1
|
Huang R, Xu F, Su L, Lu Y, Liu W, Liu S, Yang L, Su L, Song W. PWP1 is overexpressed in hepatocellular carcinoma and facilitates liver cancer cell proliferation. Heliyon 2024; 10:e32409. [PMID: 38933950 PMCID: PMC11200354 DOI: 10.1016/j.heliyon.2024.e32409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Identification of novel biomarkers for prediction of disease course and prognosis is needed to reduce morbidity of liver hepatocellular carcinoma (LIHC/HCC) patients. Although dysregulated Periodic tryptophan protein 1 homolog (PWP1/endonuclein) expression has been detected in several tumors, the potential regulatory effect of PWP1 on LIHC remains uncertain. Here we evaluated the expression of PWP1 using multiple online platforms, and demonstrated that PWP1 upregulation was consistently observed in LIHC relative to non-tumor liver tissues and correlated with unfavorable prognosis. Moreover, HCC prognosis was significantly influenced by the methylation status of various CpG sites in the PWP1 gene. Lastly, we provide direct evidence that PWP1 acts as a driver of HCC progression by showing that siRNA-mediated PWP1 silencing significantly suppressed HCC cell proliferation in vitro. These data strongly suggest that PWP1 silencing may be an effective therapeutic strategy to treat LIHC.
Collapse
Affiliation(s)
- Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fu Xu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Luying Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Shuaihu Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Ling Yang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, 1 Tong Dao Street, Hohhot, 010050, Inner Mongolia, China
| | - Liya Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, 1 Tong Dao Street, Hohhot, 010050, Inner Mongolia, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
2
|
Hou X, Xu M, Zhu C, Gao J, Li M, Chen X, Sun C, Nashan B, Zang J, Zhou Y, Guang S, Feng X. Systematic characterization of chromodomain proteins reveals an H3K9me1/2 reader regulating aging in C. elegans. Nat Commun 2023; 14:1254. [PMID: 36878913 PMCID: PMC9988841 DOI: 10.1038/s41467-023-36898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The chromatin organization modifier domain (chromodomain) is an evolutionally conserved motif across eukaryotic species. The chromodomain mainly functions as a histone methyl-lysine reader to modulate gene expression, chromatin spatial conformation and genome stability. Mutations or aberrant expression of chromodomain proteins can result in cancer and other human diseases. Here, we systematically tag chromodomain proteins with green fluorescent protein (GFP) using CRISPR/Cas9 technology in C. elegans. By combining ChIP-seq analysis and imaging, we delineate a comprehensive expression and functional map of chromodomain proteins. We then conduct a candidate-based RNAi screening and identify factors that regulate the expression and subcellular localization of the chromodomain proteins. Specifically, we reveal an H3K9me1/2 reader, CEC-5, both by in vitro biochemistry and in vivo ChIP assays. MET-2, an H3K9me1/2 writer, is required for CEC-5 association with heterochromatin. Both MET-2 and CEC-5 are required for the normal lifespan of C. elegans. Furthermore, a forward genetic screening identifies a conserved Arginine124 of CEC-5's chromodomain, which is essential for CEC-5's association with chromatin and life span regulation. Thus, our work will serve as a reference to explore chromodomain functions and regulation in C. elegans and allow potential applications in aging-related human diseases.
Collapse
Affiliation(s)
- Xinhao Hou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Jianing Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Meili Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Cheng Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Björn Nashan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Jianye Zang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 230027, Hefei, Anhui, P. R. China.
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| |
Collapse
|
3
|
Liu H, Xiu Z, Yang H, Ma Z, Yang D, Wang H, Tan BC. Maize Shrek1 encodes a WD40 protein that regulates pre-rRNA processing in ribosome biogenesis. THE PLANT CELL 2022; 34:4028-4044. [PMID: 35867001 PMCID: PMC9516035 DOI: 10.1093/plcell/koac216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Ribosome biogenesis is a fundamental and highly orchestrated process that involves hundreds of ribosome biogenesis factors. Despite advances that have been made in yeast, the molecular mechanism of ribosome biogenesis remains largely unknown in plants. We uncovered a WD40 protein, Shrunken and Embryo Defective Kernel 1 (SHREK1), and showed that it plays a crucial role in ribosome biogenesis and kernel development in maize (Zea mays). The shrek1 mutant shows an aborted embryo and underdeveloped endosperm and embryo-lethal in maize. SHREK1 localizes mainly to the nucleolus and accumulates to high levels in the seed. Depleting SHREK1 perturbs pre-rRNA processing and causes imbalanced profiles of mature rRNA and ribosome. The expression pattern of ribosomal-related genes is significantly altered in shrek1. Like its yeast (Saccharomyces cerevisiae) ortholog Periodic tryptophan protein 1 (PWP1), SHREK1 physically interacts with ribosomal protein ZmRPL7a, a transient component of the PWP1-subcomplex involved in pre-rRNA processing in yeast. Additionally, SHREK1 may assist in the A3 cleavage of the pre-rRNA in maize by interacting with the nucleolar protein ZmPOP4, a maize homolog of the yeast RNase mitochondrial RNA-processing complex subunit. Overall, our work demonstrates a vital role of SHREK1 in pre-60S ribosome maturation, and reveals that impaired ribosome function accounts for the embryo lethality in shrek1.
Collapse
Affiliation(s)
- Hui Liu
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Zhihui Xiu
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Huanhuan Yang
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Zhaoxing Ma
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Dalin Yang
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | | |
Collapse
|
4
|
Liu Y, Mattila J, Ventelä S, Yadav L, Zhang W, Lamichane N, Sundström J, Kauko O, Grénman R, Varjosalo M, Westermarck J, Hietakangas V. PWP1 Mediates Nutrient-Dependent Growth Control through Nucleolar Regulation of Ribosomal Gene Expression. Dev Cell 2017; 43:240-252.e5. [PMID: 29065309 DOI: 10.1016/j.devcel.2017.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
Ribosome biogenesis regulates animal growth and is controlled by nutrient-responsive mTOR signaling. How ribosome biogenesis is regulated during the developmental growth of animals and how nutrient-responsive signaling adjusts ribosome biogenesis in this setting have remained insufficiently understood. We uncover PWP1 as a chromatin-associated regulator of developmental growth with a conserved role in RNA polymerase I (Pol I)-mediated rRNA transcription. We further observed that PWP1 epigenetically maintains the rDNA loci in a transcription-competent state. PWP1 responds to nutrition in Drosophila larvae via mTOR signaling through gene expression and phosphorylation, which controls the nucleolar localization of dPWP1. Our data further imply that dPWP1 acts synergistically with mTOR signaling to regulate the nucleolar localization of TFIIH, a known elongation factor of Pol I. Ribosome biogenesis is often deregulated in cancer, and we demonstrate that high PWP1 levels in human head and neck squamous cell carcinoma tumors are associated with poor prognosis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Jaakko Mattila
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Sami Ventelä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Leena Yadav
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Wei Zhang
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Nicole Lamichane
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Jari Sundström
- Department of Pathology, University of Turku, 20520 Turku, Finland; Department of Pathology, Turku University Hospital, 20521 Turku, Finland
| | - Otto Kauko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery and Department of Medical Biochemistry and Genetics, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland
| | - Ville Hietakangas
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
5
|
Bhatnagar A, Unal H, Jagannathan R, Kaveti S, Duan ZH, Yong S, Vasanji A, Kinter M, Desnoyer R, Karnik SS. Interaction of G-protein βγ complex with chromatin modulates GPCR-dependent gene regulation. PLoS One 2013; 8:e52689. [PMID: 23326349 PMCID: PMC3541368 DOI: 10.1371/journal.pone.0052689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/19/2012] [Indexed: 11/21/2022] Open
Abstract
Heterotrimeric G-protein signal transduction initiated by G-protein-coupled receptors (GPCRs) in the plasma membrane is thought to propagate through protein-protein interactions of subunits, Gα and Gβγ in the cytosol. In this study, we show novel nuclear functions of Gβγ through demonstrating interaction of Gβ2 with integral components of chromatin and effects of Gβ2 depletion on global gene expression. Agonist activation of several GPCRs including the angiotensin II type 1 receptor specifically augmented Gβ2 levels in the nucleus and Gβ2 interacted with specific nucleosome core histones and transcriptional modulators. Depletion of Gβ2 repressed the basal and angiotensin II-dependent transcriptional activities of myocyte enhancer factor 2. Gβ2 interacted with a sequence motif that was present in several transcription factors, whose genome-wide binding accounted for the Gβ2-dependent regulation of approximately 2% genes. These findings suggest a wide-ranging mechanism by which direct interaction of Gβγ with specific chromatin bound transcription factors regulates functional gene networks in response to GPCR activation in cells.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Rajaganapathi Jagannathan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Suma Kaveti
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Zhong-Hui Duan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Computer Science, University of Akron, Akron, Ohio, United States of America
| | - Sandro Yong
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Amit Vasanji
- Biomedical Imaging and Analysis Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Michael Kinter
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Russell Desnoyer
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sadashiva S. Karnik
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Hierlmeier T, Merl J, Sauert M, Perez-Fernandez J, Schultz P, Bruckmann A, Hamperl S, Ohmayer U, Rachel R, Jacob A, Hergert K, Deutzmann R, Griesenbeck J, Hurt E, Milkereit P, Baßler J, Tschochner H. Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Res 2012. [PMID: 23209026 PMCID: PMC3553968 DOI: 10.1093/nar/gks1056] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic ribosome biogenesis requires more than 150 auxiliary proteins, which transiently interact with pre-ribosomal particles. Previous studies suggest that several of these biogenesis factors function together as modules. Using a heterologous expression system, we show that the large ribosomal subunit (LSU) biogenesis factor Noc1p of Saccharomyces cerevisiae can simultaneously interact with the LSU biogenesis factor Noc2p and Rrp5p, a factor required for biogenesis of the large and the small ribosomal subunit. Proteome analysis of RNA polymerase-I-associated chromatin and chromatin immunopurification experiments indicated that all members of this protein module and a specific set of LSU biogenesis factors are co-transcriptionally recruited to nascent ribosomal RNA (rRNA) precursors in yeast cells. Further ex vivo analyses showed that all module members predominantly interact with early pre-LSU particles after the initial pre-rRNA processing events have occurred. In yeast strains depleted of Noc1p, Noc2p or Rrp5p, levels of the major LSU pre-rRNAs decreased and the respective other module members were associated with accumulating aberrant rRNA fragments. Therefore, we conclude that the module exhibits several binding interfaces with pre-ribosomes. Taken together, our results suggest a co- and post-transcriptional role of the yeast Rrp5p-Noc1p-Noc2p module in the structural organization of early LSU precursors protecting them from non-productive RNase activity.
Collapse
Affiliation(s)
- Thomas Hierlmeier
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gilmore JM, Sardiu ME, Venkatesh S, Stutzman B, Peak A, Seidel CW, Workman JL, Florens L, Washburn MP. Characterization of a highly conserved histone related protein, Ydl156w, and its functional associations using quantitative proteomic analyses. Mol Cell Proteomics 2011; 11:M111.011544. [PMID: 22199229 DOI: 10.1074/mcp.m111.011544] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A significant challenge in biology is to functionally annotate novel and uncharacterized proteins. Several approaches are available for deducing the function of proteins in silico based upon sequence homology and physical or genetic interaction, yet this approach is limited to proteins with well-characterized domains, paralogs and/or orthologs in other species, as well as on the availability of suitable large-scale data sets. Here, we present a quantitative proteomics approach extending the protein network of core histones H2A, H2B, H3, and H4 in Saccharomyces cerevisiae, among which a novel associated protein, the previously uncharacterized Ydl156w, was identified. In order to predict the role of Ydl156w, we designed and applied integrative bioinformatics, quantitative proteomics and biochemistry approaches aiming to infer its function. Reciprocal analysis of Ydl156w protein interactions demonstrated a strong association with all four histones and also to proteins strongly associated with histones including Rim1, Rfa2 and 3, Yku70, and Yku80. Through a subsequent combination of the focused quantitative proteomics experiments with available large-scale genetic interaction data and Gene Ontology functional associations, we provided sufficient evidence to associate Ydl156w with multiple processes including chromatin remodeling, transcription and DNA repair/replication. To gain deeper insights into the role of Ydl156w in histone biology we investigated the effect of the genetic deletion of ydl156w on H4 associated proteins, which lead to a dramatic decrease in the association of H4 with RNA polymerase III proteins. The implication of a role for Ydl156w in RNA Polymerase III mediated transcription was consequently verified by RNA-Seq experiments. Finally, using these approaches we generated a refined network of Ydl156w-associated proteins.
