1
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Shi S, Wang C, Cai Q, Yang R, Peng M, Liang H, Qian B, Jiang Y, Xiao B, Wang L, Tao Y, Cai J, Zhao Z. RBM15 drives the progression of lung adenocarcinoma by regulating N6-methyladenosine-mediated LDHA mRNA stability. Life Sci 2024; 358:123146. [PMID: 39406308 DOI: 10.1016/j.lfs.2024.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Abnormal N6-methyladenosine (m6A) methylation in RNA plays a pivotal role in the pathogenesis of many types of tumors by influencing mRNA metabolism, alternative splicing, translocation, stability and translation. However, the specific regulators and underlying mechanisms of m6A modification in the progression of lung adenocarcinoma are not well understood. In this study, we analyzed the RNA-seq transcriptome data downloaded from The Cancer Genome Atlas (TCGA) database, and identified "m6A writer" RNA binding motif protein 15 (RBM15) expression was significantly elevated in lung adenocarcinoma (LUAD) biopsies, and the higher RBM15 levels were correlated with the poorer overall survival (OS) of LUAD patients. Further study confirmed RBM15 was prominently expressed in LUAD tissues and cell lines. Moreover, silencing RBM15 in PC9 and H1299 cells reduced cell proliferation both in vitro and in vivo, while overexpression of RBM15 in A549 cells promoted cell growth. Mechanistically, lactate dehydrogenase A (LDHA) acted as a downstream target of RBM15. RBM15-mediated m6A modification of LDHA mRNA enhanced its stability to exert an oncogenic role in LUAD. Taken together, our findings suggest that the RBM15/LDHA axis might be a novel and promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Christopher Wang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rui Yang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Muyun Peng
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hengxing Liang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Banglun Qian
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yupeng Jiang
- Department of Oncology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Li Wang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Pathology, Xiangya Hospital and School of Basic Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Juan Cai
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhenyu Zhao
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Cao Y, Qiu G, Dong Y, Zhao W, Wang Y. Exploring the role of m 6 A writer RBM15 in cancer: a systematic review. Front Oncol 2024; 14:1375942. [PMID: 38915367 PMCID: PMC11194397 DOI: 10.3389/fonc.2024.1375942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
In the contemporary epoch, cancer stands as the predominant cause of premature global mortality, necessitating a focused exploration of molecular markers and advanced therapeutic strategies. N6-methyladenosine (m6A), the most prevalent mRNA modification, undergoes dynamic regulation by enzymes referred to as methyltransferases (writers), demethylases (erasers), and effective proteins (readers). Despite lacking methylation activity, RNA-binding motif protein 15 (RBM15), a member of the m6A writer family, assumes a crucial role in recruiting the methyltransferase complex (MTC) and binding to mRNA. Although the impact of m6A modifications on cancer has garnered widespread attention, RBM15 has been relatively overlooked. This review briefly outlines the structure and operational mechanism, and delineates the unique role of RBM15 in various cancers, shedding light on its molecular basis and providing a groundwork for potential tumor-targeted therapies.
Collapse
Affiliation(s)
- Yuan Cao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
- Shenyang 242 Hospital, Shenyang, Liaoning, China
| | - Yu Dong
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Wei Zhao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Cheng H, Wu J, Li L, Song X, Xue J, Shi Y, Zou Y, Ma J, Ge J. RBM15 Protects From Myocardial Infarction by Stabilizing NAE1. JACC Basic Transl Sci 2024; 9:631-648. [PMID: 38984049 PMCID: PMC11228393 DOI: 10.1016/j.jacbts.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 07/11/2024]
Abstract
RNA-binding proteins play multiple roles in several biological processes. However, the roles of RBM15-an important RNA-binding protein and a significant regulator of RNA methylation-in cardiovascular diseases remain elusive. This study aimed to investigate the biological function of RBM15 and its fundamental mechanisms in myocardial infarction (MI). Methylated RNA immunoprecipitation sequencing was used to explore the N6-methyladenosine (m6A) difference between MI and normal tissues. Our findings showed the elevated level of m6A in MI, and its transcription profile in both MI and normal tissues. RBM15 was the main regulator and its overexpression attenuated apoptosis in cardiomyocytes and improved cardiac function in mice after MI. Then, we used one target NEDD8 activating enzyme E1 subunit and its inhibitor (MLN4924) to investigate the impact of RBM15 targets on cardiomyocytes. Finally, the enhanced m6A methylation in the presence of RBM15 overexpression led to the increased expression and stability of NEDD8 activating enzyme E1 subunit. Our findings suggest that the enhanced m6A level is a protective mechanism in MI, and RBM15 is significantly upregulated in MI and promotes cardiac function. This study showed that RBM15 affected MI by stabilizing its target on the cell apoptosis function, which might provide a new insight into MI therapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Linnan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Xiaoyue Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Junqiang Xue
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Yuekai Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianying Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Science, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Sudhakar SRN, Khan SN, Clark A, Hendrickson-Rebizant T, Patel S, Lakowski TM, Davie JR. Protein arginine methyltransferase 1, a major regulator of biological processes. Biochem Cell Biol 2024; 102:106-126. [PMID: 37922507 DOI: 10.1139/bcb-2023-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is a major type I arginine methyltransferase that catalyzes the formation of monomethyl and asymmetric dimethylarginine in protein substrates. It was first identified to asymmetrically methylate histone H4 at the third arginine residue forming the H4R3me2a active histone mark. However, several protein substrates are now identified as being methylated by PRMT1. As a result of its association with diverse classes of substrates, PRMT1 regulates several biological processes like chromatin dynamics, transcription, RNA processing, and signal transduction. The review provides an overview of PRMT1 structure, biochemical features, specificity, regulation, and role in cellular functions. We discuss the genomic distribution of PRMT1 and its association with tRNA genes. Further, we explore the different substrates of PRMT1 involved in splicing. In the end, we discuss the proteins that interact with PRMT1 and their downstream effects in diseased states.
Collapse
Affiliation(s)
- Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Shahper N Khan
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Ariel Clark
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | | | - Shrinal Patel
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Ted M Lakowski
- College of Pharmacy Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Yue SW, Liu HL, Su HF, Luo C, Liang HF, Zhang BX, Zhang W. m6A-regulated tumor glycolysis: new advances in epigenetics and metabolism. Mol Cancer 2023; 22:137. [PMID: 37582735 PMCID: PMC10426175 DOI: 10.1186/s12943-023-01841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023] Open
Abstract
Glycolytic reprogramming is one of the most important features of cancer and plays an integral role in the progression of cancer. In cancer cells, changes in glucose metabolism meet the needs of self-proliferation, angiogenesis and lymphangiogenesis, metastasis, and also affect the immune escape, prognosis evaluation and therapeutic effect of cancer. The n6-methyladenosine (m6A) modification of RNA is widespread in eukaryotic cells. Dynamic and reversible m6A modifications are widely involved in the regulation of cancer stem cell renewal and differentiation, tumor therapy resistance, tumor microenvironment, tumor immune escape, and tumor metabolism. Lately, more and more evidences show that m6A modification can affect the glycolysis process of tumors in a variety of ways to regulate the biological behavior of tumors. In this review, we discussed the role of glycolysis in tumor genesis and development, and elaborated in detail the profound impact of m6A modification on different tumor by regulating glycolysis. We believe that m6A modified glycolysis has great significance and potential for tumor treatment.
Collapse
Affiliation(s)
- Shi-Wei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Hai-Ling Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Hong-Fei Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Chu Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
| |
Collapse
|
7
|
Appel LM, Benedum J, Engl M, Platzer S, Schleiffer A, Strobl X, Slade D. SPOC domain proteins in health and disease. Genes Dev 2023; 37:140-170. [PMID: 36927757 PMCID: PMC10111866 DOI: 10.1101/gad.350314.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Since it was first described >20 yr ago, the SPOC domain (Spen paralog and ortholog C-terminal domain) has been identified in many proteins all across eukaryotic species. SPOC-containing proteins regulate gene expression on various levels ranging from transcription to RNA processing, modification, export, and stability, as well as X-chromosome inactivation. Their manifold roles in controlling transcriptional output implicate them in a plethora of developmental processes, and their misregulation is often associated with cancer. Here, we provide an overview of the biophysical properties of the SPOC domain and its interaction with phosphorylated binding partners, the phylogenetic origin of SPOC domain proteins, the diverse functions of mammalian SPOC proteins and their homologs, the mechanisms by which they regulate differentiation and development, and their roles in cancer.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Sebastian Platzer
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Xué Strobl
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
8
|
Jiang A, Zhang S, Wang X, Li D. RBM15 condensates modulate m 6A modification of STYK1 to promote tumorigenesis. Comput Struct Biotechnol J 2022; 20:4825-4836. [PMID: 36147665 PMCID: PMC9464649 DOI: 10.1016/j.csbj.2022.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
RBM15 expression is recurrently upregulated in several types of malignant tissues, and its high expression level is typically associated with poor prognosis. However, whether and how RBM15 is involved in the tumor progression remains unclear. In this study, we found that overexpressing RBM15 in NIH3T3 cells was able to enhance proliferation rate in vitro and induced subcutaneous tumor formation in vivo. Moreover, we imaged the subcellular localization of RBM15 with our home-built structured illumination super-resolution microscopy, and revealed that RBM15 formed substantial condensates dispersed in the nucleus, undergoing dynamic fusion and fission activities. These condensates were partially colocalized with m6A-modified transcripts in the nucleus. In addition, we confirmed that RBM15 formed “liquid-like” droplets in a protein/salt concentration-dependent manner in vitro, and the addition of RNA further enhanced its phase-separation propensity. To identify downstream targets of RBM15, we performed meRIP-seq and RNA-seq, revealing that RBM15 preferentially bound to and promoted the m6A modification on the mRNA of Serine/threonine/tyrosine kinase 1 (STYK1), thereby enhancing its stability. The upregulated STYK1 expression caused MAPK hyperactivation, thereby leading to oncogenic transformation of NIH3T3 cells.
Collapse
Affiliation(s)
- Amin Jiang
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Siwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding authors at: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X. Wang and D. Li).
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors at: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X. Wang and D. Li).
| |
Collapse
|
9
|
Abstract
RNA modifications are prevalent among all the classes of RNA, regulate diverse biological processes, and have emerged as a key regulatory mechanism in post-transcriptional control of gene expression. They are subjected to precise spatial and temporal control and shown to be critical for the maintenance of normal development and physiology. For example, m6A modification of mRNA affects stability, recruitment of RNA binding protein (RBP), translation, and splicing. The deposition of m6A on the RNA happens co-transcriptionally, allowing the tight coupling between the transcription and RNA modification machinery. The m6A modification is affected by transcriptional dynamics, but recent insights also suggest that m6A machinery impacts transcription and chromatin signature.
Collapse
Affiliation(s)
- Junaid Akhtar
- Institute of Developmental Biology and Neurobiology, University of Mainz, Mainz, Germany
| | - Margot Lugoboni
- Department reproduction and development in health and disease, Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, Genetics, Reproduction and Development Institute (IGReD), Clermont-Ferrand, France
| | - Guillaume Junion
- Department reproduction and development in health and disease, Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, Genetics, Reproduction and Development Institute (IGReD), Clermont-Ferrand, France
| |
Collapse
|
10
|
Zhao Z, Ju Q, Ji J, Li Y, Zhao Y. N6-Methyladenosine Methylation Regulator RBM15 is a Potential Prognostic Biomarker and Promotes Cell Proliferation in Pancreatic Adenocarcinoma. Front Mol Biosci 2022; 9:842833. [PMID: 35223996 PMCID: PMC8864094 DOI: 10.3389/fmolb.2022.842833] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
RNA binding motif protein 15 (RBM15) is a key regulatory factor involved in N6-methyladenosine (m6A) methylation. It has been reported that RBM15 plays an important role in the progress of laryngeal squamous cell carcinoma (LSCC), promoting LSCC migration and invasion. However, the role of RBM15 in human different cancers remains unknown. This study aims to analyze the prognostic value of RBM15, and to demonstrate the correlation between RBM15 expression and tumor immunity, as well as to provide clues for further mechanism research. The results showed that RBM15 was mutated or copy number varied in 25 types of cancer. RBM15 mRNA was abnormally up-regulated across various cancers. Survival analysis suggested high expression of RBM15 was associated with poor prognosis in many cancer types. Among these, it affected patients’ overall survival (OS) in 10 cancer types, disease-free interval (DFI) in 8 cancer types, progression-free interval (PFI) in 12 cancer types and disease-specific survival (DSS) in 7 cancer types. Importantly, in pancreatic adenocarcinoma (PAAD), overexpression of RBM15 is associated with patients’ OS, DFI, PFI, or DSS. In addition, RBM15 expression was positively correlated with immune infiltrating cells in kidney renal clear cell carcinoma (KIRC), brain lower grade glioma (LGG), and PAAD. Moreover, RBM15 expression showed a strong correlation with immune checkpoint markers in PAAD. Cell counting kit-8 (CCK-8) assay showed that knockdown of RBM15 significantly inhibited the proliferation of pancreatic cancer cells. PPI analysis showed USP10, USP24, SMG1, NRAS were closely connected with RBM15 alterations. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that many biological processes (BP), cellular components (CC), molecular functions (MF), cancer related pathways including “sister chromatid cohesion”, “peptidyl-serine phosphorylation”, “cell division”, “nucleoplasm”, “nucleus”, “protein binding”, “protein serine/threonine kinase activity”, “T cell receptor signaling pathway”, “Cell cycle” were regulated by RBM15 alterations. Taken together, pan-cancer analysis of RBM15 suggested it may be served as a prognostic biomarker and immunotherapeutic target for PAAD.
Collapse
Affiliation(s)
- Zhiying Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Yutong Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Yanjie Zhao,
| |
Collapse
|
11
|
Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Nat Commun 2021; 12:6078. [PMID: 34667177 PMCID: PMC8526623 DOI: 10.1038/s41467-021-26360-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Vedran Franke
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Melania Bruno
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Aiste Kasiliauskaite
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tanja Kaufmann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ursula E Schoeberl
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Carmen Ebenwaldner
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Etienne Beltzung
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Gen Lin
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Martin Leeb
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Altuna Akalin
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Carrie Bernecky
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dea Slade
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Ferdous Z, Fuchs S, Behrends V, Trasanidis N, Waterhouse RM, Vlachou D, Christophides GK. Anopheles coluzzii stearoyl-CoA desaturase is essential for adult female survival and reproduction upon blood feeding. PLoS Pathog 2021; 17:e1009486. [PMID: 34015060 PMCID: PMC8171932 DOI: 10.1371/journal.ppat.1009486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 06/02/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases. Female mosquitoes can become infected with malaria parasites upon ingestion of blood from an infected person and can transmit the disease when they bite another person some days later. The bloodmeal is rich in proteins which female mosquitoes use to develop their eggs after converting them first to saturated and then to unsaturated fatty acids inside their gut cells. Here, we present the characterization of the enzyme that mosquitoes use to convert saturated to unsaturated fatty acids and show that when this enzyme is eliminated or inhibited mosquitoes cannot produce eggs and die soon after they feed on blood. The mosquito death appears to be primarily associated with the collapse of their gut epithelial barrier due to the loss of cell membrane integrity, leading to their inner body cavity being filled with the ingested blood. These mosquitoes also suffer from an acute and detrimental auto-inflammatory condition due to mounting of a potent immune response in the absence of any infection. We conclude that this enzyme and the mechanism of converting blood-derived proteins to unsaturated fatty acids as a whole can be a good target of interventions aiming at limiting the mosquito abundance and blocking malaria transmission.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Volker Behrends
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Health Science Research Centre, University of Roehampton, London, United Kingdom
| | - Nikolaos Trasanidis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
13
|
Pinter S, Knodel F, Choudalakis M, Schnee P, Kroll C, Fuchs M, Broehm A, Weirich S, Roth M, Eisler SA, Zuber J, Jeltsch A, Rathert P. A functional LSD1 coregulator screen reveals a novel transcriptional regulatory cascade connecting R-loop homeostasis with epigenetic regulation. Nucleic Acids Res 2021; 49:4350-4370. [PMID: 33823549 PMCID: PMC8096265 DOI: 10.1093/nar/gkab180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
The lysine specific demethylase 1 (LSD1) plays a pivotal role in cellular differentiation by regulating the expression of key developmental genes in concert with different coregulatory proteins. This process is impaired in different cancer types and incompletely understood. To comprehensively identify functional coregulators of LSD1, we established a novel tractable fluorescent reporter system to monitor LSD1 activity in living cells. Combining this reporter system with a state-of-the-art multiplexed RNAi screen, we identify the DEAD-box helicase 19A (DDX19A) as a novel coregulator and demonstrate that suppression of Ddx19a results in an increase of R-loops and reduced LSD1-mediated gene silencing. We further show that DDX19A binds to tri-methylated lysine 27 of histone 3 (H3K27me3) and it regulates gene expression through the removal of transcription promoting R-loops. Our results uncover a novel transcriptional regulatory cascade where the downregulation of genes is dependent on the LSD1 mediated demethylation of histone H3 lysine 4 (H3K4). This allows the polycomb repressive complex 2 (PRC2) to methylate H3K27, which serves as a binding site for DDX19A. Finally, the binding of DDX19A leads to the efficient removal of R-loops at active promoters, which further de-represses LSD1 and PRC2, establishing a positive feedback loop leading to a robust repression of the target gene.
