1
|
Zerio CJ, Bai Y, Sosa-Alvarado BA, Guzi T, Lander GC. Human polymerase theta helicase positions DNA microhomologies for double-strand break repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591388. [PMID: 38712090 PMCID: PMC11071473 DOI: 10.1101/2024.04.26.591388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
DNA double-strand breaks occur in all human cells on a daily basis and must be repaired with high fidelity to minimize genomic instability1. Deficiencies in high-fidelity DNA repair by homologous recombination lead to dependence on DNA polymerase theta, which identifies DNA microhomologies in 3' single-stranded DNA overhangs and anneals them to initiate error-prone double-strand break repair. The resulting genomic instability is associated with numerous cancers, thereby making this polymerase an attractive therapeutic target2,3. However, despite the biomedical importance of polymerase theta, the molecular details of how it initiates DNA break repair remain unclear4,5. Here we present cryo-electron microscopy structures of the polymerase theta helicase domain bound to microhomology-containing DNA, revealing DNA-induced rearrangements of the helicase that enable DNA repair. Our structures show that DNA-bound helicase dimers facilitate a microhomology search that positions 3' single-stranded DNA ends in proximity to align complementary base pairs and anneal DNA microhomology. We define the molecular determinants that enable the polymerase theta helicase domain to identify and pair DNA microhomologies to initiate mutagenic DNA repair, providing mechanistic insights into therapeutic targeting of these interactions.
Collapse
Affiliation(s)
- Christopher J. Zerio
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | | | | | | | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
2
|
Szeltner Z, Ferenc G, Juhász T, Kupihár Z, Váradi Z, Szüts D, Kovács L. Probing telomeric-like G4 structures with full or partial 2'-deoxy-5-hydroxyuridine substitutions. Biochimie 2023; 214:33-44. [PMID: 36707016 DOI: 10.1016/j.biochi.2023.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Guanine quadruplexes (G4s) are stable four-stranded secondary DNA structures held together by noncanonical G-G base tetrads. We synthesised the nucleoside analogue 2'-deoxy-5-hydroxyuridine (H) and inserted its phosphoramidite into telomeric repeat-type model oligonucleotides. Full and partial substitutions were made, replacing all guanines in all the three tetrads of a three-tier G4 structure, or only in the putative upper, central, or lower tetrads. We characterised these modified structures using CD, UV absorbance spectroscopy, native gel studies, and a capture oligo-based G4 disruption kinetic assay. The strand separation activity of BLM helicase on these substituted structures was also investigated. Two of the partially H-substituted constructs adopted G4-like structures, but displayed lower thermal stabilities compared to unsubstituted G4. The construct modified in its central tetrad remained mostly denatured, but the possibility of a special structure for the fully replaced variant remained open. H substitutions did not interfere with the G4-resolving activity of BLM helicase, but its efficiency was highly influenced by construct topology and even more by the G4 ligand PhenDC3. Our results suggest that the H modification can be incorporated into G quadruplexes, but only at certain positions to maintain G4 stability. The destabilizing effect observed for 2'-deoxy-5-hydroxyuridine indicates that the cytosine deamination product 5-hydroxyuracil and its nucleoside counterpart in RNA (5-hydroxyuridine), might also be destabilizing in cellular DNA and RNA quadruplexes. The kinetic assay employed in this study can be generally employed for a fast comparison of the stabilities of various G4s either in their free or ligand-bound states.
Collapse
Affiliation(s)
- Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Györgyi Ferenc
- Nucleic Acid Synthesis Laboratory, Biological Research Centre, Eötvös Loránd Research Network, Temesvári Krt. 62, H-6726, Szeged, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Zoltán Kupihár
- Department of Medicinal Chemistry, University of Szeged, Dom Tér 8, H-6720, Szeged, Hungary
| | - Zoltán Váradi
- Department of Medicinal Chemistry, University of Szeged, Dom Tér 8, H-6720, Szeged, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary.
| | - Lajos Kovács
- Department of Medicinal Chemistry, University of Szeged, Dom Tér 8, H-6720, Szeged, Hungary.
| |
Collapse
|
3
|
Craig JM, Mills M, Kim HC, Huang JR, Abell S, Mount J, Gundlach J, Neuman K, Laszlo A. Nanopore tweezers measurements of RecQ conformational changes reveal the energy landscape of helicase motion. Nucleic Acids Res 2022; 50:10601-10613. [PMID: 36165957 PMCID: PMC9561376 DOI: 10.1093/nar/gkac837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Helicases are essential for nearly all nucleic acid processes across the tree of life, yet detailed understanding of how they couple ATP hydrolysis to translocation and unwinding remains incomplete because their small (∼300 picometer), fast (∼1 ms) steps are difficult to resolve. Here, we use Nanopore Tweezers to observe single Escherichia coli RecQ helicases as they translocate on and unwind DNA at ultrahigh spatiotemporal resolution. Nanopore Tweezers simultaneously resolve individual steps of RecQ along the DNA and conformational changes of the helicase associated with stepping. Our data reveal the mechanochemical coupling between physical domain motions and chemical reactions that together produce directed motion of the helicase along DNA. Nanopore Tweezers measurements are performed under either assisting or opposing force applied directly on RecQ, shedding light on how RecQ responds to such forces in vivo. Determining the rates of translocation and physical conformational changes under a wide range of assisting and opposing forces reveals the underlying dynamic energy landscape that drives RecQ motion. We show that RecQ has a highly asymmetric energy landscape that enables RecQ to maintain velocity when encountering molecular roadblocks such as bound proteins and DNA secondary structures. This energy landscape also provides a mechanistic basis making RecQ an 'active helicase,' capable of unwinding dsDNA as fast as it translocates on ssDNA. Such an energy landscape may be a general strategy for molecular motors to maintain consistent velocity despite opposing loads or roadblocks.
Collapse
Affiliation(s)
- Jonathan M Craig
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics & Astronomy, University of Missouri, 701 S College Ave, Physics Building Rm 223, Columbia, MO 65211, USA
| | - Hwanhee C Kim
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jesse R Huang
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jonathan W Mount
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| |
Collapse
|
4
|
Xue C, Salunkhe SJ, Tomimatsu N, Kawale AS, Kwon Y, Burma S, Sung P, Greene EC. Bloom helicase mediates formation of large single-stranded DNA loops during DNA end processing. Nat Commun 2022; 13:2248. [PMID: 35473934 PMCID: PMC9042962 DOI: 10.1038/s41467-022-29937-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Bloom syndrome (BS) is associated with a profoundly increased cancer risk and is caused by mutations in the Bloom helicase (BLM). BLM is involved in the nucleolytic processing of the ends of DNA double-strand breaks (DSBs), to yield long 3' ssDNA tails that serve as the substrate for break repair by homologous recombination (HR). Here, we use single-molecule imaging to demonstrate that BLM mediates formation of large ssDNA loops during DNA end processing. A BLM mutant lacking the N-terminal domain (NTD) retains vigorous in vitro end processing activity but fails to generate ssDNA loops. This same mutant supports DSB end processing in cells, however, these cells do not form RAD51 DNA repair foci and the processed DSBs are channeled into synthesis-dependent strand annealing (SSA) instead of HR-mediated repair, consistent with a defect in RAD51 filament formation. Together, our results provide insights into BLM functions during homologous recombination.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Sameer J Salunkhe
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Nozomi Tomimatsu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ajinkya S Kawale
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Harami GM, Pálinkás J, Seol Y, Kovács ZJ, Gyimesi M, Harami-Papp H, Neuman KC, Kovács M. The toposiomerase IIIalpha-RMI1-RMI2 complex orients human Bloom's syndrome helicase for efficient disruption of D-loops. Nat Commun 2022; 13:654. [PMID: 35115525 PMCID: PMC8813930 DOI: 10.1038/s41467-022-28208-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/12/2022] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination (HR) is a ubiquitous and efficient process that serves the repair of severe forms of DNA damage and the generation of genetic diversity during meiosis. HR can proceed via multiple pathways with different outcomes that may aid or impair genome stability and faithful inheritance, underscoring the importance of HR quality control. Human Bloom's syndrome (BLM, RecQ family) helicase plays central roles in HR pathway selection and quality control via unexplored molecular mechanisms. Here we show that BLM's multi-domain structural architecture supports a balance between stabilization and disruption of displacement loops (D-loops), early HR intermediates that are key targets for HR regulation. We find that this balance is markedly shifted toward efficient D-loop disruption by the presence of BLM's interaction partners Topoisomerase IIIα-RMI1-RMI2, which have been shown to be involved in multiple steps of HR-based DNA repair. Our results point to a mechanism whereby BLM can differentially process D-loops and support HR control depending on cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - János Pálinkás
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Zoltán J Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Máté Gyimesi
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Hajnalka Harami-Papp
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.
| |
Collapse
|
6
|
Measurement of Nucleotide Hydrolysis Using Fluorescent Biosensors for Phosphate. Methods Mol Biol 2021; 2263:289-318. [PMID: 33877604 DOI: 10.1007/978-1-0716-1197-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Assays for the detection of inorganic phosphate (Pi) are widely used to measure the activity of nucleotide hydrolyzing enzymes, such as ATPases and GTPases. The fluorescent biosensors for Pi, described here, are based on fluorescently labeled versions of E. coli phosphate-binding protein (PBP), which translates Pi binding into a large change in fluorescence intensity. In comparison with other Pi-detection systems, these biosensors are characterized by a high sensitivity (sub-micromolar Pi concentrations) and high time resolution (tens of milliseconds), and they are therefore particularly well suited for measurements of phosphate ester hydrolysis in real time. In this chapter, it is described how the Pi biosensors can be used to measure kinetics of ATPase and GTPase reactions, both under steady state and pre-steady state conditions. An example protocol is given for determining steady state kinetic parameters, Km and kcat, of the ATP-dependent chromatin remodeler Chd1, in a plate reader format. In addition, the measurement of Pi release kinetics under pre-steady state conditions is described, including a detailed experimental procedure for a single turnover measurement of ATP hydrolysis by the ABC-type ATPase SufBC using rapid mixing.
Collapse
|
7
|
RecQ helicases in DNA repair and cancer targets. Essays Biochem 2021; 64:819-830. [PMID: 33095241 PMCID: PMC7588665 DOI: 10.1042/ebc20200012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Helicases are enzymes that use the energy derived from ATP hydrolysis to catalyze the unwinding of DNA or RNA. The RecQ family of helicases is conserved through evolution from prokaryotes to higher eukaryotes and plays important roles in various DNA repair pathways, contributing to the maintenance of genome integrity. Despite their roles as general tumor suppressors, there is now considerable interest in exploiting RecQ helicases as synthetic lethal targets for the development of new cancer therapeutics. In this review, we summarize the latest developments in the structural and mechanistic study of RecQ helicases and discuss their roles in various DNA repair pathways. Finally, we consider the potential to exploit RecQ helicases as therapeutic targets and review the recent progress towards the development of small molecules targeting RecQ helicases as cancer therapeutics.
Collapse
|
8
|
Szeltner Z, Póti Á, Harami GM, Kovács M, Szüts D. Evaluation and modulation of DNA lesion bypass in an SV40 large T antigen-based in vitro replication system. FEBS Open Bio 2021; 11:1054-1075. [PMID: 33512058 PMCID: PMC8016126 DOI: 10.1002/2211-5463.13099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 11/09/2022] Open
Abstract
DNA damage removal by nucleotide excision repair (NER) and replicative bypass via translesion synthesis (TLS) and template switch (TSw) are important in ensuring genome stability. In this study, we tested the applicability of an SV40 large T antigen‐based replication system for the simultaneous examination of these damage tolerance processes. Using both Sanger and next‐generation sequencing combined with lesion‐specific qPCR and replication efficiency studies, we demonstrate that this system works well for studying NER and TLS, especially its one‐polymerase branch, while it is less suited to investigations of homology‐related repair processes, such as TSw. Cis‐syn cyclobutane pyrimidine dimer photoproducts were replicated with equal efficiency to lesion‐free plasmids in vitro, and the majority of TLS on this lesion could be inhibited by a peptide (PIR) specific for the polη‐PCNA interaction interface. TLS on 6–4 pyrimidine–pyrimidone photoproduct proved to be inefficient and was slightly facilitated by PIR as well as by a recombinant ubiquitin‐binding zinc finger domain of polη in HeLa extract, possibly by promoting polymerase exchange. Supplementation of the extract with recombinant PCNA variants indicated the dependence of TLS on PCNA ubiquitylation. In contrast to active TLS and NER, we found no evidence of successful TSw in cellular extracts. The established methods can promote in vitro investigations of replicative DNA damage bypass.
Collapse
Affiliation(s)
- Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Checkpoint functions of RecQ helicases at perturbed DNA replication fork. Curr Genet 2021; 67:369-382. [PMID: 33427950 DOI: 10.1007/s00294-020-01147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/17/2023]
Abstract
DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.
Collapse
|
10
|
Xue C, Daley JM, Xue X, Steinfeld J, Kwon Y, Sung P, Greene EC. Single-molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Res 2019; 47:11225-11237. [PMID: 31544923 PMCID: PMC6868385 DOI: 10.1093/nar/gkz810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/12/2022] Open
Abstract
Bloom helicase (BLM) and its orthologs are essential for the maintenance of genome integrity. BLM defects represent the underlying cause of Bloom Syndrome, a rare genetic disorder that is marked by strong cancer predisposition. BLM deficient cells accumulate extensive chromosomal aberrations stemming from dysfunctions in homologous recombination (HR). BLM participates in several HR stages and helps dismantle potentially harmful HR intermediates. However, much remains to be learned about the molecular mechanisms of these BLM-mediated regulatory effects. Here, we use DNA curtains to directly visualize the activity of BLM helicase on single molecules of DNA. Our data show that BLM is a robust helicase capable of rapidly (∼70-80 base pairs per second) unwinding extensive tracts (∼8-10 kilobases) of double-stranded DNA (dsDNA). Importantly, we find no evidence for BLM activity on single-stranded DNA (ssDNA) that is bound by replication protein A (RPA). Likewise, our results show that BLM can neither associate with nor translocate on ssDNA that is bound by the recombinase protein RAD51. Moreover, our data reveal that the presence of RAD51 also blocks BLM translocation on dsDNA substrates. We discuss our findings within the context of potential regulator roles for BLM helicase during DNA replication and repair.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - James M Daley
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Justin Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Szabo B, Horvath T, Schad E, Murvai N, Tantos A, Kalmar L, Chemes LB, Han KH, Tompa P. Intrinsically Disordered Linkers Impart Processivity on Enzymes by Spatial Confinement of Binding Domains. Int J Mol Sci 2019; 20:ijms20092119. [PMID: 31032817 PMCID: PMC6540235 DOI: 10.3390/ijms20092119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Processivity is common among enzymes and mechanochemical motors that synthesize, degrade, modify or move along polymeric substrates, such as DNA, RNA, polysaccharides or proteins. Processive enzymes can make multiple rounds of modification without releasing the substrate/partner, making their operation extremely effective and economical. The molecular mechanism of processivity is rather well understood in cases when the enzyme structurally confines the substrate, such as the DNA replication factor PCNA, and also when ATP energy is used to confine the succession of molecular events, such as with mechanochemical motors. Processivity may also result from the kinetic bias of binding imposed by spatial confinement of two binding elements connected by an intrinsically disordered (ID) linker. (2) Method: By statistical physical modeling, we show that this arrangement results in processive systems, in which the linker ensures an optimized effective concentration around novel binding site(s), favoring rebinding over full release of the polymeric partner. (3) Results: By analyzing 12 such proteins, such as cellulase, and RNAse-H, we illustrate that in these proteins linker length and flexibility, and the kinetic parameters of binding elements, are fine-tuned for optimizing processivity. We also report a conservation of structural disorder, special amino acid composition of linkers, and the correlation of their length with step size. (4) Conclusion: These observations suggest a unique type of entropic chain function of ID proteins, that may impart functional advantages on diverse enzymes in a variety of biological contexts.
Collapse
Affiliation(s)
- Beata Szabo
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Tamas Horvath
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Eva Schad
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Nikoletta Murvai
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Agnes Tantos
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Lajos Kalmar
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Lucía Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, Buenos Aires 1650, Argentina.
| | - Kyou-Hoon Han
- Genome Editing Research Center, Division of Biomedical Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- Department of Nano and Bioinformatics, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Peter Tompa
- Institute of Enzymology, Center of Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
- VIB Center for Structural Biology, Vrije Univresiteit Brussel, 1050, Belgium.
| |
Collapse
|
12
|
Newman JA, Aitkenhead H, Savitsky P, Gileadi O. Insights into the RecQ helicase mechanism revealed by the structure of the helicase domain of human RECQL5. Nucleic Acids Res 2017; 45:4231-4243. [PMID: 28100692 PMCID: PMC5397160 DOI: 10.1093/nar/gkw1362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
Abstract
RecQ helicases are important maintainers of genome integrity with distinct roles in almost every cellular process requiring access to DNA. RECQL5 is one of five human RecQ proteins and is particularly versatile in this regard, forming protein complexes with a diverse set of cellular partners in order to coordinate its helicase activity to various processes including replication, recombination and DNA repair. In this study, we have determined crystal structures of the core helicase domain of RECQL5 both with and without the nucleotide ADP in two distinctly different (‘Open’ and ‘Closed’) conformations. Small angle X-ray scattering studies show that the ‘Open’ form of the protein predominates in solution and we discuss implications of this with regards to the RECQL5 mechanism and conformational changes. We have measured the ATPase, helicase and DNA binding properties of various RECQL5 constructs and variants and discuss the role of these regions and residues in the various RECQL5 activities. Finally, we have performed a systematic comparison of the RECQL5 structures with other RecQ family structures and based on these comparisons we have constructed a model for the mechano-chemical cycle of the common catalytic core of these helicases.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.,Structural Genomics Consortium, State University of Campinas, Campinas SP 13083-886, Brazil
| |
Collapse
|
13
|
Budhathoki JB, Maleki P, Roy WA, Janscak P, Yodh JG, Balci H. A Comparative Study of G-Quadruplex Unfolding and DNA Reeling Activities of Human RECQ5 Helicase. Biophys J 2017; 110:2585-2596. [PMID: 27332117 DOI: 10.1016/j.bpj.2016.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/15/2022] Open
Abstract
RECQ5 is one of five members of the RecQ family of helicases in humans, which include RECQ1, Bloom (BLM), Werner (WRN), RECQ4, and RECQ5. Both WRN and BLM have been shown to resolve G-quadruplex (GQ) structures. Deficiencies in unfolding GQ are known to result in DNA breaks and genomic instability, which are prominent in Werner and Bloom syndromes. RECQ5 is significant in suppressing sister chromatid exchanges during homologous recombination but its GQ unfolding activity are not known. We performed single-molecule studies under different salt (50-150 mM KCl or NaCl) and ATP concentrations on different GQ constructs including human telomeric GQ (with different overhangs and polarities) and GQ formed by thrombin-binding aptamer to investigate this activity. These studies demonstrated a RECQ5-mediated GQ unfolding activity that was an order of magnitude weaker than BLM and WRN. On the other hand, BLM and RECQ5 demonstrated similar single-stranded DNA (ssDNA) reeling activities that were not coupled to GQ unfolding. These results demonstrate overlap in function between these RecQ helicases; however, the relatively weak GQ destabilization activity of RECQ5 compared to BLM and WRN suggests that RECQ5 is not primarily associated with GQ destabilization, but could substitute for the more efficient helicases under conditions where their activity is compromised. In addition, these results implicate a more general role for helicase-promoted ssDNA reeling activity such as removal of proteins at the replication fork, whereas the association of ssDNA reeling with GQ destabilization is more helicase-specific.
Collapse
Affiliation(s)
| | | | - William A Roy
- Department of Physics, Kent State University, Kent, Ohio
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Jaya G Yodh
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, Ohio.
| |
Collapse
|
14
|
Shuttling along DNA and directed processing of D-loops by RecQ helicase support quality control of homologous recombination. Proc Natl Acad Sci U S A 2017; 114:E466-E475. [PMID: 28069956 DOI: 10.1073/pnas.1615439114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells must continuously repair inevitable DNA damage while avoiding the deleterious consequences of imprecise repair. Distinction between legitimate and illegitimate repair processes is thought to be achieved in part through differential recognition and processing of specific noncanonical DNA structures, although the mechanistic basis of discrimination remains poorly defined. Here, we show that Escherichia coli RecQ, a central DNA recombination and repair enzyme, exhibits differential processing of DNA substrates based on their geometry and structure. Through single-molecule and ensemble biophysical experiments, we elucidate how the conserved domain architecture of RecQ supports geometry-dependent shuttling and directed processing of recombination-intermediate [displacement loop (D-loop)] substrates. Our study shows that these activities together suppress illegitimate recombination in vivo, whereas unregulated duplex unwinding is detrimental for recombination precision. Based on these results, we propose a mechanism through which RecQ helicases achieve recombination precision and efficiency.
Collapse
|
15
|
Gyimesi M, Harami GM, Kocsis ZS, Kovács M. Recent adaptations of fluorescence techniques for the determination of mechanistic parameters of helicases and translocases. Methods 2016; 108:24-39. [PMID: 27133766 DOI: 10.1016/j.ymeth.2016.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 01/11/2023] Open
Abstract
Helicases and translocases are nucleic acid (NA)-based molecular motors that use the free energy liberated during the nucleoside triphosphate (NTP, usually ATP) hydrolysis cycle for unidirectional translocation along their NA (DNA, RNA or heteroduplex) substrates. Determination of the kinetic and thermodynamic parameters of their mechanoenzymatic cycle serves as a basis for the exploration of their physiological behavior and various cellular functions. Here we describe how recent adaptations of fluorescence-based solution kinetic methods can be used to determine practically all important mechanistic parameters of NA-based motor proteins. We outline practically useful analysis procedures for equilibrium, steady-state and transient kinetic data. This analysis can be used to quantitatively characterize the enzymatic steps of the NTP hydrolytic cycle, the binding site size, stoichiometry and energetics of protein-NA interactions, the rate and processivity of translocation along and unwinding of NA strands, and the mechanochemical coupling between these processes. The described methods yield insights into the functional role of the enzymes, and also greatly aid the design and interpretation of single-molecule experiments as well as the engineering of enzymatic properties for biotechnological applications.
Collapse
Affiliation(s)
- Máté Gyimesi
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary.
| | - Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary.
| | - Zsuzsa S Kocsis
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary.
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary.
| |
Collapse
|
16
|
Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016; 161:111-131. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.
Collapse
Affiliation(s)
- Pounami Samadder
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| | - Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Belan
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
17
|
Newman JA, Cooper CDO, Aitkenhead H, Gileadi O. Structure of the Helicase Domain of DNA Polymerase Theta Reveals a Possible Role in the Microhomology-Mediated End-Joining Pathway. Structure 2015; 23:2319-2330. [PMID: 26636256 PMCID: PMC4671958 DOI: 10.1016/j.str.2015.10.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Abstract
DNA polymerase theta (Polθ) has been identified as a crucial alternative non-homologous end-joining factor in mammalian cells. Polθ is upregulated in a range of cancer cell types defective in homologous recombination, and knockdown has been shown to inhibit cell survival in a subset of these, making it an attractive target for cancer treatment. We present crystal structures of the helicase domain of human Polθ in the presence and absence of bound nucleotides, and a characterization of its DNA-binding and DNA-stimulated ATPase activities. Comparisons with related helicases from the Hel308 family identify several unique features. Polθ exists as a tetramer both in the crystals and in solution. We propose a model for DNA binding to the Polθ helicase domain in the context of the Polθ tetramer, which suggests a role for the helicase domain in strand annealing of DNA templates for subsequent processing by the polymerase domain.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Christopher D O Cooper
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
18
|
Briggs K, Fischer CJ. All motors have to decide is what to do with the DNA that is given them. Biomol Concepts 2015; 5:383-95. [PMID: 25367619 DOI: 10.1515/bmc-2014-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/09/2014] [Indexed: 11/15/2022] Open
Abstract
DNA translocases are a diverse group of molecular motors responsible for a wide variety of cellular functions. The goal of this review is to identify common aspects in the mechanisms for how these enzymes couple the binding and hydrolysis of ATP to their movement along DNA. Not surprisingly, the shared structural components contained within the catalytic domains of several of these motors appear to give rise to common aspects of DNA translocation. Perhaps more interesting, however, are the differences between the families of translocases and the potential associated implications both for the functions of the members of these families and for the evolution of these families. However, as there are few translocases for which complete characterizations of the mechanisms of DNA binding, DNA translocation, and DNA-stimulated ATPase have been completed, it is difficult to form many inferences. We therefore hope that this review motivates the necessary further experimentation required for broader comparisons and conclusions.
Collapse
|
19
|
Harami GM, Nagy NT, Martina M, Neuman KC, Kovács M. The HRDC domain of E. coli RecQ helicase controls single-stranded DNA translocation and double-stranded DNA unwinding rates without affecting mechanoenzymatic coupling. Sci Rep 2015; 5:11091. [PMID: 26067769 PMCID: PMC4464074 DOI: 10.1038/srep11091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/05/2015] [Indexed: 01/01/2023] Open
Abstract
DNA-restructuring activities of RecQ-family helicases play key roles in genome maintenance. These activities, driven by two tandem RecA-like core domains, are thought to be controlled by accessory DNA-binding elements including the helicase-and-RnaseD-C-terminal (HRDC) domain. The HRDC domain of human Bloom’s syndrome (BLM) helicase was shown to interact with the RecA core, raising the possibility that it may affect the coupling between ATP hydrolysis, translocation along single-stranded (ss)DNA and/or unwinding of double-stranded (ds)DNA. Here, we determined how these activities are affected by the abolition of the ssDNA interaction of the HRDC domain or the deletion of the entire domain in E. coli RecQ helicase. Our data show that the HRDC domain suppresses the rate of DNA-activated ATPase activity in parallel with those of ssDNA translocation and dsDNA unwinding, regardless of the ssDNA binding capability of this domain. The HRDC domain does not affect either the processivity of ssDNA translocation or the tight coupling between the ATPase, translocation, and unwinding activities. Thus, the mechanochemical coupling of E. coli RecQ appears to be independent of HRDC-ssDNA and HRDC-RecA core interactions, which may play roles in more specialized functions of the enzyme.
Collapse
Affiliation(s)
- Gábor M Harami
- Department of Biochemistry, ELTE-MTA "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | - Nikolett T Nagy
- Department of Biochemistry, ELTE-MTA "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | - Máté Martina
- Department of Biochemistry, ELTE-MTA "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | - Keir C Neuman
- Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| |
Collapse
|
20
|
Wu WQ, Hou XM, Li M, Dou SX, Xi XG. BLM unfolds G-quadruplexes in different structural environments through different mechanisms. Nucleic Acids Res 2015; 43:4614-26. [PMID: 25897130 PMCID: PMC4482088 DOI: 10.1093/nar/gkv361] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
Mutations in the RecQ DNA helicase gene BLM give rise to Bloom's syndrome, which is a rare autosomal recessive disorder characterized by genetic instability and cancer predisposition. BLM helicase is highly active in binding and unwinding G-quadruplexes (G4s), which are physiological targets for BLM, as revealed by genome-wide characterizations of gene expression of cells from BS patients. With smFRET assays, we studied the molecular mechanism of BLM-catalyzed G4 unfolding and showed that ATP is required for G4 unfolding. Surprisingly, depending on the molecular environments of G4, BLM unfolds G4 through different mechanisms: unfolding G4 harboring a 3'-ssDNA tail in three discrete steps with unidirectional translocation, and unfolding G4 connected to dsDNA by ssDNA in a repetitive manner in which BLM remains anchored at the ss/dsDNA junction, and G4 was unfolded by reeling in ssDNA. This indicates that one BLM molecule may unfold G4s in different molecular environments through different mechanisms.
Collapse
Affiliation(s)
- Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
21
|
Budhathoki JB, Stafford EJ, Yodh JG, Balci H. ATP-dependent G-quadruplex unfolding by Bloom helicase exhibits low processivity. Nucleic Acids Res 2015; 43:5961-70. [PMID: 25990739 PMCID: PMC4499149 DOI: 10.1093/nar/gkv531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023] Open
Abstract
Various helicases and single stranded DNA (ssDNA) binding proteins unfold G-quadruplex (GQ) structures. However, the underlying mechanisms of this activity have only recently come to focus. We report kinetic studies on Bloom (BLM) helicase and human telomeric GQ interactions using single-molecule Förster resonance energy transfer (smFRET). Using partial duplex DNA (pdDNA) constructs with different 5' ssDNA overhangs, we show that BLM localizes in the vicinity of ssDNA/double-stranded DNA (dsDNA) junction and reels in the ssDNA overhang in an ATP-dependent manner. A comparison of DNA constructs with or without GQ in the overhang shows that GQ unfolding is achieved in 50-70% of reeling attempts under physiological salt and pH conditions. The unsuccessful attempts often result in dissociation of BLM from DNA which slows down the overall BLM activity. BLM-mediated GQ unfolding is typically followed by refolding of the GQ, a pattern that is repeated several times before BLM dissociates from DNA. BLM is significantly less processive compared to the highly efficient GQ destabilizer Pif1 that can repeat GQ unfolding activity hundreds of times before dissociating from DNA. Despite the variations in processivity, our studies point to possible common patterns used by different helicases in minimizing the duration of stable GQ formation.
Collapse
Affiliation(s)
| | | | - Jaya G Yodh
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
22
|
Newman JA, Savitsky P, Allerston CK, Bizard AH, Özer Ö, Sarlós K, Liu Y, Pardon E, Steyaert J, Hickson ID, Gileadi O. Crystal structure of the Bloom's syndrome helicase indicates a role for the HRDC domain in conformational changes. Nucleic Acids Res 2015; 43:5221-35. [PMID: 25901030 PMCID: PMC4446433 DOI: 10.1093/nar/gkv373] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/03/2015] [Indexed: 01/16/2023] Open
Abstract
Bloom's syndrome helicase (BLM) is a member of the RecQ family of DNA helicases, which play key roles in the maintenance of genome integrity in all organism groups. We describe crystal structures of the BLM helicase domain in complex with DNA and with an antibody fragment, as well as SAXS and domain association studies in solution. We show an unexpected nucleotide-dependent interaction of the core helicase domain with the conserved, poorly characterized HRDC domain. The BLM–DNA complex shows an unusual base-flipping mechanism with unique positioning of the DNA duplex relative to the helicase core domains. Comparison with other crystal structures of RecQ helicases permits the definition of structural transitions underlying ATP-driven helicase action, and the identification of a nucleotide-regulated tunnel that may play a role in interactions with complex DNA substrates.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Charles K Allerston
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Özgün Özer
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2 , 1050 Brussels, Belgium Structural Biology Research Center, VIB, Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2 , 1050 Brussels, Belgium Structural Biology Research Center, VIB, Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
23
|
Wang S, Qin W, Li JH, Lu Y, Lu KY, Nong DG, Dou SX, Xu CH, Xi XG, Li M. Unwinding forward and sliding back: an intermittent unwinding mode of the BLM helicase. Nucleic Acids Res 2015; 43:3736-46. [PMID: 25765643 PMCID: PMC4402530 DOI: 10.1093/nar/gkv209] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/02/2015] [Indexed: 01/11/2023] Open
Abstract
There are lines of evidence that the Bloom syndrome helicase, BLM, catalyzes regression of stalled replication forks and disrupts displacement loops (D-loops) formed during homologous recombination (HR). Here we constructed a forked DNA with a 3′ single-stranded gap and a 5′ double-stranded handle to partly mimic a stalled DNA fork and used magnetic tweezers to study BLM-catalyzed unwinding of the forked DNA. We have directly observed that the BLM helicase may slide on the opposite strand for some distance after duplex unwinding at different forces. For DNA construct with a long hairpin, progressive unwinding of the hairpin is frequently interrupted by strand switching and backward sliding of the enzyme. Quantitative study of the uninterrupted unwinding length (time) has revealed a two-state-transition mechanism for strand-switching during the unwinding process. Mutational studies revealed that the RQC domain plays an important role in stabilizing the helicase/DNA interaction during both DNA unwinding and backward sliding of BLM. Especially, Lys1125 in the RQC domain, a highly conserved amino acid among RecQ helicases, may be involved in the backward sliding activity. We have also directly observed the in vitro pathway that BLM disrupts the mimic stalled replication fork. These results may shed new light on the mechanisms for BLM in DNA repair and homologous recombination.
Collapse
Affiliation(s)
- Shuang Wang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Qin
- College of Life Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jing-Hua Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke-Yu Lu
- College of Life Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Da-Guan Nong
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chun-Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Guang Xi
- College of Life Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China Laboratoire de Biologie et PharmacologieAppliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Sarlós K, Gyimesi M, Kele Z, Kovács M. Mechanism of RecQ helicase mechanoenzymatic coupling reveals that the DNA interactions of the ADP-bound enzyme control translocation run terminations. Nucleic Acids Res 2014; 43:1090-7. [PMID: 25539922 PMCID: PMC4333385 DOI: 10.1093/nar/gku1333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The processing of various DNA structures by RecQ helicases is crucial for genome maintenance in both bacteria and eukaryotes. RecQ helicases perform active destabilization of DNA duplexes, based on tight coupling of their ATPase activity to moderately processive translocation along DNA strands. Here, we determined the ATPase kinetic mechanism of E. coli RecQ helicase to reveal how mechanoenzymatic coupling is achieved. We found that the interaction of RecQ with DNA results in a drastic acceleration of the rate-limiting ATP cleavage step, which occurs productively due to subsequent rapid phosphate release. ADP release is not rate-limiting and ADP-bound RecQ molecules make up a small fraction during single-stranded DNA translocation. However, the relatively rapid release of the ADP-bound enzyme from DNA causes the majority of translocation run terminations (i.e. detachment from the DNA track). Thus, the DNA interactions of ADP-bound RecQ helicase, probably dependent on DNA structure, will mainly determine translocation processivity and may control the outcome of DNA processing. Comparison with human Bloom's syndrome (BLM) helicase reveals that similar macroscopic parameters are achieved by markedly different underlying mechanisms of RecQ homologs, suggesting diversity in enzymatic tuning.
Collapse
Affiliation(s)
- Kata Sarlós
- Department of Biochemistry, ELTE-MTA 'Momentum' Motor Enzymology Research Group, Eötvös University, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Máté Gyimesi
- Department of Biochemistry, ELTE-MTA 'Momentum' Motor Enzymology Research Group, Eötvös University, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, University of Szeged, Dóm sqr. 8. Szeged, H-6720, Hungary
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA 'Momentum' Motor Enzymology Research Group, Eötvös University, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| |
Collapse
|
25
|
Budhathoki JB, Ray S, Urban V, Janscak P, Yodh JG, Balci H. RecQ-core of BLM unfolds telomeric G-quadruplex in the absence of ATP. Nucleic Acids Res 2014; 42:11528-45. [PMID: 25245947 PMCID: PMC4191421 DOI: 10.1093/nar/gku856] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Various helicases and single-stranded DNA (ssDNA) binding proteins are known to destabilize G-quadruplex (GQ) structures, which otherwise result in genomic instability. Bulk biochemical studies have shown that Bloom helicase (BLM) unfolds both intermolecular and intramolecular GQ in the presence of ATP. Using single molecule FRET, we show that binding of RecQ-core of BLM (will be referred to as BLM) to ssDNA in the vicinity of an intramolecular GQ leads to destabilization and unfolding of the GQ in the absence of ATP. We show that the efficiency of BLM-mediated GQ unfolding correlates with the binding stability of BLM to ssDNA overhang, as modulated by the nucleotide state, ionic conditions, overhang length and overhang directionality. In particular, we observed enhanced GQ unfolding by BLM in the presence of non-hydrolysable ATP analogs, which has implications for the underlying mechanism. We also show that increasing GQ stability, via shorter loops or higher ionic strength, reduces BLM-mediated GQ unfolding. Finally, we show that while WRN has similar activity as BLM, RecQ and RECQ5 helicases do not unfold GQ in the absence of ATP at physiological ionic strength. In summary, our study points to a novel and potentially very common mechanism of GQ destabilization mediated by proteins binding to the vicinity of these structures.
Collapse
Affiliation(s)
| | - Sujay Ray
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Vaclav Urban
- Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Genetics AS CR, Prague, Czech Republic Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Jaya G Yodh
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
26
|
Daley JM, Chiba T, Xue X, Niu H, Sung P. Multifaceted role of the Topo IIIα-RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection. Nucleic Acids Res 2014; 42:11083-91. [PMID: 25200081 PMCID: PMC4176181 DOI: 10.1093/nar/gku803] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BLM, a RecQ family DNA helicase mutated in Bloom's Syndrome, participates in homologous recombination at two stages: 5' DNA end resection and double Holliday junction dissolution. BLM exists in a complex with Topo IIIα, RMI1 and RMI2. Herein, we address the role of Topo IIIα and RMI1-RMI2 in resection using a reconstituted system with purified human proteins. We show that Topo IIIα stimulates DNA unwinding by BLM in a manner that is potentiated by RMI1-RMI2, and that the processivity of resection is reliant on the Topo IIIα-RMI1-RMI2 complex. Topo IIIα localizes to the ends of double-strand breaks, thus implicating it in the recruitment of resection factors. While the single-stranded DNA binding protein RPA plays a major role in imposing the 5' to 3' polarity of resection, Topo IIIα also makes a contribution in this regard. Moreover, we show that DNA2 stimulates the helicase activity of BLM. Our results thus uncover a multifaceted role of the Topo IIIα-RMI1-RMI2 ensemble and of DNA2 in the DNA resection reaction.
Collapse
Affiliation(s)
- James M Daley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamara Chiba
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Kocsis ZS, Sarlós K, Harami GM, Martina M, Kovács M. A nucleotide-dependent and HRDC domain-dependent structural transition in DNA-bound RecQ helicase. J Biol Chem 2014; 289:5938-49. [PMID: 24403069 DOI: 10.1074/jbc.m113.530741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases.
