1
|
Barzee TJ, El-Mashad HM, Burch AR, Franz AK, Zhang R. Immobilization of Diatom Phaeodactylum tricornutum with Filamentous Fungi and Its Kinetics. J Microbiol Biotechnol 2023; 33:251-259. [PMID: 36524340 PMCID: PMC9998213 DOI: 10.4014/jmb.2209.09042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
Immobilizing microalgae cells in a hyphal matrix can simplify harvest while producing novel mycoalgae products with potential food, feed, biomaterial, and renewable energy applications; however, limited quantitative information to describe the process and its applicability under various conditions leads to difficulties in comparing across studies and scaling-up. Here, we demonstrate the immobilization of both active and heat-deactivated marine diatom Phaeodactylum tricornutum (UTEX 466) using different loadings of fungal pellets (Aspergillus sp.) and model the process through kinetics and equilibrium models. Active P. tricornutum cells were not required for the fungal-assisted immobilization process and the fungal isolate was able to immobilize more than its original mass of microalgae. The Freundlich isotherm model adequately described the equilibrium immobilization characteristics and indicated increased normalized algae immobilization (g algae removed/g fungi loaded) under low fungal pellet loadings. The kinetics of algae immobilization by the fungal pellets were found to be adequately modeled using both a pseudo-second order model and a model previously developed for fungal-assisted algae immobilization. These results provide new insights into the behavior and potential applications of fungal-assisted algae immobilization.
Collapse
Affiliation(s)
- Tyler J Barzee
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA.,Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA
| | - Hamed M El-Mashad
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA.,Agricultural Engineering Department, Mansoura University, El Mansoura, Egypt
| | - Andrew R Burch
- Department of Chemistry, University of California, Davis, CA 95616, USA.,Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Annaliese K Franz
- Department of Chemistry, University of California, Davis, CA 95616, USA.,Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Mock T. Algal model species for advancing biological sciences. JOURNAL OF PHYCOLOGY 2023; 59:1-3. [PMID: 36779558 DOI: 10.1111/jpy.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| |
Collapse
|
3
|
You Y, Sun X, Lin S. An ancient enzyme finds a new home: Prevalence and neofunctionalization of trypsin in marine phytoplankton. JOURNAL OF PHYCOLOGY 2023; 59:152-166. [PMID: 36369667 DOI: 10.1111/jpy.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Trypsin is an ancient protease best known as a digestive enzyme in animals, and traditionally believed to be absent in plants and protists. However, our recent studies have revealed its wide presence and important roles in marine phytoplankton. Here, to gain a better understanding on the importance of trypsin in phytoplankton, we further surveyed the distribution, diversity, evolution and potential ecological roles of trypsin in global ocean phytoplankton. Our analysis indicated that trypsin is widely distributed both taxonomically and geographically in marine phytoplankton. Furthermore, by systematic comparative analyses we found that algal trypsin could be classified into two subfamilies (trypsin I and trypsin II) and exhibited highly duplicated and diversified during evolution. We also observed markedly different domain sequences and organizations between and within the subfamilies, suggesting potential neofunctionalization. Diatoms contain both subfamilies of trypsin, with higher numbers of genes and more environment-responsive expression of trypsin than other lineages. The duplication and subsequent neofunctionalization of the trypsin family may be important in diatoms for adapting to dynamical environmental conditions, contributing to diatoms' dominance in the coastal oceans. This work advances our knowledge on the distribution and neofunctionalization of this ancient enzyme and creates a new window of research on phytoplankton biology.
Collapse
Affiliation(s)
- Yanchun You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340-6048, USA
| |
Collapse
|
4
|
Zhou L, Gao S, Yang W, Wu S, Huan L, Xie X, Wang X, Lin S, Wang G. Transcriptomic and metabolic signatures of diatom plasticity to light fluctuations. PLANT PHYSIOLOGY 2022; 190:2295-2314. [PMID: 36149329 PMCID: PMC9706478 DOI: 10.1093/plphys/kiac455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 06/01/2023]
Abstract
Unlike in terrestrial and freshwater ecosystems, light fields in oceans fluctuate due to both horizontal current and vertical mixing. Diatoms thrive and dominate the phytoplankton community in these fluctuating light fields. However, the molecular mechanisms that regulate diatom acclimation and adaptation to light fluctuations are poorly understood. Here, we performed transcriptome sequencing, metabolome profiling, and 13C-tracer labeling on the model diatom Phaeodactylum tricornutum. The diatom acclimated to constant light conditions was transferred to six different light conditions, including constant light (CL5d), short-term (1 h) high light (sHL1h), and short-term (1 h) and long-term (5 days) mild or severe light fluctuation conditions (mFL1h, sFL1h, mFL5d, and sFL5d) that mimicked land and ocean light levels. We identified 2,673 transcripts (25% of the total expressed genes) expressed differentially under different fluctuating light regimes. We also identified 497 transcription factors, 228 not reported previously, which exhibited higher expression under light fluctuations, including 7 with a light-sensitive PAS domain (Per-period circadian protein, Arnt-aryl hydrocarbon receptor nuclear translocator protein, Sim-single-minded protein) and 10 predicted to regulate genes related to light-harvesting complex proteins. Our data showed that prolonged preconditioning in severe light fluctuation enhanced photosynthesis in P. tricornutum under this condition, as evidenced by increased oxygen evolution accompanied by the upregulation of Rubisco and light-harvesting proteins. Furthermore, severe light fluctuation diverted the metabolic flux of assimilated carbon preferentially toward fatty acid storage over sugar and protein. Our results suggest that P. tricornutum use a series of complex and different responsive schemes in photosynthesis and carbon metabolism to optimize their growth under mild and severe light fluctuations. These insights underscore the importance of using more intense conditions when investigating the resilience of phytoplankton to light fluctuations.
Collapse
Affiliation(s)
- Lu Zhou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenting Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Songcui Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Huan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xulei Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Lupette J, Tardif M, Brugière S, Couté Y, Salvaing J, Maréchal E. Quantitative proteomic analyses reveal the impact of nitrogen starvation on the proteome of the model diatom Phaeodactylum tricornutum. Proteomics 2022; 22:e2200155. [PMID: 36168874 DOI: 10.1002/pmic.202200155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022]
Abstract
Diatoms are one of the largest groups in phytoplankton biodiversity. Understanding their response to nitrogen variations, present from micromolar to near-zero levels in oceans and fresh waters, is essential to comprehend their ecological success. Nitrogen starvation is used in biotechnological processes, to trigger the remodeling of carbon metabolism in the direction of fatty acids and triacylglycerol synthesis. We evaluated whole proteome changes in Phaeodactylum tricornutum after 7 days of cultivation with 5.5-mM nitrate (+N) or without any nitrogen source (-N). On a total of 3768 proteins detected in biological replicates, our analysis pointed to 384 differentially abundant proteins (DAP). Analysis of proteins of lower abundance in -N revealed an arrest of amino acid and protein syntheses, a remodeling of nitrogen metabolism, and a decrease of the proteasome abundance suggesting a decline in unselective whole-proteome decay. Analysis of proteins of higher abundance revealed the setting up of a general nitrogen scavenging system dependent on deaminases. The increase of a plastid palmitoyl-ACP desaturase appeared as a hallmark of carbon metabolism rewiring in the direction of fatty acid and triacylglycerol synthesis. This dataset is also valuable to select gene candidates for improved biotechnological properties.
Collapse
Affiliation(s)
- Josselin Lupette
- Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.,Laboratoire de Biogenèse Membranaire, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Marianne Tardif
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Sabine Brugière
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| |
Collapse
|
6
|
Llavero‐Pasquina M, Geisler K, Holzer A, Mehrshahi P, Mendoza‐Ochoa GI, Newsad SA, Davey MP, Smith AG. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches. THE NEW PHYTOLOGIST 2022; 235:1853-1867. [PMID: 35653609 PMCID: PMC9544697 DOI: 10.1111/nph.18296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/20/2022] [Indexed: 05/17/2023]
Abstract
Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.
Collapse
Affiliation(s)
| | - Katrin Geisler
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Andre Holzer
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Payam Mehrshahi
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | | | - Shelby A. Newsad
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Matthew P. Davey
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Scottish Association of Marine SciencesObanPA37 1QAUK
| | - Alison G. Smith
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
7
|
Bhattacharjya R, Tiwari A, Marella TK, Bansal H, Srivastava S. New paradigm in diatom omics and genetic manipulation. BIORESOURCE TECHNOLOGY 2021; 325:124708. [PMID: 33487514 DOI: 10.1016/j.biortech.2021.124708] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Diatoms are one of the most heterogeneous eukaryotic plankton known for regulating earth's biogeochemical cycles and maintaining the marine ecosystems ever since the late Eocene epoch. The advent of multidisciplinary omics approach has both epitomized and revolutionized the nature of their chimeric genetic toolkit, ecophysiology, and metabolic adaptability as well as their interaction with other communities. In addition, advanced functional annotation of transcriptomic and proteomic data using cutting edge bioinformatics tools together with high-resolution genome-scale mathematical modeling has effectively proven as the catapult in solving genetic bottlenecks in microbial as well as diatom exploration. In this review, a corroborative summation of the robust work done in manipulating, engineering, and sequencing of the diatom genomes besides underpinning the holistic application of omics in transcription and translation has been discussed in order to shrewd their multifarious novel potential in the field of biotechnology and provide an insight into their dynamic evolutionary relevance.
Collapse
Affiliation(s)
- Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India.
| | - Thomas Kiran Marella
- Algae Biomass Energy System Development Research Center (ABES), Tennodai, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hina Bansal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | | |
Collapse
|
8
|
Song Z, Lye GJ, Parker BM. Morphological and biochemical changes in Phaeodactylum tricornutum triggered by culture media: Implications for industrial exploitation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Rastogi A, Vieira FRJ, Deton-Cabanillas AF, Veluchamy A, Cantrel C, Wang G, Vanormelingen P, Bowler C, Piganeau G, Hu H, Tirichine L. A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom Phaeodactylum tricornutum. THE ISME JOURNAL 2020; 14:347-363. [PMID: 31624346 PMCID: PMC6976637 DOI: 10.1038/s41396-019-0528-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022]
Abstract
Diatoms emerged in the Mesozoic period and presently constitute one of the main primary producers in the world's ocean and are of a major economic importance. In the current study, using whole genome sequencing of ten accessions of the model diatom Phaeodactylum tricornutum, sampled at broad geospatial and temporal scales, we draw a comprehensive landscape of the genomic diversity within the species. We describe strong genetic subdivisions of the accessions into four genetic clades (A-D) with constituent populations of each clade possessing a conserved genetic and functional makeup, likely a consequence of the limited dispersal of P. tricornutum in the open ocean. We further suggest dominance of asexual reproduction across all the populations, as implied by high linkage disequilibrium. Finally, we show limited yet compelling signatures of genetic and functional convergence inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success and impact on aquatic ecosystems where they play a major role. Our work provides valuable resources for functional genomics and for exploiting the biotechnological potential of this model diatom species.
Collapse
Affiliation(s)
- Achal Rastogi
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Corteva Agriscience™, The V Ascendas, Atria Block, 12th Floor, Madhapur, Hyderabad, 500081, India
| | - Fabio Rocha Jimenez Vieira
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Alaguraj Veluchamy
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Catherine Cantrel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Pieter Vanormelingen
- Department of Biology, Research Group Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281/S8 9000, Gent, Belgium
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Gwenael Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.
| | - Leila Tirichine
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France.
- Université de Nantes, CNRS, UFIP, UMR 6286, F-44000, Nantes, France.
| |
Collapse
|
10
|
Jiang H, Horwitz AA, Wright C, Tai A, Znameroski EA, Tsegaye Y, Warbington H, Bower BS, Alves C, Co C, Jonnalagadda K, Platt D, Walter JM, Natarajan V, Ubersax JA, Cherry JR, Love JC. Challenging the workhorse: Comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnol Bioeng 2019; 116:1449-1462. [PMID: 30739333 PMCID: PMC6836876 DOI: 10.1002/bit.26951] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles.
Collapse
Affiliation(s)
- Hanxiao Jiang
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Chapman Wright
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | - Anna Tai
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Yoseph Tsegaye
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Carl Co
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | | | - Darren Platt
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Joel R Cherry
- Research and Development, Amyris Inc., Emeryville, California
| | | |
Collapse
|
11
|
Zhao Z, Wu X, Ji G, Liang C, Li QQ. Genome-Wide Comparative Analyses of Polyadenylation Signals in Eukaryotes Suggest a Possible Origin of the AAUAAA Signal. Int J Mol Sci 2019; 20:ijms20040958. [PMID: 30813258 PMCID: PMC6413133 DOI: 10.3390/ijms20040958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
Pre-mRNA cleavage and polyadenylation is an essential step for almost all mRNA in eukaryotes. The cis-elements around the poly(A) sites, however, are very diverse among different organisms. We characterized the poly(A) signals of seven different species, and compared them with that of four well-studied organisms. We found that ciliates do not show any dominant poly(A) signal; a triplet (UAA) and tetramers (UAAA and GUAA) are dominant in diatoms and red alga, respectively; and green alga Ostreococcus uses UGUAA as its poly(A) signal. Spikemoss and moss use conserved AAUAAA signals that are similar to other land plants. Our analysis suggests that the first two bases (NN in NNUAAA) are likely degenerated whereas UAAA appears to be the core motif. Combined with other published results, it is suggested that the highly conserved poly(A) signal AAUAAA may be derived from UAA with an intermediate, putative UAAA, following a pathway of UAA→UAAA→AAUAAA.
Collapse
Affiliation(s)
- Zhixin Zhao
- College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo 726000, China.
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen 361005, China.
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen 361005, China.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Qingshun Quinn Li
- Department of Biology, Miami University, Oxford, OH 45056, USA.
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
12
|
Angstenberger M, Krischer J, Aktaş O, Büchel C. Knock-Down of a ligIV Homologue Enables DNA Integration via Homologous Recombination in the Marine Diatom Phaeodactylum tricornutum. ACS Synth Biol 2019; 8:57-69. [PMID: 30525458 DOI: 10.1021/acssynbio.8b00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic engineering of Phaeodactylum tricornutum as a model organism for diatoms is the basis of molecular and biochemical research, and can also be used in biotechnological approaches. So far, integration of foreign DNA into the genome happens randomly by nonhomologous end joining (NHEJ), if the classical method of particle bombardment is used, with the danger of negative physiological side effects. Here we show that a putative gene for a DNA ligase IV homologue ( ligIV) in P. tricornutum codes for a functional LigIV. The knock-down of ligIV in P. tricornutum via antisense RNA drastically enhances homologous recombination (HR) by interfering with the NHEJ pathway at its central DNA ligation step done by LigIV. This enables a specific integration of DNA at desired locations, greatly enhanced transformation rates and provides a new way of specifically altering the genome of P. tricornutum.
Collapse
Affiliation(s)
- Max Angstenberger
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany
| | - Julia Krischer
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany
| | - Ozan Aktaş
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Ovide C, Kiefer-Meyer MC, Bérard C, Vergne N, Lecroq T, Plasson C, Burel C, Bernard S, Driouich A, Lerouge P, Tournier I, Dauchel H, Bardor M. Comparative in depth RNA sequencing of P. tricornutum's morphotypes reveals specific features of the oval morphotype. Sci Rep 2018; 8:14340. [PMID: 30254372 PMCID: PMC6156597 DOI: 10.1038/s41598-018-32519-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 11/09/2022] Open
Abstract
Phaeodactylum tricornutum is the most studied diatom encountered principally in coastal unstable environments. It has been hypothesized that the great adaptability of P. tricornutum is probably due to its pleomorphism. Indeed, P. tricornutum is an atypical diatom since it can display three morphotypes: fusiform, triradiate and oval. Currently, little information is available regarding the physiological significance of this morphogenesis. In this study, we adapted P. tricornutum Pt3 strain to obtain algal culture particularly enriched in one dominant morphotype: fusiform, triradiate or oval. These cultures were used to run high-throughput RNA-Sequencing. The whole mRNA transcriptome of each morphotype was determined. Pairwise comparisons highlighted biological processes and molecular functions which are up- and down-regulated. Finally, intersection analysis allowed us to identify the specific features from the oval morphotype which is of particular interest as it is often described to be more resistant to stresses. This study represent the first transcriptome wide characterization of the three morphotypes from P. tricornutum performed on cultures specifically enriched issued from the same Pt3 strain. This work represents an important step for the understanding of the morphogenesis in P. tricornutum and highlights the particular features of the oval morphotype.
Collapse
Affiliation(s)
- Clément Ovide
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France
| | | | - Caroline Bérard
- Normandie Univ, UNIROUEN, LITIS EA 4108, 76000, Rouen, France
| | - Nicolas Vergne
- Normandie Univ, UNIROUEN, LMRS UMR 6085 CNRS, 76000, Rouen, France
| | - Thierry Lecroq
- Normandie Univ, UNIROUEN, LITIS EA 4108, 76000, Rouen, France
| | - Carole Plasson
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France
| | - Carole Burel
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France
| | - Sophie Bernard
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Plate-forme PRIMACEN, 76000, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Plate-forme PRIMACEN, 76000, Rouen, France
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France
| | - Isabelle Tournier
- Normandie Univ, UNIROUEN, Inserm U1079, IRIB Genomic Facility, 76000, Rouen, France
| | - Hélène Dauchel
- Normandie Univ, UNIROUEN, LITIS EA 4108, 76000, Rouen, France.
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France. .,Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
14
|
Watanabe Y, Kadono T, Kira N, Suzuki K, Iwata O, Ohnishi K, Yamaguchi H, Adachi M. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Mar Genomics 2018; 42:41-48. [PMID: 30509379 DOI: 10.1016/j.margen.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Nozomu Kira
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Osamu Iwata
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Otsu-200, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
15
|
Valenzuela JJ, López García de Lomana A, Lee A, Armbrust EV, Orellana MV, Baliga NS. Ocean acidification conditions increase resilience of marine diatoms. Nat Commun 2018; 9:2328. [PMID: 29899534 PMCID: PMC5997998 DOI: 10.1038/s41467-018-04742-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/21/2018] [Indexed: 11/25/2022] Open
Abstract
The fate of diatoms in future acidified oceans could have dramatic implications on marine ecosystems, because they account for ~40% of marine primary production. Here, we quantify resilience of Thalassiosira pseudonana in mid-20th century (300 ppm CO2) and future (1000 ppm CO2) conditions that cause ocean acidification, using a stress test that probes its ability to recover from incrementally higher amount of low-dose ultraviolet A (UVA) and B (UVB) radiation and re-initiate growth in day-night cycles, limited by nitrogen. While all cultures eventually collapse, those growing at 300 ppm CO2 succumb sooner. The underlying mechanism for collapse appears to be a system failure resulting from "loss of relational resilience," that is, inability to adopt physiological states matched to N-availability and phase of the diurnal cycle. Importantly, under elevated CO2 conditions diatoms sustain relational resilience over a longer timeframe, demonstrating increased resilience to future acidified ocean conditions. This stress test framework can be extended to evaluate and predict how various climate change associated stressors may impact microbial community resilience.
Collapse
Affiliation(s)
| | | | - Allison Lee
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Seattle, WA, 98105, USA
| | - Mónica V Orellana
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Applied Physics Laboratory, Polar Science Center, University of Washington, Seattle, WA, 98105, USA.
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, 98195, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA.
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| |
Collapse
|
16
|
Arora N, Pienkos PT, Pruthi V, Poluri KM, Guarnieri MT. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol Adv 2018; 36:1274-1292. [PMID: 29678388 DOI: 10.1016/j.biotechadv.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023]
Abstract
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Philip T Pienkos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Michael T Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
17
|
Bertoni G. An Emerging Model Diatom to Study Nitrogen Metabolism. THE PLANT CELL 2017; 29:1795-1796. [PMID: 28827375 PMCID: PMC5590500 DOI: 10.1105/tpc.17.00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
18
|
Thompson SEM, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms - potential targets for antifouling: a review. BIOFOULING 2017; 33:410-432. [PMID: 28508711 DOI: 10.1080/08927014.2017.1319473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Understanding the underlying signalling pathways that enable fouling algae to sense and respond to surfaces is essential in the design of environmentally friendly coatings. Both the green alga Ulva and diverse diatoms are important ecologically and economically as they are persistent biofoulers. Ulva spores exhibit rapid secretion, allowing them to adhere quickly and permanently to a ship, whilst diatoms secrete an abundance of extracellular polymeric substances (EPS), which are highly adaptable to different environmental conditions. There is evidence, now supported by molecular data, for complex calcium and nitric oxide (NO) signalling pathways in both Ulva and diatoms being involved in surface sensing and/or adhesion. Moreover, adaptation to stress has profound effects on the biofouling capability of both types of organism. Targets for future antifouling coatings based on surface sensing are discussed, with an emphasis on pursuing NO-releasing coatings as a potentially universal antifouling strategy.
Collapse
Affiliation(s)
| | - Juliet C Coates
- a School of Biosciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
19
|
Chu L, Ewe D, Río Bártulos C, Kroth PG, Gruber A. Rapid induction of GFP expression by the nitrate reductase promoter in the diatom Phaeodactylum tricornutum. PeerJ 2016; 4:e2344. [PMID: 27635322 PMCID: PMC5012323 DOI: 10.7717/peerj.2344] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
An essential prerequisite for a controlled transgene expression is the choice of a suitable promoter. In the model diatom Phaeodactylum tricornutum, the most commonly used promoters for trans-gene expression are the light dependent lhcf1 promoters (derived from two endogenous genes encoding fucoxanthin chlorophyll a/c binding proteins) and the nitrate dependent nr promoter (derived from the endogenous nitrate reductase gene). In this study, we investigated the time dependent expression of the green fluorescent protein (GFP) reporter under control of the nitrate reductase promoter in independently genetically transformed P. tricornutum cell lines following induction of expression by change of the nitrogen source in the medium via flow cytometry, microscopy and western blotting. In all investigated cell lines, GFP fluorescence started to increase 1 h after change of the medium, the fastest increase rates were observed between 2 and 3 h. Fluorescence continued to increase slightly for up to 7 h even after transfer of the cells to ammonium medium. The subsequent decrease of GFP fluorescence was much slower than the increase, probably due to the stability of GFP. The investigation of several cell lines transformed with nr based constructs revealed that, also in the absence of nitrate, the promoter may show residual activity. Furthermore, we observed a strong variation of gene expression between independent cell lines, emphasising the importance of a thorough characterisation of genetically modified cell lines and their individual expression patterns.
Collapse
Affiliation(s)
- Lili Chu
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| | - Daniela Ewe
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany; Current affiliation: Centre Algatech, Institute of Microbiology, The Czech Academy of Science, Třeboň, Czech Republic
| | | | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| |
Collapse
|
20
|
KIRA N, YOSHIMATSU T, FUKUNAGA K, OKADA S, ADACHI M, KADONO T. Expression Profile of Genes Involved in Isoprenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum. ACTA ACUST UNITED AC 2016. [DOI: 10.2525/ecb.54.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nozomu KIRA
- The United Graduate School of Agricultural Sciences, Ehime University
| | - Takamichi YOSHIMATSU
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Kazunari FUKUNAGA
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Shigeru OKADA
- Department of Aquatic Biosciences, The University of Tokyo
| | - Masao ADACHI
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| | - Takashi KADONO
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University
| |
Collapse
|
21
|
Characterization of marine diatom-infecting virus promoters in the model diatom Phaeodactylum tricornutum. Sci Rep 2015; 5:18708. [PMID: 26692124 PMCID: PMC4686930 DOI: 10.1038/srep18708] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/24/2015] [Indexed: 01/27/2023] Open
Abstract
Viruses are considered key players in phytoplankton population control in oceans. However, mechanisms that control viral gene expression in prominent microalgae such as diatoms remain largely unknown. In this study, potential promoter regions isolated from several marine diatom-infecting viruses (DIVs) were linked to the egfp reporter gene and transformed into the Pennales diatom Phaeodactylum tricornutum. We analysed their activity in cells grown under different conditions. Compared to diatom endogenous promoters, novel DIV promoter (ClP1) mediated a significantly higher degree of reporter transcription and translation. Stable expression levels were observed in transformants grown under both light and dark conditions, and high levels of expression were reported in cells in the stationary phase compared to the exponential phase of growth. Conserved motifs in the sequence of DIV promoters were also found. These results allow the identification of novel regulatory regions that drive DIV gene expression and further examinations of the mechanisms that control virus-mediated bloom control in diatoms. Moreover, the identified ClP1 promoter can serve as a novel tool for metabolic engineering of diatoms. This is the first report describing a promoter of DIVs that may be of use in basic and applied diatom research.