Collapse
Affiliation(s)
- Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Michel Choudalakis
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Schnee
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marina Fuchs
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Broehm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mareike Roth
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
14
|
Sharma M, Wente SR. Nucleocytoplasmic shuttling of Gle1 impacts DDX1 at transcription termination sites. Mol Biol Cell 2020; 31:2398-2408. [PMID: 32755435 PMCID: PMC7851961 DOI: 10.1091/mbc.e20-03-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gle1 is a nucleocytoplasmic shuttling protein with well-documented cytoplasmic roles as a modulator of ATP-dependent DEAD-box RNA helicases involved in messenger (m)RNA export, translation initiation and termination, and stress granule dynamics. Here, we identify a novel nuclear role for Gle1 during transcription termination. In HeLa cells treated with a peptide that disrupts Gle1 nucleocytoplasmic shuttling, we detected nuclear accumulation of specific mRNAs with elongated 3′-UTR (untranslated region). Enriched mRNAs were nascently transcribed and accumulated in the nucleus due to a change in transcription state and not due to altered nuclear export. Whereas Gle1 shuttling inhibition did not appear to perturb nuclear DDX19 functions, it did result in increased DDX1 nucleoplasmic localization and decreased DDX1 interactions with Gle1 and the pre-mRNA cleavage stimulation factor CstF-64. An increase in nuclear R-loop signal intensity was also observed with diminished Gle1 shuttling, as well as colocalization of Gle1 at R-loops. Taken together, these studies reveal a nuclear role for Gle1 in coordinating DDX1 function in transcription termination complexes.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN 37240
| | - Susan R Wente
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
15
|
Reichel M, Köster T, Staiger D. Marking RNA: m6A writers, readers, and functions in Arabidopsis. J Mol Cell Biol 2020; 11:899-910. [PMID: 31336387 PMCID: PMC6884701 DOI: 10.1093/jmcb/mjz085] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) emerges as an important modification in eukaryotic mRNAs. m6A has first been reported in 1974, and its functional significance in mammalian gene regulation and importance for proper development have been well established. An arsenal of writer, eraser, and reader proteins accomplish deposition, removal, and interpretation of the m6A mark, resulting in dynamic function. This led to the concept of an epitranscriptome, the compendium of RNA species with chemical modification of the nucleobases in the cell, in analogy to the epigenome. While m6A has long been known to also exist in plant mRNAs, proteins involved in m6A metabolism have only recently been detected by mutant analysis, homology search, and mRNA interactome capture in the reference plant Arabidopsis thaliana. Dysregulation of the m6A modification causes severe developmental abnormalities of leaves and roots and altered timing of reproductive development. Furthermore, m6A modification affects viral infection. Here, we discuss recent progress in identifying m6A sites transcriptome-wide, in identifying the molecular players involved in writing, removing, and reading the mark, and in assigning functions to this RNA modification in A. thaliana. We highlight similarities and differences to m6A modification in mammals and provide an outlook on important questions that remain to be addressed.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
16
|
Hu L, Li H, Chi Z, He J. Loss of the RNA-binding protein Rbm15 disrupts liver maturation in zebrafish. J Biol Chem 2020; 295:11466-11472. [PMID: 32518161 PMCID: PMC7450140 DOI: 10.1074/jbc.ra120.014080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Liver organogenesis begins with hepatic precursors in the foregut endoderm, followed by hepatoblast specification, differentiation, outgrowth, and maturation for the formation of functional hepatocytes. Although several signaling pathways and critical factors that regulate liver specification, differentiation, and proliferation have been identified, little is known about how liver maturation is regulated. Here, we used a screen for mutations affecting liver development in zebrafish and identified a cq96 mutant that exhibits a specific defect in liver maturation. Results from positional cloning revealed that cq96 encodes an RNA-binding protein, Rbm15, which is an evolutionarily conserved Spen family protein and known to play a crucial role in RNA m6A modification, nuclear export, and alternative splicing. However, a function of Rbm15 in embryonic liver development has not been reported. We found that Rbm15 is specifically expressed in the liver after its differentiation. CRISPR/Cas9-mediated loss of rbm15 repressed hepatic maturation, but did not affect hepatoblast specification, differentiation, and hepatocyte proliferation and apoptosis. Additional experiments disclosed that the mTOR complex 1 (mTORC1) pathway is highly activated in rbm15-deficient hepatocytes. Moreover, rapamycin treatment partially restored normal hepatic gene expression as well as the nuclear location of the transcription factor Hnf4a. Taken together, these results reveal an unexpected role of Rbm15 in liver maturation.
Collapse
Affiliation(s)
- Liang Hu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Hongyan Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhiping Chi
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
17
|
Abstract
The X inactive-specific transcript (Xist) gene is the master regulator of X chromosome inactivation in mammals. Xist produces a long noncoding (lnc)RNA that accumulates over the entire length of the chromosome from which it is transcribed, recruiting factors to modify underlying chromatin and silence X-linked genes in cis Recent years have seen significant progress in identifying important functional elements in Xist RNA, their associated RNA-binding proteins (RBPs), and the downstream pathways for chromatin modification and gene silencing. In this review, we summarize progress in understanding both how these pathways function in Xist-mediated silencing and the complex interplay between them.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joseph S Bowness
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
18
|
Prieto C, Kharas MG. RNA Regulators in Leukemia and Lymphoma. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034967. [PMID: 31615866 DOI: 10.1101/cshperspect.a034967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Posttranscriptional regulation of mRNA is a powerful and tightly controlled process in which cells command the integrity, diversity, and abundance of their protein products. RNA-binding proteins (RBPs) are the principal players that control many intermediary steps of posttranscriptional regulation. Recent advances in this field have discovered the importance of RBPs in hematological diseases. Herein we will review a number of RBPs that have been determined to play critical functions in leukemia and lymphoma. Furthermore, we will discuss the potential therapeutic strategies that are currently being studied to specifically target RBPs in these diseases.
Collapse
Affiliation(s)
- Camila Prieto
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
19
|
Scott DD, Aguilar LC, Kramar M, Oeffinger M. It's Not the Destination, It's the Journey: Heterogeneity in mRNA Export Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:33-81. [PMID: 31811630 DOI: 10.1007/978-3-030-31434-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.