Collapse
Affiliation(s)
- Zsuzsa S Kocsis
- From the Department of Biochemistry, ELTE-MTA "Momentum" Motor Enzymology Research Group, Eötvös University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | | | | | | | | |
Collapse
|
28
|
Gyimesi M, Pires RH, Billington N, Sarlós K, Kocsis ZS, Módos K, Kellermayer MSZ, Kovács M. Visualization of human Bloom's syndrome helicase molecules bound to homologous recombination intermediates. FASEB J 2013; 27:4954-64. [PMID: 24005907 DOI: 10.1096/fj.13-234088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Homologous recombination (HR) is a key process in the repair of double-stranded DNA breaks (DSBs) that can initiate cancer or cell death. Human Bloom's syndrome RecQ-family DNA helicase (BLM) exerts complex activities to promote DSB repair while avoiding illegitimate HR. The oligomeric assembly state of BLM has been a key unresolved aspect of its activities. In this study we assessed the structure and oligomeric state of BLM, in the absence and presence of key HR-intermediate DNA structures, by using single-molecule visualization (electron microscopic and atomic force microscopic single-particle analysis) and solution biophysical (dynamic light scattering, kinetic and equilibrium binding) techniques. Besides full-length BLM, we used a previously characterized truncated construct (BLM(642-1290)) as a monomeric control. Contrary to previous models proposing a ring-forming oligomer, we found the majority of BLM molecules to be monomeric in all examined conditions. However, BLM showed a tendency to form dimers when bound to branched HR intermediates. Our results suggest that HR activities requiring single-stranded DNA translocation are performed by monomeric BLM, while complex DNA structures encountered and dissolved by BLM in later stages of HR induce partial oligomerization of the helicase.
Collapse
Affiliation(s)
- Máté Gyimesi
- 3Department of Biochemistry, Eötvös University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mason PA, Boubriak I, Robbins T, Lasala R, Saunders R, Cox LS. The Drosophila orthologue of progeroid human WRN exonuclease, DmWRNexo, cleaves replication substrates but is inhibited by uracil or abasic sites : analysis of DmWRNexo activity in vitro. AGE (DORDRECHT, NETHERLANDS) 2013; 35:793-806. [PMID: 22562358 PMCID: PMC3636389 DOI: 10.1007/s11357-012-9411-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 04/17/2012] [Indexed: 05/31/2023]
Abstract
Werner syndrome (WS) is a rare late-onset premature ageing disease showing many of the phenotypes associated with normal ageing, and provides one of the best models for investigating cellular pathways that lead to normal ageing. WS is caused by mutation of WRN, which encodes a multifunctional DNA replication and repair helicase/exonuclease. To investigate the role of WRN protein's unique exonuclease domain, we have recently identified DmWRNexo, the fly orthologue of the exonuclease domain of human WRN. Here, we fully characterise DmWRNexo exonuclease activity in vitro, confirming 3'-5' polarity, demonstrating a requirement for Mg(2+), inhibition by ATP, and an ability to degrade both single-stranded DNA and duplex DNA substrates with 3' or 5' overhangs, or bubble structures, but with no activity on blunt ended DNA duplexes. We report a novel active site mutation that ablates enzyme activity. Lesional substrates containing uracil are partially cleaved by DmWRNexo, but the enzyme pauses on such substrates and is inhibited by abasic sites. These strong biochemical similarities to human WRN suggest that Drosophila can provide a valuable experimental system for analysing the importance of WRN exonuclease in cell and organismal ageing.
Collapse
Affiliation(s)
- Penelope A. Mason
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ivan Boubriak
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Timothy Robbins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ralph Lasala
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
- Department of Life Sciences, The Open University, Milton Keynes, MK7 6AA UK
| | - Robert Saunders
- Department of Life Sciences, The Open University, Milton Keynes, MK7 6AA UK
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
30
|
Nagy NT, Chakraborty S, Harami GM, Sellers JR, Sakamoto T, Kovács M. A subdomain interaction at the base of the lever allosterically tunes the mechanochemical mechanism of myosin 5a. PLoS One 2013; 8:e62640. [PMID: 23650521 PMCID: PMC3641075 DOI: 10.1371/journal.pone.0062640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/23/2013] [Indexed: 11/28/2022] Open
Abstract
The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands.
Collapse
Affiliation(s)
- Nikolett T. Nagy
- Department of Biochemistry, ELTE-MTA (Eötvös Loránd University-Hungarian Academy of Sciences) “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Saikat Chakraborty
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Gábor M. Harami
- Department of Biochemistry, ELTE-MTA (Eötvös Loránd University-Hungarian Academy of Sciences) “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - James R. Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Takeshi Sakamoto
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA (Eötvös Loránd University-Hungarian Academy of Sciences) “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
31
|
Wong IN, Sayers JR, Sanders CM. Characterization of an unusual bipolar helicase encoded by bacteriophage T5. Nucleic Acids Res 2013; 41:4587-600. [PMID: 23435232 PMCID: PMC3632103 DOI: 10.1093/nar/gkt105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteriophage T5 has a 120 kb double-stranded linear DNA genome encoding most of the genes required for its own replication. This lytic bacteriophage has a burst size of ∼500 new phage particles per infected cell, demonstrating that it is able to turn each infected bacterium into a highly efficient DNA manufacturing machine. To begin to understand DNA replication in this prodigious bacteriophage, we have characterized a putative helicase encoded by gene D2. We show that bacteriophage T5 D2 protein is the first viral helicase to be described with bipolar DNA unwinding activities that require the same core catalytic residues for unwinding in either direction. However, unwinding of partially single- and double-stranded DNA test substrates in the 3′–5′ direction is more robust and can be distinguished from the 5′–3′ activity by a number of features including helicase complex stability, salt sensitivity and the length of single-stranded DNA overhang required for initiation of helicase action. The presence of D2 in an early gene cluster, the identification of a putative helix-turn-helix DNA-binding motif outside the helicase core and homology with known eukaryotic and prokaryotic replication initiators suggest an involvement for this unusual helicase in DNA replication initiation.
Collapse
Affiliation(s)
- Io Nam Wong
- Department of Oncology, Institute for Cancer Studies
| | | | | |
Collapse
|
32
|
Xu YN, Bazeille N, Ding XY, Lu XM, Wang PY, Bugnard E, Grondin V, Dou SX, Xi XG. Multimeric BLM is dissociated upon ATP hydrolysis and functions as monomers in resolving DNA structures. Nucleic Acids Res 2012; 40:9802-14. [PMID: 22885301 PMCID: PMC3479192 DOI: 10.1093/nar/gks728] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bloom (BLM) syndrome is an autosomal recessive disorder characterized by an increased risk for many types of cancers. Previous studies have shown that BLM protein forms a hexameric ring structure, but its oligomeric form in DNA unwinding is still not well clarified. In this work, we have used dynamic light scattering and various stopped-flow assays to study the active form and kinetic mechanism of BLM in DNA unwinding. It was found that BLM multimers were dissociated upon ATP hydrolysis. Steady-state and single-turnover kinetic studies revealed that BLM helicase always unwound duplex DNA in the monomeric form under conditions of varying enzyme and ATP concentrations as well as 3'-ssDNA tail lengths, with no sign of oligomerization being discerned. Measurements of ATPase activity further indicated that BLM helicase might still function as monomers in resolving highly structured DNAs such as Holliday junctions and D-loops. These results shed new light on the underlying mechanism of BLM-mediated DNA unwinding and on the molecular and functional basis for the phenotype of heterozygous carriers of BLM syndrome.
