1
|
Arriaga MT, Mendez R, Ungar RA, Bonner DE, Matalon DR, Lemire G, Goddard PC, Padhi EM, Miller AM, Nguyen JV, Ma J, Smith KS, Scott SA, Liao L, Ng Z, Marwaha S, Bademci G, Bivona SA, Tekin M, Bernstein JA, Montgomery SB, O'Donnell-Luria A, Wheeler MT, Ganesh VS. Transcriptome-wide outlier approach identifies individuals with minor spliceopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.02.24318941. [PMID: 39802771 PMCID: PMC11722475 DOI: 10.1101/2025.01.02.24318941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
RNA-sequencing has improved the diagnostic yield of individuals with rare diseases. Current analyses predominantly focus on identifying outliers in single genes that can be attributed to cis-acting variants within the gene locus. This approach overlooks causal variants with trans-acting effects on splicing transcriptome-wide, such as variants impacting spliceosome function. We present a transcriptomics-first method to diagnose individuals with rare diseases by examining transcriptome-wide patterns of splicing outliers. Using splicing outlier detection methods (FRASER and FRASER2) we characterized splicing outliers from whole blood for 390 individuals from the Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) and Undiagnosed Diseases Network (UDN) consortia. We examined all samples for excess intron retention outliers in minor intron containing genes (MIGs). Minor introns, which make up about 0.5% of all introns in the human genome, are removed by small nuclear RNAs (snRNAs) in the minor spliceosome. This approach identified five individuals with excess intron retention outliers in MIGs, all of which were found to harbor rare, biallelic variants in minor spliceosome snRNAs. Four individuals had rare, compound heterozygous variants in RNU4ATAC, which aided the reclassification of four variants. Additionally, one individual had rare, highly conserved, compound heterozygous variants in RNU6ATAC that may disrupt the formation of the catalytic spliceosome, suggesting a novel gene-disease candidate. These results demonstrate that examining RNA-sequencing data for transcriptome-wide signatures can increase the diagnostic yield of individuals with rare diseases, provide variant-to-function interpretation of spliceopathies, and uncover novel disease gene associations.
Collapse
Affiliation(s)
| | | | - Rachel A Ungar
- Dept. of Genetics, Stanford Univ., Stanford, CA
- Stanford Center for Biomedical Ethics, Stanford Univ., Stanford, CA
| | - Devon E Bonner
- Div. of Med. Genetics, Dept. of Pediatrics, Stanford Univ., Stanford, CA
| | - Dena R Matalon
- Div. of Med. Genetics, Dept. of Pediatrics, Stanford Univ., Stanford, CA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Div. of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | | | - Evin M Padhi
- Dept. of Pathology, Stanford Univ., Stanford, CA
| | | | | | - Jialan Ma
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Stuart A Scott
- Dept. of Pathology, Stanford Univ., Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Stanford, CA
| | - Linda Liao
- Clinical Genomics Laboratory, Stanford Medicine, Stanford, CA
| | - Zena Ng
- Clinical Genomics Laboratory, Stanford Medicine, Stanford, CA
| | - Shruti Marwaha
- Div. of Cardiovascular Medicine, Stanford Univ. School of Medicine, Stanford, CA
| | - Guney Bademci
- John T. Macdonald Foundation Dept. of Human Genetics, Univ. of Miami Miller School of Medicine, Miami, FL
| | - Stephanie A Bivona
- John T. Macdonald Foundation Dept. of Human Genetics, Univ. of Miami Miller School of Medicine, Miami, FL
| | - Mustafa Tekin
- John T. Macdonald Foundation Dept. of Human Genetics, Univ. of Miami Miller School of Medicine, Miami, FL
| | | | - Stephen B Montgomery
- Dept. of Pathology, Stanford Univ., Stanford, CA
- Dept. of Genetics, Stanford Univ., Stanford, CA
- Dept. of Biomedical Data Science, Stanford Univ., Stanford, CA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Div. of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | | | - Vijay S Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
2
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Exp Hematol 2024; 140:104655. [PMID: 39393608 PMCID: PMC11732257 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
3
|
Olthof A, Schwoerer C, Girardini K, Weber A, Doggett K, Mieruszynski S, Heath J, Moore T, Biran J, Kanadia R. Taxonomy of introns and the evolution of minor introns. Nucleic Acids Res 2024; 52:9247-9266. [PMID: 38943346 PMCID: PMC11347168 DOI: 10.1093/nar/gkae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
Classification of introns, which is crucial to understanding their evolution and splicing, has historically been binary and has resulted in the naming of major and minor introns that are spliced by their namesake spliceosome. However, a broad range of intron consensus sequences exist, leading us to here reclassify introns as minor, minor-like, hybrid, major-like, major and non-canonical introns in 263 species across six eukaryotic supergroups. Through intron orthology analysis, we discovered that minor-like introns are a transitory node for intron conversion across evolution. Despite close resemblance of their consensus sequences to minor introns, these introns possess an AG dinucleotide at the -1 and -2 position of the 5' splice site, a salient feature of major introns. Through combined analysis of CoLa-seq, CLIP-seq for major and minor spliceosome components, and RNAseq from samples in which the minor spliceosome is inhibited we found that minor-like introns are also an intermediate class from a splicing mechanism perspective. Importantly, this analysis has provided insight into the sequence elements that have evolved to make minor-like introns amenable to recognition by both minor and major spliceosome components. We hope that this revised intron classification provides a new framework to study intron evolution and splicing.
Collapse
Affiliation(s)
- Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Charles F Schwoerer
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Kaitlin N Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Audrey L Weber
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Karen Doggett
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Stephen Mieruszynski
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Joan K Heath
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Timothy E Moore
- Statistical Consulting Services, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, USA
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon, Israel
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Damianov A, Lin CH, Huang J, Zhou L, Jami-Alahmadi Y, Peyda P, Wohlschlegel J, Black DL. The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. Mol Cell 2024; 84:1496-1511.e7. [PMID: 38537639 PMCID: PMC11057915 DOI: 10.1016/j.molcel.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024]
Abstract
Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Huang
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lin Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Parham Peyda
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Nishimura K, Saika W, Inoue D. Minor introns impact on hematopoietic malignancies. Exp Hematol 2024; 132:104173. [PMID: 38309573 DOI: 10.1016/j.exphem.2024.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
In the intricate orchestration of the central dogma, pre-mRNA splicing plays a crucial role in the post-transcriptional process that transforms DNA into mature mRNA. Widely acknowledged as a pivotal RNA processing step, it significantly influences gene expression and alters the functionality of gene product proteins. Although U2-dependent spliceosomes efficiently manage the removal of over 99% of introns, a distinct subset of essential genes undergo splicing with a different intron type, denoted as minor introns, using U12-dependent spliceosomes. Mutations in spliceosome component genes are now recognized as prevalent genetic abnormalities in cancer patients, especially those with hematologic malignancies. Despite the relative rarity of minor introns, genes containing them are evolutionarily conserved and play crucial roles in functions such as the RAS-MAPK pathway. Disruptions in U12-type minor intron splicing caused by mutations in snRNA or its regulatory components significantly contribute to cancer progression. Notably, recurrent mutations associated with myelodysplastic syndrome (MDS) in the minor spliceosome component ZRSR2 underscore its significance. Examination of ZRSR2-mutated MDS cells has revealed that only a subset of minor spliceosome-dependent genes, such as LZTR1, consistently exhibit missplicing. Recent technological advancements have uncovered insights into minor introns, raising inquiries beyond current understanding. This review comprehensively explores the importance of minor intron regulation, the molecular implications of minor (U12-type) spliceosomal mutations and cis-regulatory regions, and the evolutionary progress of studies on minor, aiming to provide a sophisticated understanding of their intricate role in cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan; Department of Hematology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| |
Collapse
|
6
|
Kwon YS, Jin SW, Song H. Global analysis of binding sites of U2AF1 and ZRSR2 reveals RNA elements required for mutually exclusive splicing by the U2- and U12-type spliceosome. Nucleic Acids Res 2024; 52:1420-1434. [PMID: 38088204 PMCID: PMC10853781 DOI: 10.1093/nar/gkad1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024] Open
Abstract
Recurring mutations in genes encoding 3' splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions -1 and -2 of 5' splice sites of U12-type introns with GT-AG termini is not present. AG next to 5' splice site introduced by a single nucleotide substitution at the -2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the -1 position of U12-type 5' splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.
Collapse
Affiliation(s)
- Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sang Woo Jin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hoseok Song
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
7
|
Bakhtiar D, Vondraskova K, Pengelly RJ, Chivers M, Kralovicova J, Vorechovsky I. Exonic splicing code and coordination of divalent metals in proteins. Nucleic Acids Res 2024; 52:1090-1106. [PMID: 38055834 PMCID: PMC10853796 DOI: 10.1093/nar/gkad1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Exonic sequences contain both protein-coding and RNA splicing information but the interplay of the protein and splicing code is complex and poorly understood. Here, we have studied traditional and auxiliary splicing codes of human exons that encode residues coordinating two essential divalent metals at the opposite ends of the Irving-Williams series, a universal order of relative stabilities of metal-organic complexes. We show that exons encoding Zn2+-coordinating amino acids are supported much less by the auxiliary splicing motifs than exons coordinating Ca2+. The handicap of the former is compensated by stronger splice sites and uridine-richer polypyrimidine tracts, except for position -3 relative to 3' splice junctions. However, both Ca2+ and Zn2+ exons exhibit close-to-constitutive splicing in multiple tissues, consistent with their critical importance for metalloprotein function and a relatively small fraction of expendable, alternatively spliced exons. These results indicate that constraints imposed by metal coordination spheres on RNA splicing have been efficiently overcome by the plasticity of exon-intron architecture to ensure adequate metalloprotein expression.
