1
|
Yokomori R, Kusakabe TG, Nakai K. Characterization of trans-spliced chimeric RNAs: insights into the mechanism of trans-splicing. NAR Genom Bioinform 2024; 6:lqae067. [PMID: 38846348 PMCID: PMC11155486 DOI: 10.1093/nargab/lqae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Trans-splicing is a post-transcriptional processing event that joins exons from separate RNAs to produce a chimeric RNA. However, the detailed mechanism of trans-splicing remains poorly understood. Here, we characterize trans-spliced genes and provide insights into the mechanism of trans-splicing in the tunicate Ciona. Tunicates are the closest invertebrates to humans, and their genes frequently undergo trans-splicing. Our analysis revealed that, in genes that give rise to both trans-spliced and non-trans-spliced messenger RNAs, trans-splice acceptor sites were preferentially located at the first functional acceptor site, and their paired donor sites were weak in both Ciona and humans. Additionally, we found that Ciona trans-spliced genes had GU- and AU-rich 5' transcribed regions. Our data and findings not only are useful for Ciona research community, but may also aid in a better understanding of the trans-splicing mechanism, potentially advancing the development of gene therapy based on trans-splicing.
Collapse
Affiliation(s)
- Rui Yokomori
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Kenta Nakai
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
2
|
Frese AN, Mariossi A, Levine MS, Wühr M. Quantitative proteome dynamics across embryogenesis in a model chordate. iScience 2024; 27:109355. [PMID: 38510129 PMCID: PMC10951915 DOI: 10.1016/j.isci.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The evolution of gene expression programs underlying the development of vertebrates remains poorly characterized. Here, we present a comprehensive proteome atlas of the model chordate Ciona, covering eight developmental stages and ∼7,000 translated genes, accompanied by a multi-omics analysis of co-evolution with the vertebrate Xenopus. Quantitative proteome comparisons argue against the widely held hourglass model, based solely on transcriptomic profiles, whereby peak conservation is observed during mid-developmental stages. Our analysis reveals maximal divergence at these stages, particularly gastrulation and neurulation. Together, our work provides a valuable resource for evaluating conservation and divergence of multi-omics profiles underlying the diversification of vertebrates.
Collapse
Affiliation(s)
- Alexander N. Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Chen Z, Huang X, Fu R, Zhan A. Neighbours matter: Effects of genomic organization on gene expression plasticity in response to environmental stresses during biological invasions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100992. [PMID: 35504120 DOI: 10.1016/j.cbd.2022.100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Gene expression regulation has been widely recognized as an important molecular mechanism underlying phenotypic plasticity in environmental adaptation. However, it remains largely unexplored on the effects of genomic organization on gene expression plasticity under environmental stresses during biological invasions. Here, we use an invasive model ascidian, Ciona robusta, to investigate how genomic organization affects gene expression in response to salinity stresses during range expansions. Our study showed that neighboring genes were co-expressed and approximately 30% of stress responsive genes were physically clustered on chromosomes. Such coordinated expression was substantially affected by the physical distance and orientation of genes. Interestingly, the overall expression correlation of neighboring genes was significantly decreased under high salinity stresses, illustrating that the co-expression regulation could be disrupted by salinity challenges. Furthermore, the clustering of genes was associated with their function constraints and expression patterns - operon genes enriched in gene expression machinery had the highest transcriptional activity and expression stability. Notably, our analyses showed that the tail-to-tail genes, mainly involved in biological functions related to phosphorylation, homeostatic process, and ion transport, exhibited higher intrinsic expression variability and greater response to salinity challenges. Altogether, the results obtained here provide new insights into the effects of gene organization on gene expression plasticity under environmental challenges, hence improving our knowledge on mechanisms of rapid environmental adaptation during biological invasions.
Collapse
Affiliation(s)
- Zaohuang Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
4
|
Satou Y, Tokuoka M, Oda-Ishii I, Tokuhiro S, Ishida T, Liu B, Iwamura Y. A Manually Curated Gene Model Set for an Ascidian, Ciona robusta (Ciona intestinalis Type A). Zoolog Sci 2022; 39:253-260. [DOI: 10.2108/zs210102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Sinichi Tokuhiro
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tasuku Ishida
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yuri Iwamura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Zinani OQH, Keseroğlu K, Özbudak EM. Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends Genet 2022; 38:73-81. [PMID: 34376301 PMCID: PMC8678166 DOI: 10.1016/j.tig.2021.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Coordinated spatiotemporal expression of large sets of genes is required for the development and homeostasis of organisms. To achieve this goal, organisms use myriad strategies where they form operons, utilize bidirectional promoters, cluster genes, share enhancers among genes by DNA looping, and form topologically associated domains and transcriptional condensates. Coexpression achieved by these different strategies is hypothesized to have functional importance in minimizing gene expression variability, establishing dosage balance to ensure stoichiometry of protein complexes, and minimizing accumulation of toxic intermediate metabolites. By combining gene-editing tools with computational modeling, recent studies tested the advantages of adjacent genes located in pairs and clusters. We propose that with the advancement of gene editing, single-cell sequencing, and imaging tools, one could readily test the functional importance of different coexpression strategies in a variety of biological processes.
Collapse
Affiliation(s)
- Oriana Q H Zinani
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kemal Keseroğlu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M Özbudak
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Islas-Flores T, Galán-Vásquez E, Villanueva MA. Screening a Spliced Leader-Based Symbiodinium microadriaticum cDNA Library Using the Yeast-Two Hybrid System Reveals a Hemerythrin-Like Protein as a Putative SmicRACK1 Ligand. Microorganisms 2021; 9:microorganisms9040791. [PMID: 33918967 PMCID: PMC8070245 DOI: 10.3390/microorganisms9040791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
The dinoflagellate Symbiodiniaceae family plays a central role in the health of the coral reef ecosystem via the symbiosis that establishes with its inhabiting cnidarians and supports the host metabolism. In the last few decades, coral reefs have been threatened by pollution and rising temperatures which have led to coral loss. These events have raised interest in studying Symbiodiniaceae and their hosts; however, progress in understanding their metabolism, signal transduction pathways, and physiology in general, has been slow because dinoflagellates present peculiar characteristics. We took advantage of one of these peculiarities; namely, the post-transcriptional addition of a Dino Spliced Leader (Dino-SL) to the 5' end of the nuclear mRNAs, and used it to generate cDNA libraries from Symbiodinium microadriaticum. We compared sequences from two Yeast-Two Hybrid System cDNA Libraries, one based on the Dino-SL sequence, and the other based on the SMART technology (Switching Mechanism at 5' end of RNA Transcript) which exploits the template switching function of the reverse transcriptase. Upon comparison of the performance of both libraries, we obtained a significantly higher yield, number and length of sequences, number of transcripts, and better 5' representation from the Dino-SL based library than from the SMART library. In addition, we confirmed that the cDNAs from the Dino-SL library were adequately expressed in the yeast cells used for the Yeast-Two Hybrid System which resulted in successful screening for putative SmicRACK1 ligands, which yielded a putative hemerythrin-like protein.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, UNAM, Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo 77580, México
- Correspondence: (T.I.-F.); (M.A.V.); Tel.: +52-998-871-0009 (T.I.-F. & M.A.V.)
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, UNAM, Circuito Escolar 3000, Ciudad Universitaria, Ciudad de México CP 04510, México;
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, UNAM, Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo 77580, México
- Correspondence: (T.I.-F.); (M.A.V.); Tel.: +52-998-871-0009 (T.I.-F. & M.A.V.)
| |
Collapse
|
7
|
Wenzel MA, Müller B, Pettitt J. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-Seq data. BMC Bioinformatics 2021; 22:140. [PMID: 33752599 PMCID: PMC7986045 DOI: 10.1186/s12859-021-04009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Spliced leader (SL) trans-splicing replaces the 5' end of pre-mRNAs with the spliced leader, an exon derived from a specialised non-coding RNA originating from elsewhere in the genome. This process is essential for resolving polycistronic pre-mRNAs produced by eukaryotic operons into monocistronic transcripts. SL trans-splicing and operons may have independently evolved multiple times throughout Eukarya, yet our understanding of these phenomena is limited to only a few well-characterised organisms, most notably C. elegans and trypanosomes. The primary barrier to systematic discovery and characterisation of SL trans-splicing and operons is the lack of computational tools for exploiting the surge of transcriptomic and genomic resources for a wide range of eukaryotes. RESULTS Here we present two novel pipelines that automate the discovery of SLs and the prediction of operons in eukaryotic genomes from RNA-Seq data. SLIDR assembles putative SLs from 5' read tails present after read alignment to a reference genome or transcriptome, which are then verified by interrogating corresponding SL RNA genes for sequence motifs expected in bona fide SL RNA molecules. SLOPPR identifies RNA-Seq reads that contain a given 5' SL sequence, quantifies genome-wide SL trans-splicing events and predicts operons via distinct patterns of SL trans-splicing events across adjacent genes. We tested both pipelines with organisms known to carry out SL trans-splicing and organise their genes into operons, and demonstrate that (1) SLIDR correctly detects expected SLs and often discovers novel SL variants; (2) SLOPPR correctly identifies functionally specialised SLs, correctly predicts known operons and detects plausible novel operons. CONCLUSIONS SLIDR and SLOPPR are flexible tools that will accelerate research into the evolutionary dynamics of SL trans-splicing and operons throughout Eukarya and improve gene discovery and annotation for a wide range of eukaryotic genomes. Both pipelines are implemented in Bash and R and are built upon readily available software commonly installed on most bioinformatics servers. Biological insight can be gleaned even from sparse, low-coverage datasets, implying that an untapped wealth of information can be retrieved from existing RNA-Seq datasets as well as from novel full-isoform sequencing protocols as they become more widely available.
Collapse
Affiliation(s)
- Marius A Wenzel
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
8
|
Wei TY, Wu YJ, Xie QP, Tang JW, Yu ZT, Yang SB, Chen SX. CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Glarea lozoyensis and Its Application in Manipulating gloF. ACS Synth Biol 2020; 9:1968-1977. [PMID: 32786921 DOI: 10.1021/acssynbio.9b00491] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glarea lozoyensis is an important industrial fungus that produces the pneumocandin B0, which is used for the synthesis of antifungal drug caspofungin. However, because of the limitations and complications of traditional genetic tools, G. lozoyensis strain engineering has been hindered. In this study, we established an efficient CRISPR/Cas9-based gene editing tool in G. lozoyensis SIPI1208. With this method, gene mutagenesis efficiency in the target locus can be up to 80%, which enables the rapid gene knockout. According to the reports, GloF and Ap-HtyE, proline hydroxylases involved in pneumocandin and Echinocandin B biosynthesis, respectively, can catalyze the proline to generate different ratios of trans-3-hydroxy-l-proline to trans-4-hydroxy-l-proline. Heterologous expression of Ap-HtyE in G. lozoyensis decreased the ratio of pneumocandin C0 to (pneumocandin B0 + pneumocandin C0) from 33.5% to 11% without the addition of proline to the fermentation medium. Furthermore, the gloF was replaced by ap-htyE to study the production of pneumocandin C0. However, the gene replacement has been hampered by traditional gene tools since gloF and gloG, two contiguous genes indispensable in the biosynthesis of pneumocandins, are cotranscribed into one mRNA. With the CRISPR/Cas9 strategy, ap-htyE was knocked in and successfully replaced gloF, and results showed that the knock-in strain retained the ability to produce pneumocandin B0, but the production of pneumocandin C0 was abolished. Thus, this strain displayed a competitive advantage in the industrial production of pneumocandin B0. In summary, this study showed that the CRISPR/Cas9-based gene editing tool is efficient for manipulating genes in G. lozoyensis.
Collapse
Affiliation(s)
- Teng-Yun Wei
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Yuan-Jie Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Qiu-Ping Xie
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Jia-Wei Tang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Zhi-Tuo Yu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Song-Bai Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Shao-Xin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| |
Collapse
|
9
|
Phylogenetic Analyses of Glycosyl Hydrolase Family 6 Genes in Tunicates: Possible Horizontal Transfer. Genes (Basel) 2020; 11:genes11080937. [PMID: 32823766 PMCID: PMC7464555 DOI: 10.3390/genes11080937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is the movement of genetic material between different species. Although HGT is less frequent in eukaryotes than in bacteria, several instances of HGT have apparently shaped animal evolution. One well-known example is the tunicate cellulose synthase gene, CesA, in which a gene, probably transferred from bacteria, greatly impacted tunicate evolution. A Glycosyl Hydrolase Family 6 (GH6) hydrolase-like domain exists at the C-terminus of tunicate CesA, but not in cellulose synthases of other organisms. The recent discovery of another GH6 hydrolase-like gene (GH6-1) in tunicate genomes further raises the question of how tunicates acquired GH6. To examine the probable origin of these genes, we analyzed the phylogenetic relationship of GH6 proteins in tunicates and other organisms. Our analyses show that tunicate GH6s, the GH6-1 gene, and the GH6 part of the CesA gene, form two independent, monophyletic gene groups. We also compared their sequence signatures and exon splice sites. All tunicate species examined have shared splice sites in GH6-containing genes, implying ancient intron acquisitions. It is likely that the tunicate CesA and GH6-1 genes existed in the common ancestor of all extant tunicates.
Collapse
|
10
|
Satou Y, Nakamura R, Yu D, Yoshida R, Hamada M, Fujie M, Hisata K, Takeda H, Satoh N. A Nearly Complete Genome of Ciona intestinalis Type A (C. robusta) Reveals the Contribution of Inversion to Chromosomal Evolution in the Genus Ciona. Genome Biol Evol 2020; 11:3144-3157. [PMID: 31621849 PMCID: PMC6836712 DOI: 10.1093/gbe/evz228] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Since its initial publication in 2002, the genome of Ciona intestinalis type A (Ciona robusta), the first genome sequence of an invertebrate chordate, has provided a valuable resource for a wide range of biological studies, including developmental biology, evolutionary biology, and neuroscience. The genome assembly was updated in 2008, and it included 68% of the sequence information in 14 pairs of chromosomes. However, a more contiguous genome is required for analyses of higher order genomic structure and of chromosomal evolution. Here, we provide a new genome assembly for an inbred line of this animal, constructed with short and long sequencing reads and Hi-C data. In this latest assembly, over 95% of the 123 Mb of sequence data was included in the chromosomes. Short sequencing reads predicted a genome size of 114-120 Mb; therefore, it is likely that the current assembly contains almost the entire genome, although this estimate of genome size was smaller than previous estimates. Remapping of the Hi-C data onto the new assembly revealed a large inversion in the genome of the inbred line. Moreover, a comparison of this genome assembly with that of Ciona savignyi, a different species in the same genus, revealed many chromosomal inversions between these two Ciona species, suggesting that such inversions have occurred frequently and have contributed to chromosomal evolution of Ciona species. Thus, the present assembly greatly improves an essential resource for genome-wide studies of ascidians.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Reiko Yoshida
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
11
|
Racioppi C, Wiechecki KA, Christiaen L. Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices. eLife 2019; 8:49921. [PMID: 31746740 PMCID: PMC6952182 DOI: 10.7554/elife.49921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. We found that multiple cis-regulatory elements, with distinct chromatin accessibility profiles and motif compositions, are required to activate Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that these 'combined enhancers' foster spatially and temporally accurate fate choices, by increasing the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity.
Collapse
Affiliation(s)
- Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Keira A Wiechecki
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
12
|
Oonuma K, Kusakabe TG. Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona. Dev Biol 2018; 445:245-255. [PMID: 30502325 DOI: 10.1016/j.ydbio.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
Abstract
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| |
Collapse
|
13
|
Nakayama S, Ogasawara M. Compartmentalized expression patterns of pancreatic- and gastric-related genes in the alimentary canal of the ascidian Ciona intestinalis: evolutionary insights into the functional regionality of the gastrointestinal tract in Olfactores. Cell Tissue Res 2017; 370:113-128. [PMID: 28547657 DOI: 10.1007/s00441-017-2627-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023]
Abstract
Many heterotrophic animals have a one-way alimentary canal that is essential for their nutrition and sequential steps of the digestive system, namely ingestion, digestion, absorption and elimination, are widely shared among bilaterians. Morphological, functional and molecular knowledge of the alimentary canal has been obtained in particular from mammalian research but the shared features and evolution of these aspects of the highly diverged alimentary canal in the animal kingdom are still unclear. We therefore investigate spatial gene expression patterns of pancreatic- and gastric-related molecules of ascidians (a sister group of vertebrates) with special reference to the functional regionality of the gastrointestinal tract. Genome-wide surveys of ascidian homologs to mammalian exocrine digestive enzyme genes revealed that pancreatic enzymes, namely alpha-amylase, lipase, phospholipase A2, trypsin, chymotrypsin and carboxypeptidase, exist in the ascidian genome. However, an ascidian homolog of the mammalian gastric enzyme pepsin has not been identified, although molecules resembling cathepsin D, a pepsin relative, are indeed present. Spatial expression analyses in the ascidian Ciona intestinalis, by means of whole-mount in situ hybridization, have elucidated that the expression of Ciona homologs of pancreatic- and gastric-related exocrine enzyme genes and of their transcriptional regulator genes is restricted to the Ciona stomach. Furthermore, the expression of these genes is localized to specific regions of the stomach epithelium according to their regionality in the vertebrate digestive system. The compartmentalized expression patterns of Ciona homologs imply primitive and/or ancestral aspects of molecular, functional and morphological bases among Olfactores.
Collapse
Affiliation(s)
- Satoshi Nakayama
- The Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Michio Ogasawara
- The Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
14
|
Imai KS, Hudson C, Oda-Ishii I, Yasuo H, Satou Y. Antagonism between β-catenin and Gata.a sequentially segregates the germ layers of ascidian embryos. Development 2016; 143:4167-4172. [PMID: 27707797 DOI: 10.1242/dev.141481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
Many animal embryos use nuclear β-catenin (nβ-catenin) during the segregation of endomesoderm (or endoderm) from ectoderm. This mechanism is thus likely to be evolutionarily ancient. In the ascidian embryo, nβ-catenin reiteratively drives binary fate decisions between ectoderm and endomesoderm at the 16-cell stage, and then between endoderm and margin (mesoderm and caudal neural) at the 32-cell stage. At the 16-cell stage, nβ-catenin activates endomesoderm genes in the vegetal hemisphere. At the same time, nβ-catenin suppresses the DNA-binding activity of a maternal transcription factor, Gata.a, through a physical interaction, and Gata.a thereby activates its target genes only in the ectodermal lineage. In the present study, we found that this antagonism between nβ-catenin and Gata.a also operates during the binary fate switch at the 32-cell stage. Namely, in marginal cells where nβ-catenin is absent, Gata.a directly activates its target, Zic-r.b (ZicL), to specify the marginal cell lineages. Thus, the antagonistic action between nβ-catenin and Gata.a is involved in two consecutive stages of germ layer segregation in ascidian embryos.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.,Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Clare Hudson
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche-sur-mer 06230, France
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hitoyoshi Yasuo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche-sur-mer 06230, France
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
A functional difference between native and horizontally acquired genes in bdelloid rotifers. Gene 2016; 590:186-91. [PMID: 27312952 DOI: 10.1016/j.gene.2016.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
The form of RNA processing known as SL trans-splicing involves the transfer of a short conserved sequence, the spliced leader (SL), from a noncoding SL RNA to the 5' ends of mRNA molecules. SL trans-splicing occurs in several animal taxa, including bdelloid rotifers (Rotifera, Bdelloidea). One striking feature of these aquatic microinvertebrates is the large proportion of foreign genes, i.e. those acquired by horizontal gene transfer from other organisms, in their genomes. However, whether such foreign genes behave similarly to native genes has not been tested in bdelloids or any other animal. We therefore used a combination of experimental and computational methods to examine whether transcripts of foreign genes in bdelloids were SL trans-spliced, like their native counterparts. We found that many foreign transcripts contain SLs, use similar splice acceptor sequences to native genes, and are able to undergo alternative trans-splicing. However, a significantly lower proportion of foreign mRNAs contains SL sequences than native transcripts. This demonstrates a novel functional difference between foreign and native genes in bdelloids and suggests that SL trans-splicing is not essential for the expression of foreign genes, but is acquired during their domestication.
Collapse
|
16
|
Lei Q, Li C, Zuo Z, Huang C, Cheng H, Zhou R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol Evol 2016; 8:562-77. [PMID: 26966239 PMCID: PMC4824033 DOI: 10.1093/gbe/evw025] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Quan Lei
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Cong Li
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Chunhua Huang
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Hanhua Cheng
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| |
Collapse
|
17
|
Yokomori R, Shimai K, Nishitsuji K, Suzuki Y, Kusakabe TG, Nakai K. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis. Genome Res 2015; 26:140-50. [PMID: 26668163 PMCID: PMC4691747 DOI: 10.1101/gr.184648.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/13/2015] [Indexed: 02/05/2023]
Abstract
The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.
Collapse
Affiliation(s)
- Rui Yokomori
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Kotaro Shimai
- Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Koki Nishitsuji
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan; Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
Functional Operons in Secondary Metabolic Gene Clusters in Glarea lozoyensis (Fungi, Ascomycota, Leotiomycetes). mBio 2015; 6:e00703. [PMID: 26081635 PMCID: PMC4471562 DOI: 10.1128/mbio.00703-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Operons are multigene transcriptional units which occur mostly in prokaryotes but rarely in eukaryotes. Protein-coding operons have not been reported in the Fungi even though they represent a very diverse kingdom of organisms. Here, we report a functional operon involved in the secondary metabolism of the fungus Glarea lozoyensis belonging to Leotiomycetes (Ascomycota). Two contiguous genes, glpks3 and glnrps7, encoding polyketide synthase and nonribosomal peptide synthetase, respectively, are cotranscribed into one dicistronic mRNA under the control of the same promoter, and the mRNA is then translated into two individual proteins, GLPKS3 and GLNRPS7. Heterologous expression in Aspergillus nidulans shows that the GLPKS3-GLNRPS7 enzyme complex catalyzes the biosynthesis of a novel pyrrolidinedione-containing compound, xenolozoyenone (compound 1), which indicates the operon is functional. Although it is structurally similar to prokaryotic operons, the glpks3-glnrps7 operon locus has a monophylogenic origin from fungi rather than having been horizontally transferred from prokaryotes. Moreover, two additional operons, glpks28-glnrps8 and glpks29-glnrps9, were verified at the transcriptional level in the same fungus. This is the first report of protein-coding operons in a member of the Fungi. Operons are multigene transcriptional units which occur mostly in prokaryotes but rarely in eukaryotes. Three operon-like gene structures for secondary metabolism that were discovered in the filamentous fungus Glarea lozoyensis are the first examples of protein-coding operons identified in a member of the Fungi. Among them, the glpks3-glnrps7 operon is responsible for the biosynthesis of xenolozoyenone, which is a novel tetramic acid-containing compound. Although structurally similar to prokaryotic operons, the glpks3-glnrps7 operon locus did not result from horizontal gene transfer from prokaryotes. In addition, operonlike structures have been predicted in silico to be common in other fungi. The common occurrence and operonlike structure in fungi provide evolutionary insight and essential data for eukaryotic gene transcription.
Collapse
|
19
|
Maternal and zygotic transcriptomes in the appendicularian, Oikopleura dioica: novel protein-encoding genes, intra-species sequence variations, and trans-spliced RNA leader. Dev Genes Evol 2015; 225:149-59. [PMID: 26032664 DOI: 10.1007/s00427-015-0502-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
RNA sequencing analysis was carried out to characterize egg and larval transcriptomes in the appendicularian, Oikopleura dioica, a planktonic chordate, which is characterized by rapid development and short life cycle of 5 days, using a Japanese population of the organism. De novo transcriptome assembly matched with 16,423 proteins corresponding to 95.4% of the protein-encoding genes deposited in the OikoBase, the genome database of the Norwegian population. Nucleotide and amino acid sequence identities between the Japanese and Norwegian O. dioica were estimated to be around 91.0 and 94.8%, respectively. We discovered 175 novel protein-encoding genes: 144 unigenes were common to both the Japanese and Norwegian populations, whereas 31 unigenes were not found in the OikoBase genome reference. Among the total 12,311 unigenes, approximately 63% were detected in egg-stage RNAs, whereas 99% were detected in larval stage RNAs; 3772 genes were up-regulated, and 1336 genes were down-regulated more than four-fold in the larvae. Gene ontology analyses characterized gene activities in these two developmental stages. We found a messenger RNA (mRNA) 5' trans-spliced leader, which was observed in 40.8% of the total unique transcripts. It showed preferential linkage to adenine at the 5' ends of the downstream exons. Trans-splicing was observed more frequently in egg mRNAs compared with larva-specific mRNAs.
Collapse
|
20
|
A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis. Dev Biol 2015; 404:149-63. [PMID: 26025923 PMCID: PMC4528069 DOI: 10.1016/j.ydbio.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/17/2022]
Abstract
Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We report a computational strategy that overcomes these difficulties, and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5'- and 3'-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. We developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.
Collapse
|
21
|
Sakamaki K, Shimizu K, Iwata H, Imai K, Satou Y, Funayama N, Nozaki M, Yajima M, Nishimura O, Higuchi M, Chiba K, Yoshimoto M, Kimura H, Gracey AY, Shimizu T, Tomii K, Gotoh O, Akasaka K, Sawasaki T, Miller DJ. The apoptotic initiator caspase-8: its functional ubiquity and genetic diversity during animal evolution. Mol Biol Evol 2014; 31:3282-301. [PMID: 25205508 DOI: 10.1093/molbev/msu260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The caspases, a family of cysteine proteases, play multiple roles in apoptosis, inflammation, and cellular differentiation. Caspase-8 (Casp8), which was first identified in humans, functions as an initiator caspase in the apoptotic signaling mediated by cell-surface death receptors. To understand the evolution of function in the Casp8 protein family, casp8 orthologs were identified from a comprehensive range of vertebrates and invertebrates, including sponges and cnidarians, and characterized at both the gene and protein levels. Some introns have been conserved from cnidarians to mammals, but both losses and gains have also occurred; a new intron arose during teleost evolution, whereas in the ascidian Ciona intestinalis, the casp8 gene is intronless and is organized in an operon with a neighboring gene. Casp8 activities are near ubiquitous throughout the animal kingdom. Exogenous expression of a representative range of nonmammalian Casp8 proteins in cultured mammalian cells induced cell death, implying that these proteins possess proapoptotic activity. The cnidarian Casp8 proteins differ considerably from their bilaterian counterparts in terms of amino acid residues in the catalytic pocket, but display the same substrate specificity as human CASP8, highlighting the complexity of spatial structural interactions involved in enzymatic activity. Finally, it was confirmed that the interaction with an adaptor molecule, Fas-associated death domain protein, is also evolutionarily ancient. Thus, despite structural diversity and cooption to a variety of new functions, the ancient origins and near ubiquitous distribution of this activity across the animal kingdom emphasize the importance and utility of Casp8 as a central component of the metazoan molecular toolkit.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kouhei Shimizu
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hiroaki Iwata
- Multi-Scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenichiro Imai
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Noriko Funayama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Mamiko Yajima
- Bio Med Molecular, Cellular Biology Biochemistry Department, Brown University, Providence, RI
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Mayura Higuchi
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kumiko Chiba
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michi Yoshimoto
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Haruna Kimura
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Andrew Y Gracey
- Marine Environmental Biology, University of Southern California, Los Angeles, CA
| | - Takashi Shimizu
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kentaro Tomii
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Osamu Gotoh
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Koji Akasaka
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - David J Miller
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Retroduplication and loss of parental genes is a mechanism for the generation of intronless genes in Ciona intestinalis and Ciona savignyi. Dev Genes Evol 2014; 224:255-60. [PMID: 25037949 DOI: 10.1007/s00427-014-0475-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/09/2014] [Indexed: 01/08/2023]
Abstract
Tunicates, the sister clade of vertebrates, have miniature genomes and numerous intronless genes compared to other animals. It is still unclear how the tunicates acquired such a large number of intronless genes. Here, we analyzed sequences and intron-exon organizations of homologous genes from two closely related tunicates, Ciona intestinalis and Ciona savignyi. We found seven cases in which ancestral introns of a gene were completely lost in a species after their divergence. In four cases, both the intronless copy and the intron-containing copy were present in the genome, indicating that the intronless copy was generated by retroduplication. In the other three cases, the intron-containing copy was absent, implying it was lost after retroduplication. This result suggests that retroduplication and loss of parental genes is a major mechanism for the accumulation of intronless genes in tunicates.
Collapse
|
23
|
Hasunuma I, Terakado K. Two novel gonadotropin-releasing hormones (GnRHs) from the urochordate ascidian, Halocynthia roretzi: implications for the origin of vertebrate GnRH isoforms. Zoolog Sci 2013; 30:311-8. [PMID: 23537242 DOI: 10.2108/zsj.30.311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three forms of gonadotropin-releasing hormone (GnRH) are found in vertebrates; these differ in amino acid sequence, localization, distribution, and embryological origin. We used northern blot analysis, and in situ hybridization to detect GnRH transcripts in various tissues in the large ascidian Halocynthia roretzi. We cloned a cDNA encoding two novel GnRHs, termed tGnRH-10 and tGnRH-11, from H. roretzi, with deduced amino acid sequences of QHWSYGFSPG and QHWSYGFLPG, respectively. Both GnRHs are highly similar to those of teleosts and tetrapods. For example, the tGnRH-10 sequence is 90% identical to seabream GnRH1, and tGnRH-11 is 90% identical to salmon GnRH3. The primary structure of the deduced preprotein is similar to that of chordate GnRHs and consists of a signal peptide, two decapeptides, up- and downstream processing sequences (containing lysine and arginine), and a GnRH-associated peptide. The transcripts of the H. roretzi GnRH gene were expressed in all tissues examined. Comparison of the signal peptide of the lamprey GnRH-II precursor with those of three forms from representative vertebrates revealed homology to GnRH2 precursors. These novel ascidian GnRHs offer a new perspective on the origin of vertebrate GnRH subtypes. We hypothesize that gnathostome GnRH2 was derived only from lamprey GnRH-II and that ancestral gnathostome GnRH, which produces neurons that originate in peripheral organs, gave rise to vertebrate GnRH1 and GnRH3 through whole-genome duplication.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Toho University, Funabashi 274-8510, Japan
| | | |
Collapse
|
24
|
Li S, Heermann DW. Using chimaeric expression sequence tag as the reference to identify three-dimensional chromosome contacts. DNA Res 2012; 20:45-53. [PMID: 23213109 PMCID: PMC3576657 DOI: 10.1093/dnares/dss032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription-induced chimaeric transcripts, the potential post-transcriptional processing products, might reflect the spatial proximity of actively transcribed genes co-localized in transcription factories. A growing number of expression data deposited in databases provide us with the raw material for screening such chimaeric transcripts and using them as the probes to identify interactions between genes in cis or in trans. Based on the high-quality chimaeric transcripts gleaned from human expression sequence tag data with selection criteria, we identified the patterns of inter- and intrachromosomal gene–gene interactions. On top the contact pattern from interchromosomal interactions, we also observed an exponential behaviour of the intrachromosomal interactions within a certain length scale, which is consistent with the independent experimental results from Hi-C screening and with the Random Loop Model. A compatible result is found for mouse. Transcription-induced chimaeric transcripts, most of which might be accidental products with trivial functions, shed light on the spatial organization of chromosomes. These inter- and intrachromosomal interactions might contribute to the compaction of chromosomes, their segregation and formation of the chromosome territories, and their spatial distribution within the nucleus.
Collapse
Affiliation(s)
- Songling Li
- Theoretical Biophysics Group, Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
25
|
Parkinson J, Wasmuth JD, Salinas G, Bizarro CV, Sanford C, Berriman M, Ferreira HB, Zaha A, Blaxter ML, Maizels RM, Fernández C. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis 2012; 6:e1897. [PMID: 23209850 PMCID: PMC3510090 DOI: 10.1371/journal.pntd.0001897] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/25/2012] [Indexed: 01/14/2023] Open
Abstract
Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ∼10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths. Cestodes are a neglected group of platyhelminth parasites, despite causing chronic infections to humans and domestic animals worldwide. We used Echinococcus granulosus as a model to study the molecular basis of the host-parasite cross-talk during cestode infections. For this purpose, we carried out a survey of the genes expressed by parasite larval stages interfacing with definitive and intermediate hosts. Sequencing from several high quality cDNA libraries provided numerous insights into the expression of genes involved in important aspects of E. granulosus biology, e.g. its metabolism (energy production and antioxidant defences) and the synthesis of key parasite structures (notably, the one exposed to humans and livestock intermediate hosts). Our results also uncovered the existence of an intriguing set of abundant repeat-associated non-protein coding transcripts that may participate in the regulation of gene expression in all surveyed stages. The dataset now generated constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic studies focused on cestodes and platyhelminths. In particular, the detailed characterization of a range of newly discovered genes will contribute to a better understanding of the biology of cestode infections and, therefore, to the development of products allowing their efficient control.
Collapse
Affiliation(s)
- John Parkinson
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - James D. Wasmuth
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Gustavo Salinas
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cristiano V. Bizarro
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Chris Sanford
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matthew Berriman
- Parasite Genomics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Henrique B. Ferreira
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mark L. Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (RMM); (CF)
| | - Cecilia Fernández
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- * E-mail: (RMM); (CF)
| |
Collapse
|
26
|
Dana CE, Glauber KM, Chan TA, Bridge DM, Steele RE. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution. PLoS One 2012; 7:e31643. [PMID: 22328943 PMCID: PMC3273482 DOI: 10.1371/journal.pone.0031643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/10/2012] [Indexed: 12/19/2022] Open
Abstract
Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp) that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.
