1
|
Jedrzejewski M, Belza B, Lewandowska I, Sadlej M, Perlinska AP, Augustyniak R, Christian T, Hou YM, Kalek M, Sulkowska JI. Nucleolar Essential Protein 1 (Nep1): Elucidation of enzymatic catalysis mechanism by molecular dynamics simulation and quantum mechanics study. Comput Struct Biotechnol J 2023; 21:3999-4008. [PMID: 37649713 PMCID: PMC10462857 DOI: 10.1016/j.csbj.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
The Nep1 protein is essential for the formation of eukaryotic and archaeal small ribosomal subunits, and it catalyzes the site-directed SAM-dependent methylation of pseudouridine (Ψ) during pre-rRNA processing. It possesses a non-trivial topology, namely, a 31 knot in the active site. Here, we address the issue of seemingly unfeasible deprotonation of Ψ in Nep1 active site by a distant aspartate residue (D101 in S. cerevisiae), using a combination of bioinformatics, computational, and experimental methods. We identified a conserved hydroxyl-containing amino acid (S233 in S. cerevisiae, T198 in A. fulgidus) that may act as a proton-transfer mediator. Molecular dynamics simulations, based on the crystal structure of S. cerevisiae, and on a complex generated by molecular docking in A. fulgidus, confirmed that this amino acid can shuttle protons, however, a water molecule in the active site may also serve this role. Quantum-chemical calculations based on density functional theory and the cluster approach showed that the water-mediated pathway is the most favorable for catalysis. Experimental kinetic and mutational studies reinforce the requirement for the aspartate D101, but not S233. These findings provide insight into the catalytic mechanisms underlying proton transfer over extended distances and comprehensively elucidate the mode of action of Nep1.
Collapse
Affiliation(s)
- Mateusz Jedrzejewski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Barbara Belza
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Iwona Lewandowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Marta Sadlej
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Agata P. Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Rafal Augustyniak
- Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
Ensinck I, Maman A, Albihlal WS, Lassandro M, Salzano G, Sideri T, Howell SA, Calvani E, Patel H, Bushkin G, Ralser M, Snijders AP, Skehel M, Casañal A, Schwartz S, van Werven FJ. The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. eLife 2023; 12:RP87860. [PMID: 37490041 PMCID: PMC10393049 DOI: 10.7554/elife.87860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
N6-methyladenosine (m6A), the most abundant mRNA modification, is deposited in mammals/insects/plants by m6A methyltransferase complexes (MTC) comprising a catalytic subunit and at least five additional proteins. The yeast MTC is critical for meiosis and was known to comprise three proteins, of which two were conserved. We uncover three novel MTC components (Kar4/Ygl036w-Vir1/Dyn2). All MTC subunits, except for Dyn2, are essential for m6A deposition and have corresponding mammalian MTC orthologues. Unlike the mammalian bipartite MTC, the yeast MTC is unipartite, yet multifunctional. The mRNA interacting module, comprising Ime4, Mum2, Vir1, and Kar4, exerts the MTC's m6A-independent function, while Slz1 enables the MTC catalytic function in m6A deposition. Both functions are critical for meiotic progression. Kar4 also has a mechanistically separate role from the MTC during mating. The yeast MTC constituents play distinguishable m6A-dependent, MTC-dependent, and MTC-independent functions, highlighting their complexity and paving the path towards dissecting multi-layered MTC functions in mammals.
Collapse
Affiliation(s)
| | - Alexander Maman
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | | | | | | | | | | | | | | - Guy Bushkin
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Markus Ralser
- The Francis Crick InstituteLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Department of BiochemistryBerlinGermany
| | | | - Mark Skehel
- The Francis Crick InstituteLondonUnited Kingdom
| | | | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | |
Collapse
|
3
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
4
|
Parker MD, Karbstein K. Quality control ensures fidelity in ribosome assembly and cellular health. J Cell Biol 2023; 222:e202209115. [PMID: 36790396 PMCID: PMC9960125 DOI: 10.1083/jcb.202209115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The coordinated integration of ribosomal RNA and protein into two functional ribosomal subunits is safeguarded by quality control checkpoints that ensure ribosomes are correctly assembled and functional before they engage in translation. Quality control is critical in maintaining the integrity of ribosomes and necessary to support healthy cell growth and prevent diseases associated with mistakes in ribosome assembly. Its importance is demonstrated by the finding that bypassing quality control leads to misassembled, malfunctioning ribosomes with altered translation fidelity, which change gene expression and disrupt protein homeostasis. In this review, we outline our understanding of quality control within ribosome synthesis and how failure to enforce quality control contributes to human disease. We first provide a definition of quality control to guide our investigation, briefly present the main assembly steps, and then examine stages of assembly that test ribosome function, establish a pass-fail system to evaluate these functions, and contribute to altered ribosome performance when bypassed, and are thus considered "quality control."
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
- Howard Hughes Medical Institute Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
5
|
Li X, Li K, Guo W, Wen Y, Meng C, Wu B. Structure Characterization of Escherichia coli Pseudouridine Kinase PsuK. Front Microbiol 2022; 13:926099. [PMID: 35783380 PMCID: PMC9247573 DOI: 10.3389/fmicb.2022.926099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudouridine (Ψ) is one of the most abundant RNA modifications in cellular RNAs that post-transcriptionally impact many aspects of RNA. However, the metabolic fate of modified RNA nucleotides has long been a question. A pseudouridine kinase (PsuK) and a pseudouridine monophosphate glycosylase (PsuG) in Escherichia coli were first characterized as involved in pseudouridine degradation by catalyzing the phosphorylation of pseudouridine to pseudouridine 5′-phosphate (ΨMP) and further hydrolyzing 5′-ΨMP to produce uracil and ribose 5′-phosphate. Recently, their homolog proteins in eukaryotes were also identified, which were named PUKI and PUMY in Arabidopsis. Here, we solved the crystal structures of apo-EcPsuK and its binary complex with Ψ or N1-methyl-pseudouridine (m1Ψ). The structure of EcPsuK showed a homodimer conformation assembled by its β-thumb region. EcPsuK has an appropriate binding site with a series of hydrophilic and hydrophobic interactions for Ψ. Moreover, our complex structure of EcPsuK-m1Ψ suggested the binding pocket has an appropriate capacity for m1Ψ. We also identified the monovalent ion-binding site and potential ATP-binding site. Our studies improved the understanding of the mechanism of Ψ turnover.
Collapse
Affiliation(s)
- Xiaojia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangjie Li
- Department of Biopharmaceutical Technology, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Baixing Wu,
| |
Collapse
|
6
|
Lacoux C, Wacheul L, Saraf K, Pythoud N, Huvelle E, Figaro S, Graille M, Carapito C, Lafontaine DLJ, Heurgué-Hamard V. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res 2020; 48:12310-12325. [PMID: 33166396 PMCID: PMC7708063 DOI: 10.1093/nar/gkaa972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.
Collapse
Affiliation(s)
- Caroline Lacoux
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Kritika Saraf
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Emmeline Huvelle
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Valérie Heurgué-Hamard
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
7
|
Abstract
Following its transcription, RNA can be modified by >170 chemically distinct types of modifications - the epitranscriptome. In recent years, there have been substantial efforts to uncover and characterize the modifications present on mRNA, motivated by the potential of such modifications to regulate mRNA fate and by discoveries and advances in our understanding of N 6-methyladenosine (m6A). Here, we review our knowledge regarding the detection, distribution, abundance, biogenesis, functions and possible mechanisms of action of six of these modifications - pseudouridine (Ψ), 5-methylcytidine (m5C), N 1-methyladenosine (m1A), N 4-acetylcytidine (ac4C), ribose methylations (Nm) and N 7-methylguanosine (m7G). We discuss the technical and analytical aspects that have led to inconsistent conclusions and controversies regarding the abundance and distribution of some of these modifications. We further highlight shared commonalities and important ways in which these modifications differ with respect to m6A, based on which we speculate on their origin and their ability to acquire functions over evolutionary timescales.