Collapse
Affiliation(s)
- Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Katarina Vondraskova
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Martin Chivers
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
8
|
Li B, Liu S, Zheng W, Liu A, Yu P, Wu D, Zhou J, Zhang P, Liu C, Lin Q, Ye J, He S, Huang Q, Zhou H, Chen J, Qu L, Yang J. RIP-PEN-seq identifies a class of kink-turn RNAs as splicing regulators. Nat Biotechnol 2024; 42:119-131. [PMID: 37037902 DOI: 10.1038/s41587-023-01749-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/13/2023] [Indexed: 04/12/2023]
Abstract
A kink-turn (K-turn) is a three-dimensional RNA structure that exists in all three primary phylogenetic domains. In this study, we developed the RIP-PEN-seq method to identify the full-length sequences of RNAs bound by the K-turn binding protein 15.5K and discovered a previously uncharacterized class of RNAs with backward K-turn motifs (bktRNAs) in humans and mice. All bktRNAs share two consensus sequence motifs at their fixed terminal position and have complex folding properties, expression and evolution patterns. We found that a highly conserved bktRNA1 guides the methyltransferase fibrillarin to install RNA methylation of U12 small nuclear RNA in humans. Depletion of bktRNA1 causes global splicing dysregulation of U12-type introns by impairing the recruitment of ZCRB1 to the minor spliceosome. Most bktRNAs regulate the splicing of local introns by interacting with the 15.5K protein. Taken together, our findings characterize a class of small RNAs and uncover another layer of gene expression regulation that involves crosstalk among bktRNAs, RNA splicing and RNA methylation.
Collapse
Affiliation(s)
- Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wujian Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Anrui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Peng Yu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ping Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiao Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jiayi Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Simeng He
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qiaojuan Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
9
|
Larue GE, Roy SW. Where the minor things are: a pan-eukaryotic survey suggests neutral processes may explain much of minor intron evolution. Nucleic Acids Res 2023; 51:10884-10908. [PMID: 37819006 PMCID: PMC10639083 DOI: 10.1093/nar/gkad797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Spliceosomal introns are gene segments removed from RNA transcripts by ribonucleoprotein machineries called spliceosomes. In some eukaryotes a second 'minor' spliceosome is responsible for processing a tiny minority of introns. Despite its seemingly modest role, minor splicing has persisted for roughly 1.5 billion years of eukaryotic evolution. Identifying minor introns in over 3000 eukaryotic genomes, we report diverse evolutionary histories including surprisingly high numbers in some fungi and green algae, repeated loss, as well as general biases in their positional and genic distributions. We estimate that ancestral minor intron densities were comparable to those of vertebrates, suggesting a trend of long-term stasis. Finally, three findings suggest a major role for neutral processes in minor intron evolution. First, highly similar patterns of minor and major intron evolution contrast with both functionalist and deleterious model predictions. Second, observed functional biases among minor intron-containing genes are largely explained by these genes' greater ages. Third, no association of intron splicing with cell proliferation in a minor intron-rich fungus suggests that regulatory roles are lineage-specific and thus cannot offer a general explanation for minor splicing's persistence. These data constitute the most comprehensive view of minor introns and their evolutionary history to date, and provide a foundation for future studies of these remarkable genetic elements.
Collapse
Affiliation(s)
- Graham E Larue
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Scott W Roy
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
10
|
Amaral P, Carbonell-Sala S, De La Vega FM, Faial T, Frankish A, Gingeras T, Guigo R, Harrow JL, Hatzigeorgiou AG, Johnson R, Murphy TD, Pertea M, Pruitt KD, Pujar S, Takahashi H, Ulitsky I, Varabyou A, Wells CA, Yandell M, Carninci P, Salzberg SL. The status of the human gene catalogue. Nature 2023; 622:41-47. [PMID: 37794265 PMCID: PMC10575709 DOI: 10.1038/s41586-023-06490-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/27/2023] [Indexed: 10/06/2023]
Abstract
Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.
Collapse
Affiliation(s)
- Paulo Amaral
- INSPER Institute of Education and Research, Sao Paulo, Brazil
| | | | - Francisco M De La Vega
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Tempus Labs, Chicago, IL, USA
| | | | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Thomas Gingeras
- Department of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jennifer L Harrow
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Royston, UK
| | - Artemis G Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, Universithy of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ales Varabyou
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Christine A Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Yandell
- Departent of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Human Technopole, Milan, Italy.
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Damianov A, Lin CH, Huang J, Zhou L, Jami-Alahmadi Y, Wohlschlegel J, Black DL. The apoptotic splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558883. [PMID: 37790489 PMCID: PMC10542197 DOI: 10.1101/2023.09.21.558883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Understanding the mechanisms of pre-mRNA splicing and spliceosome assembly is limited by technical challenges to examining spliceosomes in vivo. Here we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of lysed nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA, bound with intronic branch sites prior to the first catalytic step of splicing. Sequencing these pre-mRNA fragments allowed the transcriptome-wide mapping of branch sites with high sensitivity. In addition to known U2 snRNP proteins, these complexes contained the proteins RBM5 and RBM10. RBM5 and RBM10 are alternative splicing regulators that control exons affecting apoptosis and cell proliferation in cancer, but were not previously shown to associate with the U2 snRNP or to play roles in branch site selection. We delineate a common segment of RBM5 and RBM10, separate from their known functional domains, that is required for their interaction with the U2 snRNP. We identify a large set of splicing events regulated by RBM5 and RBM10 and find that they predominantly act as splicing silencers. Disruption of their U2 interaction renders the proteins inactive for repression of many alternative exons. We further find that these proteins assemble on branch sites of nearly all exons across the transcriptome, including those whose splicing is not altered by them. We propose a model where RBM5 and RBM10 act as components of the U2 snRNP complex. From within this complex, they sense structural features of branchpoint recognition to either allow progression to functional spliceosome or rejection of the complex to inhibit splicing.
Collapse
|
12
|
Abstract
Within the next decade, the genomes of 1.8 million eukaryotic species will be sequenced. Identifying genes in these sequences is essential to understand the biology of the species. This is challenging due to the transcriptional complexity of eukaryotic genomes, which encode hundreds of thousands of transcripts of multiple types. Among these, a small set of protein-coding mRNAs play a disproportionately large role in defining phenotypes. Due to their sequence conservation, orthology can be established, making it possible to define the universal catalog of eukaryotic protein-coding genes. This catalog should substantially contribute to uncovering the genomic events underlying the emergence of eukaryotic phenotypes. This piece briefly reviews the basics of protein-coding gene prediction, discusses challenges in finalizing annotation of the human genome, and proposes strategies for producing annotations across the eukaryotic Tree of Life. This lays the groundwork for obtaining the catalog of all genes-the Earth's code of life.
Collapse
Affiliation(s)
- Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Catalonia
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia
| |
Collapse
|
13
|
Augspach A, Drake KD, Roma L, Qian E, Lee SR, Clarke D, Kumar S, Jaquet M, Gallon J, Bolis M, Triscott J, Galván JA, Chen Y, Thalmann GN, Kruithof-de Julio M, Theurillat JPP, Wuchty S, Gerstein M, Piscuoglio S, Kanadia RN, Rubin MA. Minor intron splicing is critical for survival of lethal prostate cancer. Mol Cell 2023; 83:1983-2002.e11. [PMID: 37295433 PMCID: PMC10637423 DOI: 10.1016/j.molcel.2023.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.
Collapse
Affiliation(s)
- Anke Augspach
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Kyle D Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Luca Roma
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Ellen Qian
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Se Ri Lee
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Sushant Kumar
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Muriel Jaquet
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - John Gallon
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156 Milano, Italy
| | - Joanna Triscott
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Bern 3008, Switzerland
| | - Yu Chen
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - George N Thalmann
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, FL 33136, USA; Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Mark Gerstein
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland.
| |
Collapse
|
14
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
15
|
Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed AW, Kontopoulos DG, Hilgers L, Lindblad-Toh K, Karlsson EK, Hiller M, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Integrating gene annotation with orthology inference at scale. Science 2023; 380:eabn3107. [PMID: 37104600 DOI: 10.1126/science.abn3107] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
Collapse
Affiliation(s)
- Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Dimitrios-Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Amaral P, Carbonell-Sala S, De La Vega FM, Faial T, Frankish A, Gingeras T, Guigo R, Harrow JL, Hatzigeorgiou AG, Johnson R, Murphy TD, Pertea M, Pruitt KD, Pujar S, Takahashi H, Ulitsky I, Varabyou A, Wells CA, Yandell M, Carninci P, Salzberg SL. The status of the human gene catalogue. ARXIV 2023:arXiv:2303.13996v1. [PMID: 36994150 PMCID: PMC10055485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Scientists have been trying to identify all of the genes in the human genome since the initial draft of the genome was published in 2001. Over the intervening years, much progress has been made in identifying protein-coding genes, and the estimated number has shrunk to fewer than 20,000, although the number of distinct protein-coding isoforms has expanded dramatically. The invention of high-throughput RNA sequencing and other technological breakthroughs have led to an explosion in the number of reported non-coding RNA genes, although most of them do not yet have any known function. A combination of recent advances offers a path forward to identifying these functions and towards eventually completing the human gene catalogue. However, much work remains to be done before we have a universal annotation standard that includes all medically significant genes, maintains their relationships with different reference genomes, and describes clinically relevant genetic variants.