Collapse
Affiliation(s)
- Daniel D Scott
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Mathew Kramar
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada. .,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada. .,Faculté de Médecine, Département de Biochimie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
20
|
Viphakone N, Sudbery I, Griffith L, Heath CG, Sims D, Wilson SA. Co-transcriptional Loading of RNA Export Factors Shapes the Human Transcriptome. Mol Cell 2019; 75:310-323.e8. [PMID: 31104896 PMCID: PMC6675937 DOI: 10.1016/j.molcel.2019.04.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/25/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
During gene expression, RNA export factors are mainly known for driving nucleo-cytoplasmic transport. While early studies suggested that the exon junction complex (EJC) provides a binding platform for them, subsequent work proposed that they are only recruited by the cap binding complex to the 5′ end of RNAs, as part of TREX. Using iCLIP, we show that the export receptor Nxf1 and two TREX subunits, Alyref and Chtop, are recruited to the whole mRNA co-transcriptionally via splicing but before 3′ end processing. Consequently, Alyref alters splicing decisions and Chtop regulates alternative polyadenylation. Alyref is recruited to the 5′ end of RNAs by CBC, and our data reveal subsequent binding to RNAs near EJCs. We demonstrate that eIF4A3 stimulates Alyref deposition not only on spliced RNAs close to EJC sites but also on single-exon transcripts. Our study reveals mechanistic insights into the co-transcriptional recruitment of mRNA export factors and how this shapes the human transcriptome. 5′ cap binding complex CBC acts as a transient landing pad for Alyref Alyref is deposited upstream of the exon-exon junction next to the EJC Alyref can be deposited on introns and regulate splicing Chtop is mainly deposited on 3′ UTRs and influences poly(A) site choices
Collapse
Affiliation(s)
- Nicolas Viphakone
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | - Ian Sudbery
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Llywelyn Griffith
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Catherine G Heath
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David Sims
- MRC Computational Genomics Analysis and Training Programme (CGAT), MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
21
|
Lesbirel S, Wilson SA. The m 6A‑methylase complex and mRNA export. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:319-328. [PMID: 30290229 PMCID: PMC6414750 DOI: 10.1016/j.bbagrm.2018.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022]
Abstract
During synthesis, mRNA undergoes a number of modifications such as capping, splicing and polyadenylation. These processes are coupled with the orderly deposition of the TREX complex on the mRNA and subsequent recruitment of the NXF1-P15 heterodimer which stimulates the nuclear export of mature mRNAs. mRNAs also undergo a number of internal modifications, the most common of which is the N6‑methyladenosine (m6A) modification. In this review we discuss the recent evidence of coupling between the m6A modification, RNA processing and export.
Collapse
Affiliation(s)
- Simon Lesbirel
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
22
|
Abstract
The central dogma of molecular biology introduced by Crick describes a linear flow of information from DNA to mRNA to protein. Since then it has become evident that RNA undergoes several maturation steps such as capping, splicing, 3'-end processing, and editing. Likewise, nucleotide modifications are common in mRNA and are present in all organisms impacting on the regulation of gene expression. The most abundant modification found in mRNA is N6-methyladenosine (m6A). Deposition of m6A is a nuclear process and is performed by a megadalton writer complex primarily on mRNAs, but also on microRNAs and lncRNAs. The m6A methylosome is composed of the enzymatic core components METTL3 and METTL14, and several auxiliary proteins necessary for its correct positioning and functioning, which are WTAP, VIRMA, FLACC, RBM15, and HAKAI. The m6A epimark is decoded by YTH domain-containing reader proteins YTHDC and YTHDF, but METTLs can act as "readers" as well. Eraser proteins, such as FTO and ALKBH5, can remove the methyl group. Here we review recent progress on the role of m6A in regulating gene expression in light of Crick's central dogma of molecular biology. In particular, we address the complexity of the writer complex from an evolutionary perspective to obtain insights into the mechanism of ancient m6A methylation and its regulation.
Collapse
Affiliation(s)
- Dario L Balacco
- School of Biosciences, College of Life and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham B15 2TT , United Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham B15 2TT , United Kingdom
| |
Collapse
|
23
|
Lesbirel S, Viphakone N, Parker M, Parker J, Heath C, Sudbery I, Wilson SA. The m 6A-methylase complex recruits TREX and regulates mRNA export. Sci Rep 2018; 8:13827. [PMID: 30218090 PMCID: PMC6138711 DOI: 10.1038/s41598-018-32310-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNA. This modification has previously been shown to alter the export kinetics for mRNAs though the molecular details surrounding this phenomenon remain poorly understood. Recruitment of the TREX mRNA export complex to mRNA is driven by transcription, 5' capping and pre-mRNA splicing. Here we identify a fourth mechanism in human cells driving the association of TREX with mRNA involving the m6A methylase complex. We show that the m6A complex recruits TREX to m6A modified mRNAs and this process is essential for their efficient export. TREX also stimulates recruitment of the m6A reader protein YTHDC1 to the mRNA and the m6A complex influences the interaction of TREX with YTHDC1. Together our studies reveal a key role for TREX in the export of m6A modified mRNAs.
Collapse
Affiliation(s)
- Simon Lesbirel
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Nicolas Viphakone
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Matthew Parker
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Jacob Parker
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Catherine Heath
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Ian Sudbery
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
24
|
Schmidt K, Zhang Q, Tasdogan A, Petzold A, Dahl A, Arneth BM, Slany R, Fehling HJ, Kranz A, Stewart AF, Anastassiadis K. The H3K4 methyltransferase Setd1b is essential for hematopoietic stem and progenitor cell homeostasis in mice. eLife 2018; 7:27157. [PMID: 29916805 PMCID: PMC6025962 DOI: 10.7554/elife.27157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cells require MLL1, which is one of six Set1/Trithorax-type histone 3 lysine 4 (H3K4) methyltransferases in mammals and clinically the most important leukemia gene. Here, we add to emerging evidence that all six H3K4 methyltransferases play essential roles in the hematopoietic system by showing that conditional mutagenesis of Setd1b in adult mice provoked aberrant homeostasis of hematopoietic stem and progenitor cells (HSPCs). Using both ubiquitous and hematopoietic-specific deletion strategies, the loss of Setd1b resulted in peripheral thrombo- and lymphocytopenia, multilineage dysplasia, myeloid-biased extramedullary hematopoiesis in the spleen, and lethality. By transplantation experiments and expression profiling, we determined that Setd1b is autonomously required in the hematopoietic lineages where it regulates key lineage specification components, including Cebpa, Gata1, and Klf1. Altogether, these data imply that the Set1/Trithorax-type epigenetic machinery sustains different aspects of hematopoiesis and constitutes a second framework additional to the transcription factor hierarchy of hematopoietic homeostasis.
Collapse
Affiliation(s)
- Kerstin Schmidt
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Qinyu Zhang
- Genomics, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alpaslan Tasdogan
- Institute of Immunology, University Hospital Ulm, Ulm, Germany.,Department of Dermatology, University Hospital Ulm, Ulm, Germany
| | - Andreas Petzold
- Deep Sequencing Group, DFG - Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group, DFG - Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Borros M Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities Giessen and Marburg, Giessen, Germany
| | - Robert Slany
- Department of Genetics, Friedrich Alexander Universität Erlangen, Erlangen, Germany
| | | | - Andrea Kranz
- Genomics, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
25
|
Ávila AR, Cabezas-Cruz A, Gissot M. mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway. Parasit Vectors 2018; 11:62. [PMID: 29370868 PMCID: PMC5785795 DOI: 10.1186/s13071-018-2648-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.