Collapse
|
8
|
Dai L, Li Z, Chen D, Jia L, Guo J, Zhao T, Nordlund P. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol Ther 2020; 216:107690. [PMID: 32980441 DOI: 10.1016/j.pharmthera.2020.107690] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Natural products (NPs) have been an important source of therapeutic drugs in clinic use and contributed many chemical probes for research. The usefulness of NPs is however often marred by the incomplete understanding of their direct cellular targets. A number of experimental methods for drug target identification have been developed over the years. One class of methods, termed "label-free" methodology, exploits the energetic and biophysical features accompanying the association of macromolecules with drugs and other compounds in their native forms. Herein we review the working principles, assay implementations, and key applications of the most important approaches, and also give examples where they have been applied to NPs. We also assess the key advantages and limitations of each method. Furthermore, we address when and how the label-free methodology can be particularly useful considering some of the unique features of NP chemistry and bioactivation.
Collapse
Affiliation(s)
- Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.
| | - Zhijie Li
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Dan Chen
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China
| | - Tianyun Zhao
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
9
|
Kirsch VC, Orgler C, Braig S, Jeremias I, Auerbach D, Müller R, Vollmar AM, Sieber SA. Der zytotoxische Naturstoff Vioprolid A interagiert mit dem für die Ribosomen‐Biogenese essentiellen nukleolären Protein 14. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Volker C. Kirsch
- Center for Integrated Protein Science (CIPSM) Department Chemie Technische Universität München (TUM) Lichtenbergstraße 4 85747 Garching Deutschland
| | - Christina Orgler
- Department für Pharmazie Pharmazeutische Biologie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5–13 81377 München Deutschland
| | - Simone Braig
- Department für Pharmazie Pharmazeutische Biologie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5–13 81377 München Deutschland
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt Marchioninistraße 25 81377 München Deutschland
- Dr. von Hauner Kinderkrankenhaus Ludwig-Maximilians-Universität München (LMU) Lindwurmstraße 4 80337 München Deutschland
| | - David Auerbach
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Center für Infektionsforschung und Department Pharmazie Universität des Saarlandes Campus Gebäude E8.1 66123 Saarbrücken Deutschland
| | - Rolf Müller
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Center für Infektionsforschung und Department Pharmazie Universität des Saarlandes Campus Gebäude E8.1 66123 Saarbrücken Deutschland
| | - Angelika M. Vollmar
- Department für Pharmazie Pharmazeutische Biologie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5–13 81377 München Deutschland
| | - Stephan A. Sieber
- Center for Integrated Protein Science (CIPSM) Department Chemie Technische Universität München (TUM) Lichtenbergstraße 4 85747 Garching Deutschland
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Center für Infektionsforschung und Department Pharmazie Universität des Saarlandes Campus Gebäude E8.1 66123 Saarbrücken Deutschland
| |
Collapse
|
10
|
Kirsch VC, Orgler C, Braig S, Jeremias I, Auerbach D, Müller R, Vollmar AM, Sieber SA. The Cytotoxic Natural Product Vioprolide A Targets Nucleolar Protein 14, Which Is Essential for Ribosome Biogenesis. Angew Chem Int Ed Engl 2019; 59:1595-1600. [PMID: 31658409 PMCID: PMC7004033 DOI: 10.1002/anie.201911158] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/24/2019] [Indexed: 11/23/2022]
Abstract
Novel targets are needed for treatment of devastating diseases such as cancer. For decades, natural products have guided innovative therapies by addressing diverse pathways. Inspired by the potent cytotoxic bioactivity of myxobacterial vioprolides A–D, we performed in‐depth studies on their mode of action. Based on its prominent potency against human acute lymphoblastic leukemia (ALL) cells, we conducted thermal proteome profiling (TPP) and deciphered the target proteins of the most active derivative vioprolide A (VioA) in Jurkat cells. Nucleolar protein 14 (NOP14), which is essential in ribosome biogenesis, was confirmed as a specific target of VioA by a suite of proteomic and biological follow‐up experiments. Given its activity against ALL cells compared to healthy lymphocytes, VioA exhibits unique therapeutic potential for anticancer therapy through a novel mode of action.
Collapse
Affiliation(s)
- Volker C Kirsch
- Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Christina Orgler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian-University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Simone Braig
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian-University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377, München, Germany.,Dr. von Hauner Children's Hospital, Ludiwg-Maximilian-University of Munich (LMU), Lindwurmstrasse 4, 80337, Munich, Germany
| | - David Auerbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian-University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
11
|
Choudhury P, Hackert P, Memet I, Sloan KE, Bohnsack MT. The human RNA helicase DHX37 is required for release of the U3 snoRNP from pre-ribosomal particles. RNA Biol 2018; 16:54-68. [PMID: 30582406 PMCID: PMC6380342 DOI: 10.1080/15476286.2018.1556149] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribosome synthesis is an essential cellular process, and perturbation of human ribosome production is linked to cancer and genetic diseases termed ribosomopathies. During their assembly, pre-ribosomal particles undergo numerous structural rearrangements, which establish the architecture present in mature complexes and serve as key checkpoints, ensuring the fidelity of ribosome biogenesis. RNA helicases are essential mediators of such remodelling events and here, we demonstrate that the DEAH-box RNA helicase DHX37 is required for maturation of the small ribosomal subunit in human cells. Our data reveal that the presence of DHX37 in early pre-ribosomal particles is monitored by a quality control pathway and that failure to recruit DHX37 leads to pre-rRNA degradation. Using an in vivo crosslinking approach, we show that DHX37 binds directly to the U3 small nucleolar RNA (snoRNA) and demonstrate that the catalytic activity of the helicase is required for dissociation of the U3 snoRNA from pre-ribosomal complexes. This is an important event during ribosome assembly as it enables formation of the central pseudoknot structure of the small ribosomal subunit. We identify UTP14A as a direct interaction partner of DHX37 and our data suggest that UTP14A can act as a cofactor that stimulates the activity of the helicase in the context of U3 snoRNA release.
Collapse
Affiliation(s)
- Priyanka Choudhury
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany
| | - Philipp Hackert
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany
| | - Indira Memet
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany
| | - Katherine E Sloan
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany
| | - Markus T Bohnsack
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany.,b Göttingen Center for Molecular Biosciences , Georg-August University , Göttingen , Germany
| |
Collapse
|
12
|
Warda AS, Freytag B, Haag S, Sloan KE, Görlich D, Bohnsack MT. Effects of the Bowen-Conradi syndrome mutation in EMG1 on its nuclear import, stability and nucleolar recruitment. Hum Mol Genet 2017; 25:5353-5364. [PMID: 27798105 PMCID: PMC5418833 DOI: 10.1093/hmg/ddw351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Bowen-Conradi syndrome (BCS) is a severe genetic disorder that is characterised by various developmental abnormalities, bone marrow failure and early infant death. This disease is caused by a single mutation leading to the aspartate 86 to glycine (D86G) exchange in the essential nucleolar RNA methyltransferase EMG1. EMG1 is required for the synthesis of the small ribosomal subunit and is involved in modification of the 18S ribosomal RNA. Here, we identify the pre-ribosomal factors NOP14, NOC4L and UTP14A as members of a nucleolar subcomplex that contains EMG1 and is required for its recruitment to nucleoli. The BCS mutation in EMG1 leads to reduced nucleolar localisation, accumulation of EMG1D86G in nuclear foci and its proteasome-dependent degradation. We further show that EMG1 can be imported into the nucleus by the importins (Imp) Impα/β or Impβ/7. Interestingly, in addition to its role in nuclear import, binding of the Impβ/7 heterodimer can prevent unspecific aggregation of both EMG1 and EMG1D86G on RNAs in vitro, indicating that the importins act as chaperones by binding to basic regions of the RNA methyltransferase. Our findings further indicate that in BCS, nuclear disassembly of the import complex and release of EMG1D86G lead to its nuclear aggregation and degradation, resulting in the reduced nucleolar recruitment of the RNA methyltransferase and defects in the biogenesis of the small ribosomal subunit.