Collapse
|
22
|
Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM. Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes. Genome Biol Evol 2015; 7:1728-42. [PMID: 25994931 PMCID: PMC4494062 DOI: 10.1093/gbe/evv095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The internal compartmentation of eukaryotic cells not only allows separation of biochemical processes but it also creates the requirement for systems that can selectively transport proteins across the membrane boundaries. Although most proteins function in a single subcellular compartment, many are able to enter two or more compartments, a phenomenon known as dual or multiple targeting. The aminoacyl-tRNA synthetases (aaRSs), which catalyze the ligation of tRNAs to their cognate amino acids, are particularly prone to functioning in multiple subcellular compartments. They are essential for translation, so they are required in every compartment where translation takes place. In diatoms, there are three such compartments, the plastid, the mitochondrion, and the cytosol. In cryptophytes, translation also takes place in the periplastid compartment (PPC), which is the reduced cytoplasm of the plastid’s red algal ancestor and which retains a reduced red algal nucleus. We searched the organelle and nuclear genomes of the cryptophyte Guillardia theta and the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana for aaRS genes and found an insufficient number of genes to provide each compartment with a complete set of aaRSs. We therefore inferred, with support from localization predictions, that many aaRSs are dual targeted. We tested four of the predicted dual targeted aaRSs with green fluorescent protein fusion localizations in P. tricornutum and found evidence for dual targeting to the mitochondrion and plastid in P. tricornutum and G. theta, and indications for dual targeting to the PPC and cytosol in G. theta. This is the first report of dual targeting in diatoms or cryptophytes.
Collapse
Affiliation(s)
- Gillian H Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Present address: Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Uwe-G Maier
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Abida H, Dolch LJ, Meï C, Villanova V, Conte M, Block MA, Finazzi G, Bastien O, Tirichine L, Bowler C, Rébeillé F, Petroutsos D, Jouhet J, Maréchal E. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2015; 167:118-36. [PMID: 25489020 PMCID: PMC4281014 DOI: 10.1104/pp.114.252395] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profile of P. tricornutum grown with various levels of nitrogen or phosphorus supplies. In different P. tricornutum accessions collected worldwide, a deprivation of either nutrient triggered an accumulation of triacylglycerol, but with different time scales and magnitudes. We investigated in depth the effect of nutrient starvation on the Pt1 strain (Culture Collection of Algae and Protozoa no. 1055/3). Nitrogen deprivation was the more severe stress, triggering thylakoid senescence and growth arrest. By contrast, phosphorus deprivation induced a stepwise adaptive response. The time scale of the glycerolipidome changes and the comparison with large-scale transcriptome studies were consistent with an exhaustion of unknown primary phosphorus-storage molecules (possibly polyphosphate) and a transcriptional control of some genes coding for specific lipid synthesis enzymes. We propose that phospholipids are secondary phosphorus-storage molecules broken down upon phosphorus deprivation, while nonphosphorus lipids are synthesized consistently with a phosphatidylglycerol-to-sulfolipid and a phosphatidycholine-to-betaine lipid replacement followed by a late accumulation of triacylglycerol.
Collapse
Affiliation(s)
- Heni Abida
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Lina-Juana Dolch
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Coline Meï
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Valeria Villanova
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Melissa Conte
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Maryse A Block
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Giovanni Finazzi
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Olivier Bastien
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Leïla Tirichine
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Chris Bowler
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Fabrice Rébeillé
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Dimitris Petroutsos
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Juliette Jouhet
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| | - Eric Maréchal
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024, 75005 Paris, France (H.A., L.T., C.B.);Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Grenoble Alpes, Institut de Recherche en Sciences et Technologies pour le Vivant, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France (L.-J.D., C.M., M.C., M.A.B., G.F., O.B., F.R., D.P., J.J., E.M.); andFermentalg SA, F-33500 Libourne, France (V.V.)
| |
Collapse
|
24
|
Willis A, Eason-Hubbard M, Hodson O, Maheswari U, Bowler C, Wetherbee R. Adhesion molecules from the diatom Phaeodactylum tricornutum (Bacillariophyceae): genomic identification by amino-acid profiling and in vivo analysis. JOURNAL OF PHYCOLOGY 2014; 50:837-849. [PMID: 26988639 DOI: 10.1111/jpy.12214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/22/2014] [Indexed: 06/05/2023]
Abstract
Cell adhesion molecules (CAMs) are important in prokaryotes and eukaryotes for cell-cell and cell-substratum interactions. The characteristics of adhesive proteins in the model diatom Phaeodactylum tricornutum were investigated by bioinformatic analysis and in vivo characterization. Bioinformatic analysis of the protein coding potential of the P. tricornutum genome used an amino-acid profile that we developed as a new system to identify uncharacterized or novel CAMs. Putative diatom CAMs were identified and seven were characterized in vivo, by generation of transgenic diatom lines overexpressing genes encoding C-terminal yellow fluorescent protein (YFP) fusion proteins. Three of these selected genes encode proteins with weak similarity to characterized proteins, a c-type lectin and two fasciclins, whereas the others are novel. The resultant cell lines were investigated for alterations in their adhesive ability. Whole cell-substratum adhesion strength was measured in a fully turbulent flow chamber, while atomic force microscopy was used to quantify the relative frequency of adhesion, as well as the length and strength of single molecules in the secreted mucilage. Finally, quartz crystal microbalance analysis characterized the visco-elastic properties and interaction of the mucilage-substratum interface. These combined studies revealed a range of phenotypes affecting adhesion, and led to the identification of candidate proteins involved in diatom adhesion. In summary, our study has for the first time combined bioinformatics and molecular physiological studies to provide new insights into diatom adhesive molecules.