Collapse
Affiliation(s)
- Catherine E. Dana
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Kristine M. Glauber
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Titus A. Chan
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Diane M. Bridge
- Department of Biology, Elizabethtown College, Elizabethtown, Pennsylvania, United States of America
| | - Robert E. Steele
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
The study of cis-regulatory DNAs that control developmental gene expression is integral to the modeling of comprehensive genomic regulatory networks for embryogenesis. Ascidian embryos provide a unique opportunity for the analysis of cis-regulatory DNAs with cellular resolution in the context of a simple but typical chordate body plan. Here, we review landmark studies that have laid the foundations for the study of transcriptional enhancers, among other cis-regulatory DNAs, and their roles in ascidian development. The studies using ascidians of the Ciona genus have capitalized on a unique electroporation technique that permits the simultaneous transfection of hundreds of fertilized eggs, which develop rapidly and express transgenes with little mosaicism. Current studies using the ascidian embryo benefit from extensively annotated genomic resources to characterize transcript models in silico. The search for functional noncoding sequences can be guided by bioinformatic analyses combining evolutionary conservation, gene coexpression, and combinations of overrepresented short-sequence motifs. The power of the transient transfection assays has allowed thorough dissection of numerous cis-regulatory modules, which provided insights into the functional constraints that shape enhancer architecture and diversification. Future studies will benefit from pioneering stable transgenic lines and the analysis of chromatin states. Whole genome expression, functional and DNA binding data are being integrated into comprehensive genomic regulatory network models of early ascidian cell specification with a single-cell resolution that is unique among chordate model systems.
Collapse
|
28
|
Tolkin T, Christiaen L. Development and Evolution of the Ascidian Cardiogenic Mesoderm. Curr Top Dev Biol 2012; 100:107-42. [DOI: 10.1016/b978-0-12-387786-4.00011-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Jaeckisch N, Yang I, Wohlrab S, Glöckner G, Kroymann J, Vogel H, Cembella A, John U. Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS One 2011; 6:e28012. [PMID: 22164224 PMCID: PMC3229502 DOI: 10.1371/journal.pone.0028012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/29/2011] [Indexed: 01/09/2023] Open
Abstract
Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins.
Collapse
Affiliation(s)
- Nina Jaeckisch
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (NJ); (UJ)
| | - Ines Yang
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Hannover, Germany
| | - Sylke Wohlrab
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Gernot Glöckner
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Juergen Kroymann
- Université Paris-Sud/CNRS, Laboratoire d'Ecologie, Systématique et Evolution, Orsay, France
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Allan Cembella
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Uwe John
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (NJ); (UJ)
| |
Collapse
|
30
|
Okamura K, Yamashita R, Takimoto N, Nishitsuji K, Suzuki Y, Kusakabe TG, Nakai K. Profiling ascidian promoters as the primordial type of vertebrate promoter. BMC Genomics 2011; 12 Suppl 3:S7. [PMID: 22369359 PMCID: PMC3333190 DOI: 10.1186/1471-2164-12-s3-s7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background CpG islands are observed in mammals and other vertebrates, generally escape DNA methylation, and tend to occur in the promoters of widely expressed genes. Another class of promoter has lower G+C and CpG contents, and is thought to be involved in the spatiotemporal regulation of gene expression. Non-vertebrate deuterostomes are reported to have a single class of promoter with high-frequency CpG dinucleotides, suggesting that this is the original type of promoter. However, the limited annotation of these genes has impeded the large-scale analysis of their promoters. Results To determine the origins of the two classes of vertebrate promoters, we chose Ciona intestinalis, an invertebrate that is evolutionarily close to the vertebrates, and identified its transcription start sites genome-wide using a next-generation sequencer. We indeed observed a high CpG content around the transcription start sites, but their levels in the promoters and background sequences differed much less than in mammals. The CpG-rich stretches were also fairly restricted, so they appeared more similar to mammalian CpG-poor promoters. Conclusions From these data, we infer that CpG islands are not sufficiently ancient to be found in invertebrates. They probably appeared early in vertebrate evolution via some active mechanism and have since been maintained as part of vertebrate promoters.
Collapse
Affiliation(s)
- Kohji Okamura
- Human Genome Centre, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Khare P, Mortimer SI, Cleto CL, Okamura K, Suzuki Y, Kusakabe T, Nakai K, Meedel TH, Hastings KEM. Cross-validated methods for promoter/transcription start site mapping in SL trans-spliced genes, established using the Ciona intestinalis troponin I gene. Nucleic Acids Res 2011; 39:2638-48. [PMID: 21109525 PMCID: PMC3074122 DOI: 10.1093/nar/gkq1151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 11/12/2022] Open
Abstract
In conventionally-expressed eukaryotic genes, transcription start sites (TSSs) can be identified by mapping the mature mRNA 5'-terminal sequence onto the genome. However, this approach is not applicable to genes that undergo pre-mRNA 5'-leader trans-splicing (SL trans-splicing) because the original 5'-segment of the primary transcript is replaced by the spliced leader sequence during the trans-splicing reaction and is discarded. Thus TSS mapping for trans-spliced genes requires different approaches. We describe two such approaches and show that they generate precisely agreeing results for an SL trans-spliced gene encoding the muscle protein troponin I in the ascidian tunicate chordate Ciona intestinalis. One method is based on experimental deletion of trans-splice acceptor sites and the other is based on high-throughput mRNA 5'-RACE sequence analysis of natural RNA populations in order to detect minor transcripts containing the pre-mRNA's original 5'-end. Both methods identified a single major troponin I TSS located ∼460 nt upstream of the trans-splice acceptor site. Further experimental analysis identified a functionally important TATA element 31 nt upstream of the start site. The two methods employed have complementary strengths and are broadly applicable to mapping promoters/TSSs for trans-spliced genes in tunicates and in trans-splicing organisms from other phyla.
Collapse
Affiliation(s)
- Parul Khare
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Sandra I. Mortimer
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Cynthia L. Cleto
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Kohji Okamura
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Yutaka Suzuki
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Takehiro Kusakabe
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Kenta Nakai
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Thomas H. Meedel
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Kenneth E. M. Hastings
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4, Biology Department, Rhode Island College, Providence, RI 02908, USA, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639 and Department of Biology, Faculty of Science and Engineering, Konan Univeristy, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| |
Collapse
|
32
|
Gasparini F, Shimeld SM. Analysis of a botryllid enriched-full-length cDNA library: insight into the evolution of spliced leader trans-splicing in tunicates. Dev Genes Evol 2011; 220:329-36. [PMID: 21331664 DOI: 10.1007/s00427-011-0351-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/24/2011] [Indexed: 01/22/2023]
Abstract
In some animals, mRNA may be modified after transcription by the addition of a 5' spliced leader sequence. This is known as spliced leader (SL) trans-splicing, and is of uncertain function and evolutionary origin. Here, we report the identification of SL trans-splicing in the colonial ascidian Botryllus schlosseri. Combining our own expressed sequence tag (EST) data with additional data from GenBank, we identify the dominant spliced leader sequence and show it to be similar to that of other ascidians and to that of Oikopleura dioica, a basally diverging tunicate. Gene Ontology analysis of B. schlosseri ESTs with and without a 5' spliced leader shows that genes encoding ribosomal proteins tend not to be trans-spliced, a character shared with the ascidian Ciona intestinalis. We also examine individual cases of genes that produce mRNAs that are SL trans-spliced in B. schlosseri but not in C. intestinalis. We conclude that SL trans-splicing evolved early in the tunicate lineage and shows stability over considerable evolutionary time. However, SL trans-splicing may be gained or lost in individual genes.
Collapse
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Italy.
| | | |
Collapse
|
33
|
Abstract
Trans-splicing is the joining together of portions of two separate pre-mRNA molecules. The two distinct categories of spliceosomal trans-splicing are genic trans-splicing, which joins exons of different pre-mRNA transcripts, and spliced leader (SL) trans-splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis-splicing. Genic trans-splicing events producing protein-coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans-splicing can be associated with cancers and translocations. SL trans-splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans-splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans-splicing, as operon resolution can only account for a small proportion of the total amount of SL trans-splicing.
Collapse
Affiliation(s)
- Erika L Lasda
- University of Colorado Denver, Department of Biochemistry and Molecular Genetics; University of Colorado Boulder, Department of Molecular, Cellular, and Developmental Biology
| | | |
Collapse
|
34
|
Harrison N, Kalbfleisch A, Connolly B, Pettitt J, Müller B. SL2-like spliced leader RNAs in the basal nematode Prionchulus punctatus: New insight into the evolution of nematode SL2 RNAs. RNA (NEW YORK, N.Y.) 2010; 16:1500-7. [PMID: 20566669 PMCID: PMC2905750 DOI: 10.1261/rna.2155010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spliced-leader (SL) trans-splicing has been found in all molecularly characterized nematode species to date, and it is likely to be a nematode synapomorphy. Most information regarding SL trans-splicing has come from the study of nematodes from a single monophyletic group, the Rhabditida, all of which employ SL RNAs that are identical to, or variants of, the SL1 RNA first characterized in Caenorhabditis elegans. In contrast, the more distantly related Trichinella spiralis, belonging to the subclass Dorylaimia, utilizes a distinct set of SL RNAs that display considerable sequence diversity. To investigate whether this is true of other members of the Dorylaimia, we have characterized SL RNAs from Prionchulus punctatus. Surprisingly, this revealed the presence of a set of SLs that show clear sequence similarity to the SL2 family of spliced leaders, which have previously only been found within the rhabditine group (which includes C. elegans). Expression of one of the P. punctatus SL RNAs in C. elegans reveals that it can compete specifically with the endogenous C. elegans SL2 spliced leaders, being spliced to the pre-mRNAs derived from downstream genes in operons, but does not compete with the SL1 spliced leaders. This discovery raises the possibility that SL2-like spliced leaders were present in the last common ancestor of the nematode phylum.
Collapse
Affiliation(s)
- Neale Harrison
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Abstract
Operons are clusters of genes that are co-regulated from a common promoter. Operons are typically associated with prokaryotes, although a small number of eukaryotes have been shown to possess them. Among metazoans, operons have been extensively characterized in the nematode Caenorhabditis elegans in which ∼15% of the total genes are organized into operons. The most recent genome assembly for the ascidian Ciona intestinalis placed ∼20% of the genes (2909 total) into 1310 operons. The majority of these operons are composed of two genes, while the largest are composed of six. Here is reported a computational analysis of the genes that comprise the Ciona operons. Gene ontology (GO) terms were identified for about two-thirds of the operon-encoded genes. Using the extensive collection of public EST libraries, estimates of temporal patterns of gene expression were generated for the operon-encoded genes. Lastly, conservation of operons was analyzed by determining how many operon-encoded genes were present in the ascidian Ciona savignyi and whether these genes were organized in orthologous operons. Over 68% of the operon-encoded genes could be assigned one or more GO terms and 697 of the 1310 operons contained genes in which all genes had at least one GO term. Of these 697 operons, GO terms were shared by all of the genes within 146 individual operons, suggesting that most operons encode genes with unrelated functions. An analysis of operon gene expression from nine different EST libraries indicated that for 587 operons, all of the genes that comprise an individual operon were expressed together in at least one EST library, suggesting that these genes may be co-regulated. About 50% (74/146) of the operons with shared GO terms also showed evidence of gene co-regulation. Comparisons with the C. savignyi genome identified orthologs for 1907 of 2909 operon genes. About 38% (504/1310) of the operons are conserved between the two Ciona species. These results suggest that like C. elegans, operons in Ciona are comprised of a variety of genes that are not necessarily related in function. The genes in only 50% of the operons appear to be co-regulated, suggesting that more complex gene regulatory mechanisms are likely operating.
Collapse
Affiliation(s)
- Robert W Zeller
- Center for Applied and Experimental Genomics, Department of Biology MC 4616, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA.
| |
Collapse
|
36
|
Yeats B, Matsumoto J, Mortimer SI, Shoguchi E, Satoh N, Hastings KEM. SL RNA genes of the ascidian tunicates Ciona intestinalis and Ciona savignyi. Zoolog Sci 2010; 27:171-80. [PMID: 20141422 DOI: 10.2108/zsj.27.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We characterized by bioinformatics the trans-spliced leader donor RNA (SL RNA) genes of two ascidians, Ciona intestinalis and Ciona savignyi. The Ciona intestinalis genome contains approximately 670 copies of the SL RNA gene, principally on a 264-bp tandemly repeated element. Fluorescent in-situ hybridization mapped most of the repeats to a single site on the short arm of chromosome 8. The Ciona intestinalis genome also contains approximately 100 copies of a >3.6-kb element that carries 1) an SL RNA-related sequence (possible a pseudogene) and 2) genes for the U6 snRNA and a histone-like protein. The Ciona savignyi genome contains two SL RNA gene classes having the same SL sequence as Ciona intestinalis but differing in the intron-like segments. These reside in similar but distinct repeat units of 575 bp ( approximately 410 copies) and 552 bp ( approximately 250 copies) that are arranged as separate tandem repeats. In neither Ciona species is the 5S RNA gene present within the SL RNA gene repeat unit. Although the number of SL RNA genes is similar, there is little sequence similarity between the intestinalis and savignyi repeat units, apart from the region encoding the SL RNA itself. This suggests that cis-regulatory elements involved in transcription and 3'-end processing are likely to be present within the transcribed region. The genomes of both Ciona species also include > 100 dispersed short elements containing the 16-nt SL sequence and up to 6 additional nucleotides of the SL RNA sequence.
Collapse
Affiliation(s)
- Brendan Yeats
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University Street, Montréal, Québec, Canada H3A 2B4
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Genes in nematode and ascidian genomes frequently occur in operons--multiple genes sharing a common promoter to generate a polycistronic primary transcript--and such genes comprise 15-20% of the coding genome for Caenorhabditis elegans and Ciona intestinalis. Recent work in nematodes has demonstrated that the identity of genes within operons is highly conserved among species and that the unifying feature of genes within operons is that they are expressed in germline tissue. However, it is generally unknown what processes are responsible for generating the distribution of operon sizes across the genome, which are composed of up to eight genes per operon. Here we investigate several models for operon evolution to better understand their abundance, distribution of sizes, and evolutionary dynamics over time. We find that birth-death models of operon evolution reasonably describe the relative abundance of operons of different sizes in the C. elegans and Ciona genomes and generate predictions about the number of monocistronic, nonoperon genes that likely participate in the birth-death process. This theory, and applications to C. elegans and Ciona, motivates several new and testable hypotheses about eukaryote operon evolution.
Collapse
|
38
|
Derelle R, Momose T, Manuel M, Da Silva C, Wincker P, Houliston E. Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa. RNA (NEW YORK, N.Y.) 2010; 16:696-707. [PMID: 20142326 PMCID: PMC2844618 DOI: 10.1261/rna.1975210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/23/2009] [Indexed: 05/20/2023]
Abstract
Replacement of mRNA 5' UTR sequences by short sequences trans-spliced from specialized, noncoding, spliced leader (SL) RNAs is an enigmatic phenomenon, occurring in a set of distantly related animal groups including urochordates, nematodes, flatworms, and hydra, as well as in Euglenozoa and dinoflagellates. Whether SL trans-splicing has a common evolutionary origin and biological function among different organisms remains unclear. We have undertaken a systematic identification of SL exons in cDNA sequence data sets from non-bilaterian metazoan species and their closest unicellular relatives. SL exons were identified in ctenophores and in hydrozoan cnidarians, but not in other cnidarians, placozoans, or sponges, or in animal unicellular relatives. Mapping of SL absence/presence obtained from this and previous studies onto current phylogenetic trees favors an evolutionary scenario involving multiple origins for SLs during eumetazoan evolution rather than loss from a common ancestor. In both ctenophore and hydrozoan species, multiple SL sequences were identified, showing high sequence diversity. Detailed analysis of a large data set generated for the hydrozoan Clytia hemisphaerica revealed trans-splicing of given mRNAs by multiple alternative SLs. No evidence was found for a common identity of trans-spliced mRNAs between different hydrozoans. One feature found specifically to characterize SL-spliced mRNAs in hydrozoans, however, was a marked adenosine enrichment immediately 3' of the SL acceptor splice site. Our findings of high sequence divergence and apparently indiscriminate use of SLs in hydrozoans, along with recent findings in other taxa, indicate that SL genes have evolved rapidly in parallel in diverse animal groups, with constraint on SL exon sequence evolution being apparently rare.
Collapse
Affiliation(s)
- Romain Derelle
- Biologie du Développement (UMR 7138) Observatoire Océanologique, Université Pierre et Marie Curie (UPMC-Univ Paris 06) and Centre National de la Recherche Scientifique (CNRS), 06230 Villefranche-sur-mer, France
| | | | | | | | | | | |
Collapse
|
39
|
Matsumoto J, Dewar K, Wasserscheid J, Wiley GB, Macmil SL, Roe BA, Zeller RW, Satou Y, Hastings KEM. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: alternative expression modes and gene function correlates. Genome Res 2010; 20:636-45. [PMID: 20212022 DOI: 10.1101/gr.100271.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pre-mRNA 5' spliced-leader (SL) trans-splicing occurs in some metazoan groups but not in others. Genome-wide characterization of the trans-spliced mRNA subpopulation has not yet been reported for any metazoan. We carried out a high-throughput analysis of the SL trans-spliced mRNA population of the ascidian tunicate Ciona intestinalis by 454 Life Sciences (Roche) pyrosequencing of SL-PCR-amplified random-primed reverse transcripts of tailbud embryo RNA. We obtained approximately 250,000 high-quality reads corresponding to 8790 genes, approximately 58% of the Ciona total gene number. The great depth of this data revealed new aspects of trans-splicing, including the existence of a significant class of "infrequently trans-spliced" genes, accounting for approximately 28% of represented genes, that generate largely non-trans-spliced mRNAs, but also produce trans-spliced mRNAs, in part through alternative promoter use. Thus, the conventional qualitative dichotomy of trans-spliced versus non-trans-spliced genes should be supplanted by a more accurate quantitative view recognizing frequently and infrequently trans-spliced gene categories. Our data include reads representing approximately 80% of Ciona frequently trans-spliced genes. Our analysis also revealed significant use of closely spaced alternative trans-splice acceptor sites which further underscores the mechanistic similarity of cis- and trans-splicing and indicates that the prevalence of +/-3-nt alternative splicing events at tandem acceptor sites, NAGNAG, is driven by spliceosomal mechanisms, and not nonsense-mediated decay, or selection at the protein level. The breadth of gene representation data enabled us to find new correlations between trans-splicing status and gene function, namely the overrepresentation in the frequently trans-spliced gene class of genes associated with plasma/endomembrane system, Ca(2+) homeostasis, and actin cytoskeleton.
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Neurology & Neurosurgery, McGill University, Montreal Neurological Institute, Montréal, Québec H3A 2B4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Spatial and temporal expression of two transcriptional isoforms of Lhx3, a LIM class homeobox gene, during embryogenesis of two phylogenetically remote ascidians, Halocynthia roretzi and Ciona intestinalis. Gene Expr Patterns 2010; 10:98-104. [DOI: 10.1016/j.gep.2010.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 01/23/2010] [Accepted: 01/27/2010] [Indexed: 11/23/2022]
|
41
|
Abstract
Operons (clusters of co-regulated genes with related functions) are common features of bacterial genomes. More recently, functional gene clustering has been reported in eukaryotes, from yeasts to filamentous fungi, plants, and animals. Gene clusters can consist of paralogous genes that have most likely arisen by gene duplication. However, there are now many examples of eukaryotic gene clusters that contain functionally related but non-homologous genes and that represent functional gene organizations with operon-like features (physical clustering and co-regulation). These include gene clusters for use of different carbon and nitrogen sources in yeasts, for production of antibiotics, toxins, and virulence determinants in filamentous fungi, for production of defense compounds in plants, and for innate and adaptive immunity in animals (the major histocompatibility locus). The aim of this article is to review features of functional gene clusters in prokaryotes and eukaryotes and the significance of clustering for effective function.
Collapse
Affiliation(s)
- Anne E Osbourn
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|
42
|
Douris V, Telford MJ, Averof M. Evidence for multiple independent origins of trans-splicing in Metazoa. Mol Biol Evol 2009; 27:684-93. [PMID: 19942614 DOI: 10.1093/molbev/msp286] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In contrast to conventional splicing, which joins exons from a single primary transcript, trans-splicing links stretches of RNA from separate transcripts, derived from distinct regions of the genome. Spliced leader (SL) trans-splicing is particularly well known in trypanosomes, nematodes, and flatworms, where it provides messenger RNAs with a leader sequence and cap that allow them to be translated efficiently. One of the largest puzzles regarding SL trans-splicing is its evolutionary origin. Until now SL trans-splicing has been found in a small and disparate set of organisms (including trypanosomes, dinoflagellates, cnidarians, rotifers, nematodes, flatworms, and urochordates) but not in most other eukaryotic lineages, including well-studied groups such as fungi, plants, arthropods, and vertebrates. This patchy distribution could either suggest that trans-splicing was present in early eukaryotes/metazoans and subsequently lost in multiple lineages or that it evolved several times independently. Starting from the serendipitous discovery of SL trans-splicing in an arthropod, we undertook a comprehensive survey of this process in the animal kingdom. By surveying expressed sequence tag data from more than 70 metazoan species, we show that SL trans-splicing also occurs in at least two groups of arthropods (amphipod and copepod crustaceans), in ctenophores, and in hexactinellid sponges. However, we find no evidence for SL trans-splicing in other groups of arthropods and sponges or in 15 other phyla that we have surveyed. Although the presence of SL trans-splicing in hydrozoan cnidarians, hexactinellid sponges, and ctenophores might suggest that it was present at the base of the Metazoa, the patchy distribution that is evident at higher resolution suggests that SL trans-splicing has evolved repeatedly among metazoan lineages. In agreement with this scenario, we discuss evidence that SL precursor RNAs can readily evolve from ubiquitous small nuclear RNAs that are used for conventional splicing.
Collapse
Affiliation(s)
- Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Iraklio, Crete, Greece
| | | | | |
Collapse
|
43
|
Kubo A, Imai KS, Satou Y. Gene-regulatory networks in the Ciona embryos. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:250-5. [PMID: 19535506 DOI: 10.1093/bfgp/elp018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ascidians belong to the subphylum Urochordata or Tunicata, which is the sister group of the vertebrates. The simple architecture of the ascidian larva represents the basic chordate body plan. Recent analyses have shown many instances of developmental mechanisms conserved during evolution, while these studies have also revealed a much larger number of instances of divergence. However, to precisely determine the degree of conservation and divergence, that is, how many ways are used to make tadpole-like larvae, we need a systems-level understanding of development. Because animal development is organized by the genome and the minimal functional unit of development is a cell, comprehensiveness and single-cell resolution are necessary for a systems-biological understanding of the development. In the ascidian Ciona intestinalis, gene-regulatory networks responsible for the embryonic development have been studied on a genome-wide scale and at single-cell resolution. The simplicity and compactness of the genome facilitates genome-wide studies. In the Ciona genome, only approximately 670 transcription factor genes are encoded, and their expression profiles during the embryonic development have been analyzed. Gene-knockdown analyses of the transcription factor genes expressed during the embryonic development have been performed. The simplicity of the embryo permits these analyses to be done at single-cell resolution. Actually, these simple embryos are now being modeled in the computer, which allows us to understand the gene-regulatory networks very precisely in three dimensions.
Collapse
Affiliation(s)
- Atsushi Kubo
- Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
44
|
Auger H, Lamy C, Haeussler M, Khoueiry P, Lemaire P, Joly JS. Similar regulatory logic in Ciona intestinalis for two Wnt pathway modulators, ROR and SFRP-1/5. Dev Biol 2009; 329:364-73. [PMID: 19248777 DOI: 10.1016/j.ydbio.2009.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/22/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
Anteroposterior patterning of the ectoderm in the invertebrate chordate Ciona intestinalis first relies on key zygotic activators, such as FoxA, and later on the coordinated responses to inducing signals from the underlying mesendoderm. Here, we focus on a mechanism of coordination of these responses by looking at the cis-regulatory logics of Ci-Rora and Ci-Rorb, which are coding for putative non-canonical transmembrane Wnt receptors, and are present in tandem along the C. intestinalis chromosome 08q. We showed that during cleavage stages, both Ci-Rora and Ci-Rorb genes are initially expressed in all blastomeres of the anterior ectoderm (a-line), as sFRP1/5 (Lamy, C., Rothbächer, U., Caillol, D., Lemaire, P., 2006. Ci-FoxA-a is the earliest zygotic determinant of the ascidian anterior ectoderm and directly activates Ci-sFRP1/5. Development 133, 2835-2844.). We then carried out a functional analysis of cis-regulatory regions and showed that both genes have elements enriched in Ci-FoxA-a binding sites. We dissected one of these early enhancers, and showed that it is directly activated by Ci-FoxA-a, as one sFRP1/5 cis-regulatory element. We also showed that although FoxA binding sites are abundant in genomes, dense clusters of these sites are found upstream from very few genes, and have a high predictive value of a-line expression. These data indicate an important role for FoxA in anterior specification, via the transcriptional regulation of target genes belonging to various signalling pathways.
Collapse
Affiliation(s)
- Hélène Auger
- INRA "Morphogenèse du Système Nerveux des Chordés" Group, DEPSN, UPR2197, Institut Fessard, CNRS, 1 Avenue de la Terrasse, 91198 GIF SUR YVETTE, France
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Eukaryotes using trans-splicing for transcript processing incorporate a taxon-specific sequence tag (the spliced leader, SL) to a proportion (either all or a fraction) of their mRNAs. This feature may be exploited for the preparation of full-length-enriched cDNA libraries from these organisms (a diverse group including euglenozoa and dinoflagellates, as well as members from five metazoan phyla: Cnidaria, Rotifera, Nematoda, Platyhelminths and Chordata). The strategy has indeed been widely used to construct cDNA libraries for the generation of ESTs, mainly from parasitic euglenozoa and helminths.We describe a set of optimised protocols to prepare directional SL-cDNA libraries; the method involves PCR-amplification of SL-cDNA and its subsequent cloning in a plasmid vector under a specific orientation. It uses small amounts of total RNA as starting material and may be applied to a variety of samples. The approach permits the selective cloning of mRNAs tagged with a particular SL from mixtures including large amounts of non-trans-spliced mRNAs. Thus, it allows exclusion of host contamination when isolating SL-cDNAs from parasitic organisms, and has other potential applications, such as the characterisation of the trans-spliced transcriptome from organisms in mixed pools of species.