Collapse
Affiliation(s)
- Ahmed S Warda
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Bernard Freytag
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sara Haag
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
13
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
14
|
Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine. Sci Rep 2017; 7:969. [PMID: 28428565 PMCID: PMC5430550 DOI: 10.1038/s41598-017-01186-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Eubacterial ribosomal large-subunit methyltransferase H (RlmH) methylates 23S ribosomal RNA pseudouridine 1915 (Ψ1915), which lies near the ribosomal decoding center. The smallest member of the SPOUT superfamily of methyltransferases, RlmH lacks the RNA recognition domain found in larger methyltransferases. The catalytic mechanism of RlmH enzyme is unknown. Here, we describe the structures of RlmH bound to S-adenosyl-methionine (SAM) and the methyltransferase inhibitor sinefungin. Our structural and biochemical studies reveal catalytically essential residues in the dimer-mediated asymmetrical active site. One monomer provides the SAM-binding site, whereas the conserved C-terminal tail of the second monomer provides residues essential for catalysis. Our findings elucidate the mechanism by which a small protein dimer assembles a functionally asymmetric architecture.
Collapse
|
15
|
Zhang Y, Agrebi R, Bellows LE, Collet JF, Kaever V, Gründling A. Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3',5'-cAMP in Bacteria. J Biol Chem 2017; 292:313-327. [PMID: 27881678 PMCID: PMC5217690 DOI: 10.1074/jbc.m116.758896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
The nucleotide signaling molecule 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) plays important physiological roles, ranging from carbon catabolite repression in bacteria to mediating the action of hormones in higher eukaryotes, including human. However, it remains unclear whether 3',5'-cAMP is universally present in the Firmicutes group of bacteria. We hypothesized that searching for proteins that bind 3',5'-cAMP might provide new insight into this question. Accordingly, we performed a genome-wide screen and identified the essential Staphylococcus aureus tRNA m1G37 methyltransferase enzyme TrmD, which is conserved in all three domains of life as a tight 3',5'-cAMP-binding protein. TrmD enzymes are known to use S-adenosyl-l-methionine (AdoMet) as substrate; we have shown that 3',5'-cAMP binds competitively with AdoMet to the S. aureus TrmD protein, indicating an overlapping binding site. However, the physiological relevance of this discovery remained unclear, as we were unable to identify a functional adenylate cyclase in S. aureus and only detected 2',3'-cAMP but not 3',5'-cAMP in cellular extracts. Interestingly, TrmD proteins from Escherichia coli and Mycobacterium tuberculosis, organisms known to synthesize 3',5'-cAMP, did not bind this signaling nucleotide. Comparative bioinformatics, mutagenesis, and biochemical analyses revealed that the highly conserved Tyr-86 residue in E. coli TrmD is essential to discriminate between 3',5'-cAMP and the native substrate AdoMet. Combined with a phylogenetic analysis, these results suggest that amino acids in the substrate binding pocket of TrmD underwent an adaptive evolution to accommodate the emergence of adenylate cyclases and thus the signaling molecule 3',5'-cAMP. Altogether this further indicates that S. aureus does not produce 3',5'-cAMP, which would otherwise competitively inhibit an essential enzyme.
Collapse
Affiliation(s)
- Yong Zhang
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rym Agrebi
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium, and
| | - Lauren E Bellows
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jean-François Collet
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium, and
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Angelika Gründling
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom,
| |
Collapse
|
16
|
Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016; 14:1138-1152. [PMID: 27911188 PMCID: PMC5699541 DOI: 10.1080/15476286.2016.1259781] [Citation(s) in RCA: 449] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.
Collapse
Affiliation(s)
- Katherine E Sloan
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Ahmed S Warda
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Sunny Sharma
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Karl-Dieter Entian
- c Institute for Molecular Biosciences, Goethe University , Frankfurt am Main , Germany
| | - Denis L J Lafontaine
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Markus T Bohnsack
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany.,d Göttingen Centre for Molecular Biosciences, Georg-August-University , Göttingen , Germany
| |
Collapse
|
17
|
Ji MM, Liu AQ, Sima YH, Xu SQ. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:617-628. [PMID: 27329527 DOI: 10.1111/imb.12248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx.
Collapse
Affiliation(s)
- M-M Ji
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - A-Q Liu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Y-H Sima
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - S-Q Xu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk (NESER), Soochow University, Suzhou, China
| |
Collapse
|
18
|
Taoka M, Nobe Y, Yamaki Y, Yamauchi Y, Ishikawa H, Takahashi N, Nakayama H, Isobe T. The complete chemical structure of Saccharomyces cerevisiae rRNA: partial pseudouridylation of U2345 in 25S rRNA by snoRNA snR9. Nucleic Acids Res 2016; 44:8951-8961. [PMID: 27325748 PMCID: PMC5062969 DOI: 10.1093/nar/gkw564] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
We present the complete chemical structures of the rRNAs from the eukaryotic model organism, Saccharomyces cerevisiae. The final structures, as determined with mass spectrometry-based methodology that includes a stable isotope-labelled, non-modified reference RNA, contain 112 sites with 12 different post-transcriptional modifications, including a previously unidentified pseudouridine at position 2345 in 25S rRNA. Quantitative mass spectrometry-based stoichiometric analysis of the different modifications at each site indicated that 94 sites were almost fully modified, whereas the remaining 18 sites were modified to a lesser extent. Superimposed three-dimensional modification maps for S. cerevisiae and Schizosaccharomyces pombe rRNAs confirmed that most of the modified nucleotides are located in functionally important interior regions of the ribosomes. We identified snR9 as the snoRNA responsible for pseudouridylation of U2345 and showed that this pseudouridylation occurs co-transcriptionally and competitively with 2′-O-methylation of U2345. This study ends the uncertainty concerning whether all modified nucleotides in S. cerevisiae rRNAs have been identified and provides a resource for future structural, functional and biogenesis studies of the eukaryotic ribosome.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuka Yamaki
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hideaki Ishikawa
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Nobuhiro Takahashi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hiroshi Nakayama
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
19
|
Meyer B, Wurm JP, Sharma S, Immer C, Pogoryelov D, Kötter P, Lafontaine DLJ, Wöhnert J, Entian KD. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res 2016; 44:4304-16. [PMID: 27084949 PMCID: PMC4872110 DOI: 10.1093/nar/gkw244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022] Open
Abstract
The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes.
Collapse
Affiliation(s)
- Britta Meyer
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| | - Jan Philip Wurm
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Sunny Sharma
- RNA Molecular Biology & Center for Microscopy and Molecular Imaging, Fonds National de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB)
| | - Carina Immer
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Denys Pogoryelov
- Institute of Biochemistry, Goethe University, Frankfurt/M, Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| | - Denis L J Lafontaine
- RNA Molecular Biology & Center for Microscopy and Molecular Imaging, Fonds National de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB)
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| |
Collapse
|
20
|
Sharma S, Lafontaine DLJ. 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification. Trends Biochem Sci 2016; 40:560-575. [PMID: 26410597 DOI: 10.1016/j.tibs.2015.07.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/23/2023]
Abstract
Eukaryotic rRNA are modified frequently, although the diversity of modifications is low: in yeast rRNA, there are only 12 different types out of a possible natural repertoire exceeding 112. All nine rRNA base methyltransferases (MTases) and one acetyltransferase have recently been identified in budding yeast, and several instances of crosstalk between rRNA, tRNA, and mRNA modifications are emerging. Although the machinery has largely been identified, the functions of most rRNA modifications remain to be established. Remarkably, a eukaryote-specific bridge, comprising a single ribosomal protein (RP) from the large subunit (LSU), contacts four rRNA base modifications across the ribosomal subunit interface, potentially probing for their presence. We hypothesize in this article that long-range allosteric communication involving rRNA modifications is taking place between the two subunits during translation or, perhaps, the late stages of ribosome assembly.
