1
|
Dostálková A, Křížová I, Junková P, Racková J, Kapisheva M, Novotný R, Danda M, Zvonařová K, Šinkovec L, Večerková K, Bednářová L, Ruml T, Rumlová M. Unveiling the DHX15-G-patch interplay in retroviral RNA packaging. Proc Natl Acad Sci U S A 2024; 121:e2407990121. [PMID: 39320912 PMCID: PMC11459146 DOI: 10.1073/pnas.2407990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
Collapse
Affiliation(s)
- Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Petra Junková
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Jana Racková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Radim Novotný
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Karolína Zvonařová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Larisa Šinkovec
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Kateřina Večerková
- Department of Informatics and Chemistry, University of Chemistry and Technology, 166 28Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20Prague, Czech Republic
| | - Lucie Bednářová
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| |
Collapse
|
2
|
Yin G, Hu J, Huang X, Cai Y, Gao Z, Guo X, Feng X. The Identification and Function of Linc01615 on Influenza Virus Infection and Antiviral Response. Int J Mol Sci 2024; 25:6584. [PMID: 38928290 PMCID: PMC11203770 DOI: 10.3390/ijms25126584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza virus infection poses a great threat to human health globally each year. Non-coding RNAs (ncRNAs) in the human genome have been reported to participate in the replication process of the influenza virus, among which there are still many unknowns about Long Intergenic Non-Coding RNAs (LincRNAs) in the cell cycle of viral infections. Here, we observed an increased expression of Linc01615 in A549 cells upon influenza virus PR8 infection, accompanied by the successful activation of the intracellular immune system. The knockdown of Linc01615 using the shRNAs promoted the proliferation of the influenza A virus, and the intracellular immune system was inhibited, in which the expressions of IFN-β, IL-28A, IL-29, ISG-15, MX1, and MX2 were decreased. Predictions from the catRAPID website suggested a potential interaction between Linc01615 and DHX9. Also, knocking down Linc01615 promoted influenza virus proliferation. The subsequent transcriptome sequencing results indicated a decrease in Linc01615 expression after influenza virus infection when DHX9 was knocked down. Further analysis through cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) in HEK293 cells stably expressing DHX9 confirmed the interaction between DHX9 and Linc01615. We speculate that DHX9 may interact with Linc01615 to partake in influenza virus replication and that Linc01615 helps to activate the intracellular immune system. These findings suggest a deeper connection between DHX9 and Linc01615, which highlights the significant role of Linc01615 in the influenza virus replication process. This research provides valuable insights into understanding influenza virus replication and offers new targets for preventing influenza virus infections.
Collapse
Affiliation(s)
- Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zichen Gao
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Guo
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Kumar A, Hooda P, Puri A, Khatter R, S. Al-Dosari M, Sinha N, Parvez MK, Sehgal D. Methotrexate, an anti-inflammatory drug, inhibits Hepatitis E viral replication. J Enzyme Inhib Med Chem 2023; 38:2280500. [PMID: 37975328 PMCID: PMC11003484 DOI: 10.1080/14756366.2023.2280500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Hepatitis E Virus (HEV) is a positively oriented RNA virus having a 7.2 kb genome. HEV consists of three open reading frames (ORF1-3). Of these, ORF1 codes for the enzymes Methyltransferase (Mtase), Papain-like cysteine protease (PCP), RNA helicase, and RNA-dependent RNA polymerase (RdRp). Unavailability of a vaccine or effective drug against HEV and considering the side effects associated with the off-label use of ribavirin (RBV) and pegylated interferons, an alternative approach is required by the modulation of specific enzymes to prevent the infection. HEV helicase is involved in unwinding the double-stranded RNA, RNA processing, transcriptional regulation, and pre-mRNA processing. Therefore, we screened FDA-approved compounds from the ZINC15 database against the modelled 3D structure of HEV helicase and found that methotrexate and compound A (Pubchem ID BTB07890) inhibit the NTPase and dsRNA unwinding activity leading to inhibition of HEV RNA replication. This may be further authenticated by in vivo study.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Preeti Hooda
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Anindita Puri
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Radhika Khatter
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Neha Sinha
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Deepak Sehgal
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| |
Collapse
|
4
|
Brai A, Trivisani CI, Poggialini F, Pasqualini C, Vagaggini C, Dreassi E. DEAD-Box Helicase DDX3X as a Host Target against Emerging Viruses: New Insights for Medicinal Chemical Approaches. J Med Chem 2022; 65:10195-10216. [PMID: 35899912 DOI: 10.1021/acs.jmedchem.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, globalization, global warming, and population aging have contributed to the spread of emerging viruses, such as coronaviruses (COVs), West Nile (WNV), Dengue (DENV), and Zika (ZIKV). The number of reported infections is increasing, and considering the high viral mutation rate, it is conceivable that it will increase significantly in the coming years. The risk caused by viruses is now more evident due to the COVID-19 pandemic, which highlighted the need to find new broad-spectrum antiviral agents able to tackle the present pandemic and future epidemics. DDX3X helicase is a host factor required for viral replication. Selective inhibitors have been identified and developed into broad-spectrum antivirals active against emerging pathogens, including SARS-CoV-2 and most importantly against drug-resistant strains. This perspective describes the inhibitors identified in the last years, highlighting their therapeutic potential as innovative broad-spectrum antivirals.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | | | - Federica Poggialini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Claudia Pasqualini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| |
Collapse
|
5
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
6
|
Chowdhury S, Kanrar K, Bhuiya S, Das S. The alkaloid cryptolepine as a source of polyadenylate targeting therapeutic agent: Induction of self-assembly in the polyadenylate moiety. Arch Biochem Biophys 2021; 712:109042. [PMID: 34562470 DOI: 10.1016/j.abb.2021.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
RNAs have become a well-known target for chemotherapeutic agents in the recent years. The tails of most eukaryotic m-RNA are characterized by the presence of a long polyadenylate sequence which plays an important role in its growth and maturation. This lays emphasis on development of molecular probes that target the polyadenylate sequence. Cryptolepine (hereafter, CRP) is an indoloquinoline alkaloid well known for its anti-malarial activities. A series of spectroscopic experiments namely absorption studies, fluorimetric studies and circular dichroism studies show that cryptolepine binds with single-stranded polyriboadenylic acid (hereafter, ss-poly (rA)) with a binding constant of ∼5 × 103 M-1 at 25 °C. Moreover thermal denaturation experiments show that the bound form of polyriboadenylic acid shows a characteristic transition profile. Such a profile is indicative of the ability of cryptolepine to induce self-assembly in the polyriboadenylic acid sequence on binding to it. Such ability of CRP to modulate the structural conformation of poly (rA), which in turn may cause functional aspects of the RNA to change, may give us a chance to develop effective alkaloid based chemotherapeutic agents.
Collapse
Affiliation(s)
- Susmita Chowdhury
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Kasturi Kanrar
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Sutanwi Bhuiya
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Suman Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India.
| |
Collapse
|
7
|
Wu C, Shan Y, Wang S, Liu F. Dynamically probing ATP-dependent RNA helicase A-assisted RNA structure conversion using single molecule fluorescence resonance energy transfer. Protein Sci 2021; 30:1157-1168. [PMID: 33837988 DOI: 10.1002/pro.4081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
RNA helicase A (RHA) as a member of DExH-box subgroup of helicase superfamily II, participates in diverse biological processes involved in RNA metabolism in organisms, and these RNA-mediated biological processes rely on RNA structure conversion. However, how RHA regulate the RNA structure conversion was still unknown. In order to unveil the mechanism of RNA structure conversion mediated by RHA, single molecule fluorescence resonance energy transfer was adopted to in our assay, and substrates RNA were from internal ribosome entry site of foot-and-mouth disease virus genome. We first found that the RNA structure conversion by RHA against thermodynamic equilibrium in vitro, and the process of dsRNA YZ converted to dsRNA XY through a tripartite intermediate state. In addition, the rate of the RNA structure conversion and the distribution of dsRNA YZ and XY were affected by ATP concentrations. Our study provides real-time insight into ATP-dependent RHA-assisted RNA structure conversion at the single molecule level, the mechanism displayed by RHA may help in understand how RHA contributes to many biological functions, and the basic mechanistic features illustrated in our work also underlay more complex protein-assisted RNA structure conversions.