Collapse
Affiliation(s)
- Andréa Rodrigues Ávila
- Instituto Carlos Chagas, FIOCRUZ, Rua Algacyr Munhoz Mader, 3775. CIC, Curitiba, PR, 81350-010, Brazil. .,UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, Maisons Alfort, Cedex, France.
| | - Alexjandro Cabezas-Cruz
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, Maisons Alfort, Cedex, France.,Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mathieu Gissot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| |
Collapse
|
26
|
Jin S, Mi Y, Song J, Zhang P, Liu Y. PRMT1-RBM15 axis regulates megakaryocytic differentiation of human umbilical cord blood CD34 + cells. Exp Ther Med 2018; 15:2563-2568. [PMID: 29456659 DOI: 10.3892/etm.2018.5693] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/13/2017] [Indexed: 12/26/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) serves pivotal roles in various cellular processes. However, its role in megakaryocytic differentiation has not been clearly reported. The aim of the present study was to explore the role of the PRMT-RNA binding motif protein 15 (RBM15) axis in human MK differentiation and the feasibility of targeting PRMT1 for leukemia treatment. In the present study, PRMT1 was overexpressed and the RBM15 protein was knocked down in human umbilical cord blood cluster of differentiation (CD)34+ cells and the cells were then cultured in megakaryocytic differentiation medium. Flow cytometry was used to analyze CD41 and CD42 double-positive cells, as well as the protein expression levels of PRMT1 and RBM15. The results demonstrated that human cord blood CD34+ cells differentiate into mature MKs in high thrombopoitin medium, as demonstrated by CD41 and CD42 expression. Overexpression of PRMT1 in human umbilical cord blood CD34+ cells blocked the maturation of megakaryocytic cells. Knockdown of RBM15 by short hairpin RNA produced less mature MKs. PRMT1 inhibitor rescued PRMT1-blocked megakaryocytic differentiation. These results provide evidence for a novel role of PRMT1 in the negative regulation of megakaryocytic differentiation. PRMT1 may be a therapeutic target for leukemia treatment.
Collapse
Affiliation(s)
- Shuiling Jin
- Department of Internal Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Yanfang Mi
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Jing Song
- Department of Internal Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Peipei Zhang
- Department of Internal Medicine, Henan Cancer Hospital and Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Yanyan Liu
- Department of Internal Medicine, Henan Cancer Hospital and Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
27
|
Mikhailova T, Shuvalova E, Ivanov A, Susorov D, Shuvalov A, Kolosov PM, Alkalaeva E. RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes. Nucleic Acids Res 2017; 45:1307-1318. [PMID: 28180304 PMCID: PMC5605241 DOI: 10.1093/nar/gkw1239] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
The human DEAD-box RNA-helicase DDX19 functions in mRNA export through the nuclear pore complex. The yeast homolog of this protein, Dbp5, has been reported to participate in translation termination. Using a reconstituted mammalian in vitro translation system, we show that the human protein DDX19 is also important for translation termination. It is associated with the fraction of translating ribosomes. We show that DDX19 interacts with pre-termination complexes (preTCs) in a nucleotide-dependent manner. Furthermore, DDX19 increases the efficiency of termination complex (TC) formation and the peptide release in the presence of eukaryotic release factors. Using the eRF1(AGQ) mutant protein or a non-hydrolysable analog of GTP to inhibit subsequent peptidyl-tRNA hydrolysis, we reveal that the activation of translation termination by DDX19 occurs during the stop codon recognition. This activation is a result of DDX19 binding to preTC and a concomitant stabilization of terminating ribosomes. Moreover, we show that DDX19 stabilizes ribosome complexes with translation elongation factors eEF1 and eEF2. Taken together, our findings reveal that the human RNA helicase DDX19 actively participates in protein biosynthesis.
Collapse
Affiliation(s)
- Tatiana Mikhailova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, Moscow, Russia
| | - Alexander Ivanov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Denis Susorov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, Moscow, Russia
| | - Peter M Kolosov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Gu T, Zhao T, Kohli U, Hewes RS. The large and small SPEN family proteins stimulate axon outgrowth during neurosecretory cell remodeling in Drosophila. Dev Biol 2017; 431:226-238. [PMID: 28916169 DOI: 10.1016/j.ydbio.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 11/16/2022]
Abstract
Split ends (SPEN) is the founding member of a well conserved family of nuclear proteins with critical functions in transcriptional regulation and the post-transcriptional processing and nuclear export of transcripts. In animals, the SPEN proteins fall into two size classes that perform either complementary or antagonistic functions in different cellular contexts. Here, we show that the two Drosophila representatives of this family, SPEN and Spenito (NITO), regulate metamorphic remodeling of the CCAP/bursicon neurosecretory cells. CCAP/bursicon cell-targeted overexpression of SPEN had no effect on the larval morphology or the pruning back of the CCAP/bursicon cell axons at the onset of metamorphosis. During the subsequent outgrowth phase of metamorphic remodeling, overexpression of either SPEN or NITO strongly inhibited axon extension, axon branching, peripheral neuropeptide accumulation, and soma growth. Cell-targeted loss-of-function alleles for both spen and nito caused similar reductions in axon outgrowth, indicating that the absolute levels of SPEN and NITO activity are critical to support the developmental plasticity of these neurons. Although nito RNAi did not affect SPEN protein levels, the phenotypes produced by SPEN overexpression were suppressed by nito RNAi. We propose that SPEN and NITO function additively or synergistically in the CCAP/bursicon neurons to regulate multiple aspects of neurite outgrowth during metamorphic remodeling.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Tao Zhao
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Uday Kohli
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Randall S Hewes
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
29
|
Hazegh KE, Nemkov T, D’Alessandro A, Diller JD, Monks J, McManaman JL, Jones KL, Hansen KC, Reis T. An autonomous metabolic role for Spen. PLoS Genet 2017. [PMID: 28640815 PMCID: PMC5501677 DOI: 10.1371/journal.pgen.1006859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Preventing obesity requires a precise balance between deposition into and mobilization from fat stores, but regulatory mechanisms are incompletely understood. Drosophila Split ends (Spen) is the founding member of a conserved family of RNA-binding proteins involved in transcriptional regulation and frequently mutated in human cancers. We find that manipulating Spen expression alters larval fat levels in a cell-autonomous manner. Spen-depleted larvae had defects in energy liberation from stores, including starvation sensitivity and major changes in the levels of metabolic enzymes and metabolites, particularly those involved in β-oxidation. Spenito, a small Spen family member, counteracted Spen function in fat regulation. Finally, mouse Spen and Spenito transcript levels scaled directly with body fat in vivo, suggesting a conserved role in fat liberation and catabolism. This study demonstrates that Spen is a key regulator of energy balance and provides a molecular context to understand the metabolic defects that arise from Spen dysfunction. All animals need energy to fuel development and survive as adults. Excess energy stored as fat provides a means to endure periods when external energy is unavailable, but there is a delicate balance between accumulating sufficient fat stores and becoming obese. While the enzymes that mediate energy deposition into and mobilization from fat stores are well studied, the complex upstream regulatory pathways have not been fully worked out. We report here that two members of a conserved family of RNA-binding proteins, Spen and Nito, operate in fat storage cells in fruit fly larvae to control the expression of genes that mediate energy liberation from fat stores. Manipulating Spen or Spenito function grossly perturbs larval energy metabolism, including imbalances in the amounts of stored fats, key metabolites, and metabolic enzymes, and resulting in defects in survival under starvation conditions. Interestingly, Nito opposes Spen functions, indicative of a regulatory mechanism that helps keep energy balance in check. We find that the mouse homologs of Spen and Nito, which were known to regulate gene expression in other pathways, respond similarly to changes in body fat induced by a high-fat diet, suggesting that the balancing effect of these two proteins also prevents mammalian obesity.
Collapse
Affiliation(s)
- Kelsey E. Hazegh
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
| | - John D. Diller
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
| | - Jenifer Monks
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
| | - James L. McManaman
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
| | - Kenneth L. Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
| | - Tânia Reis
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO United States of America
- * E-mail:
| |
Collapse
|
30
|
Hodroj D, Recolin B, Serhal K, Martinez S, Tsanov N, Abou Merhi R, Maiorano D. An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism. EMBO J 2017; 36:1182-1198. [PMID: 28314779 DOI: 10.15252/embj.201695131] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Coordination between transcription and replication is crucial in the maintenance of genome integrity. Disturbance of these processes leads to accumulation of aberrant DNA:RNA hybrids (R-loops) that, if unresolved, generate DNA damage and genomic instability. Here we report a novel, unexpected role for the nucleopore-associated mRNA export factor Ddx19 in removing nuclear R-loops formed upon replication stress or DNA damage. We show, in live cells, that Ddx19 transiently relocalizes from the nucleopore to the nucleus upon DNA damage, in an ATR/Chk1-dependent manner, and that Ddx19 nuclear relocalization is required to clear R-loops. Ddx19 depletion induces R-loop accumulation, proliferation-dependent DNA damage and defects in replication fork progression. Further, we show that Ddx19 resolves R-loops in vitro via its helicase activity. Furthermore, mutation of a residue phosphorylated by Chk1 in Ddx19 disrupts its interaction with Nup214 and allows its nuclear relocalization. Finally, we show that Ddx19 operates in resolving R-loops independently of the RNA helicase senataxin. Altogether these observations put forward a novel, ATR-dependent function for Ddx19 in R-loop metabolism to preserve genome integrity in mammalian cells.
Collapse
Affiliation(s)
- Dana Hodroj
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-UM, University of Montpellier, Montpellier Cedex 5, France.,Genomics and Health Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Bénédicte Recolin
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-UM, University of Montpellier, Montpellier Cedex 5, France
| | - Kamar Serhal
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-UM, University of Montpellier, Montpellier Cedex 5, France
| | - Susan Martinez
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-UM, University of Montpellier, Montpellier Cedex 5, France
| | - Nikolay Tsanov
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-UM, University of Montpellier, Montpellier Cedex 5, France
| | - Raghida Abou Merhi
- Genomics and Health Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-UM, University of Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
31
|
Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat Struct Mol Biol 2017; 24:197-204. [DOI: 10.1038/nsmb.3370] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
32
|
RNA binding proteins implicated in Xist-mediated chromosome silencing. Semin Cell Dev Biol 2016; 56:58-70. [PMID: 26816113 DOI: 10.1016/j.semcdb.2016.01.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/20/2022]
Abstract
Chromosome silencing by Xist RNA occurs in two steps; localisation in cis within the nuclear matrix to form a domain that corresponds to the territory of the inactive X chromosome elect, and transduction of silencing signals from Xist RNA to the underlying chromatin. Key factors that mediate these processes have been identified in a series of recent studies that harnessed comprehensive proteomic or genetic screening strategies. In this review we discuss these findings in light of prior knowledge both of Xist-mediated silencing and known functions/properties of the novel factors.
Collapse
|
33
|
Zhang L, Tran NT, Su H, Wang R, Lu Y, Tang H, Aoyagi S, Guo A, Khodadadi-Jamayran A, Zhou D, Qian K, Hricik T, Côté J, Han X, Zhou W, Laha S, Abdel-Wahab O, Levine RL, Raffel G, Liu Y, Chen D, Li H, Townes T, Wang H, Deng H, Zheng YG, Leslie C, Luo M, Zhao X. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 2015; 4:07938. [PMID: 26575292 PMCID: PMC4775220 DOI: 10.7554/elife.07938] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia. DOI:http://dx.doi.org/10.7554/eLife.07938.001 The many different cell types in an adult animal all develop from a single fertilized egg. The development of cells into more specialized cell types is called ‘differentiation’. Proteins and other molecules from both inside and outside of the cells regulate the differentiation process. RNA is a molecule that is similar to DNA, and performs several important roles inside cells. Perhaps most importantly, RNA molecules act as messengers and carry genetic instructions during gene expression. RBM15 is an RNA-binding protein that is found throughout nature, and is involved in a number of developmental processes. Previous research has linked the incorrect control of RBM15 with an increased risk of certain cancers, including megakaryocytic leukemia. However, it is not clear what role RNA-binding proteins such as RBM15 play during differentiation. Now, Zhang, Tran, Su et al. have investigated the role of RBM15 during the development of large cells found in human bone marrow (called megakaryocytes). First, the experiments demonstrated that an enzyme called PRMT1 modifies RBM15. This enzyme adds a chemical mark called a methyl group at a specific site (an arginine amino acid) on the RNA-binding protein. Next, Zhang, Tran, Su et al. showed that the addition of this methyl group earmarks RBM15 for destruction. This means that an increase in PRMT1 levels reduces the amount of RBM15 in cells, while decreases in PRMT1 have the opposite effect. Further experiments showed that RBM15 normally processes the RNA messengers that carry the genetic instructions needed for the differentiation of bone marrow cells. An excess of PRMT1 enzyme leads to a lack of this RNA-binding protein. This in turn interferes with the differentiation process, and can contribute to the development of cancers such as megakaryocytic leukemia. Future work will therefore explore whether targeting PRMT1 with drugs could represent an effective treatment for these kinds of cancers. DOI:http://dx.doi.org/10.7554/eLife.07938.002
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Rui Wang
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Yuheng Lu
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Haiping Tang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Sayura Aoyagi
- Cell Signaling Technology, Inc., Danvers, United States
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, United States
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Dewang Zhou
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Kun Qian
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Todd Hricik
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Xiaosi Han
- Department of Neurology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, United States
| | - Wenping Zhou
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Suparna Laha
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Glen Raffel
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Yanyan Liu
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Dongquan Chen
- Division of Preventive Medicine, The University of Alabama at Birmingham, Birmingham, United States
| | - Haitao Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tim Townes
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Christina Leslie
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minkui Luo
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
34
|
Delaleau M, Borden KLB. Multiple Export Mechanisms for mRNAs. Cells 2015; 4:452-73. [PMID: 26343730 PMCID: PMC4588045 DOI: 10.3390/cells4030452] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed.
Collapse
Affiliation(s)
- Mildred Delaleau
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
35
|
RNA Export through the NPC in Eukaryotes. Genes (Basel) 2015; 6:124-49. [PMID: 25802992 PMCID: PMC4377836 DOI: 10.3390/genes6010124] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 02/08/2023] Open
Abstract
In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.
Collapse
|
36
|
Pilkington GR, Purzycka KJ, Bear J, Le Grice SFJ, Felber BK. Gammaretrovirus mRNA expression is mediated by a novel, bipartite post-transcriptional regulatory element. Nucleic Acids Res 2014; 42:11092-106. [PMID: 25190459 PMCID: PMC4176177 DOI: 10.1093/nar/gku798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Post-transcriptional regulatory mechanisms of several complex and simple retroviruses and retroelements have been elucidated, with the exception of the gammaretrovirus family. We found that, similar to the other retroviruses, gag gene expression of MuLV and XMRV depends on post-transcriptional regulation mediated via an RNA sequence overlapping the pro-pol open reading frame, termed the Post-Transcriptional Element (PTE). PTE function can be replaced by heterologous RNA export elements, e.g. CTE of simian type D retroviruses. Alternatively, Gag particle production is achieved using an RNA/codon optimized gag gene. PTE function is transferable and can replace HIV Rev-RRE-regulated expression of HIV gag. Analysis of PTE by SHAPE revealed a highly structured RNA comprising seven stem-loop structures, with the 5′ and 3′ stem-loops forming an essential bipartite signal. MuLV and XMRV PTE share 98% identity and have highly similar RNA structures, with changes mostly located to single-stranded regions. PTE identification strongly suggests that all retroviruses and retroelements share common strategies of post-transcriptional gene regulation to produce Gag. Expression depends on complex RNA structures embedded within retroviral mRNA, in coding regions or the 3′ untranslated region. These specific structures serve as recognition signals for either cellular or viral proteins.
Collapse
Affiliation(s)
- Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Katarzyna J Purzycka
- RT Biochemistry Section, Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- RT Biochemistry Section, Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
37
|
Xu S, Li X, Gong Z, Wang W, Li Y, Nair BC, Piao H, Yang K, Wu G, Chen J. Proteomic analysis of the human cyclin-dependent kinase family reveals a novel CDK5 complex involved in cell growth and migration. Mol Cell Proteomics 2014; 13:2986-3000. [PMID: 25096995 DOI: 10.1074/mcp.m113.036699] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that play critical roles in the control of cell-cycle progression, transcription, and neuronal functions. However, the functions, substrates, and regulation of many CDKs are poorly understood. To systematically investigate these features of CDKs, we conducted a proteomic analysis of the CDK family and identified their associated protein complexes in two different cell lines using a modified SAINT (Significance Analysis of INTeractome) method. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000593 and DOI 10.6019/PXD000593. We identified 753 high-confidence candidate interaction proteins (HCIPs) in HEK293T cells and 352 HCIPs in MCF10A cells. We subsequently focused on a neuron-specific CDK, CDK5, and uncovered two novel CDK5-binding partners, KIAA0528 and fibroblast growth factor (acidic) intracellular binding protein (FIBP), in non-neuronal cells. We showed that these three proteins form a stable complex, with KIAA0528 and FIBP being required for the assembly and stability of the complex. Furthermore, CDK5-, KIAA0528-, or FIBP-depleted breast cancer cells displayed impaired proliferation and decreased migration, suggesting that this complex is required for cell growth and migration in non-neural cells. Our study uncovers new aspects of CDK functions, which provide direction for further investigation of these critical protein kinases.
Collapse
Affiliation(s)
- Shuangbing Xu
- From the ‡Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; §Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Xu Li
- §Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Zihua Gong
- §Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Wenqi Wang
- §Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Yujing Li
- §Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Binoj Chandrasekharan Nair
- §Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Hailong Piao
- §Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Kunyu Yang
- From the ‡Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- From the ‡Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junjie Chen
- §Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| |
Collapse
|
38
|
Moser LA, Pollard AM, Knoll LJ. A genome-wide siRNA screen to identify host factors necessary for growth of the parasite Toxoplasma gondii. PLoS One 2013; 8:e68129. [PMID: 23840822 PMCID: PMC3695992 DOI: 10.1371/journal.pone.0068129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/30/2013] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that is able to infect virtually any nucleated cell of all warm-blooded animals. The host cell factors important for parasite attachment, invasion, and replication are poorly understood. We screened a siRNA library targeting 18,200 individual human genes in order to identify host proteins with a role in T. gondii growth. Our screen identified 19 genes whose inhibition by siRNA consistently and significantly lowered parasite replication. The gene ontology categories for those 19 genes represented a wide variety of functions with several genes implicated in regulation of the cell cycle, ion channels and receptors, G-protein coupled receptors, and cytoskeletal structure as well as genes involved in transcription, translation and protein degradation. Further investigation of 5 of the 19 genes demonstrated that the primary reason for the reduction in parasite growth was death of the host cell. Our results suggest that once T. gondii has invaded and established an infection, global changes in the host cell may be necessary to reduce parasite replication. While siRNA screens have been used, albeit rarely, in other parasite systems, this is the first report to describe a high-throughput siRNA screen for host proteins that affect T. gondii replication.
Collapse
Affiliation(s)
- Lindsey A. Moser
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Angela M. Pollard
- Agile Sciences, Inc., Raleigh, North Carolina, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
39
|
Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene 2013; 33:1124-34. [PMID: 23455324 DOI: 10.1038/onc.2013.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/17/2012] [Accepted: 01/11/2013] [Indexed: 12/18/2022]
Abstract
Prostate tumor overexpressed-1 (PTOV1), a modulator of the Mediator transcriptional regulatory complex, is expressed at high levels in prostate cancer and other neoplasias in association with a more aggressive disease. Here we show that PTOV1 interacts directly with receptor of activated protein C kinase 1 (RACK1), a regulator of protein kinase C and Jun signaling and also a component of the 40S ribosome. Consistent with this interaction, PTOV1 was associated with ribosomes and its overexpression promoted global protein synthesis in prostate cancer cells and COS-7 fibroblasts in a mTORC1-dependent manner. Transfection of ectopic PTOV1 enhanced the expression of c-Jun protein without affecting the levels of c-Jun or RACK1 mRNA. Conversely, knockdown of PTOV1 caused significant declines in global protein synthesis and c-Jun protein levels. High levels of PTOV1 stimulated the motility and invasiveness of prostate cancer cells, which required c-Jun, whereas knockdown of PTOV1 strongly inhibited the tumorigenic and metastatic potentials of PC-3 prostate cancer cells. In human prostate cancer samples, the expression of high levels of PTOV1 in primary and metastatic tumors was significantly associated with increased nuclear localization of active c-Jun. These results unveil new functions of PTOV1 in the regulation of protein translation and in the progression of prostate cancer to an invasive and metastatic disease.
Collapse
|
40
|
Chtop is a component of the dynamic TREX mRNA export complex. EMBO J 2013; 32:473-86. [PMID: 23299939 PMCID: PMC3567497 DOI: 10.1038/emboj.2012.342] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 12/03/2012] [Indexed: 11/08/2022] Open
Abstract
The TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2-like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co-knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post-translational modifications of Chtop.
Collapse
|
41
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV [human herpesvirus 8; HHV-8]) open reading frame 57 (ORF57) is a viral early protein participating in posttranscriptional regulatory events, such as splicing, RNA stabilization, and protein expression. Recent data suggest that ORF57 recruits the transcription and export (TREX) complex to viral RNA and exports these transcripts to the cytoplasm. In this study, we show that although ORF57 promotes expression of a selection of KSHV viral intronless RNAs, it is not a bona fide export factor.
Collapse
|
42
|
Lee JH, Skalnik DG. Rbm15-Mkl1 interacts with the Setd1b histone H3-Lys4 methyltransferase via a SPOC domain that is required for cytokine-independent proliferation. PLoS One 2012; 7:e42965. [PMID: 22927943 PMCID: PMC3424240 DOI: 10.1371/journal.pone.0042965] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
The Rbm15-Mkl1 fusion protein is associated with acute megakaryoblastic leukemia (AMKL), although little is known regarding the molecular mechanism(s) whereby this fusion protein contributes to leukemogenesis. Here, we show that both Rbm15 and the leukemogenic Rbm15-Mkl1 fusion protein interact with the Setd1b histone H3-Lys4 methyltransferase (also known as KMT2G). This interaction is direct and requires the Rbm15 SPOC domain and the Setd1b LSD motif. Over-expression of Rbm15-Mkl1 in the 6133 megakaryoblastic leukemia cell line, previously established by expression of the Rbm15-Mkl1 fusion protein in mice (Mercher et al., [2009] J. Clin. Invest. 119, 852-864), leads to decreased levels of endogenous Rbm15 and increased levels of endogenous Mkl1. These cells exhibit enhanced proliferation and cytokine-independent cell growth, which requires an intact Rbm15 SPOC domain that mediates interaction between the Rbm15-Mkl1 fusion protein and the Setd1b methyltransferase. These results reveal altered Setd1b complex function and consequent altered epigenetic regulation as a possible molecular mechanism that mediates the leukemogenic activity of the Rbm15-Mkl1 fusion protein in AMKL.
Collapse
Affiliation(s)
- Jeong-Heon Lee
- Wells Center for Pediatric Research, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (DGS); (JHL)
| | - David G. Skalnik
- Wells Center for Pediatric Research, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, Indiana, United States of America
- * E-mail: (DGS); (JHL)
| |
Collapse
|
43
|
Probing Retroviral and Retrotransposon Genome Structures: The "SHAPE" of Things to Come. Mol Biol Int 2012; 2012:530754. [PMID: 22685659 PMCID: PMC3362945 DOI: 10.1155/2012/530754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 11/28/2022] Open
Abstract
Understanding the nuances of RNA structure as they pertain to biological function remains a formidable challenge for retrovirus research and development of RNA-based therapeutics, an area of particular importance with respect to combating HIV infection. Although a variety of chemical and enzymatic RNA probing techniques have been successfully employed for more than 30 years, they primarily interrogate small (100–500 nt) RNAs that have been removed from their biological context, potentially eliminating long-range tertiary interactions (such as kissing loops and pseudoknots) that may play a critical regulatory role. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE), pioneered recently by Merino and colleagues, represents a facile, user-friendly technology capable of interrogating RNA structure with a single reagent and, combined with automated capillary electrophoresis, can analyze an entire 10,000-nucleotide RNA genome in a matter of weeks. Despite these obvious advantages, SHAPE essentially provides a nucleotide “connectivity map,” conversion of which into a 3-D structure requires a variety of complementary approaches. This paper summarizes contributions from SHAPE towards our understanding of the structure of retroviral genomes, modifications to which technology that have been developed to address some of its limitations, and future challenges.