Collapse
Affiliation(s)
- Paulo Amaral
- INSPER Institute of Education and Research, São Paulo, SP, Brasil
| | - Silvia Carbonell-Sala
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Francisco M. De La Vega
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA; Tempus Labs, Inc., Chicago, IL
| | | | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas Gingeras
- Department of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Jennifer L Harrow
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Da Vinci Building. Melbourn Science Park, Royston UK SG8 6HB
| | - Artemis G. Hatzigeorgiou
- Universithy of Thessaly, Department of Computer Science and Biomedical Informatics, Lamia, Greece; Hellenic Pasteur Institute, Athens, Greece
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; Conway Institute of Biomedical and Biomolecular Research, University College Dublin, D04 V1W8 Dublin, Ireland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kim D. Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama Kanagawa 230-0045 Japan
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ales Varabyou
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Christine A. Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010 Vic Australia
| | - Mark Yandell
- Departent of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Piero Carninci
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Human Technopole, via Rita Levi Montalcini 1, Milan 20157 Italy
| | - Steven L. Salzberg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Immunology and Regenerative Biology; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Khatri D, Putoux A, Cologne A, Kaltenbach S, Besson A, Bertiaux E, Guguin J, Fendler A, Dupont MA, Benoit-Pilven C, Qebibo L, Ahmed-Elie S, Audebert-Bellanger S, Blanc P, Rambaud T, Castelle M, Cornen G, Grotto S, Guët A, Guibaud L, Michot C, Odent S, Ruaud L, Sacaze E, Hamel V, Bordonné R, Leutenegger AL, Edery P, Burglen L, Attié-Bitach T, Mazoyer S, Delous M. Deficiency of the minor spliceosome component U4atac snRNA secondarily results in ciliary defects in human and zebrafish. Proc Natl Acad Sci U S A 2023; 120:e2102569120. [PMID: 36802443 PMCID: PMC9992838 DOI: 10.1073/pnas.2102569120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/12/2022] [Indexed: 02/23/2023] Open
Abstract
In the human genome, about 750 genes contain one intron excised by the minor spliceosome. This spliceosome comprises its own set of snRNAs, among which U4atac. Its noncoding gene, RNU4ATAC, has been found mutated in Taybi-Linder (TALS/microcephalic osteodysplastic primordial dwarfism type 1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes. These rare developmental disorders, whose physiopathological mechanisms remain unsolved, associate ante- and post-natal growth retardation, microcephaly, skeletal dysplasia, intellectual disability, retinal dystrophy, and immunodeficiency. Here, we report bi-allelic RNU4ATAC mutations in five patients presenting with traits suggestive of the Joubert syndrome (JBTS), a well-characterized ciliopathy. These patients also present with traits typical of TALS/RFMN/LWS, thus widening the clinical spectrum of RNU4ATAC-associated disorders and indicating ciliary dysfunction as a mechanism downstream of minor splicing defects. Intriguingly, all five patients carry the n.16G>A mutation, in the Stem II domain, either at the homozygous or compound heterozygous state. A gene ontology term enrichment analysis on minor intron-containing genes reveals that the cilium assembly process is over-represented, with no less than 86 cilium-related genes containing at least one minor intron, among which there are 23 ciliopathy-related genes. The link between RNU4ATAC mutations and ciliopathy traits is supported by alterations of primary cilium function in TALS and JBTS-like patient fibroblasts, as well as by u4atac zebrafish model, which exhibits ciliopathy-related phenotypes and ciliary defects. These phenotypes could be rescued by WT but not by pathogenic variants-carrying human U4atac. Altogether, our data indicate that alteration of cilium biogenesis is part of the physiopathological mechanisms of TALS/RFMN/LWS, secondarily to defects of minor intron splicing.
Collapse
Affiliation(s)
- Deepak Khatri
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69500Bron, France
| | - Audric Cologne
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
- Institut national de recherche en sciences et technologies du numérique Erable, Laboratoire de Biométrie et Biologie Evolutive, UMR5558 CNRS, Université Claude Bernard Lyon 1, 69622Villeurbanne, France
| | - Sophie Kaltenbach
- Department of Histology Embryology and Cytogenetics, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, University of Paris, 75015Paris, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Eloïse Bertiaux
- Department of Cell Biology, Sciences III, University of Geneva, 1211-Geneva, Switzerland
| | - Justine Guguin
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Adèle Fendler
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Marie A. Dupont
- Laboratory of hereditary kidney diseases, Imagine Institute, U1163 INSERM, University of Paris, 75015Paris, France
| | - Clara Benoit-Pilven
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
- Institut national de recherche en sciences et technologies du numérique Erable, Laboratoire de Biométrie et Biologie Evolutive, UMR5558 CNRS, Université Claude Bernard Lyon 1, 69622Villeurbanne, France
| | - Leila Qebibo
- Département de Génétique, Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Trousseau Hospital, 75012Paris, France
| | - Samira Ahmed-Elie
- Département de Génétique, Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Trousseau Hospital, 75012Paris, France
| | - Séverine Audebert-Bellanger
- Department of Genetics, Clinical Genetics Unit, Centre de Compétence Anomalies du Développement et Syndromes Polymalformatifs, Centre Hospitalier Universitaire Morvan, 29200Brest, France
| | | | | | - Martin Castelle
- Hematology-Immunology Unit, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, 75015Paris, France
| | - Gaëlle Cornen
- Pediatric service, Centre Hospitalier Morlaix, 29600Morlaix, France
| | - Sarah Grotto
- Clinical Genetics Unit, Maternité Port-Royal, Assistance Publique - Hôpitaux de Paris, Cochin Broca Hôtel-Dieu Hospitals75014Paris, France
| | - Agnès Guët
- Neonatal and Pediatric Units, Louis-Mourier Hospital, 92700Colombes, France
| | - Laurent Guibaud
- Pediatric and Fetal Imaging, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69500Bron, France
| | - Caroline Michot
- Clinical Genetics Department, Centre de Référence Maladies Rares–Maladies Osseuses Constitutionnelles, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, 75015Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, U1163 INSERM, University of Paris, 75015Paris, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Hospitalier Universitaire Rennes, Centre de référence Anomalies du développement et syndromes malformatifs, Univ Rennes, CNRS, INSERM, Institut de Génétique et Développement de Rennes UMR 6290/ Equipe de Recherche Labellisée 1305, 35000Rennes, France
| | - Lyse Ruaud
- NeuroDiderot, UMR1141, University of Paris, 75019Paris, France
- Departement of Genetics, Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, 75019Paris, France
| | - Elise Sacaze
- Pediatric Service, Centre Hospitalier Régional Universitaire Brest, 29200Brest, France
| | - Virginie Hamel
- Department of Cell Biology, Sciences III, University of Geneva, 1211-Geneva, Switzerland
| | - Rémy Bordonné
- Institute of Molecular Genetics of Montpellier, UMR5535 CNRS, University of Montpellier, 34000Montpellier, France
| | | | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69500Bron, France
| | - Lydie Burglen
- Département de Génétique, Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Trousseau Hospital, 75012Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, U1163 INSERM, University of Paris, 75015Paris, France
| | - Tania Attié-Bitach
- Department of Histology Embryology and Cytogenetics, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, University of Paris, 75015Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, U1163 INSERM, University of Paris, 75015Paris, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| |
Collapse
|
18
|
Almentina Ramos Shidi F, Cologne A, Delous M, Besson A, Putoux A, Leutenegger AL, Lacroix V, Edery P, Mazoyer S, Bordonné R. Mutations in the non-coding RNU4ATAC gene affect the homeostasis and function of the Integrator complex. Nucleic Acids Res 2023; 51:712-727. [PMID: 36537210 PMCID: PMC9881141 DOI: 10.1093/nar/gkac1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Various genetic diseases associated with microcephaly and developmental defects are due to pathogenic variants in the U4atac small nuclear RNA (snRNA), a component of the minor spliceosome essential for the removal of U12-type introns from eukaryotic mRNAs. While it has been shown that a few RNU4ATAC mutations result in impaired binding of essential protein components, the molecular defects of the vast majority of variants are still unknown. Here, we used lymphoblastoid cells derived from RNU4ATAC compound heterozygous (g.108_126del;g.111G>A) twin patients with MOPD1 phenotypes to analyze the molecular consequences of the mutations on small nuclear ribonucleoproteins (snRNPs) formation and on splicing. We found that the U4atac108_126del mutant is unstable and that the U4atac111G>A mutant as well as the minor di- and tri-snRNPs are present at reduced levels. Our results also reveal the existence of 3'-extended snRNA transcripts in patients' cells. Moreover, we show that the mutant cells have alterations in splicing of INTS7 and INTS10 minor introns, contain lower levels of the INTS7 and INTS10 proteins and display changes in the assembly of Integrator subunits. Altogether, our results show that compound heterozygous g.108_126del;g.111G>A mutations induce splicing defects and affect the homeostasis and function of the Integrator complex.