Collapse
Affiliation(s)
- Anusuya Willis
- School of Botany, The University of Melbourne, Parkville, 3010, Victoria, Australia
- Environmental and Evolutionary Genomics Section, CNRS UMR8197 INSERM U1024, Institut de Biologie de l'Ecole Normale Supérieure, 46 rue d'Ulm 75230, Paris Cedex 05, France
| | - Maeve Eason-Hubbard
- School of Botany, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Oliver Hodson
- School of Botany, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Uma Maheswari
- Environmental and Evolutionary Genomics Section, CNRS UMR8197 INSERM U1024, Institut de Biologie de l'Ecole Normale Supérieure, 46 rue d'Ulm 75230, Paris Cedex 05, France
| | - Chris Bowler
- Environmental and Evolutionary Genomics Section, CNRS UMR8197 INSERM U1024, Institut de Biologie de l'Ecole Normale Supérieure, 46 rue d'Ulm 75230, Paris Cedex 05, France
| | - Richard Wetherbee
- School of Botany, The University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
25
|
Rogato A, Richard H, Sarazin A, Voss B, Cheminant Navarro S, Champeimont R, Navarro L, Carbone A, Hess WR, Falciatore A. The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum. BMC Genomics 2014; 15:698. [PMID: 25142710 PMCID: PMC4247016 DOI: 10.1186/1471-2164-15-698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Marine diatoms constitute a major component of eukaryotic phytoplankton and stand at the crossroads of several evolutionary lineages. These microalgae possess peculiar genomic features and novel combinations of genes acquired from bacterial, animal and plant ancestors. Furthermore, they display both DNA methylation and gene silencing activities. Yet, the biogenesis and regulatory function of small RNAs (sRNAs) remain ill defined in diatoms. Results Here we report the first comprehensive characterization of the sRNA landscape and its correlation with genomic and epigenomic information in Phaeodactylum tricornutum. The majority of sRNAs is 25 to 30 nt-long and maps to repetitive and silenced Transposable Elements marked by DNA methylation. A subset of this population also targets DNA methylated protein-coding genes, suggesting that gene body methylation might be sRNA-driven in diatoms. Remarkably, 25-30 nt sRNAs display a well-defined and unprecedented 180 nt-long periodic distribution at several highly methylated regions that awaits characterization. While canonical miRNAs are not detectable, other 21-25 nt sRNAs of unknown origin are highly expressed. Besides, non-coding RNAs with well-described function, namely tRNAs and U2 snRNA, constitute a major source of 21-25 nt sRNAs and likely play important roles under stressful environmental conditions. Conclusions P. tricornutum has evolved diversified sRNA pathways, likely implicated in the regulation of largely still uncharacterized genetic and epigenetic processes. These results uncover an unexpected complexity of diatom sRNA population and previously unappreciated features, providing new insights into the diversification of sRNA-based processes in eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-698) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Hugues Richard
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Laboratory of Computational and Quantitative Biology, F-75006 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ma YH, Wang X, Niu YF, Yang ZK, Zhang MH, Wang ZM, Yang WD, Liu JS, Li HY. Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Fact 2014; 13:100. [PMID: 25106441 DOI: 10.1007/978-94-007-7864-1_127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/03/2014] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Microalgae have been an emerging biofuel resource; however, the germplasm improvement has been slow due to the lack of molecular tools. Pyruvate dehydrogenase kinase (PDK) deactivates the pyruvate dehydrogenase complex (PDC) which catalyzes the oxidative decarboxylation of pyruvate. Acetyl-CoA production via PDC is important in plant tissues that are active in fatty acid synthesis. RESULTS A 1261-bp cDNA of a putative PDK gene (PtPDK) was cloned from a diatom Phaeodactylum tricornutum, and PtPDK antisense knockdown transgenic diatoms were generated. Both PtPDK transcript abundance and enzyme activity were reduced significantly due to antisense knockdown of PtPDK. Neutral lipid content of transgenic diatom cells increased up to 82% as determined by Nile red staining, and fatty acid composition was not altered. Transgenic cells showed slightly lower growth rate but similar cell size with the wild type, hence retaining similar biomass productivity. CONCLUSIONS This work first obtained a successful engineered diatom regulating a key gene involved in lipid metabolism. Our findings also provide powerful indications in enhancing microalgal lipid production by metabolic engineering for biofuel industry.
Collapse
|
27
|
Veluchamy A, Lin X, Maumus F, Rivarola M, Bhavsar J, Creasy T, O'Brien K, Sengamalay NA, Tallon LJ, Smith AD, Rayko E, Ahmed I, Le Crom S, Farrant GK, Sgro JY, Olson SA, Bondurant SS, Allen AE, Allen A, Rabinowicz PD, Sussman MR, Bowler C, Tirichine L. Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat Commun 2013; 4:2091. [PMID: 23820484 DOI: 10.1038/ncomms3091] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 05/31/2013] [Indexed: 02/07/2023] Open
Abstract
DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.
Collapse
Affiliation(s)
- Alaguraj Veluchamy
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197 INSERM U1024, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Misra N, Panda PK, Parida BK. Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:537-49. [PMID: 24044362 DOI: 10.1089/omi.2013.0025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other "omic" approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of "omics" in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of "omic" approaches in the metabolic pathway studies for microalgal biofuel production.
Collapse
Affiliation(s)
- Namrata Misra
- 1 Academy of Scientific and Innovative Research, CSIR-Institute of Minerals and Materials Technology , Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
29
|
Sturm S, Engelken J, Gruber A, Vugrinec S, G Kroth P, Adamska I, Lavaud J. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. BMC Evol Biol 2013; 13:159. [PMID: 23899289 PMCID: PMC3750529 DOI: 10.1186/1471-2148-13-159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/22/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. RESULTS Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. CONCLUSIONS The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC protein superfamily, either for one of the photosystems (PS I of red algae) or for both (diatoms). In their proposed function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of light-harvesting antennae in the red lineage.
Collapse
Affiliation(s)
- Sabine Sturm
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Johannes Engelken
- Biochemie und Physiologie der Pflanzen, Fach 602, Universität Konstanz 78457 Konstanz, Germany
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona,Spain
| | - Ansgar Gruber
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
- Present address: Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sascha Vugrinec
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Peter G Kroth
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Iwona Adamska
- Biochemie und Physiologie der Pflanzen, Fach 602, Universität Konstanz 78457 Konstanz, Germany
| | - Johann Lavaud
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
- Present address: UMR 7266 CNRS-ULR ’LIENSs’, CNRS/University of La Rochelle, Institute for Coastal and Environmental Research, La Rochelle Cedex, France
| |
Collapse
|
30
|
Hook SE, Osborn HL. Comparison of toxicity and transcriptomic profiles in a diatom exposed to oil, dispersants, dispersed oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:139-151. [PMID: 22954801 DOI: 10.1016/j.aquatox.2012.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
Dispersants are commonly used to mitigate the impact of oil spills, however, the ecological cost associated with their use is uncertain. The toxicity of weathered oil, dispersed weathered oil, and the hydrocarbon-based dispersant Slickgone NS(®), to the diatom Phaeodactylum tricornutum has been examined using standardized toxicity tests. The assumption that most toxicity occurs via narcosis was tested by measuring membrane damage in diatoms after exposure to one of the petroleum products. The mode of toxic action was determined using microarray-based gene expression profiling in diatoms after exposure to one of the petroleum products. The diatoms were found to be much more sensitive to dispersants than to the water accommodated fraction (WAF), and more sensitive to the chemically enhanced WAF (CEWAF) than to either the WAF itself or the dispersants. Exposure to dispersants and CEWAF caused membrane damage, while exposure to WAF did not. The gene expression profiles resulting from exposure to all three petroleum mixtures were highly similar, suggesting a similar mode of action for these compounds. The observed toxicity bore no relationship to PAH concentrations in the water column or to total petroleum hydrocarbon (TPH), suggesting that an undescribed component of the oil was causing toxicity. Taken together, these results suggest that the use of dispersants to clean up oil spills will dramatically increase the oil toxicity to diatoms, and may have implications for ecological processes such as the timing of blooms necessary for recruitment.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia.
| | | |
Collapse
|
31
|
Maumus F, Rabinowicz P, Bowler C, Rivarola M. Stemming epigenetics in marine stramenopiles. Curr Genomics 2012; 12:357-70. [PMID: 22294878 PMCID: PMC3145265 DOI: 10.2174/138920211796429727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/24/2011] [Accepted: 06/17/2011] [Indexed: 12/27/2022] Open
Abstract
Epigenetics include DNA methylation, the modification of histone tails that affect chromatin states, and small RNAs that are involved in the setting and maintenance of chromatin modifications. Marine stramenopiles (MAS), which are a diverse assemblage of algae that acquired photosynthesis from secondary endosymbiosis, include single-celled organisms such as diatoms as well as multicellular forms such as brown algae. The recent publication of two diatom genomes that diverged ~90 million years ago (mya), as well as the one of a brown algae that diverged from diatoms ~250 Mya, provide a great system of related, yet diverged set of organisms to compare epigenetic marks and their relationships. For example, putative DNA methyltransferase homologues were found in diatoms while none could be identified in the brown algal genome. On the other hand, no canonical DICER-like protein was found in diatoms in contrast to what is observed in brown algae. A key interest relies in understanding the adaptive nature of epigenetics and its inheritability. In contrast to yeast that lack DNA methylation, homogeneous cultures of diatoms constitute an attractive system to study epigenetic changes in response to environmental conditions such as nutrient-rich to nutrient-poor transitions which is especially relevant because of their ecological importance. P. tricornutum is also of outstanding interest because it is observed as three different morphotypes and thus constitutes a simple and promising model for the study of the epigenetic phenomena that accompany cellular differentiation. In this review we focus on the insights obtained from MAS comparative genomics and epigenomic analyses.
Collapse
Affiliation(s)
- Florian Maumus
- Unité de Recherche en Génomique-Info, UR 1164, INRA Centre de Versailles-Grignon, Versailles, France
| | | | | | | |
Collapse
|
32
|
Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJE. The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:1004-14. [PMID: 22332784 DOI: 10.1111/j.1365-313x.2012.04941.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Diatoms are one of the most successful groups of unicellular eukaryotic algae. Successive endosymbiotic events contributed to their flexible metabolism, making them competitive in variable aquatic habitats. Although the recently sequenced genomes of the model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana have provided the first insights into their metabolic organization, the current knowledge on diatom biochemistry remains fragmentary. By means of a genome-wide approach, we developed DiatomCyc, a detailed pathway/genome database of P. tricornutum. DiatomCyc contains 286 pathways with 1719 metabolic reactions and 1613 assigned enzymes, spanning both the central and parts of the secondary metabolism of P. tricornutum. Central metabolic pathways, such as those of carbohydrates, amino acids and fatty acids, were covered. Furthermore, our understanding of the carbohydrate model in P. tricornutum was extended. In particular we highlight the discovery of a functional Entner-Doudoroff pathway, an ancient alternative for the glycolytic Embden-Meyerhof-Parnas pathway, and a putative phosphoketolase pathway, both uncommon in eukaryotes. DiatomCyc is accessible online (http://www.diatomcyc.org), and offers a range of software tools for the visualization and analysis of metabolic networks and 'omics' data. We anticipate that DiatomCyc will be key to gaining further understanding of diatom metabolism and, ultimately, will feed metabolic engineering strategies for the industrial valorization of diatoms.
Collapse
Affiliation(s)
- Michele Fabris
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Depauw FA, Rogato A, Ribera d'Alcalá M, Falciatore A. Exploring the molecular basis of responses to light in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1575-91. [PMID: 22328904 DOI: 10.1093/jxb/ers005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light is an essential source of energy for life on Earth and is one of the most important signals that organisms use to obtain information from the surrounding environment, on land and in the oceans. Prominent marine microalgae, such as diatoms, display a suite of sophisticated responses (physiological, biochemical, and behavioural) to optimize their photosynthesis and growth under changing light conditions. However, the molecular mechanisms controlling diatom responses to light are still largely unknown. Recent progress in marine diatom genomics and genetics, combined with well-established (eco) physiological and biophysical approaches, now offers novel opportunities to address these issues. This review provides a description of the molecular components identified in diatom genomes that are involved in light perception and acclimation mechanisms. How the initial functional characterizations of specific light regulators provide the basis to investigate the conservation or diversification of light-mediated processes in diatoms is also discussed. Hypotheses on the role of the identified factors in determining the growth, distribution, and adaptation of diatoms in different marine environments are reported.
Collapse
Affiliation(s)
- Frauke Angelique Depauw
- Université Pierre et Marie Curie, Paris 06, Centre National de la Recherche Scientifique, UMR7238, Laboratoire de Génomique des Microorganismes, 75006 Paris, France
| | | | | | | |
Collapse
|
34
|
Grouneva I, Rokka A, Aro EM. The Thylakoid Membrane Proteome of Two Marine Diatoms Outlines Both Diatom-Specific and Species-Specific Features of the Photosynthetic Machinery. J Proteome Res 2011; 10:5338-53. [DOI: 10.1021/pr200600f] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina Grouneva
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, Tykistökatu 6A, FI-20520, University of Turku, Finland
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, Tykistökatu 6A, FI-20520, University of Turku, Finland
| |
Collapse
|
35
|
Lowe CD, Mello LV, Samatar N, Martin LE, Montagnes DJS, Watts PC. The transcriptome of the novel dinoflagellate Oxyrrhis marina (Alveolata: Dinophyceae): response to salinity examined by 454 sequencing. BMC Genomics 2011; 12:519. [PMID: 22014029 PMCID: PMC3209475 DOI: 10.1186/1471-2164-12-519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/20/2011] [Indexed: 11/30/2022] Open
Abstract
Background The heterotrophic dinoflagellate Oxyrrhis marina is increasingly studied in experimental, ecological and evolutionary contexts. Its basal phylogenetic position within the dinoflagellates make O. marina useful for understanding the origin of numerous unusual features of the dinoflagellate lineage; its broad distribution has lent O. marina to the study of protist biogeography; and nutritive flexibility and eurytopy have made it a common lab rat for the investigation of physiological responses of marine heterotrophic flagellates. Nevertheless, genome-scale resources for O. marina are scarce. Here we present a 454-based transcriptome survey for this organism. In addition, we assess sequence read abundance, as a proxy for gene expression, in response to salinity, an environmental factor potentially important in determining O. marina spatial distributions. Results Sequencing generated ~57 Mbp of data which assembled into 7, 398 contigs. Approximately 24% of contigs were nominally identified by BLAST. A further clustering of contigs (at ≥ 90% identity) revealed 164 transcript variant clusters, the largest of which (Phosphoribosylaminoimidazole-succinocarboxamide synthase) was composed of 28 variants displaying predominately synonymous variation. In a genomic context, a sample of 5 different genes were demonstrated to occur as tandem repeats, separated by short (~200-340 bp) inter-genic regions. For HSP90 several intergenic variants were detected suggesting a potentially complex genomic arrangement. In response to salinity, analysis of 454 read abundance highlighted 9 and 20 genes over or under expressed at 50 PSU, respectively. However, 454 read abundance and subsequent qPCR validation did not correlate well - suggesting that measures of gene expression via ad hoc analysis of sequence read abundance require careful interpretation. Conclusion Here we indicate that tandem gene arrangements and the occurrence of multiple transcribed gene variants are common and indicate potentially complex genomic arrangements in O. marina. Comparison of the reported data set with existing O. marina and other dinoflagellates ESTs indicates little sequence overlap likely as a result of the relatively limited extent of genome scale sequence data currently available for the dinoflagellates. This is one of the first 454-based transcriptome surveys of an ancestral dinoflagellate taxon and will undoubtedly prove useful for future comparative studies aimed at reconstructing the origin of novel features of the dinoflagellates.
Collapse
Affiliation(s)
- Chris D Lowe
- Department of Evolution, Ecology, and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Norden-Krichmar TM, Allen AE, Gaasterland T, Hildebrand M. Characterization of the small RNA transcriptome of the diatom, Thalassiosira pseudonana. PLoS One 2011; 6:e22870. [PMID: 21857960 PMCID: PMC3155517 DOI: 10.1371/journal.pone.0022870] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/07/2011] [Indexed: 01/12/2023] Open
Abstract
This study presents the first characterization of endogenous small RNAs in a diatom, Thalassiosira pseudonana. Small RNAs act as transcriptional and translational regulators, controlling specific target genes involved in various cellular functions. Diatoms are unicellular photosynthetic organisms that play major roles in environmental processes, such as food webs and global carbon fixation. Small RNA cDNA libraries were constructed for exponentially growing T. pseudonana, and then subjected to highly parallel pyrosequencing (454) and sequencing-by-ligation (Applied Biosystems SOLiD). From the computational analysis of approximately 300,000 sequences in the 454 library and over 17 million sequences in the SOLiD libraries, there exists evidence of a core set of small RNA genes including: novel microRNAs, repeat-associated short interfering RNAs, and endogenous short interfering RNAs. The diatom genome contains elements similar to plant small RNA systems, such as the RNAi machinery, a high percentage of short interfering RNAs originating from protein-coding and repetitive regions of the genome, and putative binding sites of the small RNAs occurring primarily in the coding section of the predicted targets. The characterization of the small RNA transcriptome of T. pseudonana establishes the possibility of a wide range of gene regulatory mechanisms in diatoms.
Collapse
Affiliation(s)
- Trina M. Norden-Krichmar
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Andrew E. Allen
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Terry Gaasterland
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
37
|
Analysis of expressed sequence tags from the marine microalga Pseudochattonella farcimen (Dictyochophyceae). Protist 2011; 163:143-61. [PMID: 21820956 DOI: 10.1016/j.protis.2011.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/28/2011] [Indexed: 01/31/2023]
Abstract
Pseudochattonella farcimen (Eikrem, Edvardsen, et Throndsen) is a unicellular alga belonging to the Dictyochophyceae (Heterokonta). It forms recurring blooms in Scandinavian coastal waters, and has been associated to fish mortality. Here we report the sequencing and analysis of 10,368 expressed sequence tags (ESTs) corresponding to 8,149 unique gene models from this species. Compared to EST libraries from other heterokonts, P. farcimen contains a high number of genes with functions related to cell communication and signaling. We found several genes encoding proteins related to fatty acid metabolism, including eight fatty acid desaturases and two phospholipase A2 genes. Three desaturases are highly similar to Δ4-desaturases from haptophytes. P. farcimen also possesses three putative polyketide synthases (PKSs), belonging to two different families. Some of these genes may have been acquired via horizontal gene transfer by a common ancestor of brown algae and dictyochophytes, together with genes involved in mannitol metabolism, which are also present in P. farcimen. Our findings may explain the unusual fatty acid profile previously observed in P. farcimen, and are discussed from an evolutionary perspective and in relation to the ichthyotoxicity of this alga.