Collapse
Affiliation(s)
- Sunny Sharma
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium; Center for Microscopy and Molecular Imaging, BioPark campus, B-6041 Charleroi-Gosselies, Belgium.
| |
Collapse
|
21
|
Heininger AU, Hackert P, Andreou AZ, Boon KL, Memet I, Prior M, Clancy A, Schmidt B, Urlaub H, Schleiff E, Sloan KE, Deckers M, Lührmann R, Enderlein J, Klostermeier D, Rehling P, Bohnsack MT. Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways. RNA Biol 2016; 13:320-30. [PMID: 26821976 PMCID: PMC4829300 DOI: 10.1080/15476286.2016.1142038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A rapidly increasing number of RNA helicases are implicated in several distinct cellular processes, however, the modes of regulation of multifunctional RNA helicases and their recruitment to different target complexes have remained unknown. Here, we show that the distribution of the multifunctional DEAH-box RNA helicase Prp43 between its diverse cellular functions can be regulated by the interplay of its G-patch protein cofactors. We identify the orphan G-patch protein Cmg1 (YLR271W) as a novel cofactor of Prp43 and show that it stimulates the RNA binding and ATPase activity of the helicase. Interestingly, Cmg1 localizes to the cytoplasm and to the intermembrane space of mitochondria and its overexpression promotes apoptosis. Furthermore, our data reveal that different G-patch protein cofactors compete for interaction with Prp43. Changes in the expression levels of Prp43-interacting G-patch proteins modulate the cellular localization of Prp43 and G-patch protein overexpression causes accumulation of the helicase in the cytoplasm or nucleoplasm. Overexpression of several G-patch proteins also leads to defects in ribosome biogenesis that are consistent with withdrawal of the helicase from this pathway. Together, these findings suggest that the availability of cofactors and the sequestering of the helicase are means to regulate the activity of multifunctional RNA helicases and their distribution between different cellular processes.
Collapse
Affiliation(s)
- Annika U Heininger
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Philipp Hackert
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Alexandra Z Andreou
- b Institute for Physical Chemistry, University of Muenster , Muenster , Germany
| | - Kum-Loong Boon
- c Max-Planck-Institute for Biophysical Chemistry , Goettingen , Germany
| | - Indira Memet
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Mira Prior
- d III. Institute of Physics-Biophysics, Georg-August University , Goettingen , Germany
| | - Anne Clancy
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Bernhard Schmidt
- e Institute of Cellular Biochemistry, Georg-August University , Goettingen , Germany
| | - Henning Urlaub
- c Max-Planck-Institute for Biophysical Chemistry , Goettingen , Germany
| | - Enrico Schleiff
- f Institute for Molecular Biosciences, Goethe University , Frankfurt , Germany
| | - Katherine E Sloan
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany
| | - Markus Deckers
- e Institute of Cellular Biochemistry, Georg-August University , Goettingen , Germany
| | - Reinhard Lührmann
- c Max-Planck-Institute for Biophysical Chemistry , Goettingen , Germany
| | - Jörg Enderlein
- d III. Institute of Physics-Biophysics, Georg-August University , Goettingen , Germany
| | - Dagmar Klostermeier
- b Institute for Physical Chemistry, University of Muenster , Muenster , Germany
| | - Peter Rehling
- c Max-Planck-Institute for Biophysical Chemistry , Goettingen , Germany.,e Institute of Cellular Biochemistry, Georg-August University , Goettingen , Germany.,g Goettingen Center for Molecular Biosciences, Georg-August-University , Goettingen , Germany
| | - Markus T Bohnsack
- a Institute for Molecular Biology, Georg-August University , Goettingen , Germany.,g Goettingen Center for Molecular Biosciences, Georg-August-University , Goettingen , Germany
| |
Collapse
|
22
|
Bourgeois G, Ney M, Gaspar I, Aigueperse C, Schaefer M, Kellner S, Helm M, Motorin Y. Eukaryotic rRNA Modification by Yeast 5-Methylcytosine-Methyltransferases and Human Proliferation-Associated Antigen p120. PLoS One 2015. [PMID: 26196125 PMCID: PMC4510066 DOI: 10.1371/journal.pone.0133321] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Modified nucleotide 5-methylcytosine (m5C) is frequently present in various eukaryotic RNAs, including tRNAs, rRNAs and in other non-coding RNAs, as well as in mRNAs. RNA:m5C-methyltranferases (MTases) Nop2 from S. cerevisiae and human proliferation-associated nucleolar antigen p120 are both members of a protein family called Nop2/NSUN/NOL1. Protein p120 is well-known as a tumor marker which is over-expressed in various cancer tissues. Using a combination of RNA bisulfite sequencing and HPLC-MS/MS analysis, we demonstrated here that p120 displays an RNA:m5C- MTase activity, which restores m5C formation at position 2870 in domain V of 25S rRNA in a nop2Δ yeast strain. We also confirm that yeast proteins Nop2p and Rcm1p catalyze the formation of m5C in domains V and IV, respectively. In addition, we do not find any evidence of m5C residues in yeast 18S rRNA. We also performed functional complementation of Nop2-deficient yeasts by human p120 and studied the importance of different sequence and structural domains of Nop2 and p120 for yeast growth and m5C-MTase activity. Chimeric protein formed by Nop2 and p120 fragments revealed the importance of Nop2 N-terminal domain for correct protein localization and its cellular function. We also validated that the presence of Nop2, rather than the m5C modification in rRNA itself, is required for pre-rRNA processing. Our results corroborate that Nop2 belongs to the large family of pre-ribosomal proteins and possesses two related functions in pre-rRNA processing: as an essential factor for cleavages and m5C:RNA:modification. These results support the notion of quality control during ribosome synthesis by such modification enzymes.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire IMoPA, UMR 7365 UL-CNRS, BioPole de UL, Vandoeuvre-les-Nancy, France
| | - Michel Ney
- Laboratoire IMoPA, UMR 7365 UL-CNRS, BioPole de UL, Vandoeuvre-les-Nancy, France
| | - Imre Gaspar
- EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | | | - Matthias Schaefer
- Division of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Kellner
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yuri Motorin
- Laboratoire IMoPA, UMR 7365 UL-CNRS, BioPole de UL, Vandoeuvre-les-Nancy, France
- * E-mail:
| |
Collapse
|
23
|
Structural basis for methyl-donor-dependent and sequence-specific binding to tRNA substrates by knotted methyltransferase TrmD. Proc Natl Acad Sci U S A 2015; 112:E4197-205. [PMID: 26183229 DOI: 10.1073/pnas.1422981112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deep trefoil knot architecture is unique to the SpoU and tRNA methyltransferase D (TrmD) (SPOUT) family of methyltransferases (MTases) in all three domains of life. In bacteria, TrmD catalyzes the N(1)-methylguanosine (m(1)G) modification at position 37 in transfer RNAs (tRNAs) with the (36)GG(37) sequence, using S-adenosyl-l-methionine (AdoMet) as the methyl donor. The m(1)G37-modified tRNA functions properly to prevent +1 frameshift errors on the ribosome. Here we report the crystal structure of the TrmD homodimer in complex with a substrate tRNA and an AdoMet analog. Our structural analysis revealed the mechanism by which TrmD binds the substrate tRNA in an AdoMet-dependent manner. The trefoil-knot center, which is structurally conserved among SPOUT MTases, accommodates the adenosine moiety of AdoMet by loosening/retightening of the knot. The TrmD-specific regions surrounding the trefoil knot recognize the methionine moiety of AdoMet, and thereby establish the entire TrmD structure for global interactions with tRNA and sequential and specific accommodations of G37 and G36, resulting in the synthesis of m(1)G37-tRNA.
Collapse
|
24
|
Sharma S, Langhendries JL, Watzinger P, Kötter P, Entian KD, Lafontaine DLJ. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 2015; 43:2242-58. [PMID: 25653167 PMCID: PMC4344512 DOI: 10.1093/nar/gkv075] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/05/2023] Open
Abstract
The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson-Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function.
Collapse
MESH Headings
- Acetylation
- Acetyltransferases/chemistry
- Acetyltransferases/metabolism
- Amino Acid Sequence
- Cell Line
- Conserved Sequence
- Cytosine/metabolism
- Humans
- N-Terminal Acetyltransferase E/chemistry
- N-Terminal Acetyltransferase E/metabolism
- N-Terminal Acetyltransferases
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/metabolism
- RNA-Binding Proteins/metabolism
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sunny Sharma
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Jean-Louis Langhendries
- RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Peter Watzinger
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Kötter
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Denis L J Lafontaine
- RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
25
|
Haag S, Kretschmer J, Bohnsack MT. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA (NEW YORK, N.Y.) 2015; 21:180-7. [PMID: 25525153 PMCID: PMC4338346 DOI: 10.1261/rna.047910.114] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/11/2014] [Indexed: 05/10/2023]
Abstract
Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2'-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams-Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3'-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3' ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3'-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N(7)-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase.
Collapse
Affiliation(s)
- Sara Haag
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Jens Kretschmer
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
26
|
Létoquart J, Huvelle E, Wacheul L, Bourgeois G, Zorbas C, Graille M, Heurgué-Hamard V, Lafontaine DLJ. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes. Proc Natl Acad Sci U S A 2014; 111:E5518-26. [PMID: 25489090 PMCID: PMC4280632 DOI: 10.1073/pnas.1413089111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N(7)-methylguanosine (m(7)G) introduced at position 1575 on 18S rRNA by Bud23-Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23-Trm112 in the apo and S-adenosyl-L-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23-Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23-Trm112 binds precursor ribosomes at an early nucleolar stage, m(7)G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23-Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23-Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction.
Collapse
Affiliation(s)
- Juliette Létoquart
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Emmeline Huvelle
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Ludivine Wacheul
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and
| | - Gabrielle Bourgeois
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Christiane Zorbas
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and
| | - Marc Graille
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France;
| | - Valérie Heurgué-Hamard
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris F-75005, France;
| | - Denis L J Lafontaine
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and RNA Molecular Biology, Fonds de la Recherche Scientifique, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
27
|
Zheng S, Lan P, Liu X, Ye K. Interaction between ribosome assembly factors Krr1 and Faf1 is essential for formation of small ribosomal subunit in yeast. J Biol Chem 2014; 289:22692-22703. [PMID: 24990943 DOI: 10.1074/jbc.m114.584490] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ribosome formation in Saccharomyces cerevisiae requires a large number of transiently associated assembly factors that coordinate processing and folding of pre-rRNA and binding of ribosomal proteins. Krr1 and Faf1 are two interacting proteins present in early 90 S precursor particles of the small ribosomal subunit. Here, we determined a co-crystal structure of the core domain of Krr1 bound to a 19-residue fragment of Faf1 at 2.8 Å resolution. The structure reveals that Krr1 consists of two packed K homology (KH) domains, KH1 and KH2, and resembles archaeal Dim2-like proteins. We show that KH1 is a divergent KH domain that lacks the RNA-binding GXXG motif and is involved in binding another assembly factor, Kri1. KH2 contains a canonical RNA-binding surface and additionally associates with an α-helix of Faf1. Specific disruption of the Krr1-Faf1 interaction impaired early 18 S rRNA processing at sites A0, A1, and A2 and caused cell lethality, but it did not prevent incorporation of the two proteins into pre-ribosomes. The Krr1-Faf1 interaction likely maintains a critical conformation of 90 S pre-ribosomes required for pre-rRNA processing. Our results illustrate the versatility of KH domains in protein interaction and provide insight into the role of Krr1-Faf1 interaction in ribosome biogenesis.
Collapse
Affiliation(s)
- Sanduo Zheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875,; National Institute of Biological Sciences at Beijing, Beijing 102206, and
| | - Pengfei Lan
- National Institute of Biological Sciences at Beijing, Beijing 102206, and; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730
| | - Ximing Liu
- National Institute of Biological Sciences at Beijing, Beijing 102206, and
| | - Keqiong Ye
- National Institute of Biological Sciences at Beijing, Beijing 102206, and; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730,; Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Armistead J, Hemming R, Patel N, Triggs-Raine B. Mutation of EMG1 causing Bowen-Conradi syndrome results in reduced cell proliferation rates concomitant with G2/M arrest and 18S rRNA processing delay. BBA CLINICAL 2014; 1:33-43. [PMID: 26676230 PMCID: PMC4633970 DOI: 10.1016/j.bbacli.2014.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 12/17/2022]
Abstract
Bowen–Conradi syndrome (BCS) is a lethal autosomal recessive disorder caused by a D86G substitution in the protein, Essential for Mitotic Growth 1 (EMG1). EMG1 is essential for 18S rRNA maturation and 40S ribosome biogenesis in yeast, but no studies of its role in ribosome biogenesis have been done in mammals. To assess the effect of the EMG1 mutation on cell growth and ribosomal biogenesis in humans, we employed BCS patient cells. The D86G substitution did not interfere with EMG1 nucleolar localization. In BCS patient lymphoblasts, cells accumulated in G2/M, resulting in reduced proliferation rates; however, patient fibroblasts showed normal proliferation. The rate of 18S rRNA processing was consistently delayed in patient cells, although this did not lead to a difference in the levels of 40S ribosomes, or a change in protein synthesis rates. These results demonstrate that as in yeast, EMG1 in mammals has a role in ribosome biogenesis. The obvious phenotype in lymphoblasts compared to fibroblasts suggests a greater need for EMG1 in rapidly dividing cells. Tissue-specific effects have been seen in other ribosomal biogenesis disorders, and it seems likely that the impact of EMG1 deficiency would be larger in the rapidly proliferating cells of the developing embryo. EMG1 in healthy and BCS cells co-localizes with ribosome biogenesis factors. Cell proliferation rate is reduced in BCS cells. BCS cells accumulate at G2/M. 18S rRNA biogenesis is delayed in BCS cells. We confirm that BCS is a ribosomopathy.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada ; Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Richard Hemming
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nehal Patel
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada ; Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Srivastava A, Ahamad J, Ray AK, Kaur D, Bhattacharya A, Bhattacharya S. Analysis of U3 snoRNA and small subunit processome components in the parasitic protist Entamoeba histolytica. Mol Biochem Parasitol 2014; 193:82-92. [PMID: 24631428 DOI: 10.1016/j.molbiopara.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
Abstract
In the early branching parasitic protist Entamoeba histolytica, pre-rRNA synthesis continues when cells are subjected to growth stress, but processing slows down and unprocessed pre-rRNA accumulates. To gain insight into the regulatory mechanisms leading to accumulation, it is necessary to define the pre-rRNA processing machinery in E. histolytica. We searched the E. histolytica genome sequence for homologs of the SSU processome, which contains the U3snoRNA, and 72 proteins in yeast. We could identify 57 of the proteins with high confidence. Of the rest, 6 were absent in human, and 4 were non-essential in yeast. The remaining 5 were absent in other parasite genomes as well. Analysis of U3snoRNA showed that the E. histolytica U3snoRNA adopted the same conserved secondary structure as seen in yeast and human. The predicted structure was verified by chemical modification followed by primer extension (SHAPE). Further we showed that the predicted interactions of Eh_U3snoRNA boxes A and A' with pre-18S rRNA were highly conserved both in position and sequence. The predicted interactions of 5'-hinge and 3'-hinge sequences of Eh_U3 snoRNA with the 5'-ETS sequences were conserved in position but not in sequence. Transcription of selected genes of SSU processome was tested by northern analysis, and transcripts of predicted sizes were obtained. During serum starvation, when unprocessed pre-RNA accumulated, the transcript levels of some of these genes declined. This is the first report on pre-rRNA processing machinery in E. histolytica, and shows that the components are well conserved with respect to yeast and human.
Collapse
Affiliation(s)
- Ankita Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Jamaluddin Ahamad
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ashwini Kumar Ray
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Devinder Kaur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
30
|
The human WBSCR22 protein is involved in the biogenesis of the 40S ribosomal subunits in mammalian cells. PLoS One 2013; 8:e75686. [PMID: 24086612 PMCID: PMC3781059 DOI: 10.1371/journal.pone.0075686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Abstract
The human WBSCR22 protein was previously shown to be up-regulated in invasive breast cancer and its ectopic expression enhances tumor cell survival in the vasculature. In the current study, we show that the WBSCR22 protein is important for cell growth. Knock-down of WBSCR22 with siRNA results in slower growth of WBSCR22-depleted cells. Treatment with siWBSCR22 causes defects in the processing of pre-rRNAs and reduces the level of free 40S ribosomal subunit, suggesting that WBSCR22 is involved in ribosome small subunit biosynthesis. The human WBSCR22 partially complements the growth of WBSCR22 yeast homologue, bud23 deletion mutant suggesting that the human WBSCR22 is a functional homologue of yeast Bud23. WBSCR22 is localized throughout the cell nucleus and is not stably associated with ribosomal subunits within the cell nucleus. We also show that the WBSCR22 protein level is decreased in lymphoblastoid cell lines derived from William-Beuren Syndrome (WBS) patients compared to healthy controls. Our data suggest that the WBSCR22 protein is a ribosome biogenesis factor involved in the biosynthesis of 40S ribosomal particles in mammalian cells.
Collapse
|
31
|
Müller S, Windhof IM, Maximov V, Jurkowski T, Jeltsch A, Förstner KU, Sharma CM, Gräf R, Nellen W. Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA). Nucleic Acids Res 2013; 41:8615-27. [PMID: 23877245 PMCID: PMC3794594 DOI: 10.1093/nar/gkt634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in tRNAAsp(GUC)in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified tRNAGlu(CUC/UUC) and tRNAGly(GCC) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.
Collapse
Affiliation(s)
- Sara Müller
- Department of Genetics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany, Institute of Biochemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/Bau D15, 97080 Würzburg and Universität Potsdam, Institut für Biochemie und Biologie, Abt. Zellbiologie, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam - Golm
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|
33
|
Peifer C, Sharma S, Watzinger P, Lamberth S, Kötter P, Entian KD. Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res 2012. [PMID: 23180764 PMCID: PMC3553958 DOI: 10.1093/nar/gks1102] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ribosomal RNA undergoes various modifications to optimize ribosomal structure and expand the topological potential of RNA. The most common nucleotide modifications in ribosomal RNA (rRNA) are pseudouridylations and 2′-O methylations (Nm), performed by H/ACA box snoRNAs and C/D box snoRNAs, respectively. Furthermore, rRNAs of both ribosomal subunits also contain various base modifications, which are catalysed by specific enzymes. These modifications cluster in highly conserved areas of the ribosome. Although most enzymes catalysing 18S rRNA base modifications have been identified, little is known about the 25S rRNA base modifications. The m1A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes. Helix formation in this region of the 25S rRNA might be a prerequisite for a correct topological framework for 5.8S rRNA to interact with 25S rRNA. Surprisingly, we have identified ribosomal RNA processing protein 8 (Rrp8), a nucleolar Rossman-fold like methyltransferase, to carry out the m1A base modification at position 645, although Rrp8 was previously shown to be involved in A2 cleavage and 40S biogenesis. In addition, we were able to identify specific point mutations in Rrp8, which show that a reduced S-adenosyl-methionine binding influences the quality of the 60S subunit. This highlights the dual functionality of Rrp8 in the biogenesis of both subunits.
Collapse
Affiliation(s)
- Christian Peifer
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Genetic interactions of yeast NEP1 (EMG1), encoding an essential factor in ribosome biogenesis. Yeast 2012; 29:167-83. [DOI: 10.1002/yea.2898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
35
|
Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Mol Cell Biol 2012; 32:2254-67. [PMID: 22493060 DOI: 10.1128/mcb.06623-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional and posttranslational modification of macromolecules is known to fine-tune their functions. Trm112 is unique, acting as an activator of both tRNA and protein methyltransferases. Here we report that in Saccharomyces cerevisiae, Trm112 is required for efficient ribosome synthesis and progression through mitosis. Trm112 copurifies with pre-rRNAs and with multiple ribosome synthesis trans-acting factors, including the 18S rRNA methyltransferase Bud23. Consistent with the known mechanisms of activation of methyltransferases by Trm112, we found that Trm112 interacts directly with Bud23 in vitro and that it is required for its stability in vivo. Consequently, trm112Δ cells are deficient for Bud23-mediated 18S rRNA methylation at position G1575 and for small ribosome subunit formation. Bud23 failure to bind nascent preribosomes activates a nucleolar surveillance pathway involving the TRAMP complexes, leading to preribosome degradation. Trm112 is thus active in rRNA, tRNA, and translation factor modification, ideally placing it at the interface between ribosome synthesis and function.
Collapse
|
36
|
Veith T, Martin R, Wurm JP, Weis BL, Duchardt-Ferner E, Safferthal C, Hennig R, Mirus O, Bohnsack MT, Wöhnert J, Schleiff E. Structural and functional analysis of the archaeal endonuclease Nob1. Nucleic Acids Res 2012; 40:3259-74. [PMID: 22156373 PMCID: PMC3326319 DOI: 10.1093/nar/gkr1186] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site.
Collapse
Affiliation(s)
- Thomas Veith
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Roman Martin
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jan P. Wurm
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Benjamin L. Weis
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Charlotta Safferthal
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Raoul Hennig
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Oliver Mirus
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Markus T. Bohnsack
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
37
|
Wurm JP, Griese M, Bahr U, Held M, Heckel A, Karas M, Soppa J, Wöhnert J. Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs. RNA (NEW YORK, N.Y.) 2012; 18:412-420. [PMID: 22274954 PMCID: PMC3285930 DOI: 10.1261/rna.028498.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/23/2011] [Indexed: 05/31/2023]
Abstract
tRNAs from all three kingdoms of life contain a variety of modified nucleotides required for their stability, proper folding, and accurate decoding. One prominent example is the eponymous ribothymidine (rT) modification at position 54 in the T-arm of eukaryotic and bacterial tRNAs. In contrast, in most archaea this position is occupied by another hypermodified nucleotide: the isosteric N1-methylated pseudouridine. While the enzyme catalyzing pseudouridine formation at this position is known, the pseudouridine N1-specific methyltransferase responsible for this modification has not yet been experimentally identified. Here, we present biochemical and genetic evidence that the two homologous proteins, Mja_1640 (COG 1901, Pfam DUF358) and Hvo_1989 (Pfam DUF358) from Methanocaldococcus jannaschii and Haloferax volcanii, respectively, are representatives of the methyltransferase responsible for this modification. However, the in-frame deletion of the pseudouridine N1-methyltransferase gene in H. volcanii did not result in a discernable phenotype in line with similar observations for knockouts of other T-arm methylating enzymes.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | - Marco Griese
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | - Ute Bahr
- Institut für Pharmazeutische Chemie, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | - Martin Held
- Institut für Pharmazeutische Chemie, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
- Institut für Organische Chemie und Chemische Biologie, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | - Alexander Heckel
- Institut für Pharmazeutische Chemie, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
- Institut für Organische Chemie und Chemische Biologie, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
- Cluster of Excellence “Macromolecular complexes,” Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | - Michael Karas
- Institut für Pharmazeutische Chemie, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
- Cluster of Excellence “Macromolecular complexes,” Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | - Jörg Soppa
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
- Cluster of Excellence “Macromolecular complexes,” Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| |
Collapse
|
38
|
Chatterjee K, Blaby IK, Thiaville PC, Majumder M, Grosjean H, Yuan YA, Gupta R, de Crécy-Lagard V. The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA. RNA (NEW YORK, N.Y.) 2012; 18:421-33. [PMID: 22274953 PMCID: PMC3285931 DOI: 10.1261/rna.030841.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The methylation of pseudouridine (Ψ) at position 54 of tRNA, producing m(1)Ψ, is a hallmark of many archaeal species, but the specific methylase involved in the formation of this modification had yet to be characterized. A comparative genomics analysis had previously identified COG1901 (DUF358), part of the SPOUT superfamily, as a candidate for this missing methylase family. To test this prediction, the COG1901 encoding gene, HVO_1989, was deleted from the Haloferax volcanii genome. Analyses of modified base contents indicated that while m(1)Ψ was present in tRNA extracted from the wild-type strain, it was absent from tRNA extracted from the mutant strain. Expression of the gene encoding COG1901 from Halobacterium sp. NRC-1, VNG1980C, complemented the m(1)Ψ minus phenotype of the ΔHVO_1989 strain. This in vivo validation was extended with in vitro tests. Using the COG1901 recombinant enzyme from Methanocaldococcus jannaschii (Mj1640), purified enzyme Pus10 from M. jannaschii and full-size tRNA transcripts or TΨ-arm (17-mer) fragments as substrates, the sequential pathway of m(1)Ψ54 formation in Archaea was reconstituted. The methylation reaction is AdoMet dependent. The efficiency of the methylase reaction depended on the identity of the residue at position 55 of the TΨ-loop. The presence of Ψ55 allowed the efficient conversion of Ψ54 to m(1)Ψ54, whereas in the presence of C55, the reaction was rather inefficient and no methylation reaction occurred if a purine was present at this position. These results led to renaming the Archaeal COG1901 members as TrmY proteins.
Collapse
Affiliation(s)
- Kunal Chatterjee
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ian K. Blaby
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | - Patrick C. Thiaville
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | - Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Henri Grosjean
- Université Paris11, IGM, CNRS, UMR 8621, Orsay, F 91405, France
| | - Y. Adam Yuan
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117543
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
- Corresponding authors.E-mail .E-mail .
| | - Valérie de Crécy-Lagard
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
- Corresponding authors.E-mail .E-mail .
| |
Collapse
|
39
|
Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:397-414. [DOI: 10.1002/wrna.117] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Liger D, Mora L, Lazar N, Figaro S, Henri J, Scrima N, Buckingham RH, van Tilbeurgh H, Heurgué-Hamard V, Graille M. Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein. Nucleic Acids Res 2011; 39:6249-59. [PMID: 21478168 PMCID: PMC3152332 DOI: 10.1093/nar/gkr176] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.
Collapse
Affiliation(s)
- Dominique Liger
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, IFR115, CNRS UMR 8619, Orsay Cedex F-91405, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lehmann P, Bohnsack MT, Schleiff E. The functional domains of the chloroplast unusual positioning protein 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:650-4. [PMID: 21421414 DOI: 10.1016/j.plantsci.2011.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/29/2010] [Accepted: 01/11/2011] [Indexed: 05/22/2023]
Abstract
Chloroplasts of plants move in response to variations in light intensity. One protein involved in this process is the chloroplast unusual positioning protein 1-CHUP1, which is anchored in the outer membrane of the organelle. The protein is able to interact with actin and profilin and might coordinate actin filament reformation and thereby chloroplast repositioning. However, molecular details on this action have not been presented so far. Here, we demonstrate that CHUP1 is able to homo-dimerize and that this dimerization is dependent on the N-terminal coiled-coil domain. The leucine zippers, which are present in the N-terminal and C-terminal portion of the protein, are involved in the formation of intra-molecular interactions. Based on this we propose that CHUP1 functions as a dimer and that intra-molecular structure formation might result in a close proximity of the proline rich domain involved in profilin binding and the actin binding domain.
Collapse
Affiliation(s)
- Petra Lehmann
- JWGU Frankfurt/Main, CEF Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60439 Frankfurt, Germany
| | | | | |
Collapse
|
42
|
Chen HY, Yuan YA. Crystal structure of Mj1640/DUF358 protein reveals a putative SPOUT-class RNA methyltransferase. J Mol Cell Biol 2011; 2:366-74. [PMID: 21098051 DOI: 10.1093/jmcb/mjq034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The proteins in DUF358 family are all bacterial proteins, which are ∼200 amino acids long with unknown function. Bioinformatics analysis suggests that these proteins contain several conserved arginines and aspartates that might adopt SPOUT-class fold. Here we report crystal structure of Methanocaldococcus jannaschii DUF358/Mj1640 in complex with S-adenosyl-L-methionine (SAM) at 1.4 Å resolution. The structure reveals a single domain structure consisting of eight-stranded β-sheets sandwiched by six α-helices at both sides. Similar to other SPOUT-class members, Mj1640 contains a typical deep trefoil knot at its C-terminus to accommodate the SAM cofactor. However, Mj1640 has limited structural extension at its N-terminus, which is unique to this family member. Mj1640 forms a dimer, which is mediated by two parallel pairs of α-helices oriented almost perpendicular to each other. Although Mj1640 shares close structural similarity with Nep1, the significant differences in N-terminal extension domain and the overall surface charge distribution strongly suggest that Mj1640 might target a different RNA sequence. Detailed structural analysis of the SAM-binding pocket reveals that Asp157 or Glu183 from its own monomer or Ser43 from the associate monomer probably plays the catalytic role for RNA methylation.
Collapse
Affiliation(s)
- Hong-Ying Chen
- Mechanobiology Institute, National University of Singapore, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | | |
Collapse
|
43
|
Thomas SR, Keller CA, Szyk A, Cannon JR, Laronde-Leblanc NA. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res 2010; 39:2445-57. [PMID: 21087996 PMCID: PMC3064781 DOI: 10.1093/nar/gkq1131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nucleolar Essential Protein 1 (Nep1) is required for small subunit (SSU) ribosomal RNA (rRNA) maturation and is mutated in Bowen–Conradi Syndrome. Although yeast (Saccharomyces cerevisiae) Nep1 interacts with a consensus sequence found in three regions of SSU rRNA, the molecular details of the interaction are unknown. Nep1 is a SPOUT RNA methyltransferase, and can catalyze methylation at the N1 of pseudouridine. Nep1 is also involved in assembly of Rps19, an SSU ribosomal protein. Mutations in Nep1 that result in decreased methyl donor binding do not result in lethality, suggesting that enzymatic activity may not be required for function, and RNA binding may play a more important role. To study these interactions, the crystal structures of the scNep1 dimer and its complexes with RNA were determined. The results demonstrate that Nep1 recognizes its RNA site via base-specific interactions and stabilizes a stem-loop in the bound RNA. Furthermore, the RNA structure observed contradicts the predicted structures of the Nep1-binding sites within mature rRNA, suggesting that the Nep1 changes rRNA structure upon binding. Finally, a uridine base is bound in the active site of Nep1, positioned for a methyltransfer at the C5 position, supporting its role as an N1-specific pseudouridine methyltransferase.
Collapse
Affiliation(s)
- Seth R Thomas
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
44
|
Meyer B, Wurm JP, Kötter P, Leisegang MS, Schilling V, Buchhaupt M, Held M, Bahr U, Karas M, Heckel A, Bohnsack MT, Wöhnert J, Entian KD. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res 2010; 39:1526-37. [PMID: 20972225 PMCID: PMC3045603 DOI: 10.1093/nar/gkq931] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Nep1 (Emg1) SPOUT-class methyltransferase is an essential ribosome assembly factor and the human Bowen–Conradi syndrome (BCS) is caused by a specific Nep1D86G mutation. We recently showed in vitro that Methanocaldococcus jannaschii Nep1 is a sequence-specific pseudouridine-N1-methyltransferase. Here, we show that in yeast the in vivo target site for Nep1-catalyzed methylation is located within loop 35 of the 18S rRNA that contains the unique hypermodification of U1191 to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouri-dine (m1acp3Ψ). Specific 14C-methionine labelling of 18S rRNA in yeast mutants showed that Nep1 is not required for acp-modification but suggested a function in Ψ1191 methylation. ESI MS analysis of acp-modified Ψ-nucleosides in a Δnep1-mutant showed that Nep1 catalyzes the Ψ1191 methylation in vivo. Remarkably, the restored growth of a nep1-1ts mutant upon addition of S-adenosylmethionine was even observed after preventing U1191 methylation in a Δsnr35 mutant. This strongly suggests a dual Nep1 function, as Ψ1191-methyltransferase and ribosome assembly factor. Interestingly, the Nep1 methyltransferase activity is not affected upon introduction of the BCS mutation. Instead, the mutated protein shows enhanced dimerization propensity and increased affinity for its RNA-target in vitro. Furthermore, the BCS mutation prevents nucleolar accumulation of Nep1, which could be the reason for reduced growth in yeast and the Bowen-Conradi syndrome.
Collapse
Affiliation(s)
- Britta Meyer
- Cluster of Excellence Frankfurt: Macromolecular Complexes, Max-von-Laue Str. 9, D-60438 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
De Souza RAG. Mystery behind Bowen-Conradi syndrome solved: a novel ribosome biogenesis defect. Clin Genet 2010; 77:116-8. [PMID: 20096068 DOI: 10.1111/j.1399-0004.2009.01304.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R A G De Souza
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
46
|
Freed EF, Bleichert F, Dutca LM, Baserga SJ. When ribosomes go bad: diseases of ribosome biogenesis. MOLECULAR BIOSYSTEMS 2010; 6:481-93. [PMID: 20174677 DOI: 10.1039/b919670f] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ribosomes are vital for cell growth and survival. Until recently, it was believed that mutations in ribosomes or ribosome biogenesis factors would be lethal, due to the essential nature of these complexes. However, in the last few decades, a number of diseases of ribosome biogenesis have been discovered. It remains a challenge in the field to elucidate the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Emily F Freed
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
47
|
Wurm JP, Meyer B, Bahr U, Held M, Frolow O, Kötter P, Engels JW, Heckel A, Karas M, Entian KD, Wöhnert J. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Nucleic Acids Res 2010; 38:2387-98. [PMID: 20047967 PMCID: PMC2853112 DOI: 10.1093/nar/gkp1189] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nep1 (Emg1) is a highly conserved nucleolar protein with an essential function in ribosome biogenesis. A mutation in the human Nep1 homolog causes Bowen-Conradi syndrome-a severe developmental disorder. Structures of Nep1 revealed a dimer with a fold similar to the SPOUT-class of RNA-methyltransferases suggesting that Nep1 acts as a methyltransferase in ribosome biogenesis. The target for this putative methyltransferase activity has not been identified yet. We characterized the RNA-binding specificity of Methanocaldococcus jannaschii Nep1 by fluorescence- and NMR-spectroscopy as well as by yeast three-hybrid screening. Nep1 binds with high affinity to short RNA oligonucleotides corresponding to nt 910-921 of M. jannaschii 16S rRNA through a highly conserved basic surface cleft along the dimer interface. Nep1 only methylates RNAs containing a pseudouridine at a position corresponding to a previously identified hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) in eukaryotic 18S rRNAs. Analysis of the methylated nucleoside by MALDI-mass spectrometry, HPLC and NMR shows that the methyl group is transferred to the N1 of the pseudouridine. Thus, Nep1 is the first identified example of an N1-specific pseudouridine methyltransferase. This enzymatic activity is also conserved in human Nep1 suggesting that Nep1 is the methyltransferase in the biosynthesis of m1acp3-Psi in eukaryotic 18S rRNAs.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wurm JP, Duchardt E, Meyer B, Leal BZ, Kötter P, Entian KD, Wöhnert J. Backbone resonance assignments of the 48 kDa dimeric putative 18S rRNA-methyltransferase Nep1 from Methanocaldococcus jannaschii. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:251-254. [PMID: 19779849 DOI: 10.1007/s12104-009-9187-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/05/2009] [Indexed: 05/28/2023]
Abstract
Nep1 from Methanocaldococcus jannaschii is a 48 kDa dimeric protein belonging to the SPOUT-class of S-adenosylmethionine dependent RNA-methyltransferases and acting as a ribosome assembly factor. Mutations in the human homolog are the cause of Bowen-Conradi syndrome. We report here 1H, 15N and 13C chemical shift assignments for the backbone of the protein in its apo state.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Methylation of DNA, protein, and even RNA species are integral processes in epigenesis. Enzymes that catalyze these reactions using the donor S-adenosylmethionine fall into several structurally distinct classes. The members in each class share sequence similarity that can be used to identify additional methyltransferases. Here, we characterize these classes and in silico approaches to infer protein function. Computational methods such as hidden Markov model profiling and the Multiple Motif Scanning program can be used to analyze known methyltransferases and relay information into the prediction of new ones. In some cases, the substrate of methylation can be inferred from hidden Markov model sequence similarity networks. Functional identification of these candidate species is much more difficult; we discuss one biochemical approach.
Collapse
Affiliation(s)
- Tanya Petrossian
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1570
| | | |
Collapse
|
50
|
Armistead J, Khatkar S, Meyer B, Mark BL, Patel N, Coghlan G, Lamont RE, Liu S, Wiechert J, Cattini PA, Koetter P, Wrogemann K, Greenberg CR, Entian KD, Zelinski T, Triggs-Raine B. Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. Am J Hum Genet 2009; 84:728-39. [PMID: 19463982 DOI: 10.1016/j.ajhg.2009.04.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/15/2009] [Accepted: 04/27/2009] [Indexed: 11/27/2022] Open
Abstract
Bowen-Conradi syndrome (BCS) is an autosomal-recessive disorder characterized by severely impaired prenatal and postnatal growth, profound psychomotor retardation, and death in early childhood. Nearly all reported BCS cases have been among Hutterites, with an estimated birth prevalence of 1/355. We previously localized the BCS gene to a 1.9 Mbp interval on human chromosome 12p13.3. The 59 genes in this interval were ranked as candidates for BCS, and 35 of these, including all of the best candidates, were sequenced. We identified variant NM_006331.6:c.400A-->G, p.D86G in the 18S ribosome assembly protein EMG1 as the probable cause of BCS. This mutation segregated with disease, was not found in 414 non-Hutterite alleles, and altered a highly conserved aspartic acid (D) residue. A structural model of human EMG1 suggested that the D86 residue formed a salt bridge with arginine 84 that would be disrupted by the glycine (G) substitution. EMG1 mRNA was detected in all human adult and fetal tissues tested. In BCS patient fibroblasts, EMG1 mRNA levels did not differ from those of normal cells, but EMG1 protein was dramatically reduced in comparison to that of normal controls. In mammalian cells, overexpression of EMG1 harboring the D86G mutation decreased the level of soluble EMG1 protein, and in yeast two-hybrid analysis, the D86G substitution increased interaction between EMG1 subunits. These findings suggested that the D-to-G mutation caused aggregation of EMG1, thereby reducing the level of the protein and causing BCS.
Collapse
|