1
|
Luo Y, Hu Q, Yu Y, Lyu W, Shen F. Experimental investigation of confinement effect in single molecule amplification via real-time digital PCR on a multivolume droplet array SlipChip. Anal Chim Acta 2024; 1304:342541. [PMID: 38637051 DOI: 10.1016/j.aca.2024.342541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Digital polymerase chain reaction (digital PCR) is an important quantitative nucleic acid analysis method in both life science research and clinical diagnostics. One important hypothesis is that by physically constraining a single nucleic acid molecule in a small volume, the relative concentration can be increased therefore further improving the analysis performance, and this is commonly defined as the confinement effect in digital PCR. However, experimental investigation of this confinement effect can be challenging since it requires a microfluidic device that can generate partitions of different volumes and an instrument that can monitor the kinetics of amplification. (96). RESULTS Here, we developed a real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip) that can generate droplet of 125 nL, 25 nL, 5 nL, and 1 nL by a simple "load-slip" operation. In the digital region, by reducing the volume, the relative concentration is increased, the amplification kinetic can be accelerated, and the time to reach the fluorescence threshold, or Cq value, can be reduced. When the copy number per well is much higher than one, the relative concentration is independent of the partition volume, thus the amplification kinetics are similar in different volume partitions. This system is not limited to studying the kinetics of digital nucleic acid amplification, it can also extend the dynamic range of the digital nucleic acid analysis by additional three orders of magnitude by combining a digital and an analog quantification algorithm. (140). SIGNIFICANCE In this study, we experimentally investigated for the first time the confinement effect in the community of digital PCR via a new real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip). And a wider dynamic range of quantification methods compared to conventional digital PCR was validated by this system. This system provides emerging opportunities for life science research and clinical diagnostics. (63).
Collapse
Affiliation(s)
- Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China.
| |
Collapse
|
2
|
Shin JC, Jeong JY, Son SG, Choi SH, Nam HC, Yoon TH, Kim HJ, Choi DG, Lee H, Lee U, Yang SM, Kang I, Jung DY, Lee HW, Lee MK, Lee TJ, Kim G, Park HO, Lee SW. Developing centrifugal force real-time digital PCR for detecting extremely low DNA concentration. Sci Rep 2024; 14:11522. [PMID: 38769102 DOI: 10.1038/s41598-024-62199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.14% liquid loss by dispensing samples using centrifugal force. Moreover, we applied a technique for analyzing the real-time graph of the each micro-wells and distinguishing true/false positives using artificial intelligence to mitigate the rain, a persistent issue with dPCR. The limits of detection and quantification were 1.38 and 4.19 copies/μL, respectively, showing a two-fold higher sensitivity than that of other comparable devices. With the integration of this new technology, crdPCR will significantly contribute to research on next-generation PCR targeting absolute micro-analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ukyeol Lee
- RevoSketch Inc., Daejeon, Republic of Korea
| | | | - Il Kang
- RevoSketch Inc., Daejeon, Republic of Korea
| | | | | | - Moon-Keun Lee
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon, Republic of Korea
| | - Tae Jae Lee
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon, Republic of Korea
| | - Geehong Kim
- Nano-Convergence Systems Research Division, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea
| | - Han-Oh Park
- Bioneer Corporation, Daejeon, Republic of Korea
| | | |
Collapse
|
3
|
Ren J, Xu G, Liu H, He N, Zhao Z, Wang M, Gu P, Chen Z, Deng Y, Wu D, Li S. A Chamber-Based Digital PCR Based on a Microfluidic Chip for the Absolute Quantification and Analysis of KRAS Mutation. BIOSENSORS 2023; 13:778. [PMID: 37622864 PMCID: PMC10452697 DOI: 10.3390/bios13080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
The Kirsten rat sarcoma virus gene (KRAS) is the most common tumor in human cancer, and KRAS plays an important role in the growth of tumor cells. Normal KRAS inhibits tumor cell growth. When mutated, it will continuously stimulate cell growth, resulting in tumor development. There are currently few drugs that target the KRAS gene. Here, we developed a microfluidic chip. The chip design uses parallel fluid channels combined with cylindrical chamber arrays to generate 20,000 cylindrical microchambers. The microfluidic chip designed by us can be used for the microsegmentation of KRAS gene samples. The thermal cycling required for the PCR stage is performed on a flat-panel instrument and detected using a four-color fluorescence system. "Glass-PDMS-glass" sandwich structure effectively reduces reagent volatilization; in addition, a valve is installed at the sample inlet and outlet on the upper layer of the chip to facilitate automatic control. The liquid separation performance of the chip was verified by an automated platform. Finally, using the constructed KRAS gene mutation detection system, it is verified that the chip has good application potential for digital polymerase chain reaction (dPCR). The experimental results show that the chip has a stable performance and can achieve a dynamic detection range of four orders of magnitude and a gene mutation detection of 0.2%. In addition, the four-color fluorescence detection system developed based on the chip can distinguish three different KRAS gene mutation types simultaneously on a single chip.
Collapse
Affiliation(s)
- Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Gangwei Xu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhehao Zhao
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Peipei Gu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
- Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Shirai R, Osumi T, Sato-Otsubo A, Nakabayashi K, Ishiwata K, Yamada Y, Yoshida M, Yoshida K, Shioda Y, Kiyotani C, Terashima K, Tomizawa D, Takasugi N, Takita J, Miyazaki O, Kiyokawa N, Yoneda A, Kanamori Y, Hishiki T, Matsumoto K, Hata K, Yoshioka T, Kato M. Quantitative assessment of copy number alterations by liquid biopsy for neuroblastoma. Genes Chromosomes Cancer 2022; 61:662-669. [PMID: 35655408 DOI: 10.1002/gcc.23073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Liquid biopsy, a method of detecting genomic alterations using blood specimens, has recently attracted attention as a non-invasive alternative to surgical tissue biopsy. We attempted quantitative analysis to detect amplification of MYCN (MYCNamp) and loss of heterozygosity at 11q (11qLOH), which are clinical requisites as prognostic factors of neuroblastoma. In this study, cell-free DNA (cfDNA) was extracted from plasma samples from 24 neuroblastoma patients at diagnosis. Copy numbers of MYCN and NAGK genes were quantitatively analyzed by droplet digital PCR (ddPCR). 11qLOH was also assessed by detecting allelic imbalances of heterozygous single nucleotide polymorphisms in the 11q region. The results obtained were compared to those of specimens from tumor tissues. The correlation coefficient of MYCN copy number of cfDNA and tumor DNA was 0.88 (P < 0.00001). 11qLOH was also accurately detected from cfDNA, except for one case with localized NB. Given the high accuracy of liquid biopsy, to investigate components of cfDNA, the proportion of tumor-derived DNA was estimated by examining the variant allele frequency of tumor-specific mutations in cfDNA. The proportion of tumor-derived DNA in cfDNA was 42.5% (range, 16.9%-55.9%), suggesting sufficient sensitivity of liquid biopsy for neuroblastoma. In conclusion, MYCN copy number and 11qLOH could be quantitatively analyzed in plasma cfDNA by ddPCR assay. These results suggest that plasma cfDNA can be substituted for tumor DNA and can also be applied for comprehensive genomic profiling analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ryota Shirai
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuji Yamada
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kaoru Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Shioda
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Chikako Kiyotani
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Keita Terashima
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nao Takasugi
- Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto City, Japan
| | - Osamu Miyazaki
- Department of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Yoneda
- Division of Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yutaka Kanamori
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoro Hishiki
- Division of Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Bianca C, Sidhartha E, Tiribelli C, El-Khobar KE, Sukowati CHC. Role of hepatitis B virus in development of hepatocellular carcinoma: Focus on covalently closed circular DNA. World J Hepatol 2022; 14:866-884. [PMID: 35721287 PMCID: PMC9157711 DOI: 10.4254/wjh.v14.i5.866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a major global health problem, especially in developing countries. It may lead to prolonged liver damage, fibrosis, cirrhosis, and hepatocellular carcinoma. Persistent chronic HBV infection is related to host immune response and the stability of the covalently closed circular DNA (cccDNA) in human hepatocytes. In addition to being essential for viral transcription and replication, cccDNA is also suspected to play a role in persistent HBV infections or hepatitis relapses since cccDNA is very stable in non-dividing human hepatocytes. Understanding the pathogenicity and oncogenicity of HBV components would be essential in the development of new diagnostic tools and treatment strategies. This review summarizes the role and molecular mechanisms of HBV cccDNA in hepatocyte transformation and hepatocarcinogenesis and current efforts to its detection and targeting.
Collapse
Affiliation(s)
- Claryssa Bianca
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Korri Elvanita El-Khobar
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Caecilia H C Sukowati
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| |
Collapse
|
6
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
Huggett JF. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin Chem 2021; 66:1012-1029. [PMID: 32746458 DOI: 10.1093/clinchem/hvaa125] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology.
Collapse
|
8
|
Yarimizu K, Sildever S, Hamamoto Y, Tazawa S, Oikawa H, Yamaguchi H, Basti L, Mardones JI, Paredes-Mella J, Nagai S. Development of an absolute quantification method for ribosomal RNA gene copy numbers per eukaryotic single cell by digital PCR. HARMFUL ALGAE 2021; 103:102008. [PMID: 33980448 DOI: 10.1016/j.hal.2021.102008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Recent increase of Harmful Algal Blooms (HAB) causes world-wide ecological, economical, and health issues, and more attention is paid to frequent coastal monitoring for the early detection of HAB species to prevent or reduce such impacts. Use of molecular tools in addition to traditional microscopy-based observation has become one of the promising methodologies for coastal monitoring. However, as ribosomal RNA (rRNA) genes are commonly targeted in molecular studies, variability in the rRNA gene copy number within and between species must be considered to provide quantitative information in quantitative PCR (qPCR), digital PCR (dPCR), and metabarcoding analyses. Currently, this information is only available for a limited number of species. The present study utilized a dPCR technology to quantify copy numbers of rRNA genes per single cell in 16 phytoplankton species, the majority of which are toxin-producers, using a newly developed universal primer set accompanied by a labeled probe with a fluorophore and a double-quencher. In silico PCR using the newly developed primers allowed the detection of taxa from 8 supergroups, demonstrating universality and broad coverage of the primer set. Chelex buffer was found to be suitable for DNA extraction to obtain DNA fragments with suitable size to avoid underestimation of the copy numbers. The study successfully demonstrated the first comparison of absolute quantification of 18S rRNA copy numbers per cell from 16 phytoplankton species by the dPCR technology.
Collapse
Affiliation(s)
- Kyoko Yarimizu
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan; Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, 1-3-2 22 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan
| | - Sirje Sildever
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan; Department of Marine Systems, Tallinn University of Technology, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - Yoko Hamamoto
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Satoshi Tazawa
- AXIOHELIX Co. Ltd, 12-17 Kandaizumicho, Chiyoda-ku, Tokyo 101-0024, Japan
| | - Hiroshi Oikawa
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Haruo Yamaguchi
- Faculty of Agriculture and Marine Sciences, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Leila Basti
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan
| | - Jorge I Mardones
- Instituto de Fomento Pesquero, Centro de Estudios de Algas Nocivas (IFOP-CREAN), Padre Harter 574, Puerto Montt 5501679, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Javier Paredes-Mella
- Instituto de Fomento Pesquero, Centro de Estudios de Algas Nocivas (IFOP-CREAN), Padre Harter 574, Puerto Montt 5501679, Chile
| | - Satoshi Nagai
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Fisheries Stock Assessment Center, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan.
| |
Collapse
|
9
|
Digital PCR for the Analysis of MYC Copy Number Variation in Lung Cancer. DISEASE MARKERS 2020; 2020:4176376. [PMID: 33014186 PMCID: PMC7525309 DOI: 10.1155/2020/4176376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/29/2020] [Accepted: 09/06/2020] [Indexed: 12/24/2022]
Abstract
Background MYC (v-myc avian myelocytomatosis viral oncogene homolog) is one of the most frequently amplified genes in lung tumors. For the analysis of gene copy number variations, dPCR (digital PCR) is an appropriate tool. The aim of our study was the assessment of dPCR for the detection of MYC copy number variations (CNV) in lung tissue considering clinicopathological parameters. Material and Methods. MYC status was analyzed with dPCR as well as qPCR (quantitative PCR) using gDNA (genomic DNA) from tumor and adjacent nontumor tissue samples of lung cancer patients. The performance of MYC was estimated based on the AUC (area under curve). Results The results of the MYC amplification correlated significantly between dPCR and qPCR (r S = 0.81, P < 0.0001). The MYC copy number revealed by dPCR showed statistically significant differences between tumor and adjacent nontumor tissues. For discrimination, a sensitivity of 43% and a specificity of 99% were calculated, representing 55 true-positive and one false-positive tests. No statistically significant differences could be observed for age, sex, and smoking status or the clinicopathological parameters (histological subtype, grade, and stage). Conclusion The results of the study show that dPCR is an accurate and reliable method for the determination of MYC copy numbers. The application is characterized by high specificity and moderate sensitivity. MYC amplification is a common event in lung cancer patients, and it is indicated that the determination of the MYC status might be useful in clinical diagnostics.
Collapse
|
10
|
Wu C, Maley AM, Walt DR. Single-molecule measurements in microwells for clinical applications. Crit Rev Clin Lab Sci 2019:1-21. [PMID: 31865834 DOI: 10.1080/10408363.2019.1700903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to detect and analyze proteins, nucleic acids, and other biomolecules is critical for clinical diagnostics and for understanding the underlying mechanisms of disease. Current detection methods in clinical and research laboratories rely upon bulk measurement techniques such as immunoassays, polymerase chain reaction, and mass spectrometry to detect these biomarkers. However, many potentially useful protein or nucleic acid biomarkers in blood, saliva, or other biofluids exist at concentrations well below the detection limits of current methods, necessitating the development of more sensitive technologies. Single-molecule measurements are poised to address this challenge, vastly improving sensitivity for detecting low abundance biomarkers and rare events within a population. Microwell arrays have emerged as a powerful tool for single-molecule measurements, enabling ultrasensitive detection of disease-relevant biomolecules in easily accessible biofluids. This review discusses the development, fundamentals, and clinical applications of microwell-based single-molecule methods, as well as challenges and future directions for translating these methods to the clinic.
Collapse
Affiliation(s)
- Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Adam M Maley
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
11
|
Nie M, Zheng M, Li C, Shen F, Liu M, Luo H, Song X, Lan Y, Pan JZ, Du W. Assembled Step Emulsification Device for Multiplex Droplet Digital Polymerase Chain Reaction. Anal Chem 2019; 91:1779-1784. [DOI: 10.1021/acs.analchem.8b04313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mengyue Nie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 10049, China
| | - Meng Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 10049, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manhua Liu
- Department of Instrument Science and Engineering, The School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haibei Luo
- Pilot Gene Technologies, Hangzhou, 311203, China
| | - Xiaohui Song
- Pilot Gene Technologies, Hangzhou, 311203, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 10049, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
12
|
Qian C, Wang R, Wu H, Ping J, Wu J. Recent advances in emerging DNA-based methods for genetically modified organisms (GMOs) rapid detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Chopra R, Simpson CE, Hillhouse A, Payton P, Sharma J, Burow MD. SNP genotyping reveals major QTLs for plant architectural traits between A-genome peanut wild species. Mol Genet Genomics 2018; 293:1477-1491. [PMID: 30069598 DOI: 10.1007/s00438-018-1472-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
KEY MESSAGE QTL mapping of important architectural traits was successfully applied to an A-genome diploid population using gene-specific variations. Peanut wild species are an important source of resistance to biotic and possibly abiotic stress; because these species differ from the cultigen in many traits, we have undertaken to identify QTLs for several plant architecture-related traits. In this study, we took recently identified SNPs, converted them into markers, and identified QTLs for architectural traits. SNPs from RNASeq data distinguishing two parents, A. duranensis (KSSc38901) and A. cardenasii (GKP10017), of a mapping population were identified using three references-A. duranensis V14167 genome sequence, and transcriptome sequences of A. duranensis KSSc38901 and OLin. More than 49,000 SNPs differentiated the parents, and 87.9% of the 190 SNP calls tested were validated. SNPs were then genotyped on 91 F2 lines using KASP chemistry on a Roche LightCycler 480 and a Fluidigm Biomark HD, and using SNPType chemistry on the Fluidigm Biomark HD. A linkage map was constructed having ten linkage groups, with 144 loci spanning a total map distance of 1040 cM. Comparison of the A-genome map to the A. duranensis genome sequence revealed a high degree of synteny. QTL analysis was also performed on the mapping population for important architectural traits. Fifteen definitive and 16 putative QTLs for petiole length, leaflet length and width, leaflet area, leaflet length/width ratio, main stem height, presence of flowers on the main stem, and seed mass were identified. Results demonstrate that SNPs identified from transcriptome sequencing could be converted to KASP or SNPType markers with a high success rate, and used to identify alleles with significant phenotypic effects, These could serve as information useful for introgression of alleles into cultivated peanut from wild species and have the potential to allow breeders to more easily fix these alleles using a marker-assisted backcrossing approach.
Collapse
Affiliation(s)
- Ratan Chopra
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | | | - Andrew Hillhouse
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | | | - Jyotsna Sharma
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mark D Burow
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
- Texas A&M AgriLife Research, Lubbock, TX, 79403, USA.
| |
Collapse
|
14
|
Tian J, Vemula SR, Xiao J, Valente EM, Defazio G, Petrucci S, Gigante AF, Rudzińska‐Bar M, Wszolek ZK, Kennelly KD, Uitti RJ, van Gerpen JA, Hedera P, Trimble EJ, LeDoux MS. Whole-exome sequencing for variant discovery in blepharospasm. Mol Genet Genomic Med 2018; 6:601-626. [PMID: 29770609 PMCID: PMC6081235 DOI: 10.1002/mgg3.411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/01/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Blepharospasm (BSP) is a type of focal dystonia characterized by involuntary orbicularis oculi spasms that are usually bilateral, synchronous, and symmetrical. Despite strong evidence for genetic contributions to BSP, progress in the field has been constrained by small cohorts, incomplete penetrance, and late age of onset. Although several genetic etiologies for dystonia have been identified through whole-exome sequencing (WES), none of these are characteristically associated with BSP as a singular or predominant manifestation. METHODS We performed WES on 31 subjects from 21 independent pedigrees with BSP. The strongest candidate sequence variants derived from in silico analyses were confirmed with bidirectional Sanger sequencing and subjected to cosegregation analysis. RESULTS Cosegregating deleterious variants (GRCH37/hg19) in CACNA1A (NM_001127222.1: c.7261_7262delinsGT, p.Pro2421Val), REEP4 (NM_025232.3: c.109C>T, p.Arg37Trp), TOR2A (NM_130459.3: c.568C>T, p.Arg190Cys), and ATP2A3 (NM_005173.3: c.1966C>T, p.Arg656Cys) were identified in four independent multigenerational pedigrees. Deleterious variants in HS1BP3 (NM_022460.3: c.94C>A, p.Gly32Cys) and GNA14 (NM_004297.3: c.989_990del, p.Thr330ArgfsTer67) were identified in a father and son with segmental cranio-cervical dystonia first manifest as BSP. Deleterious variants in DNAH17, TRPV4, CAPN11, VPS13C, UNC13B, SPTBN4, MYOD1, and MRPL15 were found in two or more independent pedigrees. To our knowledge, none of these genes have previously been associated with isolated BSP, although other CACNA1A mutations have been associated with both positive and negative motor disorders including ataxia, episodic ataxia, hemiplegic migraine, and dystonia. CONCLUSIONS Our WES datasets provide a platform for future studies of BSP genetics which will demand careful consideration of incomplete penetrance, pleiotropy, population stratification, and oligogenic inheritance patterns.
Collapse
Affiliation(s)
- Jun Tian
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
- Department of NeurologySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Satya R. Vemula
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics UnitIRCCS Santa Lucia FoundationRomeItaly
| | - Giovanni Defazio
- Department of Basic Clinical Sciences, Neuroscience and Sense OrgansAldo Moro University of BariBariItaly
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - Simona Petrucci
- Department of Neurology and PsychiatrySapienza University of RomeRomeItaly
| | - Angelo Fabio Gigante
- Department of Basic Clinical Sciences, Neuroscience and Sense OrgansAldo Moro University of BariBariItaly
| | - Monika Rudzińska‐Bar
- Department of NeurologyFaculty of MedicineMedical University of SilesiaKatowicePoland
| | | | | | - Ryan J. Uitti
- Department of NeurologyMayo Clinic FloridaJacksonvilleFlorida
| | | | - Peter Hedera
- Department of NeurologyVanderbilt UniversityNashvilleTennessee
| | - Elizabeth J. Trimble
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Mark S. LeDoux
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| |
Collapse
|
15
|
Ravimohan S, Nfanyana K, Tamuhla N, Tiemessen CT, Weissman D, Bisson GP. Common Variation in NLRP3 Is Associated With Early Death and Elevated Inflammasome Biomarkers Among Advanced HIV/TB Co-infected Patients in Botswana. Open Forum Infect Dis 2018; 5:ofy075. [PMID: 29732382 PMCID: PMC5928406 DOI: 10.1093/ofid/ofy075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background Elevated inflammation is associated with early mortality among HIV/tuberculosis (TB) patients starting antiretroviral therapy (ART); however, the sources of immune activation are unclear. We hypothesized that common variation in innate immune genes contributes to excessive inflammation linked to death. As single nucleotide polymorphisms (SNPs) in inflammasome pathway genes can increase risk for inflammatory diseases, we investigated their association with early mortality among a previously described cohort of HIV/TB patients initiating ART in Botswana. Methods We genotyped 8 SNPs within 5 inflammasome pathway genes and determined their association with death. For adjusted analyses, we used a logistic regression model. For SNPs associated with mortality, we explored their relationship with levels of systemic inflammatory markers using a linear regression model. Results Ninety-four patients in the parent study had samples for genetic analysis. Of these, 82 (87%) were survivors and 12 (13%) died within 6 months of starting ART. In a logistic regression model, NLRP3 rs10754558 was independently associated with a 4.1-fold increased odds of death (95% confidence interval, 1.04–16.5). In adjusted linear regression models, the NLRP3 rs10754558-G allele was linked to elevated IL-18 at baseline (Beta, 0.23; SE, 0.10; P = .033) and week 4 post-ART (Beta, 0.24; SE, 0.11; P = .026). This allele was associated with increased MCP-1 at baseline (Beta, 0.24; SE, 0.10; P = .02) and IL-10 (Beta, 0.27; SE, 0.11; P = .013) at week 4 post-ART. Conclusion The NLRP3 rs10754558-G SNP is associated with an increased risk for early mortality in HIV/TB patients initiating ART. These patients may benefit from therapies that decrease inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana
| | | | - Neo Tamuhla
- Botswana-UPenn Partnership, Gaborone, Botswana
| | - Caroline T Tiemessen
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases, and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana
| | - Gregory P Bisson
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana.,Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Li X, Zhao J, Yuan Q, Xia N. Detection of HBV Covalently Closed Circular DNA. Viruses 2017; 9:E139. [PMID: 28587292 PMCID: PMC5490816 DOI: 10.3390/v9060139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA) in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR)-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinghua Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Abstract
A digital assay is one in which the sample is partitioned into many small containers such that each partition contains a discrete number of biological entities (0, 1, 2, 3, …). A powerful technique in the biologist's toolkit, digital assays bring a new level of precision in quantifying nucleic acids, measuring proteins and their enzymatic activity, and probing single-cell genotypes and phenotypes. Part I of this review begins with the benefits and Poisson statistics of partitioning, including sources of error. The remainder focuses on digital PCR (dPCR) for quantification of nucleic acids. We discuss five commercial instruments that partition samples into physically isolated chambers (cdPCR) or droplet emulsions (ddPCR). We compare the strengths of dPCR (absolute quantitation, precision, and ability to detect rare or mutant targets) with those of its predecessor, quantitative real-time PCR (dynamic range, larger sample volumes, and throughput). Lastly, we describe several promising applications of dPCR, including copy number variation, quantitation of circulating tumor DNA and viral load, RNA/miRNA quantitation with reverse transcription dPCR, and library preparation for next-generation sequencing. This review is intended to give a broad perspective to scientists interested in adopting digital assays into their workflows. Part II focuses on digital protein and cell assays.
Collapse
Affiliation(s)
- Amar S Basu
- 1 Department of Electrical and Computer Engineering, and Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Motoi Y, Watanabe K, Honma H, Tadano Y, Hashimoto H, Kubota T. Digital PCR for determination of cytochrome P450 2D6 and sulfotransferase 1A1 gene copy number variations. Drug Discov Ther 2017; 11:336-341. [DOI: 10.5582/ddt.2017.01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yutaro Motoi
- Niigata University of Pharmacy and Applied Life Sciences
| | | | - Hiroyuki Honma
- Niigata University of Pharmacy and Applied Life Sciences
| | - Yousuke Tadano
- Niigata University of Pharmacy and Applied Life Sciences
| | | | | |
Collapse
|
19
|
Determination of True ERBB2 Gene Amplification in Breast Cancer by Quantitative PCR Using a Reference and a Novel Control Gene. Appl Immunohistochem Mol Morphol 2016; 24:179-87. [PMID: 25789534 DOI: 10.1097/pai.0000000000000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human epidermal growth factor receptor 2 (ERBB2/HER2) is amplified and overexpressed in 20% to 25% of breast carcinomas, correlates with poor outcome, and is an indication for treatment with trastuzumab. Accurate assessment of ERBB2 status is crucial for proper prognosis and to offer appropriate treatment for patients. ERBB2 status is generally determined by immunohistochemistry or fluorescence in situ hybridization (FISH), and sporadically by quantitative real-time polymerase chain reaction (PCR). We developed a new algorithm, termed quantitative PCR algorithm (QPA) score, and compared its performance with the gold standard FISH assay. The QPA is a computation of the relative number of copies of the ERBB2 gene with respect to a nonstandard, short-arm centromeric sequence on chromosome 17, and referenced to a single-copy gene, RPP30. This provides a more reliable determination of ERBB2 amplification, reducing the false polysomy 17 error. A total of 69 breast carcinoma samples were tested for quantitative real-time PCR and FISH, and the degree of concordance was analyzed. Sixty-two cases were in agreement between the 2 methods, and the contingency study assigned a κ value of 0.729 for their correlation. A receiver operating characteristic analysis was used to determine the optimal cut-off point for ERBB2 amplification, which was estimated at a QPA=1.53 (sensitivity=0.863; specificity=0.944). Our data conclude that the QPA is able to determine ERBB2 gene status with high accuracy, while also overcoming the limitations of conventional techniques and providing better cost-effectiveness.
Collapse
|
20
|
Matsusaka K, Ishikawa S, Nakayama A, Ushiku T, Nishimoto A, Urabe M, Kaneko N, Kunita A, Kaneda A, Aburatani H, Fujishiro M, Seto Y, Fukayama M. Tumor Content Chart-Assisted HER2/CEP17 Digital PCR Analysis of Gastric Cancer Biopsy Specimens. PLoS One 2016; 11:e0154430. [PMID: 27119558 PMCID: PMC4847903 DOI: 10.1371/journal.pone.0154430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/13/2016] [Indexed: 12/23/2022] Open
Abstract
Evaluating HER2 gene amplification is an essential component of therapeutic decision-making for advanced or metastatic gastric cancer. A simple method that is applicable to small, formalin-fixed, paraffin-embedded biopsy specimens is desirable as an adjunct to or as a substitute for currently used HER2 immunohistochemistry and in situ hybridization protocols. In this study, we developed a microfluidics-based digital PCR method for determining HER2 and chromosome 17 centromere (CEP17) copy numbers and estimating tumor content ratio (TCR). The HER2/CEP17 ratio is determined by three variables—TCR and absolute copy numbers of HER2 and CEP17—by examining tumor cells; only the ratio of the latter two can be obtained by digital PCR using the whole specimen without purifying tumor cells. TCR was determined by semi-automatic image analysis. We developed a Tumor Content chart, which is a plane of rectangular coordinates consisting of HER2/CEP17 digital PCR data and TCR that delineates amplified, non-amplified, and equivocal areas. By applying this method, 44 clinical gastric cancer biopsy samples were classified as amplified (n = 13), non-amplified (n = 25), or equivocal (n = 6). By comparison, 11 samples were positive, 11 were negative, and 22 were equivocally immunohistochemistry. Thus, our novel method reduced the number of equivocal samples from 22 to 6, thereby obviating the need for confirmation by fluorescence or dual-probe in situ hybridization to < 30% of cases. Tumor content chart-assisted digital PCR analysis is also applicable to multiple sites in surgically resected tissues. These results indicate that this analysis is a useful alternative to HER2 immunohistochemistry in gastric cancers that can serve as a basis for the automated evaluation of HER2 status.
Collapse
Affiliation(s)
- Keisuke Matsusaka
- Division of Diagnostic Pathology, the University of Tokyo Hospital, Tokyo, Japan
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shumpei Ishikawa
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Department of Genomic Pathology, Medical Research Institute Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhito Nakayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Aiko Nishimoto
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Masayuki Urabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Department of Gastrointestinal Surgery, the University of Tokyo Hospital, Tokyo, Japan
| | - Nobuyuki Kaneko
- Division of Diagnostic Pathology, the University of Tokyo Hospital, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, the University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Endoscopy and Endoscopic Surgery, the University of Tokyo Hospital, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, the University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Fukayama
- Division of Diagnostic Pathology, the University of Tokyo Hospital, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
Félix-Urquídez D, Pérez-Urquiza M, Valdez Torres JB, León-Félix J, García-Estrada R, Acatzi-Silva A. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize. Anal Chem 2015; 88:812-9. [PMID: 26605751 PMCID: PMC4718530 DOI: 10.1021/acs.analchem.5b03238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Certified
reference materials (CRMs) are required to guarantee
the reliability of analytical measurements. The CRMs available in
the field of genetically modified organisms (GMOs) are characterized
using real-time polymerase chain reaction (qPCR). This technology
has limited application, because of its dependence on a calibrant.
The objective of this study was to obtain a method with higher metrological
quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet
digital PCR (ddPCR) assay was developed and optimized by a central
composite design. The developed method achieved an absolute limit
of detection (LOD) of 11 cP T-nos, a relative LOD
of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ
of 0.08%), and a dynamic range of 0.08%–100% T-nos/hmg ratio. The specificity and applicability of
the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience
of DNA digestion to reduce measurement bias in the case of multiple-copy
binding was confirmed through an enzymatic restriction assay. Given
its overall performance, this method can be used to characterize CRM
candidates for their contents of T-nos/hmg ratio.
Collapse
Affiliation(s)
- Dalmira Félix-Urquídez
- Research Center for Food and Development, Culiacán, Sinaloa México.,National Metrology Center, El Marqués, Querétaro México
| | | | | | | | | | - Abraham Acatzi-Silva
- Reference National Center for Detection of Genetically Modified Organisms, Tecámac, Estado de México México
| |
Collapse
|
22
|
Farr RJ, Januszewski AS, Joglekar MV, Liang H, McAulley AK, Hewitt AW, Thomas HE, Loudovaris T, Kay TWH, Jenkins A, Hardikar AA. A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy. Sci Rep 2015; 5:10375. [PMID: 26035063 PMCID: PMC4649912 DOI: 10.1038/srep10375] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/01/2015] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs are now increasingly recognized as biomarkers of disease progression. Several quantitative real-time PCR (qPCR) platforms have been developed to determine the relative levels of microRNAs in biological fluids. We systematically compared the detection of cellular and circulating microRNA using a standard 96-well platform, a high-content microfluidics platform and two ultra-high content platforms. We used extensive analytical tools to compute inter- and intra-run variability and concordance measured using fidelity scoring, coefficient of variation and cluster analysis. We carried out unprejudiced next generation sequencing to identify a microRNA signature for Diabetic Retinopathy (DR) and systematically assessed the validation of this signature on clinical samples using each of the above four qPCR platforms. The results indicate that sensitivity to measure low copy number microRNAs is inversely related to qPCR reaction volume and that the choice of platform for microRNA biomarker validation should be made based on the abundance of miRNAs of interest.
Collapse
Affiliation(s)
- Ryan J Farr
- Diabetes and Islet biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Andrzej S Januszewski
- Biomarkers Laboratory, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Helena Liang
- Clinical Genetics Unit, Center for Eye Research Australia (CERA), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Peter Howson Wing, Level 1, 32 Gisborne Street, Melbourne, VIC 3002, Australia
| | - Annie K McAulley
- Clinical Genetics Unit, Center for Eye Research Australia (CERA), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Peter Howson Wing, Level 1, 32 Gisborne Street, Melbourne, VIC 3002, Australia
| | - Alex W Hewitt
- Clinical Genetics Unit, Center for Eye Research Australia (CERA), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Peter Howson Wing, Level 1, 32 Gisborne Street, Melbourne, VIC 3002, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Tom Loudovaris
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Alicia Jenkins
- Biomarkers Laboratory, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
23
|
Zadorsky SP, Sopova YV, Andreichuk DY, Startsev VA, Medvedeva VP, Inge-Vechtomov SG. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae. Yeast 2015; 32:479-97. [PMID: 25874850 DOI: 10.1002/yea.3074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 01/26/2023] Open
Abstract
The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.
Collapse
Affiliation(s)
- S P Zadorsky
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - Y V Sopova
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - D Y Andreichuk
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V A Startsev
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V P Medvedeva
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - S G Inge-Vechtomov
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| |
Collapse
|
24
|
Bushman DM, Kaeser GE, Siddoway B, Westra JW, Rivera RR, Rehen SK, Yung YC, Chun J. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains. eLife 2015; 4. [PMID: 25650802 PMCID: PMC4337608 DOI: 10.7554/elife.05116] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
Previous reports have shown that individual neurons of the brain can display somatic genomic mosaicism of unknown function. In this study, we report altered genomic mosaicism in single, sporadic Alzheimer's disease (AD) neurons characterized by increases in DNA content and amyloid precursor protein (APP) gene copy number. AD cortical nuclei displayed large variability with average DNA content increases of ∼8% over non-diseased controls that were unrelated to trisomy 21. Two independent single-cell copy number analyses identified amplifications at the APP locus. The use of single-cell qPCR identified up to 12 copies of APP in sampled neurons. Peptide nucleic acid (PNA) probes targeting APP, combined with super-resolution microscopy detected primarily single fluorescent signals of variable intensity that paralleled single-cell qPCR analyses. These data identify somatic genomic changes in single neurons, affecting known and unknown loci, which are increased in sporadic AD, and further indicate functionality for genomic mosaicism in the CNS. DOI:http://dx.doi.org/10.7554/eLife.05116.001 The instructions for living cells are contained in certain stretches of DNA, called genes, and these instructions have been largely considered to be invariant, such that every cell in the body has the same DNA. However, research has revealed that many neurons in the human brain can contain different amounts of DNA compared to other cells. When cells with varied DNA are present in the same person, it is referred to as mosaicism. The effects of this mosaicism are unknown, although by altering the instructions in brain cells, it is suspected to influence both the normal and diseased brain. The brains of patients with Alzheimer's disease often contain deposits of proteins called amyloids. The precursor of the protein that makes up most of these deposits is produced from a gene called the amyloid precursor protein gene, or APP. Having an extra copy of the APP gene can cause rare ‘familial’ Alzheimer's disease, wherein the APP duplication can be passed on genetically and is present in all the cells of a patient's body. By contrast, ‘sporadic’ Alzheimer's disease, which constitutes around 95% of cases, does not show any difference in the number of APP genes found in tissue samples, including whole brain. The early studies that discovered this were conducted before an appreciation of brain mosaicism, and thus single neurons were not investigated. This raises the possibility that the number of APP genes may be mosaically increased, which would not be detected by examining non-brain or bulk brain tissue. Bushman, Kaeser et al. used five different types of experiments to examine the DNA content of single neurons and investigate whether mosaicism could explain the discrepancy in the results of the previous studies. The neurons from people with Alzheimer's disease contained more DNA—on average, hundreds of millions of DNA base pairs more—and more copies of the APP gene, with some neurons containing up to 12 copies. Bushman, Kaeser et al.'s findings present evidence of a way that mosaicism can affect how the brain works by altering the number of gene copies, and how this impacts the most common form of Alzheimer's disease. Many questions arise from the work, including when does mosaicism arise, and what promotes its formation? How does this relate to age? What parts of the genome are changed, what genes are affected, and how do these changes alter neuronal function? Furthermore, Bushman, Kaeser et al.'s work suggests that mosaicism may also play a role in other brain diseases, and could also provide new insights into the normal, complex functions of the brain. In the future, this knowledge could help to identify new treatments for brain diseases; for example, by identifying new molecular targets for therapy hidden in the extra DNA or by understanding how to alter mosaicism. DOI:http://dx.doi.org/10.7554/eLife.05116.002
Collapse
Affiliation(s)
- Diane M Bushman
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Gwendolyn E Kaeser
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Benjamin Siddoway
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Jurgen W Westra
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Richard R Rivera
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Stevens K Rehen
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
25
|
Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. NATURE NANOTECHNOLOGY 2014; 9:969-80. [PMID: 25466541 PMCID: PMC4472305 DOI: 10.1038/nnano.2014.261] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/13/2014] [Indexed: 05/05/2023]
Abstract
Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.
Collapse
Affiliation(s)
- Shana O. Kelley
- Department of Pharmaceutical Sciences and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Correspondence should be addressed to S.O.K.,
| | - Chad A. Mirkin
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - David R. Walt
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | - Rustem F. Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Edward H. Sargent
- Department of Computer and Electrical Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
26
|
Variation in transcriptome size: are we getting the message? Chromosoma 2014; 124:27-43. [DOI: 10.1007/s00412-014-0496-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022]
|
27
|
Nakanishi H, Shojo H, Ohmori T, Hara M, Takada A, Adachi N, Saito K. A novel method for sex determination by detecting the number of X chromosomes. Int J Legal Med 2014; 129:23-9. [DOI: 10.1007/s00414-014-1065-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
28
|
Jacobs BKM, Goetghebeur E, Clement L. Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinformatics 2014; 15:283. [PMID: 25147026 PMCID: PMC4261249 DOI: 10.1186/1471-2105-15-283] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/06/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Digital polymerase chain reaction (dPCR) is an increasingly popular technology for detecting and quantifying target nucleic acids. Its advertised strength is high precision absolute quantification without needing reference curves. The standard data analytic approach follows a seemingly straightforward theoretical framework but ignores sources of variation in the data generating process. These stem from both technical and biological factors, where we distinguish features that are 1) hard-wired in the equipment, 2) user-dependent and 3) provided by manufacturers but may be adapted by the user. The impact of the corresponding variance components on the accuracy and precision of target concentration estimators presented in the literature is studied through simulation. RESULTS We reveal how system-specific technical factors influence accuracy as well as precision of concentration estimates. We find that a well-chosen sample dilution level and modifiable settings such as the fluorescence cut-off for target copy detection have a substantial impact on reliability and can be adapted to the sample analysed in ways that matter. User-dependent technical variation, including pipette inaccuracy and specific sources of sample heterogeneity, leads to a steep increase in uncertainty of estimated concentrations. Users can discover this through replicate experiments and derived variance estimation. Finally, the detection performance can be improved by optimizing the fluorescence intensity cut point as suboptimal thresholds reduce the accuracy of concentration estimates considerably. CONCLUSIONS Like any other technology, dPCR is subject to variation induced by natural perturbations, systematic settings as well as user-dependent protocols. Corresponding uncertainty may be controlled with an adapted experimental design. Our findings point to modifiable key sources of uncertainty that form an important starting point for the development of guidelines on dPCR design and data analysis with correct precision bounds. Besides clever choices of sample dilution levels, experiment-specific tuning of machine settings can greatly improve results. Well-chosen data-driven fluorescence intensity thresholds in particular result in major improvements in target presence detection. We call on manufacturers to provide sufficiently detailed output data that allows users to maximize the potential of the method in their setting and obtain high precision and accuracy for their experiments.
Collapse
Affiliation(s)
- Bart K M Jacobs
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
29
|
Hooli BV, Kovacs-Vajna ZM, Mullin K, Blumenthal MA, Mattheisen M, Zhang C, Lange C, Mohapatra G, Bertram L, Tanzi RE. Rare autosomal copy number variations in early-onset familial Alzheimer's disease. Mol Psychiatry 2014; 19:676-81. [PMID: 23752245 DOI: 10.1038/mp.2013.77] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/19/2013] [Accepted: 04/15/2013] [Indexed: 01/08/2023]
Abstract
Over 200 rare and fully penetrant pathogenic mutations in amyloid precursor protein (APP), presenilin 1 and 2 (PSEN1 and PSEN2) cause a subset of early-onset familial Alzheimer's disease (EO-FAD). Of these, 21 cases of EO-FAD families carrying unique APP locus duplications remain the only pathogenic copy number variations (CNVs) identified to date in Alzheimer's disease (AD). Using high-density DNA microarrays, we performed a comprehensive genome-wide analysis for the presence of rare CNVs in 261 EO-FAD and early/mixed-onset pedigrees. Our analysis revealed 10 novel private CNVs in 10 EO-FAD families overlapping a set of genes that includes: A2BP1, ABAT, CDH2, CRMP1, DMRT1, EPHA5, EPHA6, ERMP1, EVC, EVC2, FLJ35024 and VLDLR. In addition, CNVs encompassing two known frontotemporal dementia genes, CHMP2B and MAPT were found. To our knowledge, this is the first study reporting rare gene-rich CNVs in EO-FAD and early/mixed-onset AD that are likely to underlie pathogenicity in familial AD and perhaps related dementias.
Collapse
Affiliation(s)
- B V Hooli
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - Z M Kovacs-Vajna
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - K Mullin
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - M A Blumenthal
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - M Mattheisen
- Channing Laboratory, Brigham and Women's Hospital, Boston MA, USA
| | - C Zhang
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - C Lange
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - G Mohapatra
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - L Bertram
- Max-Planck Institute for Molecular Genetics, Neuropsychiatric Genetics Group, Berlin, Germany
| | - R E Tanzi
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
30
|
Petriv OI, Heyries KA, VanInsberghe M, Walker D, Hansen CL. Methods for multiplex template sampling in digital PCR assays. PLoS One 2014; 9:e98341. [PMID: 24854517 PMCID: PMC4031183 DOI: 10.1371/journal.pone.0098341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision.
Collapse
Affiliation(s)
- Oleh I. Petriv
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin A. Heyries
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael VanInsberghe
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Walker
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl L. Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
31
|
Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, Yamamoto S, Tatsuno K, Katoh H, Watanabe Y, Ichimura T, Ushiku T, Funahashi S, Tateishi K, Wada I, Shimizu N, Nomura S, Koike K, Seto Y, Fukayama M, Aburatani H, Ishikawa S. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet 2014; 46:583-7. [PMID: 24816255 DOI: 10.1038/ng.2984] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 04/14/2014] [Indexed: 02/08/2023]
Abstract
Diffuse-type gastric carcinoma (DGC) is characterized by a highly malignant phenotype with prominent infiltration and stromal induction. We performed whole-exome sequencing on 30 DGC cases and found recurrent RHOA nonsynonymous mutations. With validation sequencing of an additional 57 cases, RHOA mutation was observed in 25.3% (22/87) of DGCs, with mutational hotspots affecting the Tyr42, Arg5 and Gly17 residues in RHOA protein. These positions are highly conserved among RHO family members, and Tyr42 and Arg5 are located outside the guanine nucleotide-binding pocket. Several lines of functional evidence indicated that mutant RHOA works in a gain-of-function manner. Comparison of mutational profiles for the major gastric cancer subtypes showed that RHOA mutations occur specifically in DGCs, the majority of which were histopathologically characterized by the presence of poorly differentiated adenocarcinomas together with more differentiated components in the gastric mucosa. Our findings identify a potential therapeutic target for this poor-prognosis subtype of gastric cancer with no available molecularly targeted drugs.
Collapse
Affiliation(s)
- Miwako Kakiuchi
- 1] Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. [2] Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Hiroki Ueda
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kengo Gotoh
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Atsushi Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- 1] Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. [2] Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- 1] Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. [2] Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Watanabe
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Takashi Ichimura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuo Wada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Shimizu
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- 1] Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. [2] Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- 1] Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [3] Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
32
|
Manoj P. Droplet digital PCR technology promises new applications and research areas. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:742-6. [PMID: 24779593 DOI: 10.3109/19401736.2014.913168] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Digital Polymerase Chain Reaction (dPCR) is used to quantify nucleic acids and its applications are in the detection and precise quantification of low-level pathogens, rare genetic sequences, quantification of copy number variants, rare mutations and in relative gene expressions. Here the PCR is performed in large number of reaction chambers or partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid. Results are calculated by counting amplified target sequence (positive droplets) and the number of partitions in which there is no amplification (negative droplets). The mean number of target sequences was calculated by Poisson Algorithm. Poisson correction compensates the presence of more than one copy of target gene in any droplets. The method provides information with accuracy and precision which is highly reproducible and less susceptible to inhibitors than qPCR. It has been demonstrated in studying variations in gene sequences, such as copy number variants and point mutations, distinguishing differences between expression of nearly identical alleles, assessment of clinically relevant genetic variations and it is routinely used for clonal amplification of samples for NGS methods. dPCR enables more reliable predictors of tumor status and patient prognosis by absolute quantitation using reference normalizations. Rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging can be accurately detected with droplet digital PCR.
Collapse
Affiliation(s)
- P Manoj
- a Rajiv Gandhi Centre for Biotechnology , Thycaud P.O. , Thiruvananthapuram , Kerala , India
| |
Collapse
|
33
|
Zhu Q, Qiu L, Yu B, Xu Y, Gao Y, Pan T, Tian Q, Song Q, Jin W, Jin Q, Mu Y. Digital PCR on an integrated self-priming compartmentalization chip. LAB ON A CHIP 2014; 14:1176-85. [PMID: 24481046 DOI: 10.1039/c3lc51327k] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An integrated on-chip valve-free and power-free microfluidic digital PCR device is for the first time developed by making use of a novel self-priming compartmentalization and simple dehydration control to realize 'divide and conquer' for single DNA molecule detection. The high gas solubility of PDMS is exploited to provide the built-in power of self-priming so that the sample and oil are sequentially sucked into the device to realize sample self-compartmentalization based on surface tension. The lifespan of its self-priming capability was about two weeks tested using an air-tight packaging bottle sealed with a small amount of petroleum jelly, which is significant for a practical platform. The SPC chip contains 5120 independent 5 nL microchambers, allowing the samples to be compartmentalized completely. Using this platform, three different abundances of lung cancer related genes are detected to demonstrate the feasibility and flexibility of the microchip for amplifying a single nucleic acid molecule. For maximal accuracy, within less than 5% of the measurement deviation, the optimal number of positive chambers is between 400 and 1250 evaluated by the Poisson distribution, which means one panel can detect an average of 480 to 4804 template molecules. This device without world-to-chip connections eliminates the constraint of the complex pipeline control, and is an integrated on-chip platform, which would be a significant improvement to digital PCR automation and more user-friendly.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Elliott KT, Cuff LE, Neidle EL. Copy number change: evolving views on gene amplification. Future Microbiol 2014; 8:887-99. [PMID: 23841635 DOI: 10.2217/fmb.13.53] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rapid pace of genomic sequence analysis is increasing the awareness of intrinsically dynamic genetic landscapes. Gene duplication and amplification (GDA) contribute to adaptation and evolution by allowing DNA regions to expand and contract in an accordion-like fashion. This process affects diverse aspects of bacterial infection, including antibiotic resistance and host-pathogen interactions. In this review, microbial GDA is discussed, primarily using recent bacterial examples that demonstrate medical and evolutionary consequences. Interplay between GDA and horizontal gene transfer further impact evolutionary trajectories. Complementing the discovery of gene duplication in clinical and environmental settings, experimental evolution provides a powerful method to document genetic change over time. New methods for GDA detection highlight both its importance and its potential application for genetic engineering, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Kathryn T Elliott
- Biology Department, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA.
| | | | | |
Collapse
|
35
|
Fang W, Meinhardt LW, Mischke S, Bellato CM, Motilal L, Zhang D. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:481-487. [PMID: 24354624 DOI: 10.1021/jf404402v] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.
Collapse
Affiliation(s)
- Wanping Fang
- Sustainable Perennial Crops Laboratory (SPCL), Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , 10300 Baltimore Avenue, Building 001, Room 223, BARC-W, Beltsville, Maryland 20705, United States
| | | | | | | | | | | |
Collapse
|
36
|
McCaughan F. Molecular copy-number counting: potential of single-molecule diagnostics. Expert Rev Mol Diagn 2014; 9:309-12. [DOI: 10.1586/erm.09.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
VanInsberghe M, Heyries KA, Hansen CL. Should genetic testing go digital? Expert Rev Mol Diagn 2014; 12:111-4. [DOI: 10.1586/erm.12.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Saladores PH, Precht JC, Schroth W, Brauch H, Schwab M. Impact of metabolizing enzymes on drug response of endocrine therapy in breast cancer. Expert Rev Mol Diagn 2013; 13:349-65. [PMID: 23638818 DOI: 10.1586/erm.13.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Estrogen-receptor positive breast cancer accounts for 75% of diagnosed breast cancers worldwide. There are currently two major options for adjuvant treatment: tamoxifen and aromatase inhibitors. Variability in metabolizing enzymes determines their pharmacokinetic profile, possibly affecting treatment response. Therefore, prediction of therapy outcome based on genotypes would enable a more personalized medicine approach, providing optimal therapy for each patient. In this review, the authors will discuss the current evidence on the most important metabolizing enzymes in endocrine therapy, with a special focus on CYP2D6 and its role in tamoxifen metabolism.
Collapse
Affiliation(s)
- Pilar H Saladores
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
39
|
Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, Yoshida K, Okuno Y, Bando M, Nakato R, Ishikawa S, Sato-Otsubo A, Nagae G, Nishimoto A, Haferlach C, Nowak D, Sato Y, Alpermann T, Nagasaki M, Shimamura T, Tanaka H, Chiba K, Yamamoto R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Nakamaki T, Ishiyama K, Nolte F, Hofmann WK, Miyawaki S, Chiba S, Mori H, Nakauchi H, Koeffler HP, Aburatani H, Haferlach T, Shirahige K, Miyano S, Ogawa S. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet 2013; 45:1232-7. [PMID: 23955599 DOI: 10.1038/ng.2731] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 12/14/2022]
Abstract
Cohesin is a multimeric protein complex that is involved in the cohesion of sister chromatids, post-replicative DNA repair and transcriptional regulation. Here we report recurrent mutations and deletions involving multiple components of the cohesin complex, including STAG2, RAD21, SMC1A and SMC3, in different myeloid neoplasms. These mutations and deletions were mostly mutually exclusive and occurred in 12.1% (19/157) of acute myeloid leukemia, 8.0% (18/224) of myelodysplastic syndromes, 10.2% (9/88) of chronic myelomonocytic leukemia, 6.3% (4/64) of chronic myelogenous leukemia and 1.3% (1/77) of classical myeloproliferative neoplasms. Cohesin-mutated leukemic cells showed reduced amounts of chromatin-bound cohesin components, suggesting a substantial loss of cohesin binding sites on chromatin. The growth of leukemic cell lines harboring a mutation in RAD21 (Kasumi-1 cells) or having severely reduced expression of RAD21 and STAG2 (MOLM-13 cells) was suppressed by forced expression of wild-type RAD21 and wild-type RAD21 and STAG2, respectively. These findings suggest a role for compromised cohesin functions in myeloid leukemogenesis.
Collapse
Affiliation(s)
- Ayana Kon
- Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gilbert MK, Bland JM, Shockey JM, Cao H, Hinchliffe DJ, Fang DD, Naoumkina M. A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.). PLoS One 2013; 8:e75268. [PMID: 24086489 PMCID: PMC3781043 DOI: 10.1371/journal.pone.0075268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/15/2013] [Indexed: 01/04/2023] Open
Abstract
Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed in developing fibers of the mutant Ligon lintless-2 was isolated. The predicted amino acid sequence showed ~53% similarity with Arabidopsis UGT73C sub-family members and the UDP-glycosyltransferase was designated as UGT73C14. When expressed in Escherichia coli as a recombinant protein with a maltose binding protein tag, UGT73C14 displayed enzymatic activity toward ABA and utilized UDP-glucose and UDP-galactose as the sugar donors. The recombinant UGT73C14 converted natural occurring isoform (+)-cis, trans-ABA better than (+)-trans, trans-ABA and (-)-cis, trans-ABA. Transgenic Arabidopsis plants constitutively overexpressing UGT73C14 did not show phenotypic changes under standard growth conditions. However, the increased glycosylation of ABA resulted in phenotypic changes in post-germinative growth and seedling establishment, confirming in vivo activity of UGT73C14 for ABA. This suggests that the expression level of UGT73C14 is regulated by the observed elevated levels of ABA in developing fibers of the Li2 mutant line and may be involved in the regulation of ABA homeostasis.
Collapse
Affiliation(s)
- Matthew K. Gilbert
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - John M. Bland
- Food Processing and Sensory Quality Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Jay M. Shockey
- Commodity Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Heping Cao
- Commodity Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Doug J. Hinchliffe
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - David D. Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
41
|
Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Hellemans J, Kubista M, Mueller RD, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, Bustin SA. The digital MIQE guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clin Chem 2013; 59:892-902. [PMID: 23570709 DOI: 10.1373/clinchem.2013.206375] [Citation(s) in RCA: 598] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is growing interest in digital PCR (dPCR) because technological progress makes it a practical and increasingly affordable technology. dPCR allows the precise quantification of nucleic acids, facilitating the measurement of small percentage differences and quantification of rare variants. dPCR may also be more reproducible and less susceptible to inhibition than quantitative real-time PCR (qPCR). Consequently, dPCR has the potential to have a substantial impact on research as well as diagnostic applications. However, as with qPCR, the ability to perform robust meaningful experiments requires careful design and adequate controls. To assist independent evaluation of experimental data, comprehensive disclosure of all relevant experimental details is required. To facilitate this process we present the Minimum Information for Publication of Quantitative Digital PCR Experiments guidelines. This report addresses known requirements for dPCR that have already been identified during this early stage of its development and commercial implementation. Adoption of these guidelines by the scientific community will help to standardize experimental protocols, maximize efficient utilization of resources, and enhance the impact of this promising new technology.
Collapse
|
42
|
Microflow cytometers with integrated hydrodynamic focusing. SENSORS 2013; 13:4674-93. [PMID: 23571670 PMCID: PMC3673106 DOI: 10.3390/s130404674] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 11/17/2022]
Abstract
This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex) principle. The sample--A suspension of micro particles or blood cells--is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.
Collapse
|
43
|
Whale AS, Cowen S, Foy CA, Huggett JF. Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS One 2013; 8:e58177. [PMID: 23472156 PMCID: PMC3589384 DOI: 10.1371/journal.pone.0058177] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/31/2013] [Indexed: 01/09/2023] Open
Abstract
Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.
Collapse
Affiliation(s)
- Alexandra S Whale
- Molecular and Cell Biology Team, LGC Ltd, Teddington, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Day E, Dear PH, McCaughan F. Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods 2013; 59:101-7. [DOI: 10.1016/j.ymeth.2012.08.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
|
45
|
Abstract
The Fluidigm Digital Array IFC is a nanofluidic biochip where digital PCR reactions can be performed with isolated individual DNA template molecules. This chip is part of a family of integrated fluidic circuits (IFC) and contains a network of fluid lines, NanoFlex™ valves and chambers. NanoFlex™ valves are made of an elastomeric material that deflects under pressure to create a tight seal and are used to regulate the flow of liquids in the IFC. Digital Arrays have enabled a different approach to digital PCR, by partitioning DNA molecules instead of diluting them. Single DNA molecules are randomly distributed into nanoliter volume reaction chambers and then PCR amplified in the presence of a fluorophore-containing probe. Positive fluorescent signal indicates the presence of a DNA molecule in a reaction chamber, while negative chambers are blank. IFC technology enables the delivery of very precise volumes of solutions in a simple, fast procedure, utilizing a minimum of sample and assay reagents. The development of the IFC technology and the Digital Array chip has revolutionized the field of biology, and has been utilized in gene copy number studies, absolute quantitation (molecule counting) of genomic DNA and cDNA, rare mutation detection, and digital haplotyping.
Collapse
|
46
|
|
47
|
Zhu Q, Gao Y, Yu B, Ren H, Qiu L, Han S, Jin W, Jin Q, Mu Y. Self-priming compartmentalization digital LAMP for point-of-care. LAB ON A CHIP 2012; 12:4755-63. [PMID: 22986619 DOI: 10.1039/c2lc40774d] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Digital nucleic acid amplification provides unprecedented opportunities for absolute nucleic acid quantification by counting of single molecules. This technique is useful for molecular genetic analysis in cancer, stem cell, bacterial, non-invasive prenatal diagnosis in which many biologists are interested. This paper describes a self-priming compartmentalization (SPC) microfluidic chip platform for performing digital loop-mediated amplification (LAMP). The energy for the pumping is pre-stored in the degassed bulk PDMS by exploiting the high gas solubility of PDMS; therefore, no additional structures other than channels and reservoirs are required. The sample and oil are sequentially sucked into the channels, and the pressure difference of gas dissolved in PDMS allows sample self-compartmentalization without the need for further chip manipulation such as with pneumatic microvalves and control systems, and so on. The SPC digital LAMP chip can be used like a 384-well plate, so, the world-to-chip fluidic interconnections are avoided. The microfluidic chip contains 4 separate panels, each panel contains 1200 independent 6 nL chambers and can be used to detect 4 samples simultaneously. Digital LAMP on the microfluidic chip was tested quantitatively by using β-actin DNA from humans. The self-priming compartmentalization behavior is roughly predictable using a two-dimensional model. The uniformity of compartmentalization was analyzed by fluorescent intensity and fraction of volume. The results showed that the feasibility and flexibility of the microfluidic chip platform for amplifying single nucleic acid molecules in different chambers made by diluting and distributing sample solutions. The SPC chip has the potential to meet the requirements of a general laboratory: power-free, valve-free, operating at isothermal temperature, inexpensive, sensitive, economizing labour time and reagents. The disposable analytical devices with appropriate air-tight packaging should be useful for point-of-care, and enabling it to become one of the common tools for biology research, especially, in point-of-care testing.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, Ferrandino AF, Rosenberg Belmaker LA, Szekely A, Wilson M, Kocabas A, Calixto NE, Grigorenko EL, Huttner A, Chawarska K, Weissman S, Urban AE, Gerstein M, Vaccarino FM. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 2012; 492:438-42. [PMID: 23160490 PMCID: PMC3532053 DOI: 10.1038/nature11629] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 09/28/2012] [Indexed: 02/07/2023]
Abstract
Reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variations (CNVs)1-4. To explore this issue, we performed a whole-genome and transcriptome analysis of 20 human iPSC lines derived from primary skin fibroblasts of 7 individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two CNVs not apparent in the fibroblasts from which the iPSC was derived. Using qPCR, PCR, and digital droplet PCR (ddPCR), we show that at least 50% of those CNVs are present as low frequency somatic genomic variants in parental fibroblasts (i.e. the fibroblasts from which each corresponding hiPSC line is derived) and are manifested in iPSC colonies due to the colonies’ clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSC, since most of line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically.
Collapse
Affiliation(s)
- Alexej Abyzov
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rao M, Morisson M, Faraut T, Bardes S, Fève K, Labarthe E, Fillon V, Huang Y, Li N, Vignal A. A duck RH panel and its potential for assisting NGS genome assembly. BMC Genomics 2012; 13:513. [PMID: 23020625 PMCID: PMC3496577 DOI: 10.1186/1471-2164-13-513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/29/2012] [Indexed: 11/13/2022] Open
Abstract
Background Owing to the low cost of the high throughput Next Generation Sequencing (NGS) technology, more and more species have been and will be sequenced. However, de novo assemblies of large eukaryotic genomes thus produced are composed of a large number of contigs and scaffolds of medium to small size, having no chromosomal assignment. Radiation hybrid (RH) mapping is a powerful tool for building whole genome maps and has been used for several animal species, to help assign sequence scaffolds to chromosomes and determining their order. Results We report here a duck whole genome RH panel obtained by fusing female duck embryonic fibroblasts irradiated at a dose of 6,000 rads, with HPRT-deficient Wg3hCl2 hamster cells. The ninety best hybrids, having an average retention of 23.6% of the duck genome, were selected for the final panel. To allow the genotyping of large numbers of markers, as required for whole genome mapping, without having to cultivate the hybrid clones on a large scale, three different methods involving Whole Genome Amplification (WGA) and/or scaling down PCR volumes by using the Fluidigm BioMarkTM Integrated Fluidic Circuits (IFC) Dynamic ArrayTM for genotyping were tested. RH maps of APL12 and APL22 were built, allowing the detection of intrachromosomal rearrangements when compared to chicken. Finally, the panel proved useful for checking the assembly of sequence scaffolds and for mapping EST located on one of the smallest microchromosomes. Conclusion The Fluidigm BioMarkTM Integrated Fluidic Circuits (IFC) Dynamic ArrayTM genotyping by quantitative PCR provides a rapid and cost-effective method for building RH linkage groups. Although the vast majority of genotyped markers exhibited a picture coherent with their associated scaffolds, a few of them were discordant, pinpointing potential assembly errors. Comparative mapping with chicken chromosomes GGA21 and GGA11 allowed the detection of the first chromosome rearrangements on microchromosomes between duck and chicken. As in chicken, the smallest duck microchromosomes appear missing in the assembly and more EST data will be needed for mapping them. Altogether, this underlines the added value of RH mapping to improve genome assemblies.
Collapse
Affiliation(s)
- Man Rao
- UMR INRA/ENVT Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan 31326, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Taly V, Pekin D, Abed AE, Laurent-Puig P. Detecting biomarkers with microdroplet technology. Trends Mol Med 2012; 18:405-16. [DOI: 10.1016/j.molmed.2012.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
|