Collapse
|
38
|
De Martino A, Bartual A, Willis A, Meichenin A, Villazán B, Maheswari U, Bowler C. Physiological and Molecular Evidence that Environmental Changes Elicit Morphological Interconversion in the Model Diatom Phaeodactylum tricornutum. Protist 2011; 162:462-81. [DOI: 10.1016/j.protis.2011.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/17/2011] [Indexed: 11/30/2022]
|
39
|
|
40
|
Grossman AR, Karpowicz SJ, Heinnickel M, Dewez D, Hamel B, Dent R, Niyogi KK, Johnson X, Alric J, Wollman FA, Li H, Merchant SS. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. PHOTOSYNTHESIS RESEARCH 2010; 106:3-17. [PMID: 20490922 PMCID: PMC2947710 DOI: 10.1007/s11120-010-9555-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/16/2010] [Indexed: 05/18/2023]
Abstract
Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiroutová K, Kořený L, Bowler C, Oborník M. A gene in the process of endosymbiotic transfer. PLoS One 2010; 5:e13234. [PMID: 20949086 PMCID: PMC2950852 DOI: 10.1371/journal.pone.0013234] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/13/2010] [Indexed: 12/02/2022] Open
Abstract
Background The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. Methodology/Principal Findings To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28) through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. Conclusions/Significance We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA) need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.
Collapse
Affiliation(s)
- Kateřina Jiroutová
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Luděk Kořený
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, Ecole Normale Supérieure, Paris, France
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Rayko E, Maumus F, Maheswari U, Jabbari K, Bowler C. Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. THE NEW PHYTOLOGIST 2010; 188:52-66. [PMID: 20646219 DOI: 10.1111/j.1469-8137.2010.03371.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• By comparative analyses we identify lineage-specific diversity in transcription factors (TFs) from stramenopile (or heterokont) genome sequences. We compared a pennate (Phaeodactylum tricornutum) and a centric diatom (Thalassiosira pseudonana) with those of other stramenopiles (oomycetes, Pelagophyceae, and Phaeophyceae (Ectocarpus siliculosus)) as well as to that of Emiliania huxleyi, a haptophyte that is evolutionarily related to the stramenopiles. • We provide a detailed description of diatom TF complements and report numerous peculiarities: in both diatoms, the heat shock factor (HSF) family is overamplified and constitutes the most abundant class of TFs; Myb and C2H2-type zinc finger TFs are the two most abundant TF families encoded in all the other stramenopile genomes investigated; the presence of diatom and lineage-specific gene fusions, in particular a class of putative photoreceptors with light-sensitive Per-Arnt-Sim (PAS) and DNA-binding (basic-leucine zipper, bZIP) domains and an HSF-AP2 domain fusion. • Expression data analysis shows that many of the TFs studied are transcribed and may be involved in specific responses to environmental stimuli. • Evolutionary and functional relevance of these observations are discussed.
Collapse
Affiliation(s)
- Edda Rayko
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
43
|
Maheswari U, Jabbari K, Petit JL, Porcel BM, Allen AE, Cadoret JP, De Martino A, Heijde M, Kaas R, La Roche J, Lopez PJ, Martin-Jézéquel V, Meichenin A, Mock T, Schnitzler Parker M, Vardi A, Armbrust EV, Weissenbach J, Katinka M, Bowler C. Digital expression profiling of novel diatom transcripts provides insight into their biological functions. Genome Biol 2010; 11:R85. [PMID: 20738856 PMCID: PMC2945787 DOI: 10.1186/gb-2010-11-8-r85] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 05/11/2010] [Accepted: 08/25/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High throughput tools are needed, therefore, to associate functions with diatom-specific genes. RESULTS We have performed a systematic analysis of 130,000 ESTs derived from Phaeodactylum tricornutum cells grown in 16 different conditions. These include different sources of nitrogen, different concentrations of carbon dioxide, silicate and iron, and abiotic stresses such as low temperature and low salinity. Based on unbiased statistical methods, we have catalogued transcripts with similar expression profiles and identified transcripts differentially expressed in response to specific treatments. Functional annotation of these transcripts provides insights into expression patterns of genes involved in various metabolic and regulatory pathways and into the roles of novel genes with unknown functions. Specific growth conditions could be associated with enhanced gene diversity, known gene product functions, and over-representation of novel transcripts. Comparative analysis of data from the other sequenced diatom, Thalassiosira pseudonana, helped identify several unique diatom genes that are specifically regulated under particular conditions, thus facilitating studies of gene function, genome annotation and the molecular basis of species diversity. CONCLUSIONS The digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance.
Collapse
Affiliation(s)
- Uma Maheswari
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
- Current address: EMBL - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kamel Jabbari
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
- CEA - Institut de Génomique, Genoscope and CNRS UMR 8030, 2 rue Gaston Crémieux CP5706, 91057 Evry, France
| | - Jean-Louis Petit
- CEA - Institut de Génomique, Genoscope and CNRS UMR 8030, 2 rue Gaston Crémieux CP5706, 91057 Evry, France
| | - Betina M Porcel
- CEA - Institut de Génomique, Genoscope and CNRS UMR 8030, 2 rue Gaston Crémieux CP5706, 91057 Evry, France
| | - Andrew E Allen
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
- Current address: J Craig Venter Institute, 11149 N. Torrey Pines Rd, Suite 220, La Jolla, CA 92037, USA
| | - Jean-Paul Cadoret
- Physiologie et Biotechnologie des Algues, IFREMER, BP 21105, 44311 Nantes, France
| | - Alessandra De Martino
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Marc Heijde
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Raymond Kaas
- Physiologie et Biotechnologie des Algues, IFREMER, BP 21105, 44311 Nantes, France
| | - Julie La Roche
- Marine Biogeochemistry, IFM-GEOMAR Leibniz-Institut für Meereswissenschaften, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Pascal J Lopez
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Véronique Martin-Jézéquel
- Université de Nantes, EA 2160, Laboratoire 'Mer, Molécule, Santé', Faculté des Sciences et Techniques, 2 rue de la Houssinière, 44322, BP 92208, 44322 Nantes Cedex 3, France
| | - Agnès Meichenin
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Thomas Mock
- School of Oceanography, University of Washington, 616 NE Northlake Place, Seattle, WA 98105, USA
- University of East Anglia, School of Environmental Sciences, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | - Assaf Vardi
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - E Virginia Armbrust
- School of Oceanography, University of Washington, 616 NE Northlake Place, Seattle, WA 98105, USA
| | - Jean Weissenbach
- CEA - Institut de Génomique, Genoscope and CNRS UMR 8030, 2 rue Gaston Crémieux CP5706, 91057 Evry, France
| | - Michaël Katinka
- CEA - Institut de Génomique, Genoscope and CNRS UMR 8030, 2 rue Gaston Crémieux CP5706, 91057 Evry, France
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
44
|
Joshi-Deo J, Schmidt M, Gruber A, Weisheit W, Mittag M, Kroth PG, Büchel C. Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3079-87. [PMID: 20478968 PMCID: PMC2892152 DOI: 10.1093/jxb/erq136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 05/25/2023]
Abstract
Fucoxanthin chlorophyll proteins (Fcps), the light-harvesting antennas of heterokont algae, are encoded by a multigene family and are highly similar with respect to their molecular masses as well as to their pigmentation, making it difficult to purify single Fcps. In this study, a hexa-histidine tag was genetically added to the C-terminus of the FcpA protein of the pennate diatom Phaeodactylum tricornutum. A transgenic strain expressing the recombinant His-tagged FcpA protein in addition to the endogenous wild type Fcps was created. This strategy allowed, for the first time, the purification of a specific, stable trimeric Fcp complex. In addition, a pool of various trimeric Fcps was also purified from the wild-type cells using sucrose density gradient ultracentrifugation and gel filtration. In both the His-tagged and the wild-type Fcps, excitation energy coupling between fucoxanthin and chlorophyll a was intact and the existence of a chlorophyll a/fucoxanthin excitonic dimer was demonstrated using circular dichroism spectroscopy. Mass spectrometric analyses of the trimeric His-tagged complex indicated that it is composed of FcpA and FcpE polypeptides. It is confirmed here that a trimer is the basic organizational unit of Fcps in P. tricornutum. From circular dichroism spectra, it is proposed that the organization of the pigments on the polypeptide backbone of Fcps is a conserved feature in the case of chlorophyll a/c containing algae.