Collapse
Affiliation(s)
- Ya-Nan Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling. Proc Natl Acad Sci U S A 2012; 109:9804-9. [PMID: 22665805 DOI: 10.1073/pnas.1114468109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of genome integrity is the major biological role of RecQ-family helicases via their participation in homologous recombination (HR)-mediated DNA repair processes. RecQ helicases exert their functions by using the free energy of ATP hydrolysis for mechanical movement along DNA tracks (translocation). In addition to the importance of translocation per se in recombination processes, knowledge of its mechanism is necessary for the understanding of more complex translocation-based activities, including nucleoprotein displacement, strand separation (unwinding), and branch migration. Here, we report the key properties of the ssDNA translocation mechanism of Escherichia coli RecQ helicase, the prototype of the RecQ family. We monitored the pre-steady-state kinetics of ATP hydrolysis by RecQ and the dissociation of the enzyme from ssDNA during single-round translocation. We also gained information on the translocation mechanism from the ssDNA length dependence of the steady-state ssDNA-activated ATPase activity. We show that RecQ occludes 18 ± 2 nt on ssDNA during translocation. The hydrolysis of ATP is noncooperative in the presence of ssDNA, indicating that RecQ active sites work independently during translocation. In the applied conditions, the enzyme hydrolyzes 35 ± 4 ATP molecules per second during ssDNA translocation. RecQ translocates at a moderate processivity, with a mean run length of 100-320 nt on ssDNA. The determined tight mechanochemical coupling of 1.1 ± 0.2 ATP consumed per nucleotide traveled indicates an inchworm-type mechanism.
Collapse
|
34
|
Abstract
The advent of new technologies allowing the study of single biological molecules continues to have a major impact on studies of interacting systems as well as enzyme reactions. These approaches (fluorescence, optical, and magnetic tweezers), in combination with ensemble methods, have been particularly useful for mechanistic studies of protein-nucleic acid interactions and enzymes that function on nucleic acids. We review progress in the use of single-molecule methods to observe and perturb the activities of proteins and enzymes that function on flexible single-stranded DNA. These include single-stranded DNA binding proteins, recombinases (RecA/Rad51), and helicases/translocases that operate as motor proteins and play central roles in genome maintenance. We emphasize methods that have been used to detect and study the movement of these proteins (both ATP-dependent directional and random movement) along the single-stranded DNA and the mechanistic and functional information that can result from detailed analysis of such movement.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
35
|
Tomko EJ, Fischer CJ, Lohman TM. Single-stranded DNA translocation of E. coli UvrD monomer is tightly coupled to ATP hydrolysis. J Mol Biol 2012; 418:32-46. [PMID: 22342931 DOI: 10.1016/j.jmb.2012.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 10/14/2022]
Abstract
Escherichia coli UvrD is an SF1A (superfamily 1 type A) helicase/translocase that functions in several DNA repair pathways. A UvrD monomer is a rapid and processive single-stranded DNA (ssDNA) translocase but is unable to unwind DNA processively in vitro. Based on data at saturating ATP (500 μM), we proposed a nonuniform stepping mechanism in which a UvrD monomer translocates with biased (3' to 5') directionality while hydrolyzing 1 ATP per DNA base translocated, but with a kinetic step size of 4-5 nt/step, suggesting that a pause occurs every 4-5 nt translocated. To further test this mechanism, we examined UvrD translocation over a range of lower ATP concentrations (10-500 μM ATP), using transient kinetic approaches. We find a constant ATP coupling stoichiometry of ∼1 ATP/DNA base translocated even at the lowest ATP concentration examined (10 μM), indicating that ATP hydrolysis is tightly coupled to forward translocation of a UvrD monomer along ssDNA with little slippage or futile ATP hydrolysis during translocation. The translocation kinetic step size remains constant at 4-5 nt/step down to 50 μM ATP but increases to ∼7 nt/step at 10 μM ATP. These results suggest that UvrD pauses more frequently during translocation at low ATP but with little futile ATP hydrolysis.
Collapse
Affiliation(s)
- Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8231, St. Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
36
|
Gyimesi M, Harami GM, Sarlós K, Hazai E, Bikádi Z, Kovács M. Complex activities of the human Bloom's syndrome helicase are encoded in a core region comprising the RecA and Zn-binding domains. Nucleic Acids Res 2012; 40:3952-63. [PMID: 22253018 PMCID: PMC3351180 DOI: 10.1093/nar/gks008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bloom's syndrome DNA helicase (BLM), a member of the RecQ family, is a key player in homologous recombination (HR)-based error-free DNA repair processes. During HR, BLM exerts various biochemical activities including single-stranded (ss) DNA translocation, separation and annealing of complementary DNA strands, disruption of complex DNA structures (e.g. displacement loops) and contributes to quality control of HR via clearance of Rad51 nucleoprotein filaments. We performed a quantitative mechanistic analysis of truncated BLM constructs that are shorter than the previously identified minimal functional module. Surprisingly, we found that a BLM construct comprising only the two conserved RecA domains and the Zn2+-binding domain (residues 642–1077) can efficiently perform all mentioned HR-related activities. The results demonstrate that the Zn2+-binding domain is necessary for functional interaction with DNA. We show that the extensions of this core, including the winged-helix domain and the strand separation hairpin identified therein in other RecQ-family helicases, are not required for mechanochemical activity per se and may instead play modulatory roles and mediate protein–protein interactions.
Collapse
Affiliation(s)
- Máté Gyimesi
- Department of Biochemistry, ELTE-MTA Momentum Motor Enzymology Research Group, Eötvös University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
37
|
Lenglet G, David-Cordonnier MH. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences. J Nucleic Acids 2010; 2010. [PMID: 20725618 PMCID: PMC2915751 DOI: 10.4061/2010/290935] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 01/06/2023] Open
Abstract
DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs). The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.
Collapse
Affiliation(s)
- Gaëlle Lenglet
- INSERM U-837, Jean-Pierre Aubert Research Center (JPARC), Team 4 Molecular and Cellular Targeting for Cancer Treatment, Institute for Research on Cancer of Lille (IRCL), Lille F-59045, France
| | | |
Collapse
|