Collapse
|
44
|
Kaposi's sarcoma-associated herpesvirus ORF57 interacts with cellular RNA export cofactors RBM15 and OTT3 to promote expression of viral ORF59. J Virol 2010; 85:1528-40. [PMID: 21106733 DOI: 10.1128/jvi.01709-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which promotes the accumulation of specific KSHV mRNA targets, including ORF59 mRNA. We report that the cellular export NXF1 cofactors RBM15 and OTT3 participate in ORF57-enhanced expression of KSHV ORF59. We also found that ectopic expression of RBM15 or OTT3 augments ORF59 production in the absence of ORF57. While RBM15 promotes the accumulation of ORF59 RNA predominantly in the nucleus compared to the levels in the cytoplasm, we found that ORF57 shifted the nucleocytoplasmic balance by increasing ORF59 RNA accumulation in the cytoplasm more than in the nucleus. By promoting the accumulation of cytoplasmic ORF59 RNA, ORF57 offsets the nuclear RNA accumulation mediated by RBM15 by preventing nuclear ORF59 RNA from hyperpolyadenylation. ORF57 interacts directly with the RBM15 C-terminal portion containing the SPOC domain to reduce RBM15 binding to ORF59 RNA. Although ORF57 homologs Epstein-Barr virus (EBV) EB2, herpes simplex virus (HSV) ICP27, varicella-zoster virus (VZV) IE4/ORF4, and cytomegalovirus (CMV) UL69 also interact with RBM15 and OTT3, EBV EB2, which also promotes ORF59 expression, does not function like KSHV ORF57 to efficiently prevent RBM15-mediated nuclear accumulation of ORF59 RNA and RBM15's association with polyadenylated RNAs. Collectively, our data provide novel insight elucidating a molecular mechanism by which ORF57 promotes the expression of viral intronless genes.
Collapse
|
45
|
Loyer P, Busson A, Trembley JH, Hyle J, Grenet J, Zhao W, Ribault C, Montier T, Kidd VJ, Lahti JM. The RNA binding motif protein 15B (RBM15B/OTT3) is a functional competitor of serine-arginine (SR) proteins and antagonizes the positive effect of the CDK11p110-cyclin L2α complex on splicing. J Biol Chem 2010; 286:147-59. [PMID: 21044963 DOI: 10.1074/jbc.m110.192518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we report the identification of the RNA binding motif protein RBM15B/OTT3 as a new CDK11(p110) binding partner that alters the effects of CDK11 on splicing. RBM15B was initially identified as a binding partner of the Epstein-Barr virus mRNA export factor and, more recently, as a cofactor of the nuclear export receptor NXF1. In this study, we found that RBM15B co-elutes with CDK11(p110), cyclin L2α, and serine-arginine (SR) proteins, including SF2/ASF, in a large nuclear complex of ∼1-MDa molecular mass following size exclusion chromatography. Using co-immunoprecipitation experiments and in vitro pulldown assays, we mapped two distinct domains of RBM15B that are essential for its direct interaction with the N-terminal extension of CDK11(p110), cyclin L2α, and SR proteins such as 9G8 and SF2/ASF. Finally, we established that RBM15B is a functional competitor of the SR proteins SF2/ASF and 9G8, inhibits formation of the functional spliceosomal E complex, and antagonizes the positive effect of the CDK11(p110)-cyclin L2α complex on splicing both in vitro and in vivo.
Collapse
Affiliation(s)
- Pascal Loyer
- INSERM UMR 991 Foie, Métabolismes et Cancer, IFR140, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Legiewicz M, Zolotukhin AS, Pilkington GR, Purzycka KJ, Mitchell M, Uranishi H, Bear J, Pavlakis GN, Le Grice SFJ, Felber BK. The RNA transport element of the murine musD retrotransposon requires long-range intramolecular interactions for function. J Biol Chem 2010; 285:42097-104. [PMID: 20978285 DOI: 10.1074/jbc.m110.182840] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retrovirus replication requires specialized transport mechanisms to export genomic mRNA from the nucleus to the cytoplasm of the infected cell. This regulation is mediated by a combination of viral and/or cellular factors that interact with cis-acting RNA export elements linking the viral RNA to the cellular CRM1 or NXF1 nuclear export pathways. Endogenous type D murine LTR retrotransposons (musD) were reported to contain an RNA export element located upstream of the 3'-LTR. Although functionally equivalent, the musD export element, termed the musD transport element, is distinct from the other retroviral RNA export elements, such as the constitutive transport element of simian/Mason-Pfizer monkey retroviruses and the RNA transport element found in rodent intracisternal A-particle LTR retrotransposons. We demonstrate here that the minimal RNA transport element (musD transport element) of musD comprises multiple secondary structure elements that presumably serve as recognition signals for the cellular export machinery. We identified two classes of tertiary interactions, namely kissing loops and a pseudoknot. This work constitutes the first example of an RNA transport element requiring such structural motifs to mediate nuclear export.
Collapse
Affiliation(s)
- Michal Legiewicz
- RT Biochemistry Section, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hornyik C, Terzi LC, Simpson GG. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev Cell 2010; 18:203-13. [PMID: 20079695 DOI: 10.1016/j.devcel.2009.12.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/29/2009] [Accepted: 12/28/2009] [Indexed: 10/20/2022]
Abstract
The spen family protein FPA is required for flowering time control and has been implicated in RNA silencing. The mechanism by which FPA carries out these functions is unknown. We report the identification of an activity for FPA in controlling mRNA 3' end formation. We show that FPA functions redundantly with FCA, another RNA binding protein that controls flowering and RNA silencing, to control the expression of alternatively polyadenylated antisense RNAs at the locus encoding the floral repressor FLC. In addition, we show that defective 3' end formation at an upstream RNA polymerase II-dependent gene explains the apparent derepression of the AtSN1 retroelement in fpa mutants. Transcript readthrough accounts for the absence of changes in DNA methylation and siRNA abundance at AtSN1 in fpa mutants, and this may explain other examples of epigenetic transitions not associated with chromatin modification.
Collapse
Affiliation(s)
- Csaba Hornyik
- Genetics, SCRI, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | | |
Collapse
|
48
|
Bolinger C, Sharma A, Singh D, Yu L, Boris-Lawrie K. RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res 2009; 38:1686-96. [PMID: 20007598 PMCID: PMC2836548 DOI: 10.1093/nar/gkp1075] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Retroviruses rely on host RNA-binding proteins to modulate various steps in their replication. Previously several animal retroviruses were determined to mediate Dhx9/RNA helicase A (RHA) interaction with a 5′ terminal post-transcriptional control element (PCE) for efficient translation. Herein PCE reporter assays determined HTLV-1 and HIV-1 RU5 confer orientation-dependent PCE activity. The effect of Dhx9/RHA down-regulation and rescue with siRNA-resistant RHA on expression of HIV-1NL4–3 provirus determined that RHA is necessary for efficient HIV-1 RNA translation and requires ATPase-dependent helicase function. Quantitative analysis determined HIV-1 RNA steady-state and cytoplasmic accumulation were not reduced; rather the translational activity of viral RNA was reduced. Western blotting determined that RHA-deficient virions assemble with Lys-tRNA synthetase, exhibit processed reverse transcriptase and contain similar level of viral RNA, but they are poorly infectious on primary lymphocytes and HeLa cells. The results demonstrate RHA is an important host factor within the virus-producer cell and within the viral particle. The identification of RHA-dependent PCE activity in cellular junD RNA and in six of seven genera of Retroviridae suggests conservation of this translational control mechanism among vertebrates, and convergent evolution of Retroviridae to utilize this host mechanism.
Collapse
Affiliation(s)
- Cheryl Bolinger
- Department of Veterinary Biosciences, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1093, USA
| | | | | | | | | |
Collapse
|