Collapse
Affiliation(s)
- Joshua M Gilmore
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ricardo CP, Martins I, Francisco R, Sergeant K, Pinheiro C, Campos A, Renaut J, Fevereiro P. Proteins associated with cork formation in Quercus suber L. stem tissues. J Proteomics 2011; 74:1266-78. [DOI: 10.1016/j.jprot.2011.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/29/2022]
|
9
|
Casper AL, Baxter K, Van Doren M. no child left behind encodes a novel chromatin factor required for germline stem cell maintenance in males but not females. Development 2011; 138:3357-66. [PMID: 21752937 DOI: 10.1242/dev.067942] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Male and female germ cells follow distinct developmental paths with respect to germline stem cell (GSC) production and the types of differentiated progeny they produce (sperm versus egg). An essential aspect of germline development is how sexual identity is used to differentially regulate the male and female germ cell genomes to allow for these distinct outcomes. Here, we identify a gene, no child left behind (nclb), that plays very different roles in the male versus female germline in Drosophila. In particular, nclb is required for GSC maintenance in males, but not in females. Male GSCs mutant for nclb are rapidly lost from the niche, and begin to differentiate but cannot complete spermatogenesis. We further find that nclb encodes a member of a new family of conserved chromatin-associated proteins. NCLB interacts with chromatin in a specific manner and is associated with sites of active transcription. Thus, NCLB appears to be a novel chromatin regulator that exhibits very different effects on the male and female germ cell genomes.
Collapse
Affiliation(s)
- Abbie L Casper
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
10
|
Islam A, Turner EL, Menzel J, Malo ME, Harkness TA. Antagonistic Gcn5-Hda1 interactions revealed by mutations to the Anaphase Promoting Complex in yeast. Cell Div 2011; 6:13. [PMID: 21651791 PMCID: PMC3141613 DOI: 10.1186/1747-1028-6-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/08/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Histone post-translational modifications are critical for gene expression and cell viability. A broad spectrum of histone lysine residues have been identified in yeast that are targeted by a variety of modifying enzymes. However, the regulation and interaction of these enzymes remains relatively uncharacterized. Previously we demonstrated that deletion of either the histone acetyltransferase (HAT) GCN5 or the histone deacetylase (HDAC) HDA1 exacerbated the temperature sensitive (ts) mutant phenotype of the Anaphase Promoting Complex (APC) apc5CA allele. Here, the apc5CA mutant background is used to study a previously uncharacterized functional antagonistic genetic interaction between Gcn5 and Hda1 that is not detected in APC5 cells. RESULTS Using Northerns, Westerns, reverse transcriptase PCR (rtPCR), chromatin immunoprecipitation (ChIP), and mutant phenotype suppression analysis, we observed that Hda1 and Gcn5 appear to compete for recruitment to promoters. We observed that the presence of Hda1 can partially occlude the binding of Gcn5 to the same promoter. Occlusion of Gcn5 recruitment to these promoters involved Hda1 and Tup1. Using sequential ChIP we show that Hda1 and Tup1 likely form complexes at these promoters, and that complex formation can be increased by deleting GCN5. CONCLUSIONS Our data suggests large Gcn5 and Hda1 containing complexes may compete for space on promoters that utilize the Ssn6/Tup1 repressor complex. We predict that in apc5CA cells the accumulation of an APC target may compensate for the loss of both GCN5 and HDA1.
Collapse
Affiliation(s)
- Azharul Islam
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| | | | | | | | | |
Collapse
|
11
|
Ludvigsen M, Østergaard M, Vorum H, Jacobsen C, Honoré B. Identification and characterization of endonuclein binding proteins: evidence of modulatory effects on signal transduction and chaperone activity. BMC BIOCHEMISTRY 2009; 10:34. [PMID: 20028516 PMCID: PMC2810291 DOI: 10.1186/1471-2091-10-34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/22/2009] [Indexed: 11/10/2022]
Abstract
Background We have previously identified endonuclein as a cell cycle regulated WD-repeat protein that is up-regulated in adenocarcinoma of the pancreas. Now, we aim to investigate its biomedical functions. Results Using the cDNA encoding human endonuclein, we have expressed and purified the recombinant protein from Escherichia coli using metal affinity chromatography. The recombinant protein was immobilized to a column and by affinity chromatography several interacting proteins were purified from several litres of placenta tissue extract. After chromatography the eluted proteins were further separated by two-dimensional gel electrophoresis and identified by tandem mass spectrometry. The interacting proteins were identified as; Tax interaction protein 1 (TIP-1), Aα fibrinogen transcription factor (P16/SSBP1), immunoglobulin heavy chain binding protein (BiP), human ER-associated DNAJ (HEDJ/DNAJB11), endonuclein interaction protein 8 (EIP-8), and pregnancy specific β-1 glycoproteins (PSGs). Surface plasmon resonance analysis and confocal fluorescence microscopy were used to further characterize the interactions. Conclusions Our results demonstrate that endonuclein interacts with several proteins indicating a broad function including signal transduction and chaperone activity.
Collapse
Affiliation(s)
- Maja Ludvigsen
- Department of Medical Biochemistry, Aarhus University, Ole Worms Allé 3, Building 1170, Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|