1
|
Di Michele F, Chillón I, Feil R. Imprinted Long Non-Coding RNAs in Mammalian Development and Disease. Int J Mol Sci 2023; 24:13647. [PMID: 37686455 PMCID: PMC10487962 DOI: 10.3390/ijms241713647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.
Collapse
Affiliation(s)
- Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Isabel Chillón
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
2
|
Uehara R, Au Yeung WK, Toriyama K, Ohishi H, Kubo N, Toh H, