1
|
Deng J, Zhou J, Jiang B. Advances in the role of membrane-bound transcription factors in carcinogenesis and therapy. Discov Oncol 2024; 15:559. [PMID: 39404930 PMCID: PMC11480308 DOI: 10.1007/s12672-024-01414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Protein shuttling between the cytoplasm and nucleus is a unique phenomenon in eukaryotic organisms, integral to various cellular functions. Membrane-bound transcription factors (MTFs), a specialized class of nucleocytoplasmic shuttling proteins, are anchored to the cell membrane and enter the nucleus upon ligand binding to exert their transcriptional regulatory functions. MTFs are crucial in cellular signal transduction, and aberrant nucleocytoplasmic shuttling of MTFs is closely associated with tumor initiation, progression, and resistance to anticancer therapies. Studies have demonstrated that MTFs, such as human epidermal growth factor receptor (HER), fibroblast growth factor receptor (FGFR), β-catenin, Notch, insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor (IR), play critical roles in tumorigenesis and cancer progression. Targeted therapies developed against HERs and FGFRs, among these MTFs, have yielded significant success in cancer treatment. However, the development of drug resistance remains a major challenge. As research on MTFs progress, it is anticipated that additional MTF-targeted therapies will be developed to enhance cancer treatment. In this review, we summarized recent advancements in the study of MTFs and their roles in carcinogenesis and therapy, aiming to provide valuable insights into the potential of targeting MTF pathways for the reseach of therapeutic strategies.
Collapse
Affiliation(s)
- JiaLi Deng
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Jie Zhou
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - BinYuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
| |
Collapse
|
2
|
Liang J, Bi G, Sui Q, Zhao G, Zhang H, Bian Y, Chen Z, Huang Y, Xi J, Shi Y, Wang Q, Zhan C. Transcription factor ZNF263 enhances EGFR-targeted therapeutic response and reduces residual disease in lung adenocarcinoma. Cell Rep 2024; 43:113771. [PMID: 38335093 DOI: 10.1016/j.celrep.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) have achieved clinical success in lung adenocarcinoma (LUAD). However, tumors often show profound but transient initial response and then gain resistance. We identify transcription factor ZNF263 as being significantly decreased in osimertinib-resistant or drug-tolerant persister LUAD cells and clinical residual tumors. ZNF263 overexpression improves the initial response of cells and delays the formation of persister cells with osimertinib treatment. We further show that ZNF263 binds and recruits DNMT1 to the EGFR gene promoter, suppressing EGFR transcription with DNA hypermethylation. ZNF263 interacts with nuclear EGFR, impairing the EGFR-STAT5 interaction to enhance AURKA expression. Overexpressing ZNF263 also makes tumor cells with wild-type EGFR expression or refractory EGFR mutations more susceptible to EGFR inhibition. More importantly, lentivirus or adeno-associated virus (AAV)-mediated ZNF263 overexpression synergistically suppresses tumor growth and regrowth with osimertinib treatment in xenograft animal models. These findings suggest that enhancing ZNF263 may achieve complete response in LUAD with EGFR-targeted therapies.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangyin Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
4
|
Jain L, Vickers MH, Jacob B, Middleditch MJ, Chudakova DA, Ganley ARD, O'Sullivan JM, Perry JK. The growth hormone receptor interacts with transcriptional regulator HMGN1 upon GH-induced nuclear translocation. J Cell Commun Signal 2023; 17:925-937. [PMID: 37043098 PMCID: PMC10409943 DOI: 10.1007/s12079-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.
Collapse
Affiliation(s)
- Lekha Jain
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bincy Jacob
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Daria A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jo K Perry
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
5
|
Atwell B, Chalasani P, Schroeder J. Nuclear epidermal growth factor receptor as a therapeutic target. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:616-629. [PMID: 37720348 PMCID: PMC10501894 DOI: 10.37349/etat.2023.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most well-studied oncogenes with roles in proliferation, growth, metastasis, and therapeutic resistance. This intense study has led to the development of a range of targeted therapeutics including small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and nanobodies. These drugs are excellent at blocking the activation and kinase function of wild-type EGFR (wtEGFR) and several common EGFR mutants. These drugs have significantly improved outcomes for patients with cancers including head and neck, glioblastoma, colorectal, and non-small cell lung cancer (NSCLC). However, therapeutic resistance is often seen, resulting from acquired mutations or activation of compensatory signaling pathways. Additionally, these therapies are ineffective in tumors where EGFR is found predominantly in the nucleus, as can be found in triple negative breast cancer (TNBC). In TNBC, EGFR is subjected to alternative trafficking which drives the nuclear localization of the receptor. In the nucleus, EGFR interacts with several proteins to activate transcription, DNA repair, migration, and chemoresistance. Nuclear EGFR (nEGFR) correlates with metastatic disease and worse patient prognosis yet targeting its nuclear localization has proved difficult. This review provides an overview of current EGFR-targeted therapies and novel peptide-based therapies that block nEGFR, as well as their clinical applications and potential for use in oncology.
Collapse
Affiliation(s)
- Benjamin Atwell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Pavani Chalasani
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Li M, Zhao Q, Liao J, Wang X, Liu L, Zhang X, Liu L, Liu H, Zhang S. Dioscin inhibiting EGFR-mediated Survivin expression promotes apoptosis in oral squamous cell carcinoma cells. J Cancer 2023; 14:2027-2038. [PMID: 37497406 PMCID: PMC10367921 DOI: 10.7150/jca.85011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023] Open
Abstract
Overexpression of survivin plays a crucial role in tumorigenesis and correlates with poor prognosis in human malignancies, including oral squamous cell carcinoma (OSCC). Thus, survivin has been proposed as an attractive target for new antitumor interventions. In the present study, we found that a natural compound, Dioscin, inhibited OSCC cells by reducing the survivin protein level and activating apoptotic signaling. Dioscin inhibits survivin expression by interrupting EGFR binding to the AT-rich sequences (ATRSs) at the survivin promoter, eventually promoting survivin-mediated cell apoptosis. The in vivo study showed that Dioscin suppressed the tumor development of SCC25 cells. Furthermore, the immunohistochemistry (IHC) results revealed that treated with Dioscin reduced the protein levels of EGFR and survivin in SCC25 xenograft tumors. Overall, our findings indicate that targeting the EGFR-survivin axis might be a promising OSCC treatment strategy.
Collapse
Affiliation(s)
- Ming Li
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qin Zhao
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaocong Wang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lulu Liu
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaoyue Zhang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lijun Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shusheng Zhang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
7
|
Nie L, Wang YN, Hsu JM, Hou J, Chu YY, Chan LC, Huo L, Wei Y, Deng R, Tang J, Hsu YH, Ko HW, Lim SO, Huang K, Chen MK, Chiu TJ, Cheng CC, Fang YF, Li CW, Goverdhan A, Wu HJ, Lee CC, Wang WL, Hsu J, Chiao P, Wang SC, Hung MC. Nuclear export signal mutation of epidermal growth factor receptor enhances malignant phenotypes of cancer cells. Am J Cancer Res 2023; 13:1209-1239. [PMID: 37168336 PMCID: PMC10164793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023] Open
Abstract
Nuclear epidermal growth factor receptor (EGFR) has been shown to be correlated with drug resistance and a poor prognosis in patients with cancer. Previously, we have identified a tripartite nuclear localization signal (NLS) within EGFR. To comprehensively determine the functions and underlying mechanism of nuclear EGFR and its clinical implications, we aimed to explore the nuclear export signal (NES) sequence of EGFR that is responsible for interacting with the exportins. We combined in silico prediction with site-directed mutagenesis approaches and identified a putative NES motif of EGFR, which is located in amino acid residues 736-749. Mutation at leucine 747 (L747) in the EGFR NES led to increased nuclear accumulation of the protein via a less efficient release of the exportin CRM1. Interestingly, L747 with serine (L747S) and with proline (L747P) mutations were found in both tyrosine kinase inhibitor (TKI)-treated and -naïve patients with lung cancer who had acquired or de novo TKI resistance and a poor outcome. Reconstituted expression of the single NES mutant EGFRL747P or EGFRL747S, but not the dual mutant along with the internalization-defective or NLS mutation, in lung cancer cells promoted malignant phenotypes, including cell migration, invasiveness, TKI resistance, and tumor initiation, supporting an oncogenic role of nuclear EGFR. Intriguingly, cells with germline expression of the NES L747 mutant developed into B cell lymphoma. Mechanistically, nuclear EGFR signaling is required for sustaining nuclear activated STAT3, but not for Erk. These findings suggest that EGFR functions are compartmentalized and that nuclear EGFR signaling plays a crucial role in tumor malignant phenotypes, leading to tumorigenesis in human cancer.
Collapse
Affiliation(s)
- Lei Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
| | - Junwei Hou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Longfei Huo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Rong Deng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Jun Tang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Breast Oncology, Cancer Center, Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Yi-Hsin Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of MedicineTaoyuan, Taiwan
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Kebin Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal UniversityGuilin, Guangxi, China
| | - Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Tai-Jan Chiu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Chien-Chia Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yueh-Fu Fang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of MedicineTaoyuan, Taiwan
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Aarthi Goverdhan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Hsing-Ju Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Medical Research, Chang Bing Show Chwan Memorial HospitalChanghua, Taiwan
| | - Cheng-Chung Lee
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
| | - Wen-Ling Wang
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
| | - Jennifer Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Paul Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Shao-Chun Wang
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
8
|
Tarle M, Raguž M, Muller D, Lukšić I. Nuclear Epidermal Growth Factor Receptor Overexpression as a Survival Predictor in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24065816. [PMID: 36982894 PMCID: PMC10056291 DOI: 10.3390/ijms24065816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to determine, by immunohistochemical methods, the expression of nEGFR and markers of cell proliferation (Ki-67), cell cycle (mEGFR, p53, cyclin D1), and tumor stem cells (ABCG2) in 59 pathohistological samples of healthy oral mucosa, 50 oral premalignant changes (leukoplakia and erythroplakia), and 52 oral squamous cell carcinomas (OSCC). An increase in the expression of mEGFR and nEGFR was found with the development of the disease (p < 0.0001). In the group of patients with leukoplakia and erythroplakia, we found a positive correlation between nEGFR and Ki67, p53, cyclin D1, and mEGFR, whereas in the group of patients with OSCC, we found a positive correlation between nEGFR and Ki67, mEGFR (p < 0.05). Tumors without perineural (PNI) invasion had a higher expression of p53 protein than tumors with PNI (p = 0.02). Patients with OSCC and overexpression of nEGFR had shorter overall survival (p = 0.004). The results of this study suggest a potentially important independent role of nEGFR in oral carcinogenesis.
Collapse
Affiliation(s)
- Marko Tarle
- Department of Maxillofacial Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Danko Muller
- Department of Pathology and Cytology, Dubrava University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Atwell B, Chen CY, Christofferson M, Montfort WR, Schroeder J. Sorting nexin-dependent therapeutic targeting of oncogenic epidermal growth factor receptor. Cancer Gene Ther 2023; 30:267-276. [PMID: 36253541 PMCID: PMC9935382 DOI: 10.1038/s41417-022-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Overexpression and/or overactivation of the Epidermal Growth Factor Receptor (EGFR) is oncogenic in several tumor types yet targeting the kinase domain of wildtype EGFR has had limited success. EGFR has numerous kinase-independent roles, one of which is accomplished through the Sorting Nexin-dependent retrotranslocation of EGFR to the nucleus, which is observed in some metastatic cancers and therapeutically resistant disease. Here, we have utilized the BAR domain of Sorting Nexin 1 to create a peptide-based therapeutic (cSNX1.3) that promotes cell death in EGFR-expressing cancer. We evaluated the efficacy of cSNX1.3 in tumor-bearing WAP-TGFα transgenic mice (an EGFR-dependent model of breast cancer), where cSNX1.3 treatment resulted in significant tumor regression without observable toxicity. Evaluation of remaining tumor tissues found evidence of increased PARP cleavage, suggesting apoptotic tumor cell death. To evaluate the mechanism of action for cSNX1.3, we found that cSNX1.3 binds the C-terminus of the EGFR kinase domain at an interface site opposite the ATP binding domain with a Kd of ~4.0 µM. In vitro analysis found that cSNX1.3 inhibits the nuclear localization of EGFR. To determine specificity, we evaluated cancer cell lines expressing wildtype EGFR (MDA-MB-468, BT20 and A549), mutant EGFR (H1975) and non-transformed lines (CHO and MCF10A). Only transformed lines expressing wildtype EGFR responded to cSNX1.3, while mutant EGFR and normal cells responded better to an EGFR kinase inhibitor. Phenotypically, cSNX1.3 inhibits EGF-, NRG-, and HGF-dependent migration, but not HA-dependent migration. Together, these data indicate that targeting retrotranslocation of EGFR may be a potent therapeutic for RTK-active cancer.
Collapse
Affiliation(s)
- Benjamin Atwell
- Department of Molecular and Cellular Biology, 1007 E Lowell St, Tucson, AZ, 85721, USA
| | - Cheng-Yu Chen
- Department of Chemistry and Biochemistry, 1007 E Lowell St, Tucson, AZ, 85721, USA
| | | | - William R Montfort
- Department of Molecular and Cellular Biology, 1007 E Lowell St, Tucson, AZ, 85721, USA.,Department of Chemistry and Biochemistry, 1007 E Lowell St, Tucson, AZ, 85721, USA.,University of Arizona Cancer Center, 1007 E Lowell St, Tucson, AZ, 85721, USA.,BIO5 Institute, University of Arizona, 1007 E Lowell St, Tucson, AZ, 85721, USA
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, 1007 E Lowell St, Tucson, AZ, 85721, USA. .,University of Arizona Cancer Center, 1007 E Lowell St, Tucson, AZ, 85721, USA. .,BIO5 Institute, University of Arizona, 1007 E Lowell St, Tucson, AZ, 85721, USA.
| |
Collapse
|
10
|
Stavrou A, Ortiz A, Costa M. Cadmium Activates EGFR/STAT5 Signaling to Overcome Calcium Chelation and Promote Epithelial to Mesenchymal Transition. Biomolecules 2023; 13:116. [PMID: 36671501 PMCID: PMC9855692 DOI: 10.3390/biom13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Cadmium (Cd) is a heavy metal found in cigarette smoke, as well as in air and drinking water due to agricultural and industrial activities, and it poses a health risk to the general population. Prolonged low-dose Cd exposure via inhalation or ingestion causes lung and kidney cancers in humans and in animal models. While high doses of Cd exposure are correlated with the occupational setting and are cytotoxic, low doses of Cd are mainly correlated with exposure in the general population and induce carcinogenesis. The mechanism by which Cd-exposed cells overcome calcium chelation and induce malignant transformation remains unclear. This study examines how cells exposed to low doses of Cd survive loss of E-cadherin cell-cell adhesion via activation of the epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 5 (STAT5), which work to upregulate genes associated with survival and proliferation. To demonstrate the role of Cd in EGFR/STAT5 activation, we exposed two epithelial cell lines, BEAS-2B and HEK293, to two different doses (0.4 µM and 1.6 µM) of Cadmium chloride hemipentahydrate (CdCl2·2.5H2O) that are environmentally relevant to levels of Cd found in food and cigarettes for 24 h (hours) and 9 weeks (wks). When comparing cells treated with Cd with control cells, the Cd treated cells exhibited faster proliferation; therefore, we studied activation of EGFR via the STAT5 pathway using immunofluorescence (IF) for protein expression and localization and, in addition, RT-qPCR to examine changes in EGFR/STAT5 inducible genes. Our results showed an increase in EGFR and phosphorylated EGFR (p-EGFR) protein, with 1.6 µM of Cadmium having the highest expression at both 24-hour (hr) and 9-week (wk) exposures. Moreover, the IF analysis also demonstrated an increase of STAT5 and phosphorylated STAT5 (pSTAT5) in both short-term and long-term exposure, with 0.4 µM having the highest expression at 24 h. Finally, via Western blot analysis, we showed that there was a dose-dependent decrease in E-cadherin protein expression and increased N-cadherin in cells treated with low doses of Cd. These data demonstrate that epithelial cells can overcome Cd-mediated toxicity via activation of EGFR pathway to induce cell proliferation and survival and promote epithelial to mesenchymal transition.
Collapse
Affiliation(s)
| | | | - Max Costa
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| |
Collapse
|
11
|
Zhao H, Jia P, Nanding K, Wu M, Bai X, Morigen M, Fan L. Lysophosphatidic acid suppresses apoptosis of high-grade serous ovarian cancer cells by inducing autophagy activity and promotes cell-cycle progression via EGFR-PI3K/Aurora-A Thr288-geminin dual signaling pathways. Front Pharmacol 2022; 13:1046269. [PMID: 36601056 PMCID: PMC9806123 DOI: 10.3389/fphar.2022.1046269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Lysophosphatidic acid (LPA) and geminin are overexpressed in ovarian cancer, and increasing evidence supports their contribution to ovarian tumor development. Here, we reveal that geminin depletion induces autophagy suppression and enhances reactive oxygen species (ROS) production and apoptosis of high-grade serous ovarian cancer (HGSOC) cells. Bioinformatics analysis and pharmacological inhibition studies confirm that LPA activates geminin expression in the early S phase in HGSOC cells via the LPAR1/3/MMPs/EGFR/PI3K/mTOR pathway. Furthermore, LPA phosphorylates Aurora-A kinase on Thr288 through EGFR transactivation, and this event potentiates additional geminin stabilization. In turn, overexpressed and stabilized geminin regulates DNA replication, cell-cycle progression, and cell proliferation of HGSOC cells. Our data provide potential targets for enhancing the clinical benefit of HGSOC precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
12
|
Cacioppo R, Lindon C. Regulating the regulator: a survey of mechanisms from transcription to translation controlling expression of mammalian cell cycle kinase Aurora A. Open Biol 2022; 12:220134. [PMID: 36067794 PMCID: PMC9448500 DOI: 10.1098/rsob.220134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Aurora Kinase A (AURKA) is a positive regulator of mitosis with a strict cell cycle-dependent expression pattern. Recently, novel oncogenic roles of AURKA have been uncovered that are independent of the kinase activity and act within multiple signalling pathways, including cell proliferation, survival and cancer stem cell phenotypes. For this, cellular abundance of AURKA protein is per se crucial and must be tightly fine-tuned. Indeed, AURKA is found overexpressed in different cancers, typically as a result of gene amplification or enhanced transcription. It has however become clear that impaired processing, decay and translation of AURKA mRNA can also offer the basis for altered AURKA levels. Accordingly, the involvement of gene expression mechanisms controlling AURKA expression in human diseases is increasingly recognized and calls for much more research. Here, we explore and create an integrated view of the molecular processes regulating AURKA expression at the level of transcription, post-transcription and translation, intercalating discussion on how impaired regulation underlies disease. Given that targeting AURKA levels might affect more functions compared to inhibiting the kinase activity, deeper understanding of its gene expression may aid the design of alternative and therapeutically more successful ways of suppressing the AURKA oncogene.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
13
|
Chu TH, Ko CY, Tai PH, Chang YC, Huang CC, Wu TY, Chan HH, Wu PH, Weng CH, Lin YW, Kung ML, Fang CC, Wu JC, Wen ZH, Lee YK, Hu TH, Tai MH. Leukocyte cell-derived chemotaxin 2 regulates epithelial-mesenchymal transition and cancer stemness in hepatocellular carcinoma. J Biol Chem 2022; 298:102442. [PMID: 36055405 PMCID: PMC9530851 DOI: 10.1016/j.jbc.2022.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) acts as a tumor suppressor in hepatocellular carcinoma (HCC). However, the antineoplastic mechanism of LECT2, especially its influence on hepatic cancer stem cells (CSCs), remains largely unknown. In The Cancer Genome Atlas cohort, LECT2 mRNA expression was shown to be associated with stage, grade, recurrence, and overall survival in human HCC patients, and LECT2 expression was downregulated in hepatoma tissues compared with the adjacent nontumoral liver. Here, we show by immunofluorescence and immunoblot analyses that LECT2 was expressed at lower levels in tumors and in poorly differentiated HCC cell lines. Using functional assays, we also found LECT2 was capable of suppressing oncogenic behaviors such as cell proliferation, anchorage-independent growth, migration, invasiveness, and epithelial-mesenchymal transition in hepatoma cells. Moreover, we show exogenous LECT2 treatment inhibited CSC functions such as tumor sphere formation and drug efflux. Simultaneously, hepatic CSC marker expression was also downregulated, including expression of CD133 and CD44. This was supported by infection with adenovirus encoding LECT2 (Ad-LECT2) in HCC cells. Furthermore, in animal experiments, Ad-LECT2 gene therapy showed potent efficacy in treating HCC. We demonstrate LECT2 overexpression significantly promoted cell apoptosis and reduced neovascularization/CSC expansion in rat hepatoma tissues. Mechanistically, we showed using immunoblot and immunofluorescence analyses that LECT2 inhibited β-catenin signaling via the suppression of the hepatocyte growth factor/c-MET axis to diminish CSC properties in HCC cells. In summary, we reveal novel functions of LECT2 in the suppression of hepatic CSCs, suggesting a potential alternative strategy for HCC therapy.
Collapse
Affiliation(s)
- Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Po-Han Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tung-Yang Wu
- Department of Chest Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Hoi-Hung Chan
- Division of Gastroenterology, Department of Medicine, Conde S. Januário Hospital, Macau, China
| | - Ping-Hsuan Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Hui Weng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Wei Lin
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Chieh Fang
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jian-Ching Wu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan; LabTurbo Biotech Corporation, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Dihydroconiferyl Ferulate Isolated from Dendropanax morbiferus H.Lév. Suppresses Stemness of Breast Cancer Cells via Nuclear EGFR/c-Myc Signaling. Pharmaceuticals (Basel) 2022; 15:ph15060664. [PMID: 35745583 PMCID: PMC9231027 DOI: 10.3390/ph15060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is the leading cause of global cancer incidence and breast cancer stem cells (BCSCs) have been identified as the target to overcome breast cancer in patients. In this study, we purified a BCSC inhibitor from Dendropanax morbiferus H.Lév. leaves through several open column and high-performance liquid chromatography via activity-based purification. The purified cancer stem cell (CSC) inhibitor was identified as dihydroconiferyl ferulate using nuclear magnetic resonance and mass spectrometry. Dihydroconiferyl ferulate inhibited the proliferation and mammosphere formation of breast cancer cells and reduced the population of CD44high/CD24low cells. Dihydroconiferyl ferulate also induced apoptosis, inhibited the growth of mammospheres and reduced the level of total and nuclear EGFR protein. It suppressed the EGFR levels, the interaction of Stat3 with EGFR, and c-Myc protein levels. Our findings show that dihydroconiferyl ferulate reduced the level of nuclear epidermal growth factor receptor (EGFR) and induced apoptosis of BCSCs through nEGFR/Stat3-dependent c-Myc deregulation. Dihydroconiferyl ferulate exhibits potential as an anti-CSC agent through nEGFR/Stat3/c-Myc signaling.
Collapse
|
15
|
Qiao B, Li S, Wang D, Wu D. Editorial: Genetics and Molecular Mechanisms of Oral and Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:874353. [PMID: 35463329 PMCID: PMC9019613 DOI: 10.3389/fonc.2022.874353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bin Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaize Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Die Wang
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Di Wu
- Department of Periodontology, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
17
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Shahi A, Kahle J, Hopkins C, Diakonova M. The SH2 domain and kinase activity of JAK2 target JAK2 to centrosome and regulate cell growth and centrosome amplification. PLoS One 2022; 17:e0261098. [PMID: 35089929 PMCID: PMC8797172 DOI: 10.1371/journal.pone.0261098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
JAK2 is cytokine-activated non-receptor tyrosine kinase. Although JAK2 is mainly localized at the plasma membrane, it is also present on the centrosome. In this study, we demonstrated that JAK2 localization to the centrosome depends on the SH2 domain and intact kinase activity. We created JAK2 mutants deficient in centrosomal localization ΔSH2, K882E and (ΔSH2, K882E). We showed that JAK2 WT clone strongly enhances cell proliferation as compared to control cells while JAK2 clones ΔSH2, K882E and (ΔSH2, K882E) proliferate slower than JAK2 WT cells. These mutant clones also progress much slower through the cell cycle as compared to JAK2 WT clone and the enhanced proliferation of JAK2 WT cells is accompanied by increased S -> G2 progression. Both the SH2 domain and the kinase activity of JAK2 play a role in prolactin-dependent activation of JAK2 substrate STAT5. We showed that JAK2 is an important regulator of centrosome function as the SH2 domain of JAK2 regulates centrosome amplification. The cells overexpressing ΔSH2 and (ΔSH2, K-E) JAK2 have almost three-fold the amplified centrosomes of WT cells. In contrast, the kinase activity of JAK2 is dispensable for centrosome amplification. Our observations provide novel insight into the role of SH2 domain and kinase activity of JAK2 in centrosome localization of JAK2 and in the regulation of cell growth and centrosome biogenesis.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Jacob Kahle
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Chandler Hopkins
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Maria Diakonova
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
19
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
20
|
RNA-binding protein p54 nrb/NONO potentiates nuclear EGFR-mediated tumorigenesis of triple-negative breast cancer. Cell Death Dis 2022; 13:42. [PMID: 35013116 PMCID: PMC8748691 DOI: 10.1038/s41419-021-04488-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Nuclear-localized epidermal growth factor receptor (EGFR) highly correlates with the malignant progression and may be a promising therapeutic target for breast cancer. However, molecular mechanisms of nuclear EGFR in triple-negative breast cancer (TNBC) have not been fully elucidated. Here, we performed gene-annotation enrichment analysis for the interactors of nuclear EGFR and found that RNA-binding proteins (RBPs) were closely associated with nuclear EGFR. We further demonstrated p54nrb/NONO, one of the RBPs, significantly interacted with nuclear EGFR. NONO was upregulated in 80 paired TNBC tissues and indicated a poor prognosis. Furthermore, NONO knockout significantly inhibited TNBC proliferation in vitro and in vivo. Mechanistically, NONO increased the stability of nuclear EGFR and recruited CREB binding protein (CBP) and its accompanying E1A binding protein p300, thereby enhancing the transcriptional activity of EGFR. In turn, EGFR positively regulated the affinity of NONO to mRNAs of nuclear EGFR downstream genes. Furthermore, the results indicated that the nuclear EGFR/NONO complex played a critical role in tumorigenesis and chemotherapy resistance. Taken together, our findings indicate that NONO enhances nuclear EGFR-mediated tumorigenesis and may be a potential therapeutic target for TNBC patients with nuclear EGFR expression.
Collapse
|
21
|
Aurora Kinases as Therapeutic Targets in Head and Neck Cancer. Cancer J 2022; 28:387-400. [PMID: 36165728 PMCID: PMC9836054 DOI: 10.1097/ppo.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT The Aurora kinases (AURKA and AURKB) have attracted attention as therapeutic targets in head and neck squamous cell carcinomas. Aurora kinases were first defined as regulators of mitosis that localization to the centrosome (AURKA) and centromere (AURKB), governing formation of the mitotic spindle, chromatin condensation, activation of the core mitotic kinase CDK1, alignment of chromosomes at metaphase, and other processes. Subsequently, additional roles for Aurora kinases have been defined in other phases of cell cycle, including regulation of ciliary disassembly and DNA replication. In cancer, elevated expression and activity of Aurora kinases result in enhanced or neomorphic locations and functions that promote aggressive disease, including promotion of MYC expression, oncogenic signaling, stem cell identity, epithelial-mesenchymal transition, and drug resistance. Numerous Aurora-targeted inhibitors have been developed and are being assessed in preclinical and clinical trials, with the goal of improving head and neck squamous cell carcinoma treatment.
Collapse
|
22
|
Kim JH, Choi HS, Lee DS. Primaquine Inhibits the Endosomal Trafficking and Nuclear Localization of EGFR and Induces the Apoptosis of Breast Cancer Cells by Nuclear EGFR/Stat3-Mediated c-Myc Downregulation. Int J Mol Sci 2021; 22:ijms222312961. [PMID: 34884765 PMCID: PMC8657416 DOI: 10.3390/ijms222312961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) cells overexpress the epidermal growth factor receptor (EGFR). Nuclear EGFR (nEGFR) drives resistance to anti-EGFR therapy and is correlated with poor survival in breast cancer. Inhibition of EGFR nuclear translocation may be a reasonable approach for the treatment of TNBC. The anti-malarial drugs chloroquine and primaquine have been shown to promote an anticancer effect. The aim of the present study was to investigate the effect and mechanism of chloroquine- and primaquine-induced apoptosis of breast cancer cells. We showed that primaquine, a malaria drug, inhibits the growth, migration, and colony formation of breast cancer cells in vitro, and inhibits tumor growth in vivo. Primaquine induces damage to early endosomes and inhibits the nuclear translocation of EGFR. Primaquine inhibits the interaction of Stat3 and nEGFR and reduces the transcript and protein levels of c-Myc. Moreover, primaquine and chloroquine induce the apoptosis of breast cancer cells through c-Myc/Bcl-2 downregulation, induce early endosome damage and reduce nEGFR levels, and induce apoptosis in breast cancer through nEGFR/Stat3-dependent c-Myc downregulation. Our study of primaquine and chloroquine provides a rationale for targeting EGFR signaling components in the treatment of breast cancer.
Collapse
Affiliation(s)
- Ji-Hyang Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea;
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea
| | - Hack-Sun Choi
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Korea
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea;
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Korea
- Correspondence:
| |
Collapse
|
23
|
Saraon P, Snider J, Schormann W, Rai A, Radulovich N, Sánchez-Osuna M, Coulombe-Huntington J, Huard C, Mohammed M, Lima-Fernandes E, Thériault B, Halabelian L, Chan M, Joshi D, Drecun L, Yao Z, Pathmanathan S, Wong V, Lyakisheva A, Aboualizadeh F, Niu L, Li F, Kiyota T, Subramanian R, Joseph B, Aman A, Prakesch M, Isaac M, Mamai A, Poda G, Vedadi M, Marcellus R, Uehling D, Leighl N, Sacher A, Samaržija M, Jakopović M, Arrowsmith C, Tyers M, Tsao MS, Andrews D, Al-Awar R, Stagljar I. Chemical Genetics Screen Identifies COPB2 Tool Compounds That Alters ER Stress Response and Induces RTK Dysregulation in Lung Cancer Cells. J Mol Biol 2021; 433:167294. [PMID: 34662547 DOI: 10.1016/j.jmb.2021.167294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.
Collapse
Affiliation(s)
- Punit Saraon
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada.
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Wiebke Schormann
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Maria Sánchez-Osuna
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Mohammed Mohammed
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | | | - Brigitte Thériault
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Manuel Chan
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Dhananjay Joshi
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Shivanthy Pathmanathan
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Ontario, Canada
| | | | | | - Li Niu
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | | | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Ahmed Mamai
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada; University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Natasha Leighl
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Miroslav Samaržija
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada.
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Ontario, Canada; Mediterranean Institute for Life Sciences, Split, Croatia; School of Medicine, University of Split, Split, Croatia.
| |
Collapse
|
24
|
Wang LL, Luo J, He ZH, Liu YQ, Li HG, Xie D, Cai MY. STEAP3 promotes cancer cell proliferation by facilitating nuclear trafficking of EGFR to enhance RAC1-ERK-STAT3 signaling in hepatocellular carcinoma. Cell Death Dis 2021; 12:1052. [PMID: 34741044 PMCID: PMC8571373 DOI: 10.1038/s41419-021-04329-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022]
Abstract
STEAP3 (Six-transmembrane epithelial antigen of the prostate 3, TSAP6, dudulin-2) has been reported to be involved in tumor progression in human malignancies. Nevertheless, how it participates in the progression of human cancers, especially HCC, is still unknown. In the present study, we found that STEAP3 was aberrantly overexpressed in the nuclei of HCC cells. In a large cohort of clinical HCC tissues, high expression level of nuclear STEAP3 was positively associated with tumor differentiation and poor prognosis (p < 0.001), and it was an independent prognostic factor for HCC patients. In HCC cell lines, nuclear expression of STEAP3 significantly promoted HCC cells proliferation by promoting stemness phenotype and cell cycle progression via RAC1-ERK-STAT3 and RAC1-JNK-STAT6 signaling axes. Through upregulating the expression and nuclear trafficking of EGFR, STEAP3 participated in regulating EGFR-mediated STAT3 transactivity in a manner of positive feedback. In summary, our findings support that nuclear expression of STEAP3 plays a critical oncogenic role in the progression of HCC via modulation on EGFR and intracellular signaling, and it could be a candidate for prognostic marker and therapeutic target in HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Cycle/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation
- Disease Progression
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- MAP Kinase Signaling System
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oxidoreductases/metabolism
- Phosphorylation
- Prognosis
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Treatment Outcome
- rac1 GTP-Binding Protein/metabolism
- Mice
Collapse
Affiliation(s)
- Li-Li Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jie Luo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhang-Hai He
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ye-Qing Liu
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hai-Gang Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Mu-Yan Cai
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Luo B, Wu XH, Feng YJ, Zheng HM, Zhang Q, Liang XJ, Huang DF, Xu J. Nuclear Her2 contributes to paclitaxel resistance in breast cancer cells. Anticancer Drugs 2021; 32:709-716. [PMID: 33587352 DOI: 10.1097/cad.0000000000001048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Translocation of full-length Her2 receptor into nucleus was reported by some studies. Here, we tested whether nuclear Her2 contributes to paclitaxel resistance in Her2-overexpressing breast cancer cells. Breast cancer cell was transfected with plasmids containing cDNA of wild-type Her2 or mutant-type Her2 lacking the nuclear localization signal (NLS) sequence which is required for Her2 nuclear transport. Cell resistance to paclitaxel was analyzed. Paclitaxel-resistant breast cancer cell was also developed and nuclear Her2 expression was tested. Then, correlation between nuclear Her2 and resistance to paclitaxel were analyzed. Expression of importin β1 was decreased to downregulate nuclear Her2 level and cell resistance to paclitaxel was tested. We found that Her2 overexpression increases Her2 nuclear expression and cells resistance to paclitaxel in MCF-7 cells. In the paclitaxel resistant cell (SK-BR-3/R), nuclear Her2 expression is upregulated compared with parental SK-BR-3 cells. Increased expression of nuclear Her2 after short-time (48 h) treatment of paclitaxel was also observed in SK-BR-3 cells. Further downregulation of Her2 nuclear expression through blocking expression of importin β1 sensitizes the cells to paclitaxel. The analysis showed that the Her2 nuclear expression increases the survivin expression which leads to resistance to paclitaxel. Her2 nuclear expression decreases paclitaxel-induced apoptosis. However, co-immunoprecipitation was applied, and the physical interaction of nuclear Her2 and survivin was not detected. We show for the first time that nuclear Her2 contributes to paclitaxel resistance in breast cancer cells which suggests that nuclear Her2 as a potential target to sensitize breast cancers to paclitaxel treatment.
Collapse
Affiliation(s)
- Bo Luo
- Department of Radiotherapy Center
| | | | | | | | - Qu Zhang
- Department of Radiotherapy Center
| | - Xin-Jun Liang
- Department of Abdominal Tumor, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Juan Xu
- Department of Breast Cancer Center
| |
Collapse
|
26
|
Muscella A, Stefàno E, Calabriso N, De Pascali SA, Fanizzi FP, Marsigliante S. Role of epidermal growth factor receptor signaling in a Pt(II)-resistant human breast cancer cell line. Biochem Pharmacol 2021; 192:114702. [PMID: 34324869 DOI: 10.1016/j.bcp.2021.114702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Platinum complexes are currently used for breast cancer therapy, but, as with other drug classes, a series of intrinsic and acquired resistance mechanisms hinder their efficacy. To better understand the mechanisms underlying platinum complexes resistance in breast cancer, we generated a [Pt(O,O'-acac)(γ-acac)(DMS)]-resistant MCF-7, denoted as [Pt(acac)2]R. [Pt(O,O'-acac)(γ-acac)(DMS)] was chosen as previous works showed that it has distinct mechanisms of action from cisplatin, especially with regard to cellular targets. [Pt(acac)2]R cells are characterized by increased proliferation rates and aggressiveness with higher PKC-δ, BCL-2, MMP-9 and EGFR protein expressions and also by increased expression of various genes covering cell cycle regulation, invasion, survival, and hormone receptors. These [Pt(acac)2]R cells also displayed high levels of activated signaling kinases Src, AKT and ERK/2. [Pt(acac)2]R cells incubated with [Pt(O,O'-acac)(γ-acac)(DMS)], showed a relevant EGFR activation due to PKC-δ and Src phosphorylation that provoked proliferation and survival through MERK1/2/ERK1/2 and PI3K/Akt pathways. In addition, EGFR shuttled from the plasma membrane to the nucleus maybe acting as co-transcriptional factor. The data suggest that growth and survival of resistant cells rely upon a remarkable increase in EGFR level which, in collaboration with an enhanced role of PKC-δ and Src kinases support [Pt(acac)2]R cell. It could therefore be assumed that combination treatments targeting both EGFR and PKC-δ/Src can improve therapy for breast cancer patients.
Collapse
Affiliation(s)
- A Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy.
| | - E Stefàno
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - N Calabriso
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via Prov le Lecce-Monteroni, 73100 Lecce, Italy
| | - S A De Pascali
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - F P Fanizzi
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - S Marsigliante
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
27
|
Ansari KI, Bhan A, Saotome M, Tyagi A, De Kumar B, Chen C, Takaku M, Jandial R. Autocrine GM-CSF signaling contributes to growth of HER2+ breast leptomeningeal carcinomatosis. Cancer Res 2021; 81:4723-4735. [PMID: 34247146 DOI: 10.1158/0008-5472.can-21-0259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Leptomeningeal carcinomatosis (LC) occurs when tumor cells spread to the cerebrospinal fluid-containing leptomeninges surrounding the brain and spinal cord. LC is an ominous complication of cancer with a dire prognosis. Although any malignancy can spread to the leptomeninges, breast cancer, particularly the HER2+ subtype, is its most common origin. HER2+ breast LC (HER2+ LC) remains incurable, with few treatment options, and the molecular mechanisms underlying proliferation of HER2+ breast cancer cells in the acellular, protein, and cytokine-poor leptomeningeal environment remain elusive. Therefore, we sought to characterize signaling pathways that drive HER2+ LC development as well as those that restrict its growth to leptomeninges. Primary HER2+ LC patient-derived ("Lepto") cell lines in co-culture with various central nervous system (CNS) cell types revealed that oligodendrocyte progenitor cells (OPC), the largest population of dividing cells in the CNS, inhibited HER2+ LC growth in vitro and in vivo, thereby limiting the spread of HER2+ LC beyond the leptomeninges. Cytokine array-based analyses identified Lepto cell-secreted granulocyte-macrophage colony-stimulating factor (GM-CSF) as an oncogenic autocrine driver of HER2+ LC growth. Liquid chromatography-tandem mass spectrometry-based analyses revealed that the OPC-derived protein TPP1 proteolytically degrades GM-CSF, decreasing GM-CSF signaling and leading to suppression of HER2+ LC growth and limiting its spread. Lastly, intrathecal delivery of neutralizing anti-GM-CSF antibodies and a pan-Aurora kinase inhibitor (CCT137690) synergistically inhibited GM-CSF and suppressed activity of GM-CSF effectors, reducing HER2+ LC growth in vivo. Thus, OPC suppress GM-CSF-driven growth of HER2+ LC in the leptomeningeal environment, providing a potential targetable axis.
Collapse
|
28
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
29
|
Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 2021; 20:15. [PMID: 33451333 PMCID: PMC7809767 DOI: 10.1186/s12943-020-01305-3] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.
Collapse
Affiliation(s)
- Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| | - Chuntian Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China. .,College of medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
30
|
Torres-Jiménez J, Albarrán-Fernández V, Pozas J, Román-Gil MS, Esteban-Villarrubia J, Carrato A, Rosero A, Grande E, Alonso-Gordoa T, Molina-Cerrillo J. Novel Tyrosine Kinase Targets in Urothelial Carcinoma. Int J Mol Sci 2021; 22:E747. [PMID: 33451055 PMCID: PMC7828553 DOI: 10.3390/ijms22020747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Urothelial carcinoma represents one of the most prevalent types of cancer worldwide, and its incidence is expected to grow. Although the treatment of the advanced disease was based on chemotherapy for decades, the developments of different therapies, such as immune checkpoint inhibitors, antibody drug conjugates and tyrosine kinase inhibitors, are revolutionizing the therapeutic landscape of this tumor. This development coincides with the increasing knowledge of the pathogenesis and genetic alterations in urothelial carcinoma, from the non-muscle invasive setting to the metastatic one. The purpose of this article is to provide a comprehensive review of the different tyrosine kinase targets and their roles in the therapeutic scene of urothelial carcinoma.