Collapse
Affiliation(s)
- Fatimat Almentina Ramos Shidi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| | - Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | | | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| |
Collapse
|
19
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Siebert AE, Corll J, Paige Gronevelt J, Levine L, Hobbs LM, Kenney C, Powell CLE, Battistuzzi FU, Davenport R, Mark Settles A, Brad Barbazuk W, Westrick RJ, Madlambayan GJ, Lal S. Genetic analysis of human RNA binding motif protein 48 (RBM48) reveals an essential role in U12-type intron splicing. Genetics 2022; 222:iyac129. [PMID: 36040194 PMCID: PMC9526058 DOI: 10.1093/genetics/iyac129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5' end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Jacob Corll
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - J Paige Gronevelt
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Laurel Levine
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Linzi M Hobbs
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Catalina Kenney
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Christopher L E Powell
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Ruth Davenport
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - A Mark Settles
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - W Brad Barbazuk
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Shailesh Lal
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| |
Collapse
|
21
|
Weinstein R, Bishop K, Broadbridge E, Yu K, Carrington B, Elkahloun A, Zhen T, Pei W, Burgess SM, Liu P, Bresciani E, Sood R. Zrsr2 Is Essential for the Embryonic Development and Splicing of Minor Introns in RNA and Protein Processing Genes in Zebrafish. Int J Mol Sci 2022; 23:10668. [PMID: 36142581 PMCID: PMC9501576 DOI: 10.3390/ijms231810668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
ZRSR2 (zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2) is an essential splicing factor involved in 3' splice-site recognition as a component of both the major and minor spliceosomes that mediate the splicing of U2-type (major) and U12-type (minor) introns, respectively. Studies of ZRSR2-depleted cell lines and ZRSR2-mutated patient samples revealed its essential role in the U12-dependent minor spliceosome. However, the role of ZRSR2 during embryonic development is not clear, as its function is compensated for by Zrsr1 in mice. Here, we utilized the zebrafish model to investigate the role of zrsr2 during embryonic development. Using CRISPR/Cas9 technology, we generated a zrsr2-knockout zebrafish line, termed zrsr2hg129/hg129 (p.Trp167Argfs*9) and examined embryo development in the homozygous mutant embryos. zrsr2hg129/hg129 embryos displayed multiple developmental defects starting at 4 days post fertilization (dpf) and died after 8 dpf, suggesting that proper Zrsr2 function is required during embryonic development. The global transcriptome analysis of 3 dpf zrsr2hg129/hg129 embryos revealed that the loss of Zrsr2 results in the downregulation of essential metabolic pathways and the aberrant retention of minor introns in about one-third of all minor intron-containing genes in zebrafish. Overall, our study has demonstrated that the role of Zrsr2 as a component of the minor spliceosome is conserved and critical for proper embryonic development in zebrafish.
Collapse
Affiliation(s)
- Rachel Weinstein
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Broadbridge
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Yu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Blake Carrington
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel Elkahloun
- Microarray Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tao Zhen
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wuhong Pei
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn M. Burgess
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Liu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica Bresciani
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Müller L, Ptok J, Nisar A, Antemann J, Grothmann R, Hillebrand F, Brillen AL, Ritchie A, Theiss S, Schaal H. Modeling splicing outcome by combining 5'ss strength and splicing regulatory elements. Nucleic Acids Res 2022; 50:8834-8851. [PMID: 35947702 PMCID: PMC9410876 DOI: 10.1093/nar/gkac663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Correct pre-mRNA processing in higher eukaryotes vastly depends on splice site recognition. Beyond conserved 5'ss and 3'ss motifs, splicing regulatory elements (SREs) play a pivotal role in this recognition process. Here, we present in silico designed sequences with arbitrary a priori prescribed splicing regulatory HEXplorer properties that can be concatenated to arbitrary length without changing their regulatory properties. We experimentally validated in silico predictions in a massively parallel splicing reporter assay on more than 3000 sequences and exemplarily identified some SRE binding proteins. Aiming at a unified 'functional splice site strength' encompassing both U1 snRNA complementarity and impact from neighboring SREs, we developed a novel RNA-seq based 5'ss usage landscape, mapping the competition of pairs of high confidence 5'ss and neighboring exonic GT sites along HBond and HEXplorer score coordinate axes on human fibroblast and endothelium transcriptome datasets. These RNA-seq data served as basis for a logistic 5'ss usage prediction model, which greatly improved discrimination between strong but unused exonic GT sites and annotated highly used 5'ss. Our 5'ss usage landscape offers a unified view on 5'ss and SRE neighborhood impact on splice site recognition, and may contribute to improved mutation assessment in human genetics.
Collapse
Affiliation(s)
| | | | - Azlan Nisar
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen 45665, Germany
| | - Jennifer Antemann
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Ramona Grothmann
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Frank Hillebrand
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anna-Lena Brillen
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anastasia Ritchie
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | | | - Heiner Schaal
- To whom correspondence should be addressed. Tel: +49 211 81 12393; Fax: +49 211 81 10856;
| |
Collapse
|
23
|
Nishimura K, Yamazaki H, Zang W, Inoue D. Dysregulated minor intron splicing in cancer. Cancer Sci 2022; 113:2934-2942. [PMID: 35766428 PMCID: PMC9459249 DOI: 10.1111/cas.15476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Pre‐mRNA splicing is now widely recognized as a cotranscriptional and post‐transcriptional mechanism essential for regulating gene expression and modifying gene product function. Mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are now considered among the most recurrent genetic abnormalities in patients with cancer, particularly hematologic malignancies. These include mutations in the major (U2‐type) and minor (U12‐type) spliceosomes, which remove >99% and ~0.35% of introns, respectively. Growing evidence indicates that aberrant splicing of evolutionarily conserved U12‐type minor introns plays a crucial role in cancer as the minor spliceosome component, ZRSR2, is subject to recurrent, leukemia‐associated mutations, and intronic mutations have been shown to disrupt the splicing of minor introns. Here, we review the importance of minor intron regulation, the molecular effects of the minor (U12‐type) spliceosomal mutations and cis‐regulatory regions, and the development of minor intron studies for better understanding of cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Jacquier V, Prévot M, Gostan T, Bordonné R, Benkhelifa-Ziyyat S, Barkats M, Soret J. Splicing efficiency of minor introns in a mouse model of SMA predominantly depends on their branchpoint sequence and can involve the contribution of major spliceosome components. RNA (NEW YORK, N.Y.) 2022; 28:303-319. [PMID: 34893560 PMCID: PMC8848931 DOI: 10.1261/rna.078329.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by reduced amounts of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. In agreement with its crucial role in the biogenesis of spliceosomal snRNPs, SMN-deficiency is correlated to numerous splicing alterations in patient cells and various tissues of SMA mouse models. Among the snRNPs whose assembly is impacted by SMN-deficiency, those involved in the minor spliceosome are particularly affected. Importantly, splicing of several, but not all U12-dependent introns has been shown to be affected in different SMA models. Here, we have investigated the molecular determinants of this differential splicing in spinal cords from SMA mice. We show that the branchpoint sequence (BPS) is a key element controlling splicing efficiency of minor introns. Unexpectedly, splicing of several minor introns with suboptimal BPS is not affected in SMA mice. Using in vitro splicing experiments and oligonucleotides targeting minor or major snRNAs, we show for the first time that splicing of these introns involves both the minor and major machineries. Our results strongly suggest that splicing of a subset of minor introns is not affected in SMA mice because components of the major spliceosome compensate for the loss of minor splicing activity.
Collapse
Affiliation(s)
- Valentin Jacquier
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Manon Prévot
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Sofia Benkhelifa-Ziyyat
- Centre de Recherche en Myologie (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Martine Barkats
- Centre de Recherche en Myologie (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Johann Soret
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| |
Collapse
|
25
|
Satou Y, Tokuoka M, Oda-Ishii I, Tokuhiro S, Ishida T, Liu B, Iwamura Y. A Manually Curated Gene Model Set for an Ascidian, Ciona robusta (Ciona intestinalis Type A). Zoolog Sci 2022; 39:253-260. [DOI: 10.2108/zs210102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Miki Tokuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Sinichi Tokuhiro
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tasuku Ishida
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yuri Iwamura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Gómez-Redondo I, Pericuesta E, Navarrete-Lopez P, Ramos-Ibeas P, Planells B, Fonseca-Balvís N, Vaquero-Rey A, Fernández-González R, Laguna-Barraza R, Horiuchi K, Gutiérrez-Adán A. Zrsr2 and functional U12-dependent spliceosome are necessary for follicular development. iScience 2022; 25:103860. [PMID: 35198906 PMCID: PMC8850803 DOI: 10.1016/j.isci.2022.103860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
ZRSR2 is a splicing factor involved in recognition of 3'-intron splice sites that is frequently mutated in myeloid malignancies and several tumors; however, the role of mutations of Zrsr2 in other tissues has not been analyzed. To explore the biological role of ZRSR2, we generated three Zrsr2 mutant mouse lines. All Zrsr2 mutant lines exhibited blood cell anomalies, and in two lines, oogenesis was blocked at the secondary follicle stage. RNA-seq of Zrsr2 mu secondary follicles showed aberrations in gene expression and showed altered alternative splicing (AS) events involving enrichment of U12-type intron retention (IR), supporting the functional Zrsr2 action in minor spliceosomes. IR events were preferentially associated with centriole replication, protein phosphorylation, and DNA damage checkpoint. Notably, we found alterations in AS events of 50 meiotic genes. These results indicate that ZRSR2 mutations alter splicing mainly in U12-type introns, which may affect peripheral blood cells, and impede oogenesis and female fertility.
Collapse
Affiliation(s)
- Isabel Gómez-Redondo
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Paula Navarrete-Lopez
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Benjamín Planells
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Noelia Fonseca-Balvís
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Aida Vaquero-Rey
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Keiko Horiuchi
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| |
Collapse
|
27
|
de Wolf B, Oghabian A, Akinyi MV, Hanks S, Tromer EC, van Hooff JJE, van Voorthuijsen L, van Rooijen LE, Verbeeren J, Uijttewaal ECH, Baltissen MPA, Yost S, Piloquet P, Vermeulen M, Snel B, Isidor B, Rahman N, Frilander MJ, Kops GJPL. Chromosomal instability by mutations in the novel minor spliceosome component CENATAC. EMBO J 2021; 40:e106536. [PMID: 34009673 PMCID: PMC8280824 DOI: 10.15252/embj.2020106536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.
