host factors are also described.
Collapse
Affiliation(s)
- Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| |
Collapse
|
31
|
Huang YP, Chen IH, Tsai CH. Host Factors in the Infection Cycle of Bamboo mosaic virus. Front Microbiol 2017; 8:437. [PMID: 28360904 PMCID: PMC5350103 DOI: 10.3389/fmicb.2017.00437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/02/2022] Open
Abstract
To complete the infection cycle efficiently, the virus must hijack the host systems in order to benefit for all the steps and has to face all the defense mechanisms from the host. This review involves a discussion of how these positive and negative factors regulate the viral RNA accumulation identified for the Bamboo mosaic virus (BaMV), a single-stranded RNA virus. The genome of BaMV is approximately 6.4 kb in length, encoding five functional polypeptides. To reveal the host factors involved in the infection cycle of BaMV, a few different approaches were taken to screen the candidates. One of the approaches is isolating the viral replicase-associated proteins by co-immunoprecipitation with the transiently expressed tagged viral replicase in plants. Another approach is using the cDNA-amplified fragment length polymorphism technique to screen the differentially expressed genes derived from N. benthamiana plants after infection. The candidates are examined by knocking down the expression in plants using the Tobacco rattle virus-based virus-induced gene silencing technique following BaMV inoculation. The positive or negative regulators could be described as reducing or enhancing the accumulation of BaMV in plants when the expression levels of these proteins are knocked down. The possible roles of these host factors acting on the accumulation of BaMV will be discussed.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| |
Collapse
|
32
|
Alazem M, Lin NS. Antiviral Roles of Abscisic Acid in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1760. [PMID: 29075279 PMCID: PMC5641568 DOI: 10.3389/fpls.2017.01760] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA) pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV) is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.
Collapse
|
33
|
Nwugo CC, Doud MS, Duan YP, Lin H. Proteomics analysis reveals novel host molecular mechanisms associated with thermotherapy of 'Ca. Liberibacter asiaticus'-infected citrus plants. BMC PLANT BIOLOGY 2016; 16:253. [PMID: 27842496 PMCID: PMC5109811 DOI: 10.1186/s12870-016-0942-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/02/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Citrus Huanglongbing (HLB), which is linked to the bacterial pathogen 'Ca. Liberibacter asiaticus' (Las), is the most devastating disease of citrus plants, and longer-term control measures via breeding or genetic engineering have been unwieldy because all cultivated citrus species are susceptible to the disease. However, the degree of susceptibility varies among citrus species, which has prompted efforts to identify potential Las resistance/tolerance-related genes in citrus plants for application in breeding or genetic engineering programs. Plant exposure to one form of stress has been shown to serendipitously induce innate resistance to other forms of stress and a recent study showed that continuous heat treatment (40 to 42 °C) reduced Las titer and HLB-associated symptoms in citrus seedlings. The goal of the present study was to apply comparative proteomics analysis via 2-DE and mass spectrometry to elucidate the molecular processes associated with heat-induced mitigation of HLB in citrus plants. Healthy or Las-infected citrus grapefruit plants were exposed to room temperature or to continuous heat treatment of 40 °C for 6 days. RESULTS An exhaustive total protein extraction process facilitated the identification of 107 differentially-expressed proteins in response to Las and/or heat treatment, which included a strong up-regulation of chaperones including small (23.6, 18.5 and 17.9 kDa) heat shock proteins, a HSP70-like protein and a ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)-binding 60 kDa chaperonin, particularly in response to heat treatment. Other proteins that were generally down-regulated due to Las infection but up-regulated in response to heat treatment include RuBisCO activase, chlorophyll a/b binding protein, glucosidase II beta subunit-like protein, a putative lipoxygenase protein, a ferritin-like protein, and a glutathione S-transferase. CONCLUSIONS The differentially-expressed proteins identified in this study highlights a premier characterization of the molecular mechanisms potentially involved in the reversal of Las-induced pathogenicity processes in citrus plants and are hence proposed targets for application towards the development of cisgenic Las-resistant/tolerant citrus plants.