Collapse
Affiliation(s)
- Chengcheng Wu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China.,Computational Optics Laboratory, Jiangnan University, Wuxi, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Chowdhury S, Bhuiya S, Haque L, Das S. Influence of position of hydroxyl group of flavonoids on their binding with single stranded polyriboadenylic acid: A spectroscopic evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119008. [PMID: 33038855 DOI: 10.1016/j.saa.2020.119008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Single stranded polyriboadenylic acid [poly (rA)] has been accepted widely as a suitable drug target owing to its vital role in the development of cancer since it controls gene expression during cell growth and differentiation. The biological properties of poly (rA) depend on its structural morphology. Pharmacologically active flavonoids can act as suitable binders to poly (rA) and significantly change its biophysical properties. Different factors favour flavonoid-poly (rA) binding. In our present work we have explored the role played by the position of hydroxyl groups in the flavonoids namely 3, 5, 6 and 7 hydroxyflavones in their course of interaction with poly (rA). A range of spectroscopic experiments reveal that 3HF binds best to poly (rA) among the four chosen flavonoids. This is probably due to the presence of a hydroxyl group in '3' position that enables it to exhibit ESIPT phenomenon which is missing for the other used flavonoids.
Collapse
Affiliation(s)
- Susmita Chowdhury
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India
| | - Sutanwi Bhuiya
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India
| | - Lucy Haque
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India
| | - Suman Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India.
| |
Collapse
|
9
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
10
|
DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs. Molecules 2020; 25:molecules25041015. [PMID: 32102413 PMCID: PMC7070539 DOI: 10.3390/molecules25041015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
This short review is focused on enzymatic properties of human ATP-dependent RNA helicase DDX3 and the development of antiviral and anticancer drugs targeting cellular helicases. DDX3 belongs to the DEAD-box proteins, a large family of RNA helicases that participate in all aspects of cellular processes, such as cell cycle progression, apoptosis, innate immune response, viral replication, and tumorigenesis. DDX3 has a variety of functions in the life cycle of different viruses. DDX3 helicase is required to facilitate both the Rev-mediated export of unspliced/partially spliced human immunodeficiency virus (HIV) RNA from nucleus and Tat-dependent translation of viral genes. DDX3 silencing blocks the replication of HIV, HCV, and some other viruses. On the other hand, DDX displays antiviral effect against Dengue virus and hepatitis B virus through the stimulation of interferon beta production. The role of DDX3 in different types of cancer is rather controversial. DDX3 acts as an oncogene in one type of cancer, but demonstrates tumor suppressor properties in other types. The human DDX3 helicase is now considered as a new attractive target for the development of novel pharmaceutical drugs. The most interesting inhibitors of DDX3 helicase and the mechanisms of their actions as antiviral or anticancer drugs are discussed in this short review.
Collapse
|
11
|
Freitas FB, Frouco G, Martins C, Ferreira F. The QP509L and Q706L superfamily II RNA helicases of African swine fever virus are required for viral replication, having non-redundant activities. Emerg Microbes Infect 2019; 8:291-302. [PMID: 30866783 PMCID: PMC6455146 DOI: 10.1080/22221751.2019.1578624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 01/06/2023]
Abstract
African swine fever virus is complex DNA virus that infects pigs with mortality rates up to 100% leading to devastating socioeconomic effected in the affected countries. There is neither a vaccine nor a treatment to control ASF. African swine fever virus genome encodes two putative SF2 RNA helicases (QP509L and Q706L). In the present study, we found that these two RNA helicases do not share a common ancestral besides sharing a sequence overlap. Although, our phylogenetic studies revealed that they are conserved among virulent and non-virulent isolates, it was possible to observe a degree of variation between isolates corresponding to different genotypes occurring in distinct geographic regions. Further experiments showed that QP509L and Q706L are actively transcribed from 4 h post infection. The immunoblot analysis revealed that both protein co-localized in the viral factories at 12 h post infection, however, QP509L was also detected in the cell nucleus. Finally, siRNA assays uncover the relevant role of these proteins during viral cycle progression, in particular, for the late transcription, genome replication, and viral progeny (a reduction of infectious particles up to 99.4% when siRNA against QP509L was used and 98.4% for siRNA against Q706L). Thus, our results suggest that both helicases are essential during viral infection, highlighting the potential use of these enzymes as target for drug and vaccine development against African swine fever.
Collapse
Affiliation(s)
- Ferdinando B. Freitas
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Gonçalo Frouco
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Carlos Martins
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Fernando Ferreira
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
12
|
Sithole N, Williams CA, Vaughan AM, Kenyon JC, Lever AML. DDX17 Specifically, and Independently of DDX5, Controls Use of the HIV A4/5 Splice Acceptor Cluster and Is Essential for Efficient Replication of HIV. J Mol Biol 2018; 430:3111-3128. [PMID: 30131116 PMCID: PMC6119765 DOI: 10.1016/j.jmb.2018.06.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
HIV splicing involves five splice donor and eight splice acceptor sequences which, together with cryptic splice sites, generate over 100 mRNA species. Ninety percent of both partially spliced and fully spliced transcripts utilize the intrinsically weak A4/A5 3' splice site cluster. We show that DDX17, but not its close paralog DDX5, specifically controls the usage of this splice acceptor group. In its absence, production of the viral envelope protein and other regulatory and accessory proteins is grossly reduced, while Vif, which uses the A1 splice acceptor, is unaffected. This is associated with a profound decrease in viral export from the cell. Loss of Vpu expression causing upregulation of cellular Tetherin compounds the phenotype. DDX17 utilizes distinct RNA binding motifs for its role in efficient HIV replication, and we identify RNA binding motifs essential for its role, while the Walker A, Walker B (DEAD), Q motif and the glycine doublet motif are all dispensable. We show that DDX17 interacts with SRSF1/SF2 and the heterodimeric auxiliary factor U2AF65/35, which are essential splicing factors in the generation of Rev and Env/Vpu transcripts.
Collapse
Affiliation(s)
- Nyaradzai Sithole
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Claire A Williams
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Aisling M Vaughan
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Microbiology and Immunology, National University of Singapore, Singapore 117545
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Medicine, National University of Singapore, Singapore 119228.
| |
Collapse
|
13
|
Anwar MF, Zarina S, Ali S, Abidi SH. Two for one: Viral helicases as an ideal target for HIV and HCV co-infection. Med Hypotheses 2018; 116:139-140. [PMID: 29857899 DOI: 10.1016/j.mehy.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/12/2018] [Indexed: 11/28/2022]
Abstract
Helicase enzyme is responsible for the unwinding of complementary nucleic acid strands, which is one of the preliminary steps in DNA replication. They are crucial for replication of an organism, including viruses. HCV and HIV are two clinically significant pathogens, responsible for millions of infections and deaths worldwide. Due to similar transmission routes, these viruses can establish co-infection in an individual. Individually, these infections are difficult to treat, however, in case of co-infection, the treatment becomes more difficult. Additionally, these viruses accumulate mutation in response to drug therapy that renders the treatment ineffective. HCV and HIV both encode enzyme containing helicase activity. The viral-encoded helicase plays a significant role in HIV and HCV life cycle. Here we propose viral helicases as an ideal single-hit target that can inhibit HIV and HCV co-infection. We also hypothesize that search for natural analogs sharing basic ring structure with a class of helicase inhibitors called fluoroquinolones can yield natural agents with superior antiviral (anti-helicase) activity with lower toxicity index. The fluoroquinolones and their analogs are currently not part of any antiviral regimens. Our proposal is to include fluoroquinolones-derived natural analogs as a conjugate therapy along with main regimens available against HCV and HIV co-infection.
Collapse
Affiliation(s)
- Muhammad Faraz Anwar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan; National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Shamshad Zarina
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Syed Ali
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nazarbayev University, Astana, Kazakhstan.