Collapse
Affiliation(s)
- Bas de Wolf
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Ali Oghabian
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Present address:
Faculty of MedicineResearch Programs UnitUniversity of HelsinkiHelsinkiFinland
| | - Maureen V Akinyi
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Sandra Hanks
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Eelco C Tromer
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jolien J E van Hooff
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Unité d'EcologieSystématique et EvolutionCNRSUniversité Paris‐SudUniversité Paris‐SaclayAgroParisTechOrsayFrance
| | - Lisa van Voorthuijsen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Jens Verbeeren
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Esther C H Uijttewaal
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Marijke P A Baltissen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Shawn Yost
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Philippe Piloquet
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Michiel Vermeulen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Bertrand Isidor
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Nazneen Rahman
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Mikko J Frilander
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Geert J P L Kops
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Splicing mutations are among the most recurrent genetic perturbations in hematological malignancies, highlighting an important impact of splicing regulation in hematopoietic development. However, compared to our understanding of splicing factor mutations in hematological malignancies, studies of splicing components and alternative splicing in normal hematopoiesis have been less well investigated. Here, we outline the most recent findings on splicing regulation in normal hematopoiesis and discuss the important questions in the field. RECENT FINDINGS Recent studies have highlighted the critical role of splicing regulation in hematopoiesis, including characterization of splicing components in normal hematopoiesis, investigation of transcriptional alterations on splicing, and identification of stage-specific alternative splicing events during hematopoietic development. SUMMARY These interesting findings provide insights on hematopoietic regulation at a co-transcriptional level. More high-throughput RNA ribonucleic acid (RNA) sequencing and functional genomic screens are needed to advance our knowledge of critical alternative splicing patterns in shaping hematopoiesis.
Collapse
Affiliation(s)
- Sisi Chen
- Human Oncology and Pathogenesis Program, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Leukemia Service, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
29
|
Splicing factor mutations in hematologic malignancies. Blood 2021; 138:599-612. [PMID: 34157091 DOI: 10.1182/blood.2019004260] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations in genes encoding RNA splicing factors were discovered nearly ten years ago and are now understood to be amongst the most recurrent genetic abnormalities in patients with all forms of myeloid neoplasms and several types of lymphoproliferative disorders as well as subjects with clonal hematopoiesis. These discoveries implicate aberrant RNA splicing, the process by which precursor RNA is converted into mature messenger RNA, in the development of clonal hematopoietic conditions. Both the protein as well as the RNA components of the splicing machinery are affected by mutations at highly specific residues and a number of these mutations alter splicing in a manner distinct from loss of function. Importantly, cells bearing these mutations have now been shown to generate mRNA species with novel aberrant sequences, some of which may be critical to disease pathogenesis and/or novel targets for therapy. These findings have opened new avenues of research to understand biological pathways disrupted by altered splicing. In parallel, multiple studies have revealed that cells bearing change-of-function mutation in splicing factors are preferentially sensitized to any further genetic or chemical perturbations of the splicing machinery. These discoveries are now being pursued in several early phase clinical trials using molecules with diverse mechanisms of action. Here we review the molecular effects of splicing factor mutations on splicing, mechanisms by which these mutations drive clonal transformation of hematopoietic cells, and the development of new therapeutics targeting these genetic subsets of hematopoietic malignancies.
Collapse
|
30
|
Larue GE, Eliáš M, Roy SW. Expansion and transformation of the minor spliceosomal system in the slime mold Physarum polycephalum. Curr Biol 2021; 31:3125-3131.e4. [PMID: 34015249 DOI: 10.1016/j.cub.2021.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022]
Abstract
Spliceosomal introns interrupt nuclear genes and are removed from RNA transcripts ("spliced") by machinery called spliceosomes. Although the vast majority of spliceosomal introns are removed by the so-called major (or "U2") spliceosome, diverse eukaryotes also contain a rare second form, the minor ("U12") spliceosome, and associated ("U12-type") introns.1-3 In all characterized species, U12-type introns are distinguished by several features, including being rare in the genome (∼0.5% of all introns),4-6 containing extended evolutionarily conserved splicing motifs,4,5,7,8 being generally ancient,9,10 and being inefficiently spliced.11-13 Here, we report a remarkable exception in the slime mold Physarum polycephalum. The P. polycephalum genome contains >20,000 U12-type introns-25 times more than any other species-enriched in a diversity of non-canonical splice boundaries as well as transformed splicing signals that appear to have co-evolved with the spliceosome due to massive gain of efficiently spliced U12-type introns. These results reveal an unappreciated dynamism of minor spliceosomal introns and spliceosomal introns in general.
Collapse
Affiliation(s)
- Graham E Larue
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA.
| | - Marek Eliáš
- Department of Biology and Ecology Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Scott W Roy
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA; Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
31
|
Poverennaya IV, Roytberg MA. Spliceosomal Introns: Features, Functions, and Evolution. BIOCHEMISTRY (MOSCOW) 2021; 85:725-734. [PMID: 33040717 DOI: 10.1134/s0006297920070019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spliceosomal introns, which have been found in most eukaryotic genes, are non-coding sequences excised from pre-mRNAs by a special complex called spliceosome during mRNA splicing. Introns occur in both protein- and RNA-coding genes and can be found in coding and untranslated gene regions. Because intron sequences vary greatly due to a high rate of polymorphism, the functions of intron had been for a long time associated only with alternative splicing, while intron evolution had been viewed not as an evolution of an individual genomic element, but rather considered within a framework of the evolution of the gene intron-exon structure. Here, we review the theories of intron origin, evolutionary events in the exon-intron structure, such as intron gain, loss, and sliding, intron functions known to date, and mechanisms by which changes in the intron features (length and phase) can affect the regulation of gene-mediated processes.
Collapse
Affiliation(s)
- I V Poverennaya
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia. .,Institute of Mathematical Problems in Biology, Keldysh Branch of Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - M A Roytberg
- Institute of Mathematical Problems in Biology, Keldysh Branch of Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Higher School of Economics, Moscow, 101000, Russia
| |
Collapse
|
32
|
Abstract
BACKGROUND Eukaryotic protein-coding genes consist of exons and introns. Exon-intron borders are conserved between species and thus their changes might be observed only on quite long evolutionary distances. One of the rarest types of change, in which intron relocates over a short distance, is called "intron sliding", but the reality of this event has been debated for a long time. The main idea of a search for intron sliding is to use the most accurate genome annotation and genome sequence, as well as high-quality transcriptome data. We applied them in a search for sliding introns in mammals in order to widen knowledge about the presence or absence of such phenomena in this group. RESULTS We didn't find any significant evidence of intron sliding in the primate group (human, chimpanzee, rhesus macaque, crab-eating macaque, green monkey, marmoset). Only one possible intron sliding event supported by a set of high quality transcriptomes was observed between EIF1AX human and sheep gene orthologs. Also, we checked a list of previously observed intron sliding events in mammals and showed that most likely they are artifacts of genome annotations and are not shown in subsequent annotation versions as well as are not supported by transcriptomic data. CONCLUSIONS We assume that intron sliding is indeed a very rare evolutionary event if it exists at all. Every case of intron sliding needs a lot of supportive data for detection and confirmation.
Collapse
|
33
|
Defective minor spliceosomes induce SMA-associated phenotypes through sensitive intron-containing neural genes in Drosophila. Nat Commun 2020; 11:5608. [PMID: 33154379 PMCID: PMC7644725 DOI: 10.1038/s41467-020-19451-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 10/13/2020] [Indexed: 01/31/2023] Open
Abstract
The minor spliceosome is evolutionarily conserved in higher eukaryotes, but its biological significance remains poorly understood. Here, by precise CRISPR/Cas9-mediated disruption of the U12 and U6atac snRNAs, we report that a defective minor spliceosome is responsible for spinal muscular atrophy (SMA) associated phenotypes in Drosophila. Using a newly developed bioinformatic approach, we identified a large set of minor spliceosome-sensitive splicing events and demonstrate that three sensitive intron-containing neural genes, Pcyt2, Zmynd10, and Fas3, directly contribute to disease development as evidenced by the ability of their cDNAs to rescue the SMA-associated phenotypes in muscle development, neuromuscular junctions, and locomotion. Interestingly, many splice sites in sensitive introns are recognizable by both minor and major spliceosomes, suggesting a new mechanism of splicing regulation through competition between minor and major spliceosomes. These findings reveal a vital contribution of the minor spliceosome to SMA and to regulated splicing in animals.
Collapse
|
34
|
Moyer DC, Larue GE, Hershberger CE, Roy SW, Padgett RA. Comprehensive database and evolutionary dynamics of U12-type introns. Nucleic Acids Res 2020; 48:7066-7078. [PMID: 32484558 PMCID: PMC7367187 DOI: 10.1093/nar/gkaa464] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
During nuclear maturation of most eukaryotic pre-messenger RNAs and long non-coding RNAs, introns are removed through the process of RNA splicing. Different classes of introns are excised by the U2-type or the U12-type spliceosomes, large complexes of small nuclear ribonucleoprotein particles and associated proteins. We created intronIC, a program for assigning intron class to all introns in a given genome, and used it on 24 eukaryotic genomes to create the Intron Annotation and Orthology Database (IAOD). We then used the data in the IAOD to revisit several hypotheses concerning the evolution of the two classes of spliceosomal introns, finding support for the class conversion model explaining the low abundance of U12-type introns in modern genomes.
Collapse
Affiliation(s)
- Devlin C Moyer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Graham E Larue
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Courtney E Hershberger
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Richard A Padgett
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
35
|
Clinical interpretation of variants identified in RNU4ATAC, a non-coding spliceosomal gene. PLoS One 2020; 15:e0235655. [PMID: 32628740 PMCID: PMC7337319 DOI: 10.1371/journal.pone.0235655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Biallelic variants in RNU4ATAC, a non-coding gene transcribed into the minor spliceosome component U4atac snRNA, are responsible for three rare recessive developmental diseases, namely Taybi-Linder/MOPD1, Roifman and Lowry-Wood syndromes. Next-generation sequencing of clinically heterogeneous cohorts (children with either a suspected genetic disorder or a congenital microcephaly) recently identified mutations in this gene, illustrating how profoundly these technologies are modifying genetic testing and assessment. As RNU4ATAC has a single non-coding exon, the bioinformatic prediction algorithms assessing the effect of sequence variants on splicing or protein function are irrelevant, which makes variant interpretation challenging to molecular diagnostic laboratories. In order to facilitate and improve clinical diagnostic assessment and genetic counseling, we present i) an update of the previously reported RNU4ATAC mutations and an analysis of the genetic variations affecting this gene using the Genome Aggregation Database (gnomAD) resource; ii) the pathogenicity prediction performances of scores computed based on an RNA structure prediction tool and of those produced by the Combined Annotation Dependent Depletion tool for the 285 RNU4ATAC variants identified in patients or in large-scale sequencing projects; iii) a method, based on a cellular assay, that allows to measure the effect of RNU4ATAC variants on splicing efficiency of a minor (U12-type) reporter intron. Lastly, the concordance of bioinformatic predictions and cellular assay results was investigated.
Collapse
|
36
|
Olthof AM, Rasmussen JS, Campeau PM, Kanadia RN. Disrupted minor intron splicing is prevalent in Mendelian disorders. Mol Genet Genomic Med 2020; 8:e1374. [PMID: 32573973 PMCID: PMC7507305 DOI: 10.1002/mgg3.1374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Splicing is crucial for proper gene expression, and is predominately executed by the major spliceosome. Conversely, 722 introns in 699 human minor intron‐containing genes (MIGs) are spliced by the minor spliceosome. Splicing of these minor introns is disrupted in diseases caused by pathogenic variants in the minor spliceosome, ultimately leading to the aberrant expression of a subset of these MIGs. However, the effect of variants in minor introns and MIGs on diseases remains unexplored. Methods Variants in MIGs and associated clinical manifestations were identified using ClinVar. The HPO database was then used to curate the related symptoms and affected organ systems. Results: We found pathogenic variants in 211 MIGs, which commonly resulted in intellectual disability, seizures and microcephaly. This revealed a subset of MIGs whose aberrant splicing may contribute to the pathogenesis of minor spliceosome‐related diseases. Moreover, we identified 51 pathogenic variants in minor intron splice sites that reduce the splice site strength and can induce alternative splicing. Conclusion These findings highlight that disrupted minor intron splicing has a broader impact on human diseases than previously appreciated. The hope is that this knowledge will aid in the development of therapeutic strategies that incorporate the minor intron splicing pathway.
Collapse
Affiliation(s)
- Anouk M Olthof
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jeffrey S Rasmussen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
37
|
Osman EY, Van Alstyne M, Yen PF, Lotti F, Feng Z, Ling KK, Ko CP, Pellizzoni L, Lorson CL. Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons. JCI Insight 2020; 5:130574. [PMID: 32516136 DOI: 10.1172/jci.insight.130574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder caused by reduced expression of the survival motor neuron (SMN) protein. SMN has key functions in multiple RNA pathways, including the biogenesis of small nuclear ribonucleoproteins that are essential components of both major (U2-dependent) and minor (U12-dependent) spliceosomes. Here we investigated the specific contribution of U12 splicing dysfunction to SMA pathology through selective restoration of this RNA pathway in mouse models of varying phenotypic severity. We show that virus-mediated delivery of minor snRNA genes specifically improves select U12 splicing defects induced by SMN deficiency in cultured mammalian cells, as well as in the spinal cord and dorsal root ganglia of SMA mice without increasing SMN expression. This approach resulted in a moderate amelioration of several parameters of the disease phenotype in SMA mice, including survival, weight gain, and motor function. Importantly, minor snRNA gene delivery improved aberrant splicing of the U12 intron-containing gene Stasimon and rescued the severe loss of proprioceptive sensory synapses on SMA motor neurons, which are early signatures of motor circuit dysfunction in mouse models. Taken together, these findings establish the direct contribution of U12 splicing dysfunction to synaptic deafferentation and motor circuit pathology in SMA.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Pei-Fen Yen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Karen Ky Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
38
|
Gómez-Redondo I, Ramos-Ibeas P, Pericuesta E, Fernández-González R, Laguna-Barraza R, Gutiérrez-Adán A. Minor Splicing Factors Zrsr1 and Zrsr2 Are Essential for Early Embryo Development and 2-Cell-Like Conversion. Int J Mol Sci 2020; 21:E4115. [PMID: 32527007 PMCID: PMC7312986 DOI: 10.3390/ijms21114115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Minor splicing plays an important role in vertebrate development. Zrsr1 and Zrsr2 paralog genes have essential roles in alternative splicing, mainly participating in the recognition of minor (U12) introns. To further explore their roles during early embryo development, we produced Zrsr1mu and Zrsr2mu mutant mice, containing truncating mutations within the second zinc finger domain. Both homozygous mutant mice were viable with a normal lifespan. When we crossed a homozygous Zrsr2mu/mu female with Zrsr1mu/mu male, the double heterozygotes were non-viable, giving rise to embryos that stopped developing mainly between the 2- and 4-cell stages, just after zygotic gene activation. RNA-seq analysis of Zrsr1/2mu 2-cell embryos showed altered gene and isoform expression of thousands of genes enriched in gene ontology terms and biological pathways related to ribosome, RNA transport, spliceosome, and essential zygotic gene activation steps. Alternative splicing was analyzed, showing a significant increase in intron retention in both U2 and U12 intron-containing genes related to cell cycle and mitotic nuclear division. Remarkably, both Zrsr1 and Zrsr2 were required for the conversion of mouse-induced pluripotent stem cells into 2C-like cells. According to our results, Zrsr1 or Zrsr2 are necessary for ZGA and both are indispensable for the conversion of induced pluripotent stem cells into 2C-like cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Avda. Puerta de Hierro n° 12. Local 10, 28040 Madrid, Spain; (I.G.-R.); (P.R.-I.); (E.P.); (R.F.-G.); (R.L.-B.)
| |
Collapse
|
39
|
Yamada T, Takechi M, Yokoyama N, Hiraoka Y, Ishikubo H, Usami T, Furutera T, Taga Y, Hirate Y, Kanai-Azuma M, Yoda T, Ogawa-Goto K, Iseki S. Heterozygous mutation of the splicing factor Sf3b4 affects development of the axial skeleton and forebrain in mouse. Dev Dyn 2020; 249:622-635. [PMID: 31900962 DOI: 10.1002/dvdy.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Splicing factor 3B subunit 4 (SF3B4) is a causative gene of an acrofacial dysostosis, Nager syndrome. Although in vitro analyses of SF3B4 have proposed multiple noncanonical functions unrelated to splicing, less information is available based on in vivo studies using model animals. RESULTS We performed expression and functional analyses of Sf3b4 in mice. The mouse Sf3b4 transcripts were found from two-cell stage, and were ubiquitously present during embryogenesis with high expression levels in several tissues such as forming craniofacial bones and brain. In contrast, expression of a pseudogene-like sequence of mouse Sf3b4 (Sf3b4_ps) found by in silico survey was not detected up to embryonic day 10. We generated a Sf3b4 knockout mouse using CRISPR-Cas9 system. The homozygous mutant mouse of Sf3b4 was embryonic lethal. The heterozygous mutant of Sf3b4 mouse (Sf3b4+/- ) exhibited smaller body size compared to the wild-type from postnatal to adult period, as well as homeotic posteriorization of the vertebral morphology and flattened calvaria. The flattened calvaria appears to be attributable to mild microcephaly due to a lower cell proliferation rate in the forebrain. CONCLUSIONS Our study suggests that Sf3b4 controls anterior-posterior patterning of the axial skeleton and guarantees cell proliferation for forebrain development in mice.
Collapse
Affiliation(s)
- Takahiko Yamada
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masaki Takechi
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Norisuke Yokoyama
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Harumi Ishikubo
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takako Usami
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshiko Furutera
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Yoshikazu Hirate
- Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Yoda
- Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
40
|
Baumgartner M, Drake K, Kanadia RN. An Integrated Model of Minor Intron Emergence and Conservation. Front Genet 2019; 10:1113. [PMID: 31798628 PMCID: PMC6865273 DOI: 10.3389/fgene.2019.01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Minor introns constitute <0.5% of the introns in the human genome and have remained an enigma since their discovery. These introns are removed by a distinct splicing complex, the minor spliceosome. Both are ancient, tracing back to the last eukaryotic common ancestor (LECA), which is reflected by minor intron enrichment in specific gene families, such as the mitogen activated-protein kinase kinases, voltage-gated sodium and calcium ion channels, and E2F transcription factors. Most minor introns occur as single introns in genes with predominantly major introns. Due to this organization, minor intron-containing gene (MIG) expression requires the coordinated action of two spliceosomes, which increases the probability of missplicing. Thus, one would expect loss of minor introns via purifying selection. This has resulted in complete minor intron loss in at least nine eukaryotic lineages. However, minor introns are highly conserved in land plants and metazoans, where their importance is underscored by embryonic lethality when the minor spliceosome is inactivated. Conditional inactivation of the minor spliceosome has shown that rapidly dividing progenitor cells are highly sensitive to minor spliceosome loss. Indeed, we found that MIGs were significantly enriched in a screen for genes essential for survival in 341 cycling cell lines. Here, we propose that minor introns inserted randomly into genes in LECA or earlier and were subsequently conserved in genes crucial for cycling cell survival. We hypothesize that the essentiality of MIGs allowed minor introns to endure through the unicellularity of early eukaryotic evolution. Moreover, we identified 59 MIGs that emerged after LECA, and that many of these are essential for cycling cell survival, reinforcing our essentiality model for MIG conservation. This suggests that minor intron emergence is dynamic across eukaryotic evolution, and that minor introns should not be viewed as molecular fossils. We also posit that minor intron splicing was co-opted in multicellular evolution as a regulatory switch for en masse control of MIG expression and the biological processes they regulate. Specifically, this mode of regulation could control cell proliferation and thus body size, an idea supported by domestication syndrome, wherein MIGs are enriched in common candidate animal domestication genes.
Collapse
Affiliation(s)
- Marybeth Baumgartner
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States.,Institute of Brain and Cognitive Sciences, University of Connecticut, Mansfield, CT, United States
| | - Kyle Drake
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States.,Institute of Systems Genomics, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
41
|
Nagata Y, Maciejewski JP. The functional mechanisms of mutations in myelodysplastic syndrome. Leukemia 2019; 33:2779-2794. [PMID: 31673113 DOI: 10.1038/s41375-019-0617-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Overlapping spectrum of mutated genes affected in myelodysplastic syndrome (MDS) and primary acute myeloid leukemia suggest common pathogenic mechanisms. However, the frequencies of specific mutations are significantly different between them, which implies they might determine specific disease phenotype. For instance, there are overrepresentations of mutations in RNA splicing factors or epigenetic regulators in MDS. We provide an overview of recent advances in our understanding of the biology of MDS and related disorders. Our focus is how mutations of in splicing factors or epigenetic regulators identified in MDS patients demonstrate phenotypes in knockin/knockout mouse models. For instance, mutant Srsf2 mice could alter Srsf2's normal sequence-specific RNA binding activity. It exhibited changing in the recognition of specific exonic splicing enhancer motifs to drive recurrent missplicing of Ezh2, which reduces Ezh2 expression by promoting nonsense-mediated decay. Consistent with this, SRSF2 mutations are mutually exclusive with EZH2 loss-of-function mutations in MDS patients. We also review how gene editing technology identified unique associations between pathogenic mechanisms and targeted therapy using lenalidomide, including: (i) how haploinsufficiency of the genes located in the commonly deleted region in del(5q) MDS patients promotes MDS; (ii) how lenalidomide causes selective elimination of del(5q) MDS cells; and (iii) why del(5q) MDS patients become resistant to lenalidomide. Thus, this review describes our current understanding of the mechanistic and biological effects of mutations in spliceosome and epigenetic regulators by comparing wild-type normal to mutant function as well as a brief overview of the recent progresses in MDS biology.
Collapse
Affiliation(s)
- Yasunobu Nagata
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, USA.
| |
Collapse
|
42
|
Cologne A, Benoit-Pilven C, Besson A, Putoux A, Campan-Fournier A, Bober MB, De Die-Smulders CEM, Paulussen ADC, Pinson L, Toutain A, Roifman CM, Leutenegger AL, Mazoyer S, Edery P, Lacroix V. New insights into minor splicing-a transcriptomic analysis of cells derived from TALS patients. RNA (NEW YORK, N.Y.) 2019; 25:1130-1149. [PMID: 31175170 PMCID: PMC6800510 DOI: 10.1261/rna.071423.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Minor intron splicing plays a central role in human embryonic development and survival. Indeed, biallelic mutations in RNU4ATAC, transcribed into the minor spliceosomal U4atac snRNA, are responsible for three rare autosomal recessive multimalformation disorders named Taybi-Linder (TALS/MOPD1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes, which associate numerous overlapping signs of varying severity. Although RNA-seq experiments have been conducted on a few RFMN patient cells, none have been performed in TALS, and more generally no in-depth transcriptomic analysis of the ∼700 human genes containing a minor (U12-type) intron had been published as yet. We thus sequenced RNA from cells derived from five skin, three amniotic fluid, and one blood biosamples obtained from seven unrelated TALS cases and from age- and sex-matched controls. This allowed us to describe for the first time the mRNA expression and splicing profile of genes containing U12-type introns, in the context of a functional minor spliceosome. Concerning RNU4ATAC-mutated patients, we show that as expected, they display distinct U12-type intron splicing profiles compared to controls, but that rather unexpectedly mRNA expression levels are mostly unchanged. Furthermore, although U12-type intron missplicing concerns most of the expressed U12 genes, the level of U12-type intron retention is surprisingly low in fibroblasts and amniocytes, and much more pronounced in blood cells. Interestingly, we found several occurrences of introns that can be spliced using either U2, U12, or a combination of both types of splice site consensus sequences, with a shift towards splicing using preferentially U2 sites in TALS patients' cells compared to controls.
Collapse
Affiliation(s)
- Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Clara Benoit-Pilven
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Alicia Besson
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Audrey Putoux
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Hospices Civils de Lyon, F-69500 Bron, France
| | - Amandine Campan-Fournier
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Michael B Bober
- Division of Medical Genetics, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware 19803, USA
| | - Christine E M De Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- School for Oncology and Developmental Biology, GROW, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- School for Oncology and Developmental Biology, GROW, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lucile Pinson
- Genetic Department for Rare Diseases and Personalized Medicine, Clinical Division, CHU Montpellier, F-34000 Montpellier, France
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, F-37000 Tours, France
- UMR 1253, iBrain, Tours University, Inserm, F-37000 Tours, France
| | - Chaim M Roifman
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
- Division for Immunology and Allergy, Canadian Center for Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Sylvie Mazoyer
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Patrick Edery
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Hospices Civils de Lyon, F-69500 Bron, France
| | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
43
|
Olthof AM, Hyatt KC, Kanadia RN. Minor intron splicing revisited: identification of new minor intron-containing genes and tissue-dependent retention and alternative splicing of minor introns. BMC Genomics 2019; 20:686. [PMID: 31470809 PMCID: PMC6717393 DOI: 10.1186/s12864-019-6046-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations in minor spliceosome components such as U12 snRNA (cerebellar ataxia) and U4atac snRNA (microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1)) result in tissue-specific symptoms. Given that the minor spliceosome is ubiquitously expressed, we hypothesized that these restricted phenotypes might be caused by the tissue-specific regulation of the minor spliceosome targets, i.e. minor intron-containing genes (MIGs). The current model of inefficient splicing is thought to apply to the regulation of the ~ 500 MIGs identified in the U12DB. However this database was created more than 10 years ago. Therefore, we first wanted to revisit the classification of minor introns in light of the most recent reference genome. We then sought to address specificity of MIG expression, minor intron retention, and alternative splicing (AS) across mouse and human tissues. RESULTS We employed position-weight matrices to obtain a comprehensive updated list of minor introns, consisting of 722 mouse and 770 human minor introns. These can be found in the Minor Intron DataBase (MIDB). Besides identification of 99% of the minor introns found in the U12DB, we also discovered ~ 150 new MIGs. We then analyzed the RNAseq data from eleven different mouse tissues, which revealed tissue-specific MIG expression and minor intron retention. Additionally, many minor introns were efficiently spliced compared to their flanking major introns. Finally, we identified several novel AS events across minor introns in both mouse and human, which were also tissue-dependent. Bioinformatics analysis revealed that several of the AS events could result in the production of novel tissue-specific proteins. Moreover, like the major introns, we found that these AS events were more prevalent in long minor introns, while retention was favoured in shorter introns. CONCLUSION Here we show that minor intron splicing and AS across minor introns is a highly organised process that might be regulated in coordination with the major spliceosome in a tissue-specific manner. We have provided a framework to further study the impact of the minor spliceosome and the regulation of MIG expression. These findings may shed light on the mechanism underlying tissue-specific phenotypes in diseases associated with minor spliceosome inactivation. MIDB can be accessed at https://midb.pnb.uconn.edu .
Collapse
Affiliation(s)
- Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
| | - Katery C. Hyatt
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
- Institute of Systems Genomics, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
44
|
Zuo Y, Feng F, Qi W, Song R. Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize kernel development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:728-748. [PMID: 30839161 DOI: 10.1111/jipb.12798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/28/2019] [Indexed: 05/22/2023]
Abstract
RNA-binding proteins (RBPs) play an important role in post-transcriptional gene regulation. However, the functions of RBPs in plants remain poorly understood. Maize kernel mutant dek42 has small defective kernels and lethal seedlings. Dek42 was cloned by Mutator tag isolation and further confirmed by an independent mutant allele and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 materials. Dek42 encodes an RRM_RBM48 type RNA-binding protein that localizes to the nucleus. Dek42 is constitutively expressed in various maize tissues. The dek42 mutation caused a significant reduction in the accumulation of DEK42 protein in mutant kernels. RNA-seq analysis showed that the dek42 mutation significantly disturbed the expression of thousands of genes during maize kernel development. Sequence analysis also showed that the dek42 mutation significantly changed alternative splicing in expressed genes, which were especially enriched for the U12-type intron-retained type. Yeast two-hybrid screening identified SF3a1 as a DEK42-interacting protein. DEK42 also interacts with the spliceosome component U1-70K. These results suggested that DEK42 participates in the regulation of pre-messenger RNA splicing through its interaction with other spliceosome components. This study showed the function of a newly identified RBP and provided insights into alternative splicing regulation during maize kernel development.