Collapse
Affiliation(s)
- Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - Víctor Albarrán-Fernández
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - María San Román-Gil
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| | - Adriana Rosero
- Medical Oncology Department, Infanta Cristina Hospital, 28607 Madrid, Spain;
| | - Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center, 28033 Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| |
Collapse
|
31
|
Mota STS, Vecchi L, Alves DA, Cordeiro AO, Guimarães GS, Campos-Fernández E, Maia YCP, Dornelas BDC, Bezerra SM, de Andrade VP, Goulart LR, Araújo TG. Annexin A1 promotes the nuclear localization of the epidermal growth factor receptor in castration-resistant prostate cancer. Int J Biochem Cell Biol 2020; 127:105838. [PMID: 32858191 DOI: 10.1016/j.biocel.2020.105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
Epidermal growth factor receptor is a cancer driver whose nuclear localization has been associated with the progression of prostate cancer to the castration-resistant phenotype. Previous reports indicated a functional interaction between this receptor and the protein Annexin A1, which has also been associated with aggressive tumors. The molecular pathogenesis of castration-resistant prostate cancer remains largely unresolved, and herein we have demonstrated the correlation between the expression levels and localization of the epidermal growth factor receptor and Annexin A1 in prostate cancer samples and cell lines. Interestingly, a higher expression of both proteins was detected in castration-resistant prostate cancer cell lines and the strongest correlation was seen at the nuclear level. We verified that Annexin A1 interacts with the epidermal growth factor receptor, and by using prostate cancer cell lines knocked down for Annexin A1, we succeeded in demonstrating that Annexin A1 promotes the nuclear localization of epidermal growth factor receptor. Finally, we showed that Annexin A1 activates an autocrine signaling in castration-resistant prostate cells through the formyl peptide receptor 1. The inhibition of such signaling by Cyclosporin H inhibits the nuclear localization of epidermal growth factor receptor and its downstream signaling. The present work sheds light on the functional interaction between nuclear epidermal growth factor receptor and nuclear Annexin A1 in castration-resistant prostate cancer. Therefore, strategies to inhibit the nuclear localization of epidermal growth factor receptor through the suppression of the Annexin A1 autocrine loop could represent an important intervention strategy for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Douglas Alexsander Alves
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Antonielle Oliveira Cordeiro
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Gabriela Silva Guimarães
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Esther Campos-Fernández
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | | | - Bruno de Carvalho Dornelas
- Pathology Division, Internal Medicine, University Hospital, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | | | | | - Luiz Ricardo Goulart
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; University of California, Davis, Dept. of Medical Microbiology and Immunology, Davis, CA, 95616, USA.
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| |
Collapse
|
32
|
Guerra F, Quintana S, Giustina S, Mendeluk G, Jufe L, Avagnina MA, Díaz LB, Palaoro LA. Investigation of EGFR/pi3k/Akt signaling pathway in seminomas. Biotech Histochem 2020; 96:125-137. [PMID: 32597316 DOI: 10.1080/10520295.2020.1776393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the receptor for epidermal growth factor (EGFR) in some testicular tumors activates several signaling pathways. Some components of these pathways are phosphorylated or mutated in testicular germ tumors (TCGT), including EGFR, Kirstein ras oncogen (KRAS) and cell surface protein of the germ cell (KIT). The latter two activate RAF ⁄MEK⁄ERK and PI3 K⁄AKT, and interconnect with the EGFR/pI3 k/Akt pathway. We investigated the expression of EGFR/pI3 k/Akt pathway proteins in seminomas and in their precursor lesion, germinal cell neoplasia in situ (GCNIS) and related genetic mutations. We used immunohistochemistry for pEGFR, pI3 k and pAkt expression with a scoring system for 46 seminoma surgical specimens: 36 classical and 10 GCNIS. In 17 samples, the mutations of EGFR (exons 19 - 21), KIT (exons 11, 17) and KRAS (exons 2, 3) were investigated using qPCR and sequencing. Of the 36 seminomas studied, 22 (61%) expressed pEGFR. Ten samples exhibited high scores for pEGFR, pI3 k and pAkt. In 5 of 17 cases (33%) some mutation was exhibited in the exons studied: 21 of EGFR (2), 17 of EGFR (1), 3 of KRAS (1) and 11 of KIT (1). Six cases exhibited nuclear translocation of EGFR; of these, four exhibited mutations of EGFR, KRAS and KIT. Eight of ten of the GCNIS expressed a high pEGFR score (80%). In 2 of 6 cases (33%), mutation was detected in exon 21 of EGFR and one smear showed EGFR translocation to the nucleus. The translocation represents a subpopulation with worse prognosis for TCGT. The EGFR/pI3 k/Akt signaling pathway is linked to TDRG1, which regulates chemosensitivity to cisplatin; this is a mechanism of resistance to treatment. TDRG1 and the EGFR/pI3 k/pAkt pathway could be therapeutic targets for seminomas resistant to cisplatin.
Collapse
Affiliation(s)
- F Guerra
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| | - S Quintana
- Fares Taie Institute , Mar Del Plata, Buenos Aires, Argentina
| | - S Giustina
- Fares Taie Institute , Mar Del Plata, Buenos Aires, Argentina
| | - G Mendeluk
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| | - L Jufe
- Laboratory of Pathology, Ramos Mejía Hospital, C.A.B.A ., Argentina
| | - M A Avagnina
- Department of Pathology, Clinical Hospital (UBA), C.A.B.A ., Córdoba, Argentina
| | - L B Díaz
- Department of Pathology, Clinical Hospital (UBA), C.A.B.A ., Córdoba, Argentina
| | - L A Palaoro
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| |
Collapse
|
33
|
Chen MK, Hsu JL, Hung MC. Nuclear receptor tyrosine kinase transport and functions in cancer. Adv Cancer Res 2020; 147:59-107. [PMID: 32593407 DOI: 10.1016/bs.acr.2020.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling functions of plasma membrane-localized receptor tyrosine kinases (RTKs) have been extensively studied after they were first described in the mid-1980s. Plasma membrane RTKs are activated by extracellular ligands and cellular stress stimuli, and regulate cellular responses by activating the downstream effector proteins to initiate a wide range of signaling cascades in the cells. However, increasing evidence indicates that RTKs can also be transported into the intracellular compartments where they phosphorylate traditional effector proteins and non-canonical substrate proteins. In general, internalization that retains the RTK's transmembrane domain begins with endocytosis, and endosomal RTK remains active before being recycled or degraded. Further RTK retrograde transport from endosome-Golgi-ER to the nucleus is primarily dependent on membranes vesicles and relies on the interaction with the COP-I vesicle complex, Sec61 translocon complex, and importin. Internalized RTKs have non-canonical substrates that include transcriptional co-factors and DNA damage response proteins, and many nuclear RTKs harbor oncogenic properties and can enhance cancer progression. Indeed, nuclear-localized RTKs have been shown to positively correlate with cancer recurrence, therapeutic resistance, and poor prognosis of cancer patients. Therefore, understanding the functions of nuclear RTKs and the mechanisms of nuclear RTK transport will further improve our knowledge to evaluate the potential of targeting nuclear RTKs or the proteins involved in their transport as new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jennifer L Hsu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
34
|
Liu B, Chen D, Chen S, Saber A, Haisma H. Transcriptional activation of cyclin D1 via HER2/HER3 contributes to EGFR-TKI resistance in lung cancer. Biochem Pharmacol 2020; 178:114095. [PMID: 32535106 DOI: 10.1016/j.bcp.2020.114095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Several different mechanisms are implicated in the resistance of lung cancer cells to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), and only few have been functionally investigated. Here, using genetically knocked out EGFR and TKI-resistant lung cancer cells, we show that loss of wild-type EGFR attenuates cell proliferation, migration and 3D-spheroid formation, whereas loss of mutant EGFR or resistance to TKIs reinforces those processes. Consistently, disruption of wild-type EGFR leads to suppression of HER2/HER3, while mutant EGFR ablation or resistance to TKIs increases HER2/HER3 expression, compensating for EGFR loss. Furthermore, HER2/HER3 nuclear translocation mediates overexpression of cyclin D1, leading to tumor cell survival and drug resistance. Cyclin D1/CDK4/6 inhibition resensitizes erlotinib-resistant (ER) cells to erlotinib. Analysis of cyclin D1 expression in patients with non-small cell lung carcinoma (NSCLC) showed that its expression is negatively associated with overall survival and disease-free survival. Our results provide biological and mechanistic insights into targeting EGFR and TKI resistance.
Collapse
Affiliation(s)
- Bin Liu
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Deng Chen
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Shipeng Chen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ali Saber
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Hidde Haisma
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
35
|
Profiling of subcellular EGFR interactome reveals hnRNP A3 modulates nuclear EGFR localization. Oncogenesis 2020; 9:40. [PMID: 32321917 PMCID: PMC7176650 DOI: 10.1038/s41389-020-0225-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
The aberrant subcellular translocation and distribution of epidermal growth factor receptor (EGFR) represent a major yet currently underappreciated cancer development mechanism in non-small cell lung cancer (NSCLC). In this study, we investigated the subcellular interactome of EGFR by using a spectral counting-based approach combined with liquid chromatography–tandem mass spectrometry to understand the associated protein networks involved in the tumorigenesis of NSCLC. A total of 54, 77, and 63 EGFR-interacting proteins were identified specifically in the cytosolic, mitochondrial, and nuclear fractions from a NSCLC cell line, respectively. Pathway analyses of these proteins using the KEGG database shown that the EGFR-interacting proteins of the cytosol and nucleus are involved in the ribosome and spliceosome pathways, respectively, while those of the mitochondria are involved in metabolizing propanoate, fatty acid, valine, leucine, and isoleucine. A selected nuclear EGFR-interacting protein, hnRNP A3, was found to modulate the accumulation of nuclear EGFR. Downregulation of hnRNP A3 reduced the nuclear accumulation of EGFR, and this was accompanied by reduced tumor growth ability in vitro and in vivo. These results indicate that variations in the subcellular translocation and distribution of EGFR within NSCLC cells could affect tumor progression.
Collapse
|
36
|
Wang JX, Zhang L, Huang ZW, Zhang XN, Jiang YY, Liu FJ, Long L, Xue MJ, Lu G, Liu Q, Long ZJ. Aurora kinase inhibitor restrains STAT5-activated leukemic cell proliferation by inducing mitochondrial impairment. J Cell Physiol 2020; 235:8358-8370. [PMID: 32239704 DOI: 10.1002/jcp.29680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Current chemotherapy regimens on acute myeloid leukemia (AML) still have some drawbacks, such as intolerance and drug resistance, which calls need for the development of targeted therapy. Signal transducer and activator of transcription 5 (STAT5) is often overexpressed or abnormally activated in leukemia and involved in cell self-renewal, proliferation, and stress adaptation. Overexpressed Aurora A (AURKA) is associated with poor prognosis in tumors, and inhibitors against AURKA are already in clinical trials. However, it has rarely been reported whether AURKA inhibitors restrain STAT5-activated leukemia cells. In this study, we constructed STAT5 constitutively activated (cS5) cells and found that STAT5 promoted cell proliferation and colony formation. Moreover, cS5 cells showed elevated reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels, which indicated higher mitochondrial metabolism in cS5 cells. A novel AURKA inhibitor AKI604 was synthesized and showed significant inhibitory effects to the proliferation and colony formation in both STAT5 constitutively activated and nonactivated AML cells. AKI604 induced mitochondrial impairment, leading to the disruption of mitochondrial membrane potential and the elevation of ROS as well as cellular calcium (Ca2+ ) levels. AKI604 could also decline basal oxygen consumption rate and ATP biosynthesis, indicating the damage of oxidative phosphorylation. Furthermore, AKI604 exhibited significant antitumor effect in the HL-60 cS5 xenograft model of the BALB/c nude mice without an obvious influence on mice body weight and other healthy indicators. This study suggested that AKI604 was a potential strategy to overcome STAT5-induced leukemic proliferation in AML treatment by inducing mitochondrial impairment.
Collapse
Affiliation(s)
- Jin-Xing Wang
- Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Ling Zhang
- Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Ze-Wei Huang
- Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Xue-Ning Zhang
- Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Yan-Yan Jiang
- Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Fang-Jie Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liang Long
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Man-Jie Xue
- Medical Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gui Lu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Wang F, Meng F, Wong SCC, Cho WC, Yang S, Chan LW. Combination therapy of gefitinib and miR-30a-5p may overcome acquired drug resistance through regulating the PI3K/AKT pathway in non-small cell lung cancer. Ther Adv Respir Dis 2020; 14:1753466620915156. [PMID: 32552611 PMCID: PMC7303773 DOI: 10.1177/1753466620915156] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with an epidermal growth factor receptor (EGFR) mutation often initially respond to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment but may acquire drug resistance due to multiple factors. MicroRNAs are a class of small noncoding and endogenous RNA molecules that may play a role in overcoming the resistance. MATERIALS AND METHODS In this study, we explored and validated, through in vitro experiments and in vivo models, the ability of a combination treatment of EGFR-TKI, namely gefitinib, and a microRNA mimic, miR-30a-5p, to overcome drug resistance through regulation of the insulin-like growth factor receptor-1 (IGF1R) and hepatocyte growth factor receptor signaling pathways, which all converge on phosphatidylinositol 3 kinase (PI3K), in NSCLC. First, we examined the hypothesized mechanisms of drug resistance in H1650, H1650-acquired gefitinib-resistance (H1650GR), H1975, and H460 cell lines. Next, we investigated a potential combination treatment approach to overcome acquired drug resistance in the H1650GR cell line and an H1650GR cell implanted mouse model. RESULTS Dual inhibitors of EGFR and IGF1R significantly lowered the expression levels of phosphorylated protein kinase B (p-AKT) and phosphorylated mitogen-activated protein kinase (p-ERK) compared with the control group in all cell lines. With the ability to repress PI3K expression, miR-30a-5p mimics induced cell apoptosis, and inhibited cell invasion and migration in the treated H1650GR cell line. CONCLUSION Gefitinib, combined with miR-30a-5p mimics, effectively suppressed the growth of H1650GR-induced tumor in xenografts. Hence, a combination therapy of gefitinib and miR-30a-5p may play a critical role in overcoming acquired resistance to EGFR-TKIs. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Fengfeng Wang
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Fei Meng
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - William C.S. Cho
- Department of Clinical Oncology, Queen Elizabeth
Hospital, Hong Kong, P.R. China
| | - Sijun Yang
- ABSL-3 Laboratory at the Center for Animal
Experiment and Institute of Animal Model for Human Disease, Wuhan University
School of Medicine, Wuhan, P.R. China
| | - Lawrence W.C. Chan
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Y902, 9/F, Lee Shau Kee Building,
Kowloon, Hong Kong, P.R. China
| |
Collapse
|
38
|
Lee YJ, Ho SR, Graves JD, Xiao Y, Huang S, Lin WC. CGRRF1, a growth suppressor, regulates EGFR ubiquitination in breast cancer. Breast Cancer Res 2019; 21:134. [PMID: 31801577 PMCID: PMC6894136 DOI: 10.1186/s13058-019-1212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/15/2019] [Indexed: 01/25/2023] Open
Abstract
Background CGRRF1 is a growth suppressor and consists of a transmembrane domain and a RING-finger domain. It functions as a RING domain E3 ubiquitin ligase involved in endoplasmic reticulum-associated degradation. The expression of CGRRF1 is decreased in cancer tissues; however, the role of CGRRF1 in breast cancer and the mechanism(s) of its growth suppressor function remain to be elucidated. Methods To investigate whether CGRRF1 inhibits the growth of breast cancer, we performed MTT assays and a xenograft experiment. Tumors harvested from mice were further analyzed by reverse phase protein array (RPPA) analysis to identify potential substrate(s) of CGRRF1. Co-immunoprecipitation assay was used to verify the interaction between CGRRF1 and its substrate, followed by in vivo ubiquitination assays. Western blot, subcellular fractionation, and reverse transcription quantitative polymerase chain reaction (qRT-PCR) were performed to understand the mechanism of CGRRF1 action in breast cancer. Publicly available breast cancer datasets were analyzed to examine the association between CGRRF1 and breast cancer. Results We show that CGRRF1 inhibits the growth of breast cancer in vitro and in vivo, and the RING-finger domain is important for its growth-inhibitory activity. To elucidate the mechanism of CGRRF1, we identified EGFR as a new substrate of CGRRF1. CGRRF1 ubiquitinates EGFR through K48-linked ubiquitination, which leads to proteasome degradation. In addition to regulating the stability of EGFR, knockout of CGRRF1 enhances AKT phosphorylation after EGF stimulation. By analyzing the breast cancer database, we found that patients with low CGRRF1 expression have shorter survival. As compared to normal breast tissues, the mRNA levels of CGRRF1 are lower in breast carcinomas, especially in HER2-positive and basal-like breast cancers. We further noticed that CGRRF1 promoter methylation is increased in breast cancer as compared to that in normal breast tissue, suggesting that CGRRF1 is epigenetically modified in breast cancer. Treatment of 5-azactidine and panobinostat restored CGRRF1 expression, supporting that the promoter of CGRRF1 is epigenetically modified in breast cancer. Since 5-azactidine and panobinostat can increase CGRRF1 expression, they might be potential therapies for breast cancer treatment. Conclusion We demonstrated a tumor-suppressive function of CGRRF1 in breast cancer and identified EGFR as its target.
Collapse
Affiliation(s)
- Yu-Ju Lee
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shiuh-Rong Ho
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA
| | - Joshua D Graves
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA.,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yang Xiao
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA. .,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Yu Y, Suryo Rahmanto Y, Shen YA, Ardighieri L, Davidson B, Gaillard S, Ayhan A, Shi X, Xuan J, Wang TL, Shih IM. Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBioMedicine 2019; 47:184-194. [PMID: 31492560 PMCID: PMC6796592 DOI: 10.1016/j.ebiom.2019.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Spleen tyrosine kinase (SYK) is frequently upregulated in recurrent ovarian carcinomas, for which effective therapy is urgently needed. SYK phosphorylates several substrates, but their translational implications remain unclear. Here, we show that SYK interacts with EGFR and ERBB2, and directly enhances their phosphorylation. METHODS We used immunohistochemistry and immunoblotting to assess SYK and EGFR phosphorylation in ovarian serous carcinomas. Association with survival was determined by Kaplan-Meier analysis and the log-rank test. To study its role in EGFR signaling, SYK activity was modulated using a small molecule inhibitor, a syngeneic knockout, and an active kinase inducible system. We applied RNA-seq and phosphoproteomic mass spectrometry to investigate the SYK-regulated EGF-induced transcriptome and downstream substrates. FINDINGS Induced expression of constitutively active SYK130E reduced cellular response to EGFR/ERBB2 inhibitor, lapatinib. Expression of EGFRWT, but not SYK non-phosphorylatable EGFR3F mutant, resulted in paclitaxel resistance, a phenotype characteristic to SYK active ovarian cancers. In tumor xenografts, SYK inhibitor reduces phosphorylation of EGFR substrates. Compared to SYKWT cells, SYKKO cells have an attenuated EGFR/ERBB2-transcriptional activity and responsiveness to EGF-induced transcription. In ovarian cancer tissues, pSYK (Y525/526) levels showed a positive correlation with pEGFR (Y1187). Intense immunoreactivity of pSYK (Y525/526) correlated with poor overall survival in ovarian cancer patients. INTERPRETATION These findings indicate that SYK activity positively modulates the EGFR pathway, providing a biological foundation for co-targeting SYK and EGFR. FUND: Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, NIH/NCI, Ovarian Cancer Research Foundation Alliance, HERA Women's Cancer Foundation and Roseman Foundation. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript and eventually in the decision to submit the manuscript.
Collapse
Affiliation(s)
- Yu Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America.
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Yao-An Shen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Laura Ardighieri
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu and Hiroshima Universities Schools of Medicine, Hamamatsu 431-3192, Japan
| | - Xu Shi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| |
Collapse
|
40
|
The NAE Pathway: Autobahn to the Nucleus for Cell Surface Receptors. Cells 2019; 8:cells8080915. [PMID: 31426451 PMCID: PMC6721735 DOI: 10.3390/cells8080915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Various growth factors and full-length cell surface receptors such as EGFR are translocated from the cell surface to the nucleoplasm, baffling cell biologists to the mechanisms and functions of this process. Elevated levels of nuclear EGFR correlate with poor prognosis in various cancers. In recent years, nuclear EGFR has been implicated in regulating gene transcription, cell proliferation and DNA damage repair. Different models have been proposed to explain how the receptors are transported into the nucleus. However, a clear consensus has yet to be reached. Recently, we described the nuclear envelope associated endosomes (NAE) pathway, which delivers EGFR from the cell surface to the nucleus. This pathway involves transport, docking and fusion of NAEs with the outer membrane of the nuclear envelope. EGFR is then presumed to be transported through the nuclear pore complex, extracted from membranes and solubilised. The SUN1/2 nuclear envelope proteins, Importin-beta, nuclear pore complex proteins and the Sec61 translocon have been implicated in the process. While this framework can explain the cell surface to nucleus traffic of EGFR and other cell surface receptors, it raises several questions that we consider in this review, together with implications for health and disease.
Collapse
|
41
|
Mert U, Adawy A, Scharff E, Teichmann P, Willms A, Haselmann V, Colmorgen C, Lemke J, von Karstedt S, Fritsch J, Trauzold A. TRAIL Induces Nuclear Translocation and Chromatin Localization of TRAIL Death Receptors. Cancers (Basel) 2019; 11:cancers11081167. [PMID: 31416165 PMCID: PMC6721811 DOI: 10.3390/cancers11081167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/09/2023] Open
Abstract
Binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to the plasma membrane TRAIL-R1/-R2 selectively kills tumor cells. This discovery led to evaluation of TRAIL-R1/-R2 as targets for anti-cancer therapy, yet the corresponding clinical trials were disappointing. Meanwhile, it emerged that many cancer cells are TRAIL-resistant and that TRAIL-R1/-R2-triggering may lead to tumor-promoting effects. Intriguingly, recent studies uncovered specific functions of long ignored intracellular TRAIL-R1/-R2, with tumor-promoting functions of nuclear (n)TRAIL-R2 as the regulator of let-7-maturation. As nuclear trafficking of TRAIL-Rs is not well understood, we addressed this issue in our present study. Cell surface biotinylation and tracking of biotinylated proteins in intracellular compartments revealed that nTRAIL-Rs originate from the plasma membrane. Nuclear TRAIL-Rs-trafficking is a fast process, requiring clathrin-dependent endocytosis and it is TRAIL-dependent. Immunoprecipitation and immunofluorescence approaches revealed an interaction of nTRAIL-R2 with the nucleo-cytoplasmic shuttle protein Exportin-1/CRM-1. Mutation of a putative nuclear export sequence (NES) in TRAIL-R2 or the inhibition of CRM-1 by Leptomycin-B resulted in the nuclear accumulation of TRAIL-R2. In addition, TRAIL-R1 and TRAIL-R2 constitutively localize to chromatin, which is strongly enhanced by TRAIL-treatment. Our data highlight the novel role for surface-activated TRAIL-Rs by direct trafficking and signaling into the nucleus, a previously unknown signaling principle for cell surface receptors that belong to the TNF-superfamily.
Collapse
Affiliation(s)
- Ufuk Mert
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Alshaimaa Adawy
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Elisabeth Scharff
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Pierre Teichmann
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Anna Willms
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Verena Haselmann
- Department of Clinical Chemistry, University Medical Centre, Ruprecht-Karls University of Heidelberg, 68167 Mannheim, Germany
| | - Cynthia Colmorgen
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- CECAD Research Center, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany.
| |
Collapse
|
42
|
Shahoumi LA, Yeudall WA. Targeted therapies for non-HPV-related head and neck cancer: challenges and opportunities in the context of predictive, preventive, and personalized medicine. EPMA J 2019; 10:291-305. [PMID: 31462945 DOI: 10.1007/s13167-019-00177-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops in the mucosal lining of the upper aerodigestive tract, principally as a result of exposure to carcinogens present in tobacco products and alcohol, with oncogenic papillomaviruses also being recognized as etiological agents in a limited proportion of cases. As such, there is considerable scope for prevention of disease development and progression. However, despite multimodal approaches to treatment, tumor recurrence and metastatic disease are common problems, and clinical outcome is unsatisfactory. As our understanding of the genetics and biochemical aberrations in HNSCC has improved, so the development and use of molecularly targeted drugs to combat the disease have come to the fore. In this article, we review molecular mechanisms that alter signal transduction downstream of the epidermal growth factor receptor (EGFR) as well as those that perturb orderly cell cycle progression, such as p53 mutation, cyclin overexpression, and loss of cyclin-dependent kinase inhibitor function. We outline some of the tactics that have been employed to combat the altered biochemistry. These include blockade of the EGFR using humanized monoclonal antibodies such as cetuximab and small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib/gefitinib and subsequent generations of TKIs, restoration of p53 function using MIRA compounds, and inhibition of cyclin-dependent kinase and aurora kinase activity using drugs such as palbociclib and alisertib. Knowledge of the underlying molecular mechanisms may be utilizable in order to predict disease behavior and tailor therapeutic interventions in a more personalized approach to improve clinical response. Use of liquid biopsy, omics platforms, and salivary diagnostics hold promise in this regard.
Collapse
Affiliation(s)
- Linah A Shahoumi
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA
| | - W Andrew Yeudall
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA.,3Georgia Cancer Center, Augusta University, Augusta, GA USA
| |
Collapse
|
43
|
McLaughlin RP, He J, van der Noord VE, Redel J, Foekens JA, Martens JWM, Smid M, Zhang Y, van de Water B. A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy. Breast Cancer Res 2019; 21:77. [PMID: 31262335 PMCID: PMC6604188 DOI: 10.1186/s13058-019-1161-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The effective treatment of triple-negative breast cancer (TNBC) remains a profound clinical challenge. Despite frequent epidermal growth factor receptor (EGFR) overexpression and reliance on downstream signalling pathways in TNBC, resistance to EGFR-tyrosine kinase inhibitors (TKIs) remains endemic. Therefore, the identification of targeted agents, which synergise with current therapeutic options, is paramount. METHODS Compound-based, high-throughput, proliferation screening was used to profile the response of TNBC cell lines to EGFR-TKIs, western blotting and siRNA transfection being used to examine the effect of inhibitors on EGFR-mediated signal transduction and cellular dependence on such pathways, respectively. A kinase inhibitor combination screen was used to identify compounds that synergised with EGFR-TKIs in TNBC, utilising sulphorhodamine B (SRB) assay as read-out for proliferation. The impact of drug combinations on cell cycle arrest, apoptosis and signal transduction was assessed using flow cytometry, automated live-cell imaging and western blotting, respectively. RNA sequencing was employed to unravel transcriptomic changes elicited by this synergistic combination and to permit identification of the signalling networks most sensitive to co-inhibition. RESULTS We demonstrate that a dual cdc7/CDK9 inhibitor, PHA-767491, synergises with multiple EGFR-TKIs (lapatinib, erlotinib and gefitinib) to overcome resistance to EGFR-targeted therapy in various TNBC cell lines. Combined inhibition of EGFR and cdc7/CDK9 resulted in reduced cell proliferation, accompanied by induction of apoptosis, G2-M cell cycle arrest, inhibition of DNA replication and abrogation of CDK9-mediated transcriptional elongation, in contrast to mono-inhibition. Moreover, high expression of cdc7 and RNA polymerase II Subunit A (POLR2A), the direct target of CDK9, is significantly correlated with poor metastasis-free survival in a cohort of breast cancer patients. RNA sequencing revealed marked downregulation of pathways governing proliferation, transcription and cell survival in TNBC cells treated with the combination of an EGFR-TKI and a dual cdc7/CDK9 inhibitor. A number of genes enriched in these downregulated pathways are associated with poor metastasis-free survival in TNBC. CONCLUSIONS Our results highlight that dual inhibition of cdc7 and CDK9 by PHA-767491 is a potential strategy for targeting TNBC resistant to EGFR-TKIs.
Collapse
Affiliation(s)
- Ronan P. McLaughlin
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jichao He
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Vera E. van der Noord
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jevin Redel
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - John A. Foekens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yinghui Zhang
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Bob van de Water
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
44
|
Yen CJ, Yang ST, Chen RY, Huang W, Chayama K, Lee MH, Yang SJ, Lai HS, Yen HY, Hsiao YW, Wang JM, Lin YJ, Hung LY. Hepatitis B virus X protein (HBx) enhances centrosomal P4.1-associated protein (CPAP) expression to promote hepatocarcinogenesis. J Biomed Sci 2019; 26:44. [PMID: 31170980 PMCID: PMC6551916 DOI: 10.1186/s12929-019-0534-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background Our previous report suggested that centrosomal P4.1-associated protein (CPAP) is required for Hepatitis B virus (HBV) encoded non-structure protein X (HBx)-mediated nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activation. CPAP is overexpressed in HBV-associated hepatocellular carcinoma (HCC); however, the interaction between CPAP and HBx in HBV-HCC remains unclear. Methods The mRNA expression of CPAP and HBx was analyzed by quantitative-PCR (Q-PCR). NF-κB transcriptional activity and CPAP promoter activity were determined using a reporter assay in Huh7 and Hep3B cells. Immunoprecipitation (IP) and in situ proximal ligation assay (PLA) were performed to detect the interaction between CPAP and HBx. Chromatin-IP was used to detect the association of cAMP response element binding protein (CREB) and HBx with the CPAP promoter. Cell proliferation was measured using cell counting kit CCK-8, Bromodeoxyuridine (5-bromo-2′-deoxyuridine, BrdU) incorporation, and clonogenic assays. The tumorigenic effects of CPAP were determined using xenograft animal models. Results HBx can transcriptionally up-regulate CPAP via interacting with CREB. Overexpressed CPAP directly interacted with HBx to promote HBx-mediated cell proliferation and migration; SUMO modification of CPAP was involved in interacting with HBx. Knocked-down expression of CPAP decreased the HBx-mediated tumorigenic effects, including cytokines secretion. Interestingly, overexpressed CPAP maintained the HBx protein stability in an NF-κB-dependent manner; and the expression levels of CPAP and HBx were positively correlated with the activation status of NF-κB in HCC. Increased expression of CPAP and CREB mRNAs existed in the high-risk group with a lower survival rate in HBV-HCC. Conclusion The interaction between CPAP and HBx can provide a microenvironment to facilitate HCC development via enhancing NF-κB activation, inflammatory cytokine production, and cancer malignancies. This study not only sheds light on the role of CPAP in HBV-associated HCC, but also provides CPAP as a potential target for blocking the hyper-activated NF-κB in HCC. Electronic supplementary material The online version of this article (10.1186/s12929-019-0534-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Ting Yang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ruo-Yu Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Ming-Hao Lee
- Department of Pharmacology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shiang-Jie Yang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hong-Sheng Lai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Yen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yih-Jyh Lin
- Division of General and Transplantation Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Department of Pharmacology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
45
|
Gazzeri S. [Nuclear EGFR: a new mode of oncogenic signalling in cancer]. Biol Aujourdhui 2018; 212:27-33. [PMID: 30362453 DOI: 10.1051/jbio/2018016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 06/08/2023]
Abstract
EGFR (Epidermal Growth Factor Receptor) is one of the most studied molecules in biology. From its early identification and cloning to the discovery of its role in cancer, it has been at the forefront of our understanding of Receptor Tyrosine Kinase (RTK) and cell signals that induce homeostasis, but when overexpressed, facilitate tumorigenesis. While the biological functions of EGFR traditionally involve the activation of a signaling network from the plasma membrane that includes activation of the RAS/MAPK/ERK, PI3K/AKT and STATS pathways, a new mode of EGFR signaling has been progressively decoded in which membrane-associated EGFR is transported after endocytosis from cell surface to the nucleus through endocytosis, retrograde trafficking to the Golgi, the endoplasmic reticulum and the inner nuclear membrane through a series of proteic interactions. In the nucleus, EGFR acts as a transcriptional regulator, a kinase and a physical interactor, transmits signals and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and resistance to cancer therapies. In this review, we will summarize current knowledge of the EGFR nuclear signaling network, including how it is delivered to the nucleus, the functions it serves in the nucleus and how these functions affect cancer progression, survival and the response to treatment.
Collapse
Affiliation(s)
- Sylvie Gazzeri
- « Epigénétique, maladies chroniques et cancer », INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), Allée des Alpes, 38700 La Tronche Cedex 09, France
| |
Collapse
|
46
|
ERK1/2-mediated EGFR-signaling is required for TGFβ-induced lens epithelial-mesenchymal transition. Exp Eye Res 2018; 178:108-121. [PMID: 30290164 DOI: 10.1016/j.exer.2018.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/30/2018] [Accepted: 09/28/2018] [Indexed: 02/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a critical role in the pathogenesis of fibrotic cataract. Transforming growth factor-beta (TGFβ) is a potent inducer of this fibrotic process in lens. Recent studies in cancer progression have shown that in addition to activating the canonical Smad signaling pathway, TGFβ can also transactivate the epidermal growth factor receptor (EGFR) to enhance invasive cell migration. The present study aims to elucidate the involvement of EGFR-signaling in TGFβ-induced EMT in LECs. Treatment with TGFβ2 induced transdifferentiation of LECs into myofibroblastic cells, typical of an EMT. TGFβ2 induced the phosphorylation of the EGFR and upregulation of Egfr and Hb-egf gene expression. Pharmacologic inhibition of EGFR-signaling using PD153035 inhibited TGFβ-induced EMT, including the upregulation of mesenchymal markers and downregulation of epithelial markers. Crosstalk between TGFβ2-induced EGFR and ERK1/2 was evident, with both pathways impacting on Smad2/3-signaling. Our finding that TGFβ2 transactivates downstream EGFR-signaling reveals a previously unknown mechanism in the pathogenesis of cataract. Understanding the complex interplay between divergent canonical and non-canonical signaling pathways, as well as downstream target genes involved in TGFβ-induced EMT, will enable the development of more effective targeted therapies in the pharmacological treatment of cataract.
Collapse
|
47
|
Yan D, Parker RE, Wang X, Frye SV, Earp HS, DeRyckere D, Graham DK. MERTK Promotes Resistance to Irreversible EGFR Tyrosine Kinase Inhibitors in Non–small Cell Lung Cancers Expressing Wild-type EGFR Family Members. Clin Cancer Res 2018; 24:6523-6535. [DOI: 10.1158/1078-0432.ccr-18-0040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/30/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022]
|
48
|
Ouyang X, Barling A, Lesch A, Tyner JW, Choonoo G, Zheng C, Jeng S, West TM, Clayburgh D, Courtneidge SA, McWeeney SK, Kulesz-Martin M. Induction of anaplastic lymphoma kinase (ALK) as a novel mechanism of EGFR inhibitor resistance in head and neck squamous cell carcinoma patient-derived models. Cancer Biol Ther 2018; 19:921-933. [PMID: 29856687 PMCID: PMC6300392 DOI: 10.1080/15384047.2018.1451285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 01/09/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) currently only has one FDA-approved cancer intrinsic targeted therapy, the epidermal growth factor receptor (EGFR) inhibitor cetuximab, to which only approximately 10% of tumors are sensitive. In order to extend therapy options, we subjected patient-derived HNSCC cells to small-molecule inhibitor and siRNA screens, first, to find effective combination therapies with an EGFR inhibitor, and second, to determine a potential mechanistic basis for repurposing the FDA approved agents for HNSCC. The combinations of EGFR inhibitor with anaplastic lymphoma kinase (ALK) inhibitors demonstrated synergy at the highest ratio in our cohort, 4/8 HNSCC patients' derived tumor cells, and this corresponded with an effectiveness of siRNA targeting ALK combined with the EGFR inhibitor gefitinib. Co-targeting EGFR and ALK decreased HNSCC cell number and colony formation ability and increased annexin V staining. Because ALK expression is low and ALK fusions are infrequent in HNSCC, we hypothesized that gefitinib treatment could induce ALK expression. We show that ALK expression was induced in HNSCC patient-derived cells both in 2D and 3D patient-derived cell culture models, and in patient-derived xenografts in mice. Four different ALK inhibitors, including two (ceritinib and brigatinib) FDA approved for lung cancer, were effective in combination with gefitinib. Together, we identified induction of ALK by EGFR inhibitor as a novel mechanism potentially relevant to resistance to EGFR inhibitor, a high ratio of response of HNSCC patient-derived tumor cells to a combination of ALK and EGFR inhibitors, and applicability of repurposing ALK inhibitors to HNSCC that lack ALK aberrations.
Collapse
Affiliation(s)
- Xiaoming Ouyang
- Department of Dermatology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Ashley Barling
- Department of Dermatology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Aletha Lesch
- Department of Dermatology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Jeffrey W. Tyner
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Gabrielle Choonoo
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Christina Zheng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Toni M. West
- Department of Pharmacology, University of California at Davis, 451 Health Science Dr., Davis, California
| | - Daniel Clayburgh
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
- Operative Care Division, Portland VA Health Care System, 3710 SW US Veterans Hospital Rd., Portland, Oregon
| | - Sara A. Courtneidge
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| | - Molly Kulesz-Martin
- Department of Dermatology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon
| |
Collapse
|
49
|
Shi Y, Liu N, Lai W, Yan B, Chen L, Liu S, Liu S, Wang X, Xiao D, Liu X, Mao C, Jiang Y, Jia J, Liu Y, Yang R, Cao Y, Tao Y. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells. Cancer Lett 2018; 422:81-93. [PMID: 29477380 DOI: 10.1016/j.canlet.2018.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 12/17/2022]
Abstract
Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis.
Collapse
Affiliation(s)
- Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Weiwei Lai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Bin Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Shouping Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Xiaoli Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Yiqun Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Jiantao Jia
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Rui Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China; Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
50
|
Roos A, Dhruv HD, Peng S, Inge LJ, Tuncali S, Pineda M, Millard N, Mayo Z, Eschbacher JM, Loftus JC, Winkles JA, Tran NL. EGFRvIII-Stat5 Signaling Enhances Glioblastoma Cell Migration and Survival. Mol Cancer Res 2018; 16:1185-1195. [PMID: 29724813 DOI: 10.1158/1541-7786.mcr-18-0125] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common brain malignancies in adults. Most GBM patients succumb to the disease less than 1 year after diagnosis due to the highly invasive nature of the tumor, which prevents complete surgical resection and gives rise to tumor recurrence. The invasive phenotype also confers radioresistant and chemoresistant properties to the tumor cells; therefore, there is a critical need to develop new therapeutics that target drivers of GBM invasion. Amplification of EGFR is observed in over 50% of GBM tumors, of which half concurrently overexpress the variant EGFRvIII, and expression of both receptors confers a worse prognosis. EGFR and EGFRvIII cooperate to promote tumor progression and invasion, in part, through activation of the Stat signaling pathway. Here, it is reported that EGFRvIII activates Stat5 and GBM invasion by inducing the expression of a previously established mediator of glioma cell invasion and survival: fibroblast growth factor-inducible 14 (Fn14). EGFRvIII-mediated induction of Fn14 expression is Stat5 dependent and requires activation of Src, whereas EGFR regulation of Fn14 is dependent upon Src-MEK/ERK-Stat3 activation. Notably, treatment of EGFRvIII-expressing GBM cells with the FDA-approved Stat5 inhibitor pimozide blocked Stat5 phosphorylation, Fn14 expression, and cell migration and survival. Because EGFR inhibitors display limited therapeutic efficacy in GBM patients, the EGFRvIII-Stat5-Fn14 signaling pathway represents a node of vulnerability in the invasive GBM cell populations.Implications: Targeting critical effectors in the EGFRvIII-Stat5-Fn14 pathway may limit GBM tumor dispersion, mitigate therapeutic resistance, and increase survival. Mol Cancer Res; 16(7); 1185-95. ©2018 AACR.
Collapse
Affiliation(s)
- Alison Roos
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Harshil D Dhruv
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Landon J Inge
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Serdar Tuncali
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Michael Pineda
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Nghia Millard
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Zachary Mayo
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Jeffrey A Winkles
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona.
| |
Collapse
|