Collapse
Affiliation(s)
- Jidnyasa Joshi-Deo
- Institute of Molecular Biosciences, Johann Wolfgang Goethe-University, Siesmayerstrasse 70, D-60323 Frankfurt am Main, Germany
| | - Matthias Schmidt
- Institute of Molecular Biosciences, Johann Wolfgang Goethe-University, Siesmayerstrasse 70, D-60323 Frankfurt am Main, Germany
| | - Ansgar Gruber
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Wolfram Weisheit
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Peter G. Kroth
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Johann Wolfgang Goethe-University, Siesmayerstrasse 70, D-60323 Frankfurt am Main, Germany
| |
Collapse
|
45
|
Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol 2010; 11:R17. [PMID: 20146805 PMCID: PMC2872877 DOI: 10.1186/gb-2010-11-2-r17] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/01/2010] [Accepted: 02/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the enormous importance of diatoms in aquatic ecosystems and their broad industrial potential, little is known about their life cycle control. Diatoms typically inhabit rapidly changing and unstable environments, suggesting that cell cycle regulation in diatoms must have evolved to adequately integrate various environmental signals. The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to explore the molecular conservation of cell cycle regulation in diatoms. RESULTS By profile-based annotation of cell cycle genes, counterparts of conserved as well as new regulators were identified in T. pseudonana and P. tricornutum. In particular, the cyclin gene family was found to be expanded extensively compared to that of other eukaryotes and a novel type of cyclins was discovered, the diatom-specific cyclins. We established a synchronization method for P. tricornutum that enabled assignment of the different annotated genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly expressed at the G1-to-S transition and some respond to phosphate availability, hinting at a role in connecting cell division to environmental stimuli. CONCLUSION The discovery of highly conserved and new cell cycle regulators suggests the evolution of unique control mechanisms for diatom cell division, probably contributing to their ability to adapt and survive under highly fluctuating environmental conditions.
Collapse
|
46
|
Guidi-Rontani C, Maheswari U, Jabbari K, Bowler C. Comparative ecophysiology and genomics of the toxic unicellular alga Fibrocapsa japonica. THE NEW PHYTOLOGIST 2010; 185:446-458. [PMID: 19912547 DOI: 10.1111/j.1469-8137.2009.03074.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Summary *Ten axenic cultures, referred to as Fibrocapsa japonica, were studied for their morphology, pigment composition, toxicity and phylogeny. *Morphologically, all 10 accessions were similar and displayed equivalent pigment contents. We identified chlorophylls a and c, beta-carotene and fucoxanthin as the dominant pigments, together with xanthophyll cycle carotenoids likely to be involved in photoprotection. *All 10 accessions caused brine shrimp, Artemia salina, mortality and displayed haemolytic and haemaglutination activities toward sheep erythrocytes. Our results indicate that haemaglutination activity is a key component of F. japonica toxicity. *Examination of a collection of F. japonica expressed sequence tags (ESTs) has led to the identification of candidate genes involved in F. japonica toxicity and/or growth control.
Collapse
Affiliation(s)
- Chantal Guidi-Rontani
- Biologie Moléculaire des Organismes Photosynthétiques, CNRS UMR8186, Département de Biologie, Ecole Normale Supérieure, F-75230 Paris Cedex 05, France
| | | | | | | |
Collapse
|
47
|
Bowler C, Vardi A, Allen AE. Oceanographic and biogeochemical insights from diatom genomes. ANNUAL REVIEW OF MARINE SCIENCE 2010; 2:333-65. [PMID: 21141668 DOI: 10.1146/annurev-marine-120308-081051] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diatoms are the most successful group of eukaryotic phytoplankton in the modern ocean and have risen to dominance relatively quickly over the last 100 million years. Recently completed whole genome sequences from two species of diatom, Thalassiosira pseudonana and Phaeodactylum tricornutum, have revealed a wealth of information about the evolutionary origins and metabolic adaptations that have led to their ecological success. A major finding is that they have incorporated genes both from their endosymbiotic ancestors and by horizontal gene transfer from marine bacteria. This unique melting pot of genes encodes novel capacities for metabolic management, for example, allowing the integration of a urea cycle into a photosynthetic cell. In this review we show how genome-enabled approaches are being leveraged to explore major phenomena of oceanographic and biogeochemical relevance, such as nutrient assimilation and life histories in diatoms. We also discuss how diatoms may be affected by climate change-induced alterations in ocean processes.
Collapse
Affiliation(s)
- Chris Bowler
- CNRS UMR8186, Department of Biology, Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
48
|
Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics 2009; 10:624. [PMID: 20028555 PMCID: PMC2806351 DOI: 10.1186/1471-2164-10-624] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are mobile DNA sequences present in the genomes of most organisms. They have been extensively studied in animals, fungi, and plants, and have been shown to have important functions in genome dynamics and species evolution. Recent genomic data can now enlarge the identification and study of TEs to other branches of the eukaryotic tree of life. Diatoms, which belong to the heterokont group, are unicellular eukaryotic algae responsible for around 40% of marine primary productivity. The genomes of a centric diatom, Thalassiosira pseudonana, and a pennate diatom, Phaeodactylum tricornutum, that likely diverged around 90 Mya, have recently become available. RESULTS In the present work, we establish that LTR retrotransposons (LTR-RTs) are the most abundant TEs inhabiting these genomes, with a much higher presence in the P. tricornutum genome. We show that the LTR-RTs found in diatoms form two new phylogenetic lineages that appear to be diatom specific and are also found in environmental samples taken from different oceans. Comparative expression analysis in P. tricornutum cells cultured under 16 different conditions demonstrate high levels of transcriptional activity of LTR retrotransposons in response to nitrate limitation and upon exposure to diatom-derived reactive aldehydes, which are known to induce stress responses and cell death. Regulatory aspects of P. tricornutum retrotransposon transcription also include the occurrence of nitrate limitation sensitive cis-regulatory components within LTR elements and cytosine methylation dynamics. Differential insertion patterns in different P. tricornutum accessions isolated from around the world infer the role of LTR-RTs in generating intraspecific genetic variability. CONCLUSION Based on these findings we propose that LTR-RTs may have been important for promoting genome rearrangements in diatoms.
Collapse
|
49
|
De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 2009; 37:e96. [PMID: 19487243 PMCID: PMC2724275 DOI: 10.1093/nar/gkp448] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diatoms are a major but poorly understood phytoplankton group. The recent completion of two whole genome sequences has revealed that they contain unique combinations of genes, likely recruited during their history as secondary endosymbionts, as well as by horizontal gene transfer from bacteria. A major limitation for the study of diatom biology and gene function is the lack of tools to generate targeted gene knockout or knockdown mutants. In this work, we have assessed the possibility of triggering gene silencing in Phaeodactylum tricornutum using constructs containing either anti-sense or inverted repeat sequences of selected target genes. We report the successful silencing of a GUS reporter gene expressed in transgenic lines, as well as the knockdown of endogenous phytochrome (DPH1) and cryptochrome (CPF1) genes. To highlight the utility of the approach we also report the first phenotypic characterization of a diatom mutant (cpf1). Our data open the way for reverse genetics in diatoms and represent a major advance for understanding their biology and ecology. Initial molecular analyses reveal that targeted downregulation likely occurs through transcriptional and post-transcriptional gene silencing mechanisms. Interestingly, molecular players involved in RNA silencing in other eukaryotes are only poorly conserved in diatoms.
Collapse
Affiliation(s)
- Valentina De Riso
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | | | | | | | | | | |
Collapse
|