Collapse
Affiliation(s)
- Yi Zuo
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
45
|
RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing. Mol Cell 2019; 72:369-379.e4. [PMID: 30340024 PMCID: PMC6201815 DOI: 10.1016/j.molcel.2018.09.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 07/23/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023]
Abstract
The highly intronic nature of protein coding genes in mammals necessitates a co-transcriptional splicing mechanism as revealed by mNET-seq analysis. Immunoprecipitation of MNase-digested chromatin with antibodies against RNA polymerase II (Pol II) shows that active spliceosomes (both snRNA and proteins) are complexed to Pol II S5P CTD during elongation and co-transcriptional splicing. Notably, elongating Pol II-spliceosome complexes form strong interactions with nascent transcripts, resulting in footprints of approximately 60 nucleotides. Also, splicing intermediates formed by cleavage at the 5′ splice site are associated with nearly all spliced exons. These spliceosome-bound intermediates are frequently ligated to upstream exons, implying a sequential, constitutive, and U12-dependent splicing process. Finally, lack of detectable spliced products connected to the Pol II active site in human HeLa or murine lymphoid cells suggests that splicing does not occur immediately following 3′ splice site synthesis. Our results imply that most mammalian splicing requires exon definition for completion. S5P CTD Pol II associates with the catalytic spliceosome Elongating Pol II complexes protect about 60 newly synthesized nucleotides Co-transcriptional splicing associated with dominant 5′ ss intermediate U12-dependent introns are sequentially spliced in association with Pol II
Collapse
|
46
|
Bai F, Corll J, Shodja DN, Davenport R, Feng G, Mudunkothge J, Brigolin CJ, Martin F, Spielbauer G, Tseung CW, Siebert AE, Barbazuk WB, Lal S, Settles AM. RNA Binding Motif Protein 48 Is Required for U12 Splicing and Maize Endosperm Differentiation. THE PLANT CELL 2019; 31:715-733. [PMID: 30760564 PMCID: PMC6482629 DOI: 10.1105/tpc.18.00754] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/11/2019] [Accepted: 02/13/2019] [Indexed: 05/19/2023]
Abstract
The last eukaryotic common ancestor had two classes of introns that are still found in most eukaryotic lineages. Common U2-type and rare U12-type introns are spliced by the major and minor spliceosomes, respectively. Relatively few splicing factors have been shown to be specific to the minor spliceosome. We found that the maize (Zea mays) RNA binding motif protein 48 (RBM48) is a U12 splicing factor that functions to promote cell differentiation and repress cell proliferation. RBM48 is coselected with the U12 splicing factor, zinc finger CCCH-type, RNA binding motif, and Ser/Arg rich 2/Rough endosperm 3 (RGH3). Protein-protein interactions between RBM48, RGH3, and U2 Auxiliary Factor (U2AF) subunits suggest major and minor spliceosome factors required for intron recognition form complexes with RBM48. Human RBM48 interacts with armadillo repeat containing 7 (ARMC7). Maize RBM48 and ARMC7 have a conserved protein-protein interaction. These data predict that RBM48 is likely to function in U12 splicing throughout eukaryotes and that U12 splicing promotes endosperm cell differentiation in maize.
Collapse
Affiliation(s)
- Fang Bai
- Horticultural Sciences Department, and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611
| | - Jacob Corll
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309
| | - Donya N Shodja
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309
| | - Ruth Davenport
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Guanqiao Feng
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Janaki Mudunkothge
- Horticultural Sciences Department, and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611
| | - Christian J Brigolin
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309
| | - Federico Martin
- Horticultural Sciences Department, and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611
| | - Gertraud Spielbauer
- Horticultural Sciences Department, and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611
| | - Chi-Wah Tseung
- Horticultural Sciences Department, and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611
| | - Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309
| | - W Brad Barbazuk
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Shailesh Lal
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309
| | - A Mark Settles
- Horticultural Sciences Department, and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
47
|
Abstract
One of the most important resources for researchers of noncoding RNAs is the information available in public databases spread over the internet. However, the effective exploration of this data can represent a daunting task, given the large amount of databases available and the variety of stored data. This chapter describes a classification of databases based on information source, type of RNA, source organisms, data formats, and the mechanisms for information retrieval, detailing the relevance of each of these classifications and its usability by researchers. This classification is used to update a 2012 review, indexing now more than 229 public databases. This review will include an assessment of the new trends for ncRNA research based on the information that is being offered by the databases. Additionally, we will expand the previous analysis focusing on the usability and application of these databases in pathogen and disease research. Finally, this chapter will analyze how currently available database schemas can help the development of new and improved web resources.
Collapse
|
48
|
Erkelenz S, Theiss S, Kaisers W, Ptok J, Walotka L, Müller L, Hillebrand F, Brillen AL, Sladek M, Schaal H. Ranking noncanonical 5' splice site usage by genome-wide RNA-seq analysis and splicing reporter assays. Genome Res 2018; 28:1826-1840. [PMID: 30355602 PMCID: PMC6280755 DOI: 10.1101/gr.235861.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023]
Abstract
Most human pathogenic mutations in 5' splice sites affect the canonical GT in positions +1 and +2, leading to noncanonical dinucleotides. On the other hand, noncanonical dinucleotides are observed under physiological conditions in ∼1% of all human 5'ss. It is therefore a challenging task to understand the pathogenic mutation mechanisms underlying the conditions under which noncanonical 5'ss are used. In this work, we systematically examined noncanonical 5' splice site selection, both experimentally using splicing competition reporters and by analyzing a large RNA-seq data set of 54 fibroblast samples from 27 subjects containing a total of 2.4 billion gapped reads covering 269,375 exon junctions. From both approaches, we consistently derived a noncanonical 5'ss usage ranking GC > TT > AT > GA > GG > CT. In our competition splicing reporter assay, noncanonical splicing was strictly dependent on the presence of upstream or downstream splicing regulatory elements (SREs), and changes in SREs could be compensated by variation of U1 snRNA complementarity in the competing 5'ss. In particular, we could confirm splicing at different positions (i.e., -1, +1, +5) of a splice site for all noncanonical dinucleotides "weaker" than GC. In our comprehensive RNA-seq data set analysis, noncanonical 5'ss were preferentially detected in weakly used exon junctions of highly expressed genes. Among high-confidence splice sites, they were 10-fold overrepresented in clusters with a neighboring, more frequently used 5'ss. Conversely, these more frequently used neighbors contained only the dinucleotides GT, GC, and TT, in accordance with the above ranking.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Wolfgang Kaisers
- Center for Biological and Medical Research (BMFZ), Center of Bioinformatics and Biostatistics (CBiBs), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lara Walotka
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Frank Hillebrand
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Anna-Lena Brillen
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Michael Sladek
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
49
|
Doggett K, Williams BB, Markmiller S, Geng FS, Coates J, Mieruszynski S, Ernst M, Thomas T, Heath JK. Early developmental arrest and impaired gastrointestinal homeostasis in U12-dependent splicing-defective Rnpc3-deficient mice. RNA (NEW YORK, N.Y.) 2018; 24:1856-1870. [PMID: 30254136 PMCID: PMC6239176 DOI: 10.1261/rna.068221.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 05/10/2023]
Abstract
Splicing is an essential step in eukaryotic gene expression. While the majority of introns is excised by the U2-dependent, or major class, spliceosome, the appropriate expression of a very small subset of genes depends on U12-dependent, or minor class, splicing. The U11/U12 65K protein (hereafter 65K), encoded by RNPC3, is one of seven proteins that are unique to the U12-dependent spliceosome, and previous studies including our own have established that it plays a role in plant and vertebrate development. To pinpoint the impact of 65K loss during mammalian development and in adulthood, we generated germline and conditional Rnpc3-deficient mice. Homozygous Rnpc3-/- embryos died prior to blastocyst implantation, whereas Rnpc3+/- mice were born at the expected frequency, achieved sexual maturity, and exhibited a completely normal lifespan. Systemic recombination of conditional Rnpc3 alleles in adult (Rnpc3lox/lox ) mice caused rapid weight loss, leukopenia, and degeneration of the epithelial lining of the entire gastrointestinal tract, the latter due to increased cell death and a reduction in cell proliferation. Accompanying this, we observed a loss of both 65K and the pro-proliferative phospho-ERK1/2 proteins from the stem/progenitor cells at the base of intestinal crypts. RT-PCR analysis of RNA extracted from purified preparations of intestinal epithelial cells with recombined Rnpc3lox alleles revealed increased frequency of U12-type intron retention in all transcripts tested. Our study, using a novel conditional mouse model of Rnpc3 deficiency, establishes that U12-dependent splicing is not only important during development but is indispensable throughout life.
Collapse
Affiliation(s)
- Karen Doggett
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ben B Williams
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Sebastian Markmiller
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Fan-Suo Geng
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Janine Coates
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Stephen Mieruszynski
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3050, Australia
| | - Tim Thomas
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joan K Heath
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
50
|
Baumgartner M, Olthof AM, Aquino GS, Hyatt KC, Lemoine C, Drake K, Sturrock N, Nguyen N, Al Seesi S, Kanadia RN. Minor spliceosome inactivation causes microcephaly, owing to cell cycle defects and death of self-amplifying radial glial cells. Development 2018; 145:dev166322. [PMID: 30093551 PMCID: PMC6141777 DOI: 10.1242/dev.166322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022]
Abstract
Mutation in minor spliceosome components is linked to the developmental disorder microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Here, we inactivated the minor spliceosome in the developing mouse cortex (pallium) by ablating Rnu11, which encodes the crucial minor spliceosome small nuclear RNA (snRNA) U11. Rnu11 conditional knockout mice were born with microcephaly, which was caused by the death of self-amplifying radial glial cells (RGCs), while intermediate progenitor cells and neurons were produced. RNA sequencing suggested that this cell death was mediated by upregulation of p53 (Trp53 - Mouse Genome Informatics) and DNA damage, which were both observed specifically in U11-null RGCs. Moreover, U11 loss caused elevated minor intron retention in genes regulating the cell cycle, which was consistent with fewer RGCs in S-phase and cytokinesis, alongside prolonged metaphase in RGCs. In all, we found that self-amplifying RGCs are the cell type most sensitive to loss of minor splicing. Together, these findings provide a potential explanation of how disruption of minor splicing might cause microcephaly in MOPD1.
Collapse
Affiliation(s)
- Marybeth Baumgartner
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Gabriela S Aquino
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Katery C Hyatt
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Christopher Lemoine
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Kyle Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Nikita Sturrock
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Nhut Nguyen
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Sahar Al Seesi
- Computer Science Engineering Department, University of Connecticut, Storrs, CT 06269, USA
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute of Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|