Collapse
Affiliation(s)
- Cecilia Fernández
- Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
46
|
Sierro N, Li S, Suzuki Y, Yamashita R, Nakai K. Spatial and temporal preferences for trans-splicing in Ciona intestinalis revealed by EST-based gene expression analysis. Gene 2008; 430:44-9. [PMID: 18996449 DOI: 10.1016/j.gene.2008.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/04/2008] [Accepted: 10/08/2008] [Indexed: 11/19/2022]
Abstract
Ciona intestinalis is a useful model organism to analyze chordate development and genetics. However, unlike vertebrates, it shares a unique mechanism called trans-splicing with lower eukaryotes. In the computational analysis of trans-splicing in C. intestinalis we report here, we discovered that although the amount of non-trans-spliced and trans-spliced genes is usually equivalent, the expression ratio between the two groups varies significantly with tissues and developmental stages. Among the seven tissues studied, the observed ratios ranged from 2.53 in "gonad" to 19.53 in "endostyle", and during development they increased from 1.68 at the "egg" stage to 7.55 at the "juvenile" stage. We further hypothesize that this enrichment in trans-spliced mRNAs in early developmental stages might be related to the abundance of trans-spliced mRNAs in "gonad". Our analysis indicates that in C. intestinalis, although there may not exist strong fundamental requirements for genes to be trans-spliced, the populations of non-trans-spliced and trans-spliced genes are likely to be spatially and temporally regulated differently.
Collapse
Affiliation(s)
- Nicolas Sierro
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
47
|
Satou Y, Mineta K, Ogasawara M, Sasakura Y, Shoguchi E, Ueno K, Yamada L, Matsumoto J, Wasserscheid J, Dewar K, Wiley GB, Macmil SL, Roe BA, Zeller RW, Hastings KEM, Lemaire P, Lindquist E, Endo T, Hotta K, Inaba K. Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol 2008; 9:R152. [PMID: 18854010 PMCID: PMC2760879 DOI: 10.1186/gb-2008-9-10-r152] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 10/06/2008] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
An improved assembly of the Ciona intestinalis genome reveals that it contains non-canonical introns and that about 20% of Ciona genes reside in operons. Background The draft genome sequence of the ascidian Ciona intestinalis, along with associated gene models, has been a valuable research resource. However, recently accumulated expressed sequence tag (EST)/cDNA data have revealed numerous inconsistencies with the gene models due in part to intrinsic limitations in gene prediction programs and in part to the fragmented nature of the assembly. Results We have prepared a less-fragmented assembly on the basis of scaffold-joining guided by paired-end EST and bacterial artificial chromosome (BAC) sequences, and BAC chromosomal in situ hybridization data. The new assembly (115.2 Mb) is similar in length to the initial assembly (116.7 Mb) but contains 1,272 (approximately 50%) fewer scaffolds. The largest scaffold in the new assembly incorporates 95 initial-assembly scaffolds. In conjunction with the new assembly, we have prepared a greatly improved global gene model set strictly correlated with the extensive currently available EST data. The total gene number (15,254) is similar to that of the initial set (15,582), but the new set includes 3,330 models at genomic sites where none were present in the initial set, and 1,779 models that represent fusions of multiple previously incomplete models. In approximately half, 5'-ends were precisely mapped using 5'-full-length ESTs, an important refinement even in otherwise unchanged models. Conclusion Using these new resources, we identify a population of non-canonical (non-GT-AG) introns and also find that approximately 20% of Ciona genes reside in operons and that operons contain a high proportion of single-exon genes. Thus, the present dataset provides an opportunity to analyze the Ciona genome much more precisely than ever.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Marlétaz F, Le Parco Y. Careful with understudied phyla: the case of chaetognath. BMC Evol Biol 2008; 8:251. [PMID: 18798978 PMCID: PMC2566580 DOI: 10.1186/1471-2148-8-251] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 09/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background A recent study by Barthélémy et al. described a set of ribosomal protein (RP) genes extracted from a collection of expressed sequence tags (ESTs) of the chaetognath (arrow worm) Spadella cephaloptera. Three main conclusions were drawn in this paper. First, the authors stated that RP genes present paralogous copies, which have arisen through allopolyploidization. Second, they reported two alternate nucleotide stretches conserved within the 5' untranslated regions (UTR) of multiple ribosomal cDNAs and they suggested that these motifs are involved in the differential transcriptional regulation of paralogous RP genes. Third, they claimed that the phylogenetic position of chaetognaths could not be accurately inferred from a RP dataset because of the persistence of two problems: a long branch attraction (LBA) artefact and a compositional bias. Results We reconsider here the results described in Barthélémy et al. and question the evidence on which they are based. We find that their evidence for paralogous copies relies on faulty PCR experiments since they attempted to amplify DNA fragments absent from the genomic template. Our PCR experiments proved that the conserved motifs in 5'UTRs that they targeted in their amplifications are added post-transcriptionally by a trans-splicing mechanism. Then, we showed that the lack of phylogenetic resolution observed by these authors is due to limited taxon sampling and not to LBA or to compositional bias. A ribosomal protein dataset thus fully supports the position of chaetognaths as sister group of all other protostomes. This reinterpretation demonstrates that the statements of Barthélémy et al. should be taken with caution because they rely on inaccurate evidence. Conclusion The genomic study of an unconventional model organism is a meaningful approach to understand the evolution of animals. However, the previous study came to incorrect conclusions on the basis of experiments that omitted validation procedures.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Station Marine d'Endoume, CNRS UMR 6540 DIMAR, Centre d'Océanologie de Marseille, Université de Méditerranée, Marseille, France.
| | | |
Collapse
|
49
|
Marlétaz F, Gilles A, Caubit X, Perez Y, Dossat C, Samain S, Gyapay G, Wincker P, Le Parco Y. Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol 2008; 9:R94. [PMID: 18533022 PMCID: PMC2481426 DOI: 10.1186/gb-2008-9-6-r94] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/03/2008] [Accepted: 06/04/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The chaetognaths (arrow worms) have puzzled zoologists for years because of their astonishing morphological and developmental characteristics. Despite their deuterostome-like development, phylogenomic studies recently positioned the chaetognath phylum in protostomes, most likely in an early branching. This key phylogenetic position and the peculiar characteristics of chaetognaths prompted further investigation of their genomic features. RESULTS Transcriptomic and genomic data were collected from the chaetognath Spadella cephaloptera through the sequencing of expressed sequence tags and genomic bacterial artificial chromosome clones. Transcript comparisons at various taxonomic scales emphasized the conservation of a core gene set and phylogenomic analysis confirmed the basal position of chaetognaths among protostomes. A detailed survey of transcript diversity and individual genotyping revealed a past genome duplication event in the chaetognath lineage, which was, surprisingly, followed by a high retention rate of duplicated genes. Moreover, striking genetic heterogeneity was detected within the sampled population at the nuclear and mitochondrial levels but cannot be explained by cryptic speciation. Finally, we found evidence for trans-splicing maturation of transcripts through splice-leader addition in the chaetognath phylum and we further report that this processing is associated with operonic transcription. CONCLUSION These findings reveal both shared ancestral and unique derived characteristics of the chaetognath genome, which suggests that this genome is likely the product of a very original evolutionary history. These features promote chaetognaths as a pivotal model for comparative genomics, which could provide new clues for the investigation of the evolution of animal genomes.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Centre d'Océanologie de Marseille, Chemin de la Batterie des Lions, 13007, Marseille, France
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
| | - André Gilles
- Université de Provence Aix-Marseille I, place Victor-Hugo, 13331, Marseille, France
- CNRS UMR 6116 IMEP, Centre St Charles, place Victor-Hugo, 13331, Marseille, France
| | - Xavier Caubit
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
- CNRS UMR 6216, IBDML, Campus de Luminy, Route Léon Lachamp, 13288, Marseille, France
| | - Yvan Perez
- Université de Provence Aix-Marseille I, place Victor-Hugo, 13331, Marseille, France
- CNRS UMR 6116 IMEP, Centre St Charles, place Victor-Hugo, 13331, Marseille, France
| | - Carole Dossat
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Sylvie Samain
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Gabor Gyapay
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Patrick Wincker
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Yannick Le Parco
- CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Centre d'Océanologie de Marseille, Chemin de la Batterie des Lions, 13007, Marseille, France
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
| |
Collapse
|
50
|
Nishida H. Development of the appendicularian Oikopleura dioica: Culture, genome, and cell lineages. Dev Growth Differ 2008; 50 Suppl 1:S239-56. [PMID: 18494706 DOI: 10.1111/j.1440-169x.2008.01035.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|