Collapse
Affiliation(s)
- Chika C. Nwugo
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, 93648 CA USA
| | - Melissa S. Doud
- USDA, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, 34945 FL USA
| | - Yong-ping Duan
- USDA, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, 34945 FL USA
| | - Hong Lin
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, 93648 CA USA
| |
Collapse
|
34
|
Hashimoto M, Neriya Y, Yamaji Y, Namba S. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Front Microbiol 2016; 7:1695. [PMID: 27833593 PMCID: PMC5080351 DOI: 10.3389/fmicb.2016.01695] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
35
|
Zhao J, Zhang X, Hong Y, Liu Y. Chloroplast in Plant-Virus Interaction. Front Microbiol 2016; 7:1565. [PMID: 27757106 PMCID: PMC5047884 DOI: 10.3389/fmicb.2016.01565] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
| |
Collapse
|
36
|
Hashimoto M, Neriya Y, Keima T, Iwabuchi N, Koinuma H, Hagiwara-Komoda Y, Ishikawa K, Himeno M, Maejima K, Yamaji Y, Namba S. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:120-131. [PMID: 27402258 DOI: 10.1111/tpj.13265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
One of the plant host resistance machineries to viruses is attributed to recessive alleles of genes encoding critical host factors for virus infection. This type of resistance, also referred to as recessive resistance, is useful for revealing plant-virus interactions and for breeding antivirus resistance in crop plants. Therefore, it is important to identify a novel host factor responsible for robust recessive resistance to plant viruses. Here, we identified a mutant from an ethylmethane sulfonate (EMS)-mutagenized Arabidopsis population which confers resistance to plantago asiatica mosaic virus (PlAMV, genus Potexvirus). Based on map-based cloning and single nucleotide polymorphism analysis, we identified a premature termination codon in a functionally unknown gene containing a GYF domain, which binds to proline-rich sequences in eukaryotes. Complementation analyses and robust resistance to PlAMV in a T-DNA mutant demonstrated that this gene, named Essential for poteXvirus Accumulation 1 (EXA1), is indispensable for PlAMV infection. EXA1 contains a GYF domain and a conserved motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved among monocot and dicot species. Analysis using qRT-PCR and immunoblotting revealed that EXA1 was expressed in all tissues, and was not transcriptionally responsive to PlAMV infection in Arabidopsis plants. Moreover, accumulation of PlAMV and a PlAMV-derived replicon was drastically diminished in the initially infected cells by the EXA1 deficiency. Accumulation of two other potexviruses also decreased in exa1-1 mutant plants. Our results provided a functional annotation to GYF domain-containing proteins by revealing the function of the highly conserved EXA1 gene in plant-virus interactions.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nozomu Iwabuchi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroaki Koinuma
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuka Hagiwara-Komoda
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
37
|
Kumari R, Kumar S, Singh L, Hallan V. Movement Protein of Cucumber Mosaic Virus Associates with Apoplastic Ascorbate Oxidase. PLoS One 2016; 11:e0163320. [PMID: 27668429 PMCID: PMC5036820 DOI: 10.1371/journal.pone.0163320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/07/2016] [Indexed: 01/13/2023] Open
Abstract
Plant viral movement proteins facilitate virion movement mainly through interaction with a number of factors from the host. We report the association of a cell wall localized ascorbate oxidase (CsAO4) from Cucumis sativus with the movement protein (MP) of Cucumber mosaic virus (CMV). This was identified first in a yeast two-hybrid screen and validated by in vivo pull down and bimolecular fluorescence complementation (BiFC) assays. The BiFC assay showed localization of the bimolecular complexes of these proteins around the cell wall periphery as punctate spots. The expression of CsAO4 was induced during the initial infection period (up to 72 h) in CMV infected Nicotiana benthamiana plants. To functionally validate its role in viral spread, we analyzed the virus accumulation in CsAO4 overexpressing Arabidopsis thaliana and transiently silenced N. benthamiana plants (through a Tobacco rattle virus vector). Overexpression had no evident effect on virus accumulation in upper non-inoculated leaves of transgenic lines in comparison to WT plants at 7 days post inoculation (dpi). However, knockdown resulted in reduced CMV accumulation in systemic (non-inoculated) leaves of NbΔAO-pTRV2 silenced plants as compared to TRV inoculated control plants at 5 dpi (up to 1.3 fold difference). In addition, functional validation supported the importance of AO in plant development. These findings suggest that AO and viral MP interaction helps in early viral movement; however, it had no major effect on viral accumulation after 7 dpi. This study suggests that initial induction of expression of AO on virus infection and its association with viral MP helps both towards targeting of the MP to the apoplast and disrupting formation of functional AO dimers for spread of virus to nearby cells, reducing the redox defense of the plant during initial stages of infection.
Collapse
Affiliation(s)
- Reenu Kumari
- Plant Virology lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Surender Kumar
- Plant Virology lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
| | - Lakhmir Singh
- Department of Biotechnology, DAV University, Sarmastpur, Jalandhar, 144012, Punjab, India
| | - Vipin Hallan
- Plant Virology lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
- * E-mail:
| |
Collapse
|
38
|
Lee CC, Lin TL, Lin JW, Han YT, Huang YT, Hsu YH, Meng M. Promotion of Bamboo Mosaic Virus Accumulation in Nicotiana benthamiana by 5'→3' Exonuclease NbXRN4. Front Microbiol 2016; 6:1508. [PMID: 26779163 PMCID: PMC4702010 DOI: 10.3389/fmicb.2015.01508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
Bamboo mosaic virus (BaMV) has a 6.4-kb (+) sense RNA genome with a 5' cap and a 3' poly(A) tail. ORF1 of this potexvirus encodes a 155-kDa replication protein responsible for the viral RNA replication/transcription and 5' cap formation. To learn more about the replication complex of BaMV, a protein preparation enriched in the 155-kDa replication protein was obtained from Nicotiana benthamiana by a protocol involving agroinfiltration and immunoprecipitation. Subsequent analysis by SDS-PAGE and mass spectrometry identified a handful of host proteins that may participate in the viral replication. Among them, the cytoplasmic exoribonuclease NbXRN4 particularly caught our attention. NbXRN4 has been shown to have an antiviral activity against Tomato bushy stunt virus and Tomato mosaic virus. In Arabidopsis, the enzyme could reduce RNAi- and miRNA-mediated RNA decay. This study found that downregulation of NbXRN4 greatly decreased BaMV accumulation, while overexpression of NbXRN4 resulted in an opposite effect. Mutations at the catalytically essential residues abolished the function of NbXRN4 in the increase of BaMV accumulation. Nonetheless, NbXRN4 was still able to promote BaMV accumulation in the presence of the RNA silencing suppressor P19. In summary, the replication efficiency of BaMV may be improved by the exoribonuclease activity of NbXRN4.
Collapse
Affiliation(s)
- Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Tzu-Ling Lin
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan; Division of Medicine Centre for Nephrology, University College LondonLondon, UK
| | - Jhe-Wei Lin
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Yu-Tsung Han
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Yu-Ting Huang
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| |
Collapse
|
39
|
Joshi R, Karan R, Singla-Pareek SL, Pareek A. Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. PLANT CELL REPORTS 2016; 35:27-41. [PMID: 26408146 DOI: 10.1007/s00299-015-1864-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 08/29/2015] [Accepted: 09/03/2015] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Our results indicate that OsPGK2a-P gene is differentially regulated in contrasting rice cultivars under stress and its overexpression confers salt stress tolerance in transgenic tobacco. Phosphoglycerate kinase (PGK; EC = 2.7.2.3) plays a major role for ATP production during glycolysis and 1, 3-bisphosphoglycerate production to participate in the Calvin cycle for carbon fixation in plants. Whole genome analysis of rice reveals the presence of four PGK genes (OsPgks) on different chromosomes. Comparative expression analysis of OsPgks in rice revealed highest level of transcripts for OsPgk2 at most of its developmental stages. Detailed characterization of OsPgk2 transcript and protein showed that it is strongly induced by salinity stress in two contrasting genotypes of rice, i.e., cv IR64 (salt sensitive) and landrace Pokkali (salt tolerant). Ectopic expression of OsPgk2a-P (isolated from Pokkali) in transgenic tobacco improved its salinity stress tolerance by higher chlorophyll retention and enhanced proline accumulation, besides maintaining better ion homeostasis. Ectopically expressing OsPgk2a-P transgenic tobacco plants showed tall phenotype with more number of pods than wild-type plants. Therefore, OsPgk2a-P appears to be a potential candidate for increasing salinity stress tolerance and enhanced yield in crop plants.
Collapse
Affiliation(s)
- Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ratna Karan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sneh L Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
40
|
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China; State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University Beijing, China
| |
Collapse
|
41
|
Poque S, Pagny G, Ouibrahim L, Chague A, Eyquard JP, Caballero M, Candresse T, Caranta C, Mariette S, Decroocq V. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:159. [PMID: 26109391 PMCID: PMC4479089 DOI: 10.1186/s12870-015-0559-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/17/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Sharka is caused by Plum pox virus (PPV) in stone fruit trees. In orchards, the virus is transmitted by aphids and by grafting. In Arabidopsis, PPV is transferred by mechanical inoculation, by biolistics and by agroinoculation with infectious cDNA clones. Partial resistance to PPV has been observed in the Cvi-1 and Col-0 Arabidopsis accessions and is characterized by a tendency to escape systemic infection. Indeed, only one third of the plants are infected following inoculation, in comparison with the susceptible Ler accession. RESULTS Genetic analysis showed this partial resistance to be monogenic or digenic depending on the allelic configuration and recessive. It is detected when inoculating mechanically but is overcome when using biolistic or agroinoculation. A genome-wide association analysis was performed using multiparental lines and 147 Arabidopsis accessions. It identified a major genomic region, rpv1. Fine mapping led to the positioning of rpv1 to a 200 kb interval on the long arm of chromosome 1. A candidate gene approach identified the chloroplast phosphoglycerate kinase (cPGK2) as a potential gene underlying the resistance. A virus-induced gene silencing strategy was used to knock-down cPGK2 expression, resulting in drastically reduced PPV accumulation. CONCLUSION These results indicate that rpv1 resistance to PPV carried by the Cvi-1 and Col-0 accessions is linked to allelic variations at the Arabidopsis cPGK2 locus, leading to incomplete, compatible interaction with the virus.
Collapse
Affiliation(s)
- S Poque
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Current address: Department of Plant Pathology, National Chung Hsing University, Taichung, 402, Taiwan.
| | - G Pagny
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - L Ouibrahim
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, F-84143, Montfavet cedex, France.
| | - A Chague
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - J-P Eyquard
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - M Caballero
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - T Candresse
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - C Caranta
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, F-84143, Montfavet cedex, France.
| | - S Mariette
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Current address: INRA, UMR 1202 Biogeco, F- 33610, Cestas, France.
- Current address: Univ. Bordeaux, UMR1202 Biogeco, F-33400, Talence, France.
| | - V Decroocq
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| |
Collapse
|
42
|
Plant virus replication and movement. Virology 2015; 479-480:657-71. [DOI: 10.1016/j.virol.2015.01.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 01/10/2023]
|
43
|
Mahadevan C, Jaleel A, Deb L, Thomas G, Sakuntala M. Development of an Efficient Virus Induced Gene Silencing Strategy in the Non-Model Wild Ginger-Zingiber zerumbet and Investigation of Associated Proteome Changes. PLoS One 2015; 10:e0124518. [PMID: 25918840 PMCID: PMC4412686 DOI: 10.1371/journal.pone.0124518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/15/2015] [Indexed: 12/25/2022] Open
Abstract
Zingiber zerumbet (Zingiberaceae) is a wild, tropical medicinal herb that shows a high degree of resistance to diseases affecting cultivated ginger. Barley stripe mosaic virus (BSMV) silencing vectors containing an endogenous phytoene desaturase (PDS) gene fragment were agroinfiltrated into young leaves of Z. zerumbet under controlled growth conditions to effect virus-induced gene silencing (VIGS). Infiltrated leaves as well as newly emerged leaves and tillers showed visual signs of PDS silencing after 30 days. Replication and systemic movement of the viral vectors in silenced plants were confirmed by RT-PCR. Real-time quantitative PCR analysis verified significant down-regulation of PDS transcripts in the silenced tissues. Label-free proteomic analysis was conducted in leaves with established PDS transcript down regulation and buffer-infiltrated (mock) leaves. A total of 474 proteins were obtained, which were up-regulated, down-regulated or modulated de novo during VIGS. Most of these proteins were localized to the chloroplast, as revealed by UniprotKB analysis, and among the up-regulated proteins there were abiotic stress responsive, photosynthetic, metabolic and membrane proteins. Moreover, the demonstration of viral proteins together with host proteins proved successful viral infection. We report for the first time the establishment of a high-throughput gene functional analysis platform using BSMV-mediated VIGS in Z. zerumbet, as well as proteomic changes associated with VIGS.
Collapse
Affiliation(s)
- Chidambareswaren Mahadevan
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala State, India-695014
| | - Abdul Jaleel
- Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala State, India-695014
| | - Lokesh Deb
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India-795001
| | - George Thomas
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala State, India-695014
| | - Manjula Sakuntala
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala State, India-695014
| |
Collapse
|
44
|
Mathioudakis MM, Rodríguez-Moreno L, Sempere RN, Aranda MA, Livieratos I. Multifaceted capsid proteins: multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1356-69. [PMID: 25162316 DOI: 10.1094/mpmi-07-14-0195-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pepino mosaic virus (PepMV) (family Alphaflexiviridae, genus Potexvirus) is a mechanically transmitted tomato pathogen that, over the last decade, has evolved from emerging to endemic worldwide. Here, two heat-shock cognate (Hsc70) isoforms were identified as part of the coat protein (CP)/Hsc70 complex in vivo, following full-length PepMV and CP agroinoculation. PepMV accumulation was severely reduced in Hsp70 virus-induced gene silenced and in quercetin-treated Nicotiana benthamiana plants. Similarly, in vitro-transcribed as well as virion RNA input levels were reduced in quercetin-treated protoplasts, suggesting an essential role for Hsp70 in PepMV replication. As for Potato virus X, the PepMV CP and triple gene-block protein 1 (TGBp1) self-associate and interact with each other in vitro but, unlike in the prototype, both PepMV proteins represent suppressors of transgene-induced RNA silencing with different modes of action; CP is a more efficient suppressor of RNA silencing, sequesters the silencing signal by preventing its spread to neighboring cells and its systemic movement. Here, we provide evidence for additional roles of the PepMV CP and host-encoded Hsp70 in viral infection, the first as a truly multifunctional protein able to specifically bind to a host chaperone and to counterattack an RNA-based defense mechanism, and the latter as an essential factor for PepMV infection.
Collapse
|
45
|
Kaido M, Abe K, Mine A, Hyodo K, Taniguchi T, Taniguchi H, Mise K, Okuno T. GAPDH--a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathog 2014; 10:e1004505. [PMID: 25411849 PMCID: PMC4239097 DOI: 10.1371/journal.ppat.1004505] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023] Open
Abstract
The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazutomo Abe
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takako Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Ouibrahim L, Mazier M, Estevan J, Pagny G, Decroocq V, Desbiez C, Moretti A, Gallois JL, Caranta C. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:705-16. [PMID: 24930633 DOI: 10.1111/tpj.12586] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana represents a valuable and efficient model to understand mechanisms underlying plant susceptibility to viral diseases. Here, we describe the identification and molecular cloning of a new gene responsible for recessive resistance to several isolates of Watermelon mosaic virus (WMV, genus Potyvirus) in the Arabidopsis Cvi-0 accession. rwm1 acts at an early stage of infection by impairing viral accumulation in initially infected leaf tissues. Map-based cloning delimited rwm1 on chromosome 1 in a 114-kb region containing 30 annotated genes. Positional and functional candidate gene analysis suggested that rwm1 encodes cPGK2 (At1g56190), an evolutionary conserved nucleus-encoded chloroplast phosphoglycerate kinase with a key role in cell metabolism. Comparative sequence analysis indicates that a single amino acid substitution (S78G) in the N-terminal domain of cPGK2 is involved in rwm1-mediated resistance. This mutation may have functional consequences because it targets a highly conserved residue, affects a putative phosphorylation site and occurs within a predicted nuclear localization signal. Transgenic complementation in Arabidopsis together with virus-induced gene silencing in Nicotiana benthamiana confirmed that cPGK2 corresponds to rwm1 and that the protein is required for efficient WMV infection. This work uncovers new insight into natural plant resistance mechanisms that may provide interesting opportunities for the genetic control of plant virus diseases.
Collapse
Affiliation(s)
- Laurence Ouibrahim
- Genetics and Breeding of Fruits and Vegetables, INRA-UR1052, Dom. St Maurice, CS 60094, F-84143, Montfavet Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Osman TAM, Olsthoorn RCL, Livieratos IC. Role of the Pepino mosaic virus 3'-untranslated region elements in negative-strand RNA synthesis in vitro. Virus Res 2014; 190:110-7. [PMID: 25051146 DOI: 10.1016/j.virusres.2014.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
Pepino mosaic virus (PepMV) is a mechanically-transmitted positive-strand RNA potexvirus, with a 6410 nt long single-stranded (ss) RNA genome flanked by a 5'-methylguanosine cap and a 3' poly-A tail. Computer-assisted folding of the 64 nt long PepMV 3'-untranslated region (UTR) resulted in the prediction of three stem-loop structures (hp1, hp2, and hp3 in the 3'-5' direction). The importance of these structures and/or sequences for promotion of negative-strand RNA synthesis and binding to the RNA dependent RNA polymerase (RdRp) was tested in vitro using a specific RdRp assay. Hp1, which is highly variable among different PepMV isolates, appeared dispensable for negative-strand synthesis. Hp2, which is characterized by a large U-rich loop, tolerated base-pair changes in its stem as long as they maintained the stem integrity but was very sensitive to changes in the U-rich loop. Hp3, which harbours the conserved potexvirus ACUUAA hexamer motif, was essential for template activity. Template-RNA polymerase binding competition experiments showed that the ACUUAA sequence represents a high-affinity RdRp binding element.
Collapse
Affiliation(s)
- Toba A M Osman
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepion, GR-73100 Chania, Crete, Greece; Department of Agricultural Botany, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - René C L Olsthoorn
- Department of Molecular Genetics, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Ioannis C Livieratos
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepion, GR-73100 Chania, Crete, Greece.
| |
Collapse
|
48
|
Kulkarni AD, Kiron V, Rombout JHWM, Brinchmann MF, Fernandes JMO, Sudheer NS, Singh BIS. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus. Proteomics 2014; 14:1660-73. [PMID: 24782450 DOI: 10.1002/pmic.201300405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 11/12/2022]
Abstract
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Amod D Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | |
Collapse
|
49
|
Hyodo K, Kaido M, Okuno T. Host and viral RNA-binding proteins involved in membrane targeting, replication and intercellular movement of plant RNA virus genomes. FRONTIERS IN PLANT SCIENCE 2014; 5:321. [PMID: 25071804 PMCID: PMC4083346 DOI: 10.3389/fpls.2014.00321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/18/2014] [Indexed: 05/10/2023]
Abstract
Many plant viruses have positive-strand RNA [(+)RNA] as their genome. Therefore, it is not surprising that RNA-binding proteins (RBPs) play important roles during (+)RNA virus infection in host plants. Increasing evidence demonstrates that viral and host RBPs play critical roles in multiple steps of the viral life cycle, including translation and replication of viral genomic RNAs, and their intra- and intercellular movement. Although studies focusing on the RNA-binding activities of viral and host proteins, and their associations with membrane targeting, and intercellular movement of viral genomes have been limited to a few viruses, these studies have provided important insights into the molecular mechanisms underlying the replication and movement of viral genomic RNAs. In this review, we briefly overview the currently defined roles of viral and host RBPs whose RNA-binding activity have been confirmed experimentally in association with their membrane targeting, and intercellular movement of plant RNA virus genomes.
Collapse
Affiliation(s)
| | | | - Tetsuro Okuno
- *Correspondence: Tetsuro Okuno, Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku,Kyoto 606-8502, Japan e-mail:
| |
Collapse
|
50
|
Cheng SF, Huang YP, Chen LH, Hsu YH, Tsai CH. Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. PLANT PHYSIOLOGY 2013; 163:1598-608. [PMID: 24154620 PMCID: PMC3846135 DOI: 10.1104/pp.113.229666] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 05/18/2023]
Abstract
The Bamboo mosaic virus (BaMV) is a positive-sense, single-stranded RNA virus. Previously, we identified that the chloroplast phosphoglycerate kinase (chl-PGK) from Nicotiana benthamiana is one of the viral RNA binding proteins involved in the BaMV infection cycle. Because chl-PGK is transported to the chloroplast, we hypothesized that chl-PGK might be involved in viral RNA localization in the chloroplasts. To test this hypothesis, we constructed two green fluorescent protein (GFP)-fused mislocalized PGK mutants, the transit peptide deletion mutant (NO TRANSIT PEPTIDE [NOTP]-PGK-GFP) and the nucleus location mutant (nuclear location signal [NLS]-PGK-GFP). Using confocal microscopy, we demonstrated that NOTP-PGK-GFP and NLS-PGK-GFP are localized in the cytoplasm and nucleus, respectively, in N. benthamiana plants. When NOTP-PGK-GFP and NLS-PGK-GFP are transiently expressed, we observed a reduction in BaMV coat protein accumulation to 47% and 27% that of the wild-type PGK-GFP, respectively. To localize viral RNA in infected cells, we employed the interaction of NLS-GFP-MS2 (phage MS2 coat protein) with the modified BaMV RNA containing the MS2 coat protein binding sequence. Using confocal microscopy, we observed that BaMV viral RNA localizes to chloroplasts. Furthermore, elongation factor1a fused with the transit peptide derived from chl-PGK or with a Rubisco small subunit can partially restore BaMV accumulation in NbPGK1-knockdown plants by helping BaMV target chloroplasts.
Collapse
Affiliation(s)
| | | | - Li-Hung Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan (S.-F.C., Y.-P.H., L.-H.C., Y.-H.H., C.-H.T.); and
- Graduate Institute of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan (Y.-H.H., C.-H.T.)
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan (S.-F.C., Y.-P.H., L.-H.C., Y.-H.H., C.-H.T.); and
- Graduate Institute of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan (Y.-H.H., C.-H.T.)
| | | |
Collapse
|