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan; Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Ndzinu JK, Takeuchi H, Saito H, Yoshida T, Yamaoka S. eIF4A2 is a host factor required for efficient HIV-1 replication. Microbes Infect 2018; 20:346-352. [PMID: 29842983 DOI: 10.1016/j.micinf.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Host factors are required for efficient HIV-1 replication. To identify these factors, genome-wide RNA interference screening was performed using a human T cell line. In the present study, we assessed whether eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), a DEAD-box protein identified in our screen, is necessary for efficient HIV-1 replication. Exploiting MT4C5 cells depleted of eIF4A2 by stable expression of eIF4A2-specific short-hairpin RNA (shRNA) using a lentiviral system, we found that depletion of eIF4A2 markedly inhibited the infection of a replication-competent reporter HIV-1. eIF4A2 depletion reduced the efficiency of viral cDNA synthesis with virion entry into target cells being unaffected. Depletion of eIF4A2 also inhibited HIV-1 spreading infection in a knockdown level-dependent manner. These results suggest that HIV-1 requires eIF4A2 for optimal replication in human T cells.
Collapse
Affiliation(s)
- Jerry Kwame Ndzinu
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| | - Hideki Saito
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Takeshi Yoshida
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
15
|
Cheng W, Chen G, Jia H, He X, Jing Z. DDX5 RNA Helicases: Emerging Roles in Viral Infection. Int J Mol Sci 2018; 19:ijms19041122. [PMID: 29642538 PMCID: PMC5979547 DOI: 10.3390/ijms19041122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Asp-Glu-Ala-Asp (DEAD)-box polypeptide 5 (DDX5), also called p68, is a prototypical member of the large ATP-dependent RNA helicases family and is known to participate in all aspects of RNA metabolism ranging from transcription to translation, RNA decay, and miRNA processing. The roles of DDX5 in cell cycle regulation, tumorigenesis, apoptosis, cancer development, adipogenesis, Wnt-β-catenin signaling, and viral infection have been established. Several RNA viruses have been reported to hijack DDX5 to facilitate various steps of their replication cycles. Furthermore, DDX5 can be bounded by the viral proteins of some viruses with unknown functions. Interestingly, an antiviral function of DDX5 has been reported during hepatitis B virus and myxoma virus infection. Thus, the precise roles of this apparently multifaceted protein remain largely obscure. Here, we provide a rapid and critical overview of the structure and functions of DDX5 with a particular emphasis on its role during virus infection.
Collapse
Affiliation(s)
- Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| |
Collapse
|
16
|
Santos S, Obukhov Y, Nekhai S, Pushkarsky T, Brichacek B, Bukrinsky M, Iordanskiy S. Cellular minichromosome maintenance complex component 5 (MCM5) is incorporated into HIV-1 virions and modulates viral replication in the newly infected cells. Virology 2016; 497:11-22. [PMID: 27414250 PMCID: PMC5079758 DOI: 10.1016/j.virol.2016.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/01/2022]
Abstract
The post-entry events of HIV-1 infection occur within reverse transcription complexes derived from the viral cores entering the target cell. HIV-1 cores contain host proteins incorporated from virus-producing cells. In this report, we show that MCM5, a subunit of the hexameric minichromosome maintenance (MCM) DNA helicase complex, associates with Gag polyprotein and is incorporated into HIV-1 virions. The progeny virions depleted of MCM5 demonstrated reduced reverse transcription in newly infected cells, but integration and subsequent replication steps were not affected. Interestingly, increased packaging of MCM5 into the virions also led to reduced reverse transcription, but here viral replication was impaired. Our data suggest that incorporation of physiological amounts of MCM5 promotes aberrant reverse transcription, leading to partial incapacitation of cDNA, whereas increased MCM5 abundance leads to reduced reverse transcription and infection. Therefore, MCM5 has the properties of an inhibitory factor that interferes with production of an integration-competent cDNA product.
Collapse
Affiliation(s)
- Steven Santos
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | - Yuri Obukhov
- Howard University College of Medicine, Department of Medicine, Center for Sickle Cell Disease, 1840 7th Street N.W., Washington DC 20001, USA; Howard University College of Medicine, RCMI Proteomics Core Facility, 1840 7th Street N.W., Washington DC 20001, USA
| | - Sergei Nekhai
- Howard University College of Medicine, Department of Medicine, Center for Sickle Cell Disease, 1840 7th Street N.W., Washington DC 20001, USA; Howard University College of Medicine, RCMI Proteomics Core Facility, 1840 7th Street N.W., Washington DC 20001, USA
| | - Tatiana Pushkarsky
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | - Beda Brichacek
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA.
| | - Sergey Iordanskiy
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| |
Collapse
|
17
|
Identification and characterization of cellular proteins interacting with Hepatitis E virus untranslated regions. Virus Res 2015; 208:98-109. [DOI: 10.1016/j.virusres.2015.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
|
18
|
Chauhan A. Unperturbed posttranscriptional regulatory Rev protein function and HIV-1 replication in astrocytes. PLoS One 2014; 9:e106910. [PMID: 25188302 PMCID: PMC4154834 DOI: 10.1371/journal.pone.0106910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/08/2014] [Indexed: 12/23/2022] Open
Abstract
Astrocytes protect neurons, but also evoke proinflammatory responses to injury and viral infections, including HIV. There is a prevailing notion that HIV-1 Rev protein function in astrocytes is perturbed, leading to restricted viral replication. In earlier studies, our finding of restricted viral entry into astrocytes led us to investigate whether there are any intracellular restrictions, including crippled Rev function, in astrocytes. Despite barely detectable levels of DDX3 (Rev-supporting RNA helicase) and TRBP (anti-PKR) in primary astrocytes compared to astrocytic cells, Rev function was unperturbed in wild-type, but not DDX3-ablated astrocytes. As in permissive cells, after HIV-1 entry bypass in astrocytes, viral-encoded Tat and Rev proteins had robust regulatory activities, leading to efficient viral replication. Productive HIV-1 infection in astrocytes persisted for several weeks. Our findings on HIV-1 entry bypass in astrocytes demonstrated that the intracellular environment is conducive to viral replication and that Tat and Rev functions are unperturbed.
Collapse
Affiliation(s)
- Ashok Chauhan
- Department of Pathology, Microbiology and Immunology, and Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
19
|
Xing L, Niu M, Kleiman L. Role of the OB-fold of RNA helicase A in the synthesis of HIV-1 RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1069-78. [PMID: 25149208 DOI: 10.1016/j.bbagrm.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 11/26/2022]
Abstract
RNA helicase A (RHA), a DExD/H protein, contains a stretch of repeated arginine and glycine-glycine (RGG) residues and an oligonucleotide/oligosaccharide-binding fold (OB-fold) at the C-terminus. RHA has been reported to function as a transcriptional cofactor. This study shows the role of RGG and OB-fold domains of RHA in the activation of transcription and splicing of HIV-1 RNA. RHA stimulates HIV-1 transcription by enhancing the occupancy of RNA polymerase II on the proviral DNA. Deletion of RGG or both RGG and OB-fold does not change the transcriptional activity of RHA, nor does the stability of viral RNA. However, deletion of both RGG and OB-fold rather than deletion of RGG only results in less production of multiply spliced 6D RNAs. The results suggest that the OB-fold is involved in modulating HIV-1 RNA splicing in the context of some HIV-1 strains while it is dispensable for the activation of HIV-1 transcription.
Collapse
Affiliation(s)
- Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Meijuan Niu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Xing L, Zhao X, Guo F, Kleiman L. The role of A-kinase anchoring protein 95-like protein in annealing of tRNALys3 to HIV-1 RNA. Retrovirology 2014; 11:58. [PMID: 25034436 PMCID: PMC4223510 DOI: 10.1186/1742-4690-11-58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/07/2014] [Indexed: 12/04/2022] Open
Abstract
Background RNA helicase A (RHA), a DExH box protein, promotes annealing of tRNALys3, a primer for reverse transcription, to HIV-1 RNA and assembles into virus particles. A-kinase anchoring protein 95-like protein (HAP95) is a binding partner of RHA. The role of HAP95 in the annealing of tRNALys3 was examined in this study. Results HAP95 associates with the reverse transcriptase region of Pol protein of HIV-1. Decreasing endogenous HAP95 in HIV-1-producing 293T cells by siRNA reduces the amount of tRNALys3 annealed on viral RNA. This defect was further deteriorated by knockdown of RHA in the same cells, suggesting a cooperative effect between these two proteins. Biochemical assay in vitro using purified GST-tagged HAP95 shows that HAP95 may inhibit the activity of RHA. Conclusion The results support a hypothesis that HAP95 may transiently block RHA’s activity to protect the annealed tRNALys3 on viral RNA in the cells from removing by RHA during the packaging of RHA into virus particles, thus facilitating the annealing of tRNALys3 to HIV-1 RNA.
Collapse
Affiliation(s)
- Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
21
|
Koh HR, Xing L, Kleiman L, Myong S. Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing. Nucleic Acids Res 2014; 42:8556-64. [PMID: 24914047 PMCID: PMC4117756 DOI: 10.1093/nar/gku523] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Helicases contribute to diverse biological processes including replication, transcription and translation. Recent reports suggest that unwinding of some helicases display repetitive activity, yet the functional role of the repetitiveness requires further investigation. Using single-molecule fluorescence assays, we elucidated a unique unwinding mechanism of RNA helicase A (RHA) that entails discrete substeps consisting of binding, activation, unwinding, stalling and reactivation stages. This multi-step process is repeated many times by a single RHA molecule without dissociation, resulting in repetitive unwinding/rewinding cycles. Our kinetic and mutational analysis indicates that the two double stand RNA binding domains at the N-terminus of RHA are responsible for such repetitive unwinding behavior in addition to providing an increased binding affinity to RNA. Further, the repetitive unwinding induces an efficient annealing of a complementary RNA by making the unwound strand more accessible. The complex and unusual mechanism displayed by RHA may help in explaining how the repetitive unwinding of helicases contributes to their biological functions.
Collapse
Affiliation(s)
- Hye Ran Koh
- Department of Physics, University of Illinois, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada Department of Medicine, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada Department of Medicine, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Sua Myong
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA Physics Frontier Center (Center of Physics for Living Cells), University of Illinois, Urbana, IL 61801, USA Biophysics and Computational Biology, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
22
|
Xing L, Niu M, Zhao X, Kleiman L. Different activities of the conserved lysine residues in the double-stranded RNA binding domains of RNA helicase A in vitro and in the cell. Biochim Biophys Acta Gen Subj 2014; 1840:2234-43. [PMID: 24726449 DOI: 10.1016/j.bbagen.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells. METHODS The conserved lysine residues in each or both of dsRBDs were substituted by alanine in the context of full-length RNA helicase A. The mutant RNA helicase A was purified from mammalian cells. The effects of these mutations were assessed either in vitro upon RNA binding and unwinding or in the cell during HIV-1 production upon RNA helicase A-RNA interaction and RNA helicase A-stimulated viral RNA processes. RESULTS Unexpectedly, the substitution of the lysine residues by alanine in either or both of dsRBDs does not prevent purified full-length RNA helicase A from binding and unwinding duplex RNA in vitro. However, these mutations efficiently inhibit RNA helicase A-stimulated HIV-1 RNA metabolism including the accumulation of viral mRNA and tRNA(Lys3) annealing to viral RNA. Furthermore, these mutations do not prevent RNA helicase A from binding to HIV-1 RNA in vitro as well, but dramatically reduce RNA helicase A-HIV-1 RNA interaction in the cells. CONCLUSIONS The conserved lysine residues of dsRBDs play critical roles in the promotion of HIV-1 production by RNA helicase A. GENERAL SIGNIFICANCE The conserved lysine residues of dsRBDs are key to the interaction of RNA helicase A with substrate RNA in the cell, but not in vitro.
Collapse
Affiliation(s)
- Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Meijuan Niu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xia Zhao
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Abstract
UNLABELLED Replication of plus-strand RNA [(+)RNA] viruses of plants is a relatively simple process that involves complementary minus-strand RNA [(-)RNA] synthesis and subsequent (+)RNA synthesis. However, the actual replicative form of the (-)RNA template in the case of plant (+)RNA viruses is not yet established unambiguously. In this paper, using a cell-free replication assay supporting a full cycle of viral replication, we show that replication of Tomato bushy stunt virus (TBSV) leads to the formation of double-stranded RNA (dsRNA). Using RNase digestion, DNAzyme, and RNA mobility shift assays, we demonstrate the absence of naked (-)RNA templates during replication. Time course experiments showed the rapid appearance of dsRNA earlier than the bulk production of new (+)RNAs, suggesting an active role for dsRNA in replication. Radioactive nucleotide chase experiments showed that the mechanism of TBSV replication involves the use of dsRNA templates in strand displacement reactions, where the newly synthesized plus strand replaces the original (+)RNA in the dsRNA. We propose that the use of dsRNA as a template for (+)RNA synthesis by the viral replicase is facilitated by recruited host DEAD box helicases and the viral p33 RNA chaperone protein. Altogether, this replication strategy allows TBSV to separate minus- and plus-strand syntheses in time and regulate asymmetrical RNA replication that leads to abundant (+)RNA progeny. IMPORTANCE Positive-stranded RNA viruses of plants use their RNAs as the templates for replication. First, the minus strand is synthesized by the viral replicase complex (VRC), which then serves as a template for new plus-strand synthesis. To characterize the nature of the (-)RNA in the membrane-bound viral replicase, we performed complete RNA replication of Tomato bushy stunt virus (TBSV) in yeast cell-free extracts and in plant extracts. The experiments demonstrated that the TBSV (-)RNA is present as a double-stranded RNA that serves as the template for TBSV replication. During the production of new plus strands, the viral replicase displaces the old plus strand in the dsRNA template, leading to asymmetrical RNA synthesis. The presented data are in agreement with the model that the dsRNA is present in nuclease-resistant membranous VRCs. This strategy likely allows TBSV to protect the replicating viral RNA from degradation as well as to evade the early detection of viral dsRNAs by the host surveillance system.
Collapse
|
24
|
Zhang N, Zhang P, Baier A, Cova L, Hosmane RS. Dual inhibition of HCV and HIV by ring-expanded nucleosides containing the 5:7-fused imidazo[4,5-e][1,3]diazepine ring system. In vitro results and implications. Bioorg Med Chem Lett 2014; 24:1154-7. [PMID: 24461293 DOI: 10.1016/j.bmcl.2013.12.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 01/06/2023]
Abstract
Examples of ring-expanded nucleosides (RENs), represented by general structures 1 and 2, exhibited dual anti-HCV and anti-HIV activities in both cell culture systems and the respective target enzyme assays, including HCV NTPase/helicase and human RNA helicase DDX3. Since HCV is a leading co-infection in late stage HIV AIDS patients, often leading to liver cirrhosis and death, the observed dual inhibition of HCV and HIV by the target nucleoside analogues has potentially beneficial implications in treating HIV patients infected with HCV.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Peng Zhang
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Andrea Baier
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Lucyna Cova
- INSERM U871, Molecular Physiopathology & New Treatments of Viral Hepatitis, 151 Cours A. Thomas, 69003 Lyon Cedex 03, France
| | - Ramachandra S Hosmane
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
25
|
Xing L, Niu M, Zhao X, Kleiman L. Roles of the linker region of RNA helicase A in HIV-1 RNA metabolism. PLoS One 2013; 8:e78596. [PMID: 24223160 PMCID: PMC3819368 DOI: 10.1371/journal.pone.0078596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/20/2013] [Indexed: 12/21/2022] Open
Abstract
RNA helicase A (RHA) promotes multiple steps in HIV-1 production including transcription and translation of viral RNA, annealing of primer tRNALys3 to viral RNA, and elevating the ratio of unspliced to spliced viral RNA. At its amino terminus are two double-stranded RNA binding domains (dsRBDs) that are essential for RHA-viral RNA interaction. Linking the dsRBDs to the core helicase domain is a linker region containing 6 predicted helices. Working in vitro with purified mutant RHAs containing deletions of individual helices reveals that this region may regulate the enzyme's helicase activity, since deletion of helix 2 or 3 reduces the rate of unwinding RNA by RHA. The biological significance of this finding was then examined during HIV-1 production. Deletions in the linker region do not significantly affect either RHA-HIV-1 RNA interaction in vivo or the incorporation of mutant RHAs into progeny virions. While the partial reduction in helicase activity of mutant RHA containing a deletion of helices 2 or 3 does not reduce the ability of RHA to stimulate viral RNA synthesis, the promotion of tRNALys3 annealing to viral RNA is blocked. In contrast, deletion of helices 4 or 5 does not affect the ability of RHA to promote tRNALys3 annealing, but reduces its ability to stimulate viral RNA synthesis. Additionally, RHA stimulation of viral RNA synthesis results in an increased ratio of unspliced to spliced viral RNA, and this increase is not inhibited by deletions in the linker region, nor is the pattern of splicing changed within the ∼ 4.0 kb or ∼ 1.8 kb HIV-1 RNA classes, suggesting that RHA's effect on suppressing splicing is confined mainly to the first 5′-splice donor site. Overall, the differential responses to the mutations in the linker region of RHA reveal that RHA participates in HIV-1 RNA metabolism by multiple distinct mechanisms.
Collapse
Affiliation(s)
- Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (LX); (LK)
| | - Meijuan Niu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xia Zhao
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (LX); (LK)
| |
Collapse
|
26
|
Yasuda-Inoue M, Kuroki M, Ariumi Y. DDX3 RNA helicase is required for HIV-1 Tat function. Biochem Biophys Res Commun 2013; 441:607-11. [PMID: 24183723 DOI: 10.1016/j.bbrc.2013.10.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Host RNA helicase has been involved in human immunodeficiency virus type 1 (HIV-1) replication, since HIV-1 does not encode an RNA helicase. Indeed, DDX1 and DDX3 DEAD-box RNA helicases are known to be required for efficient HIV-1 Rev-dependent RNA export. However, it remains unclear whether DDX RNA helicases modulate the HIV-1 Tat function. In this study, we demonstrate, for the first time, that DDX3 is required for the HIV-1 Tat function. Notably, DDX3 colocalized and interacted with HIV-1 Tat in cytoplasmic foci. Indeed, DDX3 localized in the cytoplasmic foci P-bodies or stress granules under stress condition after the treatment with arsenite. Importantly, only DDX3 enhanced the Tat function, while various distinct DEAD-box RNA helicases including DDX1, DDX3, DDX5, DDX17, DDX21, and DDX56, stimulated the HIV-1 Rev-dependent RNA export function, indicating a specific role of DDX3 in Tat function. Indeed, the ATPase-dependent RNA helicase activity of DDX3 seemed to be required for the Tat function as well as the colocalization with Tat. Furthermore, the combination of DDX3 with other distinct DDX RNA helicases cooperated to stimulate the Rev but not Tat function. Thus, DDX3 seems to interact with the HIV-1 Tat and facilitate the Tat function.
Collapse
|
27
|
Lorgeoux RP, Pan Q, Le Duff Y, Liang C. DDX17 promotes the production of infectious HIV-1 particles through modulating viral RNA packaging and translation frameshift. Virology 2013; 443:384-92. [PMID: 23769241 DOI: 10.1016/j.virol.2013.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/24/2013] [Accepted: 05/18/2013] [Indexed: 01/13/2023]
Abstract
RNA helicases are a large family of proteins that rearrange RNA structures and remodel ribonucleic protein complexes using energy derived from hydrolysis of nucleotide triphosphates. They have been shown to participate in every step of RNA metabolism. In the past decade, an increasing number of helicases were shown to promote or inhibit the replication of different viruses, including human immunodeficiency virus type 1. Among these helicases, the DEAD-box RNA helicase DDX17 was recently reported to modulate HIV-1 RNA stability and export. In this study, we further show that the helicase activity of DDX17 is required for the production of infectious HIV-1 particles. Over expression of the DDX17 mutant DQAD in HEK293 cells reduces the amount of packaged viral genomic RNA and diminishes HIV-1 Gag-Pol frameshift. Altogether, these data demonstrate that DDX17 promotes the production of HIV-1 infectious particles by modulating HIV-1 RNA metabolism.
Collapse
|
28
|
Chen CY, Liu X, Boris-Lawrie K, Sharma A, Jeang KT. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies. Virus Res 2013; 171:357-65. [PMID: 22814432 PMCID: PMC3493675 DOI: 10.1016/j.virusres.2012.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
Abstract
RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Xiang Liu
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Amit Sharma
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Kuan-Teh Jeang
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
29
|
Milev MP, Ravichandran M, Khan MF, Schriemer DC, Mouland AJ. Characterization of staufen1 ribonucleoproteins by mass spectrometry and biochemical analyses reveal the presence of diverse host proteins associated with human immunodeficiency virus type 1. Front Microbiol 2012; 3:367. [PMID: 23125841 PMCID: PMC3486646 DOI: 10.3389/fmicb.2012.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/27/2012] [Indexed: 12/02/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) unspliced, 9 kb genomic RNA (vRNA) is exported from the nucleus for the synthesis of viral structural proteins and enzymes (Gag and Gag/Pol) and is then transported to sites of virus assembly where it is packaged into progeny virions. vRNA co-exists in the cytoplasm in the context of the HIV-1 ribonucleoprotein (RNP) that is currently defined by the presence of Gag and several host proteins including the double-stranded RNA-binding protein, Staufen1. In this study we isolated Staufen1 RNP complexes derived from HIV-1-expressing cells using tandem affinity purification and have identified multiple host protein components by mass spectrometry. Four viral proteins, including Gag, Gag/Pol, Env and Nef as well as >200 host proteins were identified in these RNPs. Moreover, HIV-1 induces both qualitative and quantitative differences in host protein content in these RNPs. 22% of Staufen1-associated factors are virion-associated suggesting that the RNP could be a vehicle to achieve this. In addition, we provide evidence on how HIV-1 modulates the composition of cytoplasmic Staufen1 RNPs. Biochemical fractionation by density gradient analyses revealed new facets on the assembly of Staufen1 RNPs. The assembly of dense Staufen1 RNPs that contain Gag and several host proteins were found to be entirely RNA-dependent but their assembly appeared to be independent of Gag expression. Gag-containing complexes fractionated into a lighter and another, more dense pool. Lastly, Staufen1 depletion studies demonstrated that the previously characterized Staufen1 HIV-1-dependent RNPs are most likely aggregates of smaller RNPs that accumulate at juxtanuclear domains. The molecular characterization of Staufen1 HIV-1 RNPs will offer important information on virus-host cell interactions and on the elucidation of the function of these RNPs for the transport of Gag and the fate of the unspliced vRNA in HIV-1-producing cells.
Collapse
Affiliation(s)
- Miroslav P Milev
- HIV-1 Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital Montréal, QC, Canada ; Division of Experimental Medicine, Department of Medicine, McGill University Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
30
|
Lorgeoux RP, Guo F, Liang C. From promoting to inhibiting: diverse roles of helicases in HIV-1 Replication. Retrovirology 2012; 9:79. [PMID: 23020886 PMCID: PMC3484045 DOI: 10.1186/1742-4690-9-79] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/22/2012] [Indexed: 01/09/2023] Open
Abstract
Helicases hydrolyze nucleotide triphosphates (NTPs) and use the energy to modify the structures of nucleic acids. They are key players in every cellular process involving RNA or DNA. Human immunodeficiency virus type 1 (HIV-1) does not encode a helicase, thus it has to exploit cellular helicases in order to efficiently replicate its RNA genome. Indeed, several helicases have been found to specifically associate with HIV-1 and promote viral replication. However, studies have also revealed a couple of helicases that inhibit HIV-1 replication; these findings suggest that HIV-1 can either benefit from the function of cellular helicases or become curtailed by these enzymes. In this review, we focus on what is known about how a specific helicase associates with HIV-1 and how a distinct step of HIV-1 replication is affected. Despite many helicases having demonstrated roles in HIV-1 replication and dozens of other helicase candidates awaiting to be tested, a deeper appreciation of their involvement in the HIV-1 life cycle is hindered by our limited knowledge at the enzymatic and molecular levels regarding how helicases shape the conformation and structure of viral RNA-protein complexes and how these conformational changes are translated into functional outcomes in the context of viral replication.
Collapse
Affiliation(s)
- Rene-Pierre Lorgeoux
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, H3T 1E2, Quebec, Canada
| | | | | |
Collapse
|
31
|
Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S. Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 2012; 9:65. [PMID: 22889230 PMCID: PMC3432596 DOI: 10.1186/1742-4690-9-65] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. Conclusions Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN.
Collapse
Affiliation(s)
- Steven Santos
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
32
|
Ducloux C, Mougel M, Goldschmidt V, Didierlaurent L, Marquet R, Isel C. A pyrophosphatase activity associated with purified HIV-1 particles. Biochimie 2012; 94:2498-507. [PMID: 22766015 DOI: 10.1016/j.biochi.2012.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/22/2012] [Indexed: 01/17/2023]
Abstract
Treatment of HIV-1 with nucleoside reverse transcription inhibitors leads to the emergence of resistance mutations in the reverse transcriptase (RT) gene. Resistance to 3'-azido-3'-deoxythymidine (AZT) and to a lesser extent to 2'-3'-didehydro-2'-3'-dideoxythymidine is mediated by phosphorolytic excision of the chain terminator. Wild-type RT excises AZT by pyrophosphorolysis, while thymidine-associated resistance mutations in RT (TAMs) favour ATP as the donor substrate. However, in vitro, resistant RT still uses pyrophosphate more efficiently than ATP. We performed in vitro (-) strong-stop DNA synthesis experiments, with wild-type and AZT-resistant HIV-1 RTs, in the presence of physiologically relevant pyrophosphate and/or ATP concentrations and found that in the presence of pyrophosphate, ATP and AZTTP, TAMs do not enhance in vitro (-) strong-stop DNA synthesis. We hypothesized that utilisation of ATP in vivo is driven by intrinsic low pyrophosphate concentrations within the reverse transcription complex, which could be explained by the packaging of a cellular pyrophosphatase. We showed that over-expressed flagged-pyrophosphatase was associated with HIV-1 viral-like particles. In addition, we demonstrated that when HIV-1 particles were purified in order to avoid cellular microvesicle contamination, a pyrophosphatase activity was specifically associated to them. The presence of a pyrophosphatase activity in close proximity to the reverse transcription complex is most likely advantageous to the virus, even in the absence of any drug pressure.
Collapse
Affiliation(s)
- Céline Ducloux
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 Rue René Descartes, 67084 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
33
|
Kula A, Marcello A. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. BIOLOGY 2012; 1:116-33. [PMID: 24832221 PMCID: PMC4009772 DOI: 10.3390/biology1020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023]
Abstract
Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.
Collapse
Affiliation(s)
- Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| |
Collapse
|
34
|
Abstract
RNA helicases unwind their RNA substrates in an ATP-dependent reaction, and are central to all cellular processes involving RNA. They have important roles in viral life cycles, where RNA helicases are either virus-encoded or recruited from the host. Vertebrate RNA helicases sense viral infections, and trigger the innate antiviral immune response. RNA helicases have been implicated in protozoic, bacterial and fungal infections. They are also linked to neurological disorders, cancer, and aging processes. Genome-wide studies continue to identify helicase genes that change their expression patterns after infection or disease outbreak, but the mechanism of RNA helicase action has been defined for only a few diseases. RNA helicases are prognostic and diagnostic markers and suitable drug targets, predominantly for antiviral and anti-cancer therapies. This review summarizes the current knowledge on RNA helicases in infection and disease, and their growing potential as drug targets.
Collapse
Affiliation(s)
- Lenz Steimer
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany
| | | |
Collapse
|
35
|
Abstract
RNA helicases are encoded by all eukaryotic and prokaryotic cells and a minority of viruses. Activity of RNA helicases is necessary for all steps in the expression of cells and viruses and the host innate response to virus infection. Their vast functional repertoire is attributable to the core ATP-dependent helicase domain in conjunction with flanking domains that are interchangeable and engage viral and cellular cofactors. Here, we address the important issue of host RNA helicases that are necessary for replication of a virus. This chapter covers approaches to identification and characterization of candidate helicases and methods to define the biochemical and biophysical parameters of specificity and functional activity of the enzymes. We discuss the context of cellular RNA helicase activity and virion-associated RNA helicases. The methodology and choice of controls fosters the assessment of the virologic scope of RNA helicases across divergent cell lineages and viral replication cycles.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, USA,Center for Retrovirus Research, Ohio State University, Columbus, Ohio, USA,Center for RNA Biology, Ohio State University, Columbus, Ohio, USA,Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, USA,Center for Retrovirus Research, Ohio State University, Columbus, Ohio, USA,Center for RNA Biology, Ohio State University, Columbus, Ohio, USA,Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
36
|
Abudu A, Wang X, Dang Y, Zhou T, Xiang SH, Zheng YH. Identification of molecular determinants from Moloney leukemia virus 10 homolog (MOV10) protein for virion packaging and anti-HIV-1 activity. J Biol Chem 2011; 287:1220-8. [PMID: 22105071 DOI: 10.1074/jbc.m111.309831] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Discovery of novel antiretroviral mechanism is essential for the design of innovative antiretroviral therapy. Recently, we and others reported that ectopic expression of Moloney leukemia virus 10 (MOV10) protein strongly inhibits retrovirus replication. MOV10, a putative RNA helicase, can be packaged into HIV-1 virions by binding to the nucleocapsid (NC) region of Gag and inhibit viral replication at a postentry step. Here, we report critical determinants for MOV10 virion packaging and antiviral activity. MOV10 has 1,003 amino acids and seven helicase motifs. We found that MOV10 packaging requires the NC basic linker, and Gag binds to the N-terminal amino acids 261-305 region of MOV10. Our predicted MOV10 three-dimensional structure model indicates that the Gag binding region is located in a structurally exposed domain, which spans amino acids 93-305 and is Cys-His-rich. Simultaneous mutation of residues Cys-188, Cys-195, His-199, His-201, and His-202 in this domain significantly compromised MOV10 anti-HIV-1 activity. Notably, although MOV10-Gag interaction is required, it is not sufficient for MOV10 packaging, which also requires its C-terminal all but one of seven helicase motifs. Moreover, we have mapped the minimal MOV10 antiviral region to amino acids 99-949, indicating that nearly all MOV10 residues are required for its antiviral activity. Mutations of residues Cys-947, Pro-948, and Phe-949 at the C terminus of this region completely disrupted MOV10 anti-HIV-1 activity. Taken together, we have identified two critical MOV10 packaging determinants and eight other critical residues for anti-HIV-1 activity. These results provide a molecular basis for further understanding the MOV10 antiretroviral mechanism.
Collapse
Affiliation(s)
- Aierken Abudu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | | | | | | | | | |
Collapse
|
37
|
What did we learn on host's genetics by studying large cohorts of HIV-1-infected patients in the genome-wide association era? Curr Opin HIV AIDS 2011; 6:290-6. [PMID: 21546832 DOI: 10.1097/coh.0b013e3283478449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Genome-wide association studies (GWASs) performed in large cohorts of HIV-1-infected patients have shown that high throughput genomics can add valuable information in understanding disease progression. We report recent information gathered in the international field during the last few years and revisit the importance of well documented cohorts for genotype-phenotype association studies. RECENT FINDINGS The majority of GWASs in the HIV-1 field found that viral loads and disease progression are under the control of variants located in the major histocompatibility complex (MHC) in untreated patients. Although these experiments brought a new and more objective vision of genotype-phenotype correlations in HIV-1 disease, they also pointed out that less than 15% of the observed phenotypic variability can be explained as common genetic variants. Most of the studies have included mainly white patients and the few studies performed in Africans are underpowered but suggest that MHC is probably not the only genetic determinant influencing disease progression in this population. SUMMARY Although the first results of the GWASs in HIV disease look as a confirmation of previous findings, high throughput agnostic genomics entered the field of chronic infectious diseases and will probably unveil new genotype-phenotype associations in the future. Networks between existing cohorts leading to 'virtual mega-cohorts' will be necessary to increase the probability to discover new genetic pathways important for HIV disease. Finally, predictive models including genetic information for clinical usage is another challenge in HIV disease genetics.
Collapse
|
38
|
Lever AML, Jeang KT. Insights into cellular factors that regulate HIV-1 replication in human cells. Biochemistry 2011; 50:920-31. [PMID: 21218853 DOI: 10.1021/bi101805f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Retroviruses integrate into the host cell's chromosome. Accordingly, many aspects of the life cycle of retroviruses like HIV-1 are intimately linked to the functions of cellular proteins and RNAs. In this review, we discuss in brief recent genomewide screens for the identification of cellular proteins that assist HIV-1 replication in human cells. We also review findings for other cellular moieties that help or restrict the viral life cycle.
Collapse
Affiliation(s)
- Andrew M L Lever
- Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, U.K
| | | |
Collapse
|
39
|
Pindel A, Sadler A. The Role of Protein Kinase R in the Interferon Response. J Interferon Cytokine Res 2011; 31:59-70. [DOI: 10.1089/jir.2010.0099] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Agnieszka Pindel
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Anthony Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
40
|
Coordinate roles of Gag and RNA helicase A in promoting the annealing of formula to HIV-1 RNA. J Virol 2010; 85:1847-60. [PMID: 21106734 DOI: 10.1128/jvi.02010-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA helicase A (RHA) has been shown to promote HIV-1 replication at both the translation and reverse transcription stages. A prerequisite step for reverse transcription involves the annealing of tRNA(3)(Lys), the primer for reverse transcription, to HIV-1 RNA. tRNA(3)(Lys) annealing is a multistep process that is initially facilitated by Gag prior to viral protein processing. Herein, we report that RHA promotes this annealing through increasing both the quantity of tRNA(3)(Lys) annealed by Gag and the ability of tRNA(3)(Lys) to prime the initiation of reverse transcription. This improved annealing is the result of an altered viral RNA conformation produced by the coordinate action of Gag and RHA. Since RHA has been reported to promote the translation of unspliced viral RNA to Gag protein, our observations suggest that the conformational change in viral RNA induced by RHA and newly produced Gag may help facilitate the switch in viral RNA from a translational mode to one facilitating tRNA(3)(Lys) annealing.
Collapse
|
41
|
Ranji A, Boris-Lawrie K. RNA helicases: emerging roles in viral replication and the host innate response. RNA Biol 2010; 7:775-87. [PMID: 21173576 DOI: 10.4161/rna.7.6.14249] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA helicases serve multiple roles at the virus-host interface. In some situations, RNA helicases are essential host factors to promote viral replication; however, in other cases they serve as a cellular sensor to trigger the antiviral state in response to viral infection. All family members share the conserved ATP-dependent catalytic core linked to different substrate recognition and protein-protein interaction domains. These flanking domains can be shuffled between different helicases to achieve functional diversity. This review summarizes recent studies, which have revealed two types of activity by RNA helicases. First, RNA helicases are catalysts of progressive RNA-protein rearrangements that begin at gene transcription and culminate in mRNA translation. Second, RNA helicases can act as a scaffold for alternative protein-protein interactions that can defeat the antiviral state. The mounting fundamental understanding of RNA helicases is being used to develop selective and efficacious drugs against human and animal pathogens. The analysis of RNA helicases in virus model systems continues to provide insights into virology, cell biology and immunology, and has provided fresh perspective to continue unraveling the complexity of virus-host interactions.
Collapse
Affiliation(s)
- Arnaz Ranji
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
42
|
Wang X, Han Y, Dang Y, Fu W, Zhou T, Ptak RG, Zheng YH. Moloney leukemia virus 10 (MOV10) protein inhibits retrovirus replication. J Biol Chem 2010; 285:14346-55. [PMID: 20215113 DOI: 10.1074/jbc.m110.109314] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Moloney leukemia virus 10 (MOV10) protein is a superfamily-1 RNA helicase, and it is also a component of the RNA-induced silencing complex. Recent studies have shown that MOV10 plays an active role in the RNA interference pathway. Here, we report that MOV10 inhibits retrovirus replication. When it was overexpressed in viral producer cells, MOV10 was able to reduce the infectivity of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus, and murine leukemia virus. Conversely, when MOV10 expression was reduced by small interfering RNAs, HIV-1 infectivity was increased. Consistently, silencing of MOV10 expression in a human T cell line enhanced HIV-1 replication. Furthermore, we found that MOV10 interacts with HIV-1 nucleocapsid protein in an RNA-dependent manner and is packaged into virions. It blocks HIV-1 replication at a postentry step. In addition, we also found that HIV-1 could suppress MOV10 protein expression to counteract this cellular resistance. All of these results indicate that MOV10 has a broad antiretroviral activity that can target a wide range of retroviruses, and it could be actively involved in host defense against retroviral infection.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Identification of RNA helicase A as a new host factor in the replication cycle of foot-and-mouth disease virus. J Virol 2009; 83:11356-66. [PMID: 19710149 DOI: 10.1128/jvi.02677-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV), as with other RNA viruses, recruits various host cell factors to assist in the translation and replication of the virus genome. In this study, we investigated the role of RNA helicase A (RHA) in the life cycle of FMDV. Immunofluorescent microscopy (IFM) showed a change in the subcellular distribution of RHA from the nucleus to the cytoplasm in FMDV-infected cells as infection progressed. Unlike nuclear RHA, the RHA detected in the cytoplasm reacted with an antibody that recognizes only the nonmethylated form of RHA. In contrast to alterations in the subcellular distribution of nuclear factors observed during infection with the related cardioviruses, cytoplasmic accumulation of RHA did not require the activity of the FMDV leader protein. Using IFM, we have found cytoplasmic RHA in proximity to the viral 2C and 3A proteins, which promotes the assembly of the replication complexes, as well as cellular poly(A) binding protein (PABP). Coimmunoprecipitation assays confirmed that these proteins are complexed with RHA. We have also identified a novel interaction between RHA and the S fragment in the FMDV 5' nontranslated region. Moreover, a reduction in the expression of RHA, using RHA-specific small interfering RNA constructs, inhibited FMDV replication. These results indicate that RHA plays an essential role in the replication of FMDV and potentially other picornaviruses through ribonucleoprotein complex formation at the 5' end of the genome and by interactions with 2C, 3A, and PABP.
Collapse
|
44
|
Pan Q, Rong L, Zhao X, Liang C. Fragile X mental retardation protein restricts replication of human immunodeficiency virus type 1. Virology 2009; 387:127-35. [PMID: 19249802 DOI: 10.1016/j.virol.2009.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/21/2008] [Accepted: 02/03/2009] [Indexed: 11/17/2022]
Abstract
Gag protein is the major structural component of human immunodeficiency virus type 1 (HIV-1) particles and drives virus assembly on cellular membranes. This function of Gag is attributed to its intrinsic self-multimerization ability as well as its interaction with cellular factors such as TSG101 that binds to the PTAP sequence in the p6 region of Gag and promotes HIV-1 budding through recruiting the ESCRT (endosomal sorting complex required for transport). As a result of its essential role in virus assembly, Gag also becomes the target of cellular restriction factors such as APOBEC3G and Trim5alpha. In this study, we report that the fragile X mental retardation protein (FMRP) interacts with HIV-1 Gag and is packaged into virus particles. Although knockdown of FMRP does not markedly affect production of virus particles, infectivity of HIV-1 virions was significantly decreased. Consistent with this observation, overexpression of the wild type FMRP, but not the FMRP mutants that lack the KH1 or the KH2 domains, led to 2- to 3-fold reduction of virus infectivity. Together, these results suggest that FMRP diminishes HIV-1 infectivity through association with viral Gag protein and virus particles.
Collapse
Affiliation(s)
- Qinghua Pan
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | |
Collapse
|
45
|
Rajagopal V, Patel SS. Viral Helicases. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7121818 DOI: 10.1007/b135974_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Helicases are motor proteins that use the free energy of NTP hydrolysis to catalyze the unwinding of duplex nucleic acids. Helicases participate in almost all processes involving nucleic acids. Their action is critical for replication, recombination, repair, transcription, translation, splicing, mRNA editing, chromatin remodeling, transport, and degradation (Matson and Kaiser-Rogers 1990; Matson et al. 1994; Mendonca et al. 1995; Luking et al. 1998).
Collapse
|
46
|
Dalmasso C, Carpentier W, Meyer L, Rouzioux C, Goujard C, Chaix ML, Lambotte O, Avettand-Fenoel V, Le Clerc S, de Senneville LD, Deveau C, Boufassa F, Debré P, Delfraissy JF, Broet P, Theodorou I. Distinct genetic loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1 infection: the ANRS Genome Wide Association 01 study. PLoS One 2008; 3:e3907. [PMID: 19107206 PMCID: PMC2603319 DOI: 10.1371/journal.pone.0003907] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/03/2008] [Indexed: 01/10/2023] Open
Abstract
Previous studies of the HIV-1 disease have shown that HLA and Chemokine receptor genetic variants influence disease progression and early viral load. We performed a Genome Wide Association study in a cohort of 605 HIV-1-infected seroconverters for detection of novel genetic factors that influence plasma HIV-RNA and cellular HIV-DNA levels. Most of the SNPs strongly associated with HIV-RNA levels were localised in the 6p21 major histocompatibility complex (MHC) region and were in the vicinity of class I and III genes. Moreover, protective alleles for four disease-associated SNPs in the MHC locus (rs2395029, rs13199524, rs12198173 and rs3093662) were strikingly over-represented among forty-five Long Term HIV controllers. Furthermore, we show that the HIV-DNA levels (reflecting the HIV reservoir) are associated with the same four SNPs, but also with two additional SNPs on chromosome 17 (rs6503919; intergenic region flanked by the DDX40 and YPEL2 genes) and chromosome 8 (rs2575735; within the Syndecan 2 gene). Our data provide evidence that the MHC controls both HIV replication and HIV reservoir. They also indicate that two additional genomic loci may influence the HIV reservoir.
Collapse
Affiliation(s)
- Cyril Dalmasso
- JE2492, Faculty of Medicine Paris-Sud, Univ Paris-Sud, Villejuif, France
| | - Wassila Carpentier
- CHU Pitié Salpetrière (AP-HP), INSERM U543, Université Pierre et Marie Curie, Paris, France
| | - Laurence Meyer
- INSERM, U822, Univ Paris-Sud, Faculté de Médecine Paris-Sud, AP-HP, Hopital Bicêtre, Epidemiology and Public Health Service, Le Kremlin-Bicêtre, France
| | | | - Cécile Goujard
- CHU Kremlin Bicêtre (AP-HP); INSERM, U802, Univ Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Marie-Laure Chaix
- CHU Necker (AP-HP) EA 3620 Université Paris Descartes, Paris, France
| | - Olivier Lambotte
- CHU Kremlin Bicêtre (AP-HP); INSERM, U802, Univ Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | - Sigrid Le Clerc
- Chaire de Bioinformatique, Conservatoire National des Arts et Métiers, Paris, France
| | | | - Christiane Deveau
- INSERM, U822, Univ Paris-Sud, Faculté de Médecine Paris-Sud, AP-HP, Hopital Bicêtre, Epidemiology and Public Health Service, Le Kremlin-Bicêtre, France
| | - Faroudy Boufassa
- INSERM, U822, Univ Paris-Sud, Faculté de Médecine Paris-Sud, AP-HP, Hopital Bicêtre, Epidemiology and Public Health Service, Le Kremlin-Bicêtre, France
| | - Patrice Debré
- CHU Pitié Salpetrière (AP-HP), INSERM U543, Université Pierre et Marie Curie, Paris, France
| | - Jean-François Delfraissy
- CHU Kremlin Bicêtre (AP-HP); INSERM, U802, Univ Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Philippe Broet
- JE2492, Faculty of Medicine Paris-Sud, Univ Paris-Sud, Villejuif, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Paul Brousse, Service de Santé Publique, Univ Paris-Sud, Villejuif, France
| | - Ioannis Theodorou
- CHU Pitié Salpetrière (AP-HP), INSERM U543, Université Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
47
|
Huang M, Mitchell BS. Guanine nucleotide depletion mediates translocation of nucleolar proteins, including RNA helicase A (DHX-9). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:704-11. [PMID: 18600529 DOI: 10.1080/15257770802145132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DHX-9, a member of the DEXH family of RNA helicases, unwinds dsRNA/dsDNA by ATP or GTP-dependent hydrolysis. We asked whether DHX-9 played a role in the GTP depletion-induced inhibition of rRNA synthesis and/or nucleolar disruption. MPA, a specific inhibitor of inosine monophosphate dehydrogenase (IMPDH), induced a rapid translocation of DHX-9 from the nucleolus to the nucleus. EGFP-tagged DHX-9 mutated at the GTP binding site also localized to the nucleus. However, knockdown of DHX-9 by siRNA did not inhibit the rRNA synthesis or cause the nucleolar disruption. Thus, DHX-9 translocation found with IMPDH inhibition does not mediate the inhibition of rRNA synthesis.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Division of Oncology, Stanford Cancer Center, Stanford University, Stanford, California 94305-5796, USA
| | | |
Collapse
|
48
|
Yedavalli VSRK, Zhang N, Cai H, Zhang P, Starost MF, Hosmane RS, Jeang KT. Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. J Med Chem 2008; 51:5043-51. [PMID: 18680273 DOI: 10.1021/jm800332m] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of ring expanded nucleoside (REN) analogues were synthesized and screened for inhibition of cellular RNA helicase activity and human immunodeficiency virus type 1 (HIV-1) replication. We identified two compounds, 1 and 2, that inhibited the ATP dependent activity of human RNA helicase DDX3. Compounds 1 and 2 also suppressed HIV-1 replication in T cells and monocyte-derived macrophages. Neither compound at therapeutic doses was significantly toxic in ex vivo cell culture or in vivo in mice. Our findings provide proof-of-concept that a cellular factor, an RNA helicase, could be targeted for inhibiting HIV-1 replication.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ma J, Rong L, Zhou Y, Roy BB, Lu J, Abrahamyan L, Mouland AJ, Pan Q, Liang C. The requirement of the DEAD-box protein DDX24 for the packaging of human immunodeficiency virus type 1 RNA. Virology 2008; 375:253-64. [PMID: 18289627 DOI: 10.1016/j.virol.2008.01.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/10/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
RNA helicases play important roles in RNA metabolism. Human immunodeficiency virus type 1 (HIV-1) does not carry its own RNA helicase, the virus thus needs to exploit cellular RNA helicases to promote the replication of its RNA at various steps such as transcription, folding and transport. In this study, we report that knockdown of a DEAD-box protein named DDX24 inhibits the packaging of HIV-1 RNA and thus diminishes viral infectivity. The decreased viral RNA packaging as a result of DDX24-knockdown is observed only in the context of the Rev/RRE (Rev response element)-dependent but not the CTE (constitutive transport element)-mediated nuclear export of viral RNA, which is explained by the specific interaction of DDX24 with the Rev protein. We propose that DDX24 acts at the early phase of HIV-1 RNA metabolism prior to nuclear export and the consequence of this action extends to the viral RNA packaging stage during virus assembly.
Collapse
|
50
|
Ishaq M, Hu J, Wu X, Fu Q, Yang Y, Liu Q, Guo D. Knockdown of cellular RNA helicase DDX3 by short hairpin RNAs suppresses HIV-1 viral replication without inducing apoptosis. Mol Biotechnol 2008; 39:231-8. [PMID: 18259889 DOI: 10.1007/s12033-008-9040-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/14/2008] [Indexed: 02/02/2023]
Abstract
The targeting of a cellular co-factor, rather than the HIV-1-specific RNAs, by small interfering RNAs holds promise as the rapid mutational ability of the HIV-1 genome may obviate the potential clinical use of RNAi against this virus. The DEAD-box RNA helicase DDX3 is an essential Rev co-factor in the CRM1-Rev-RRE complex that promotes the export of unspliced and single-spliced HIV-1 RNAs from the nucleus to cytoplasm. In this report, human DDX3 was targeted by specific short hairpin RNAs, and the down-regulation of cell's endogenous DDX3 suppressed the nuclear export of unspliced HIV-1 RNAs but did not affect the cell viability. We further showed that the knockdown of cellular DDX3 could effectively inhibit the replication of HIV-1. Therefore, the current results suggest that the RNA helicase DDX3 may become a potential target by RNAi for future genetic therapy of HIV/AIDS.
Collapse
Affiliation(s)
- Musarat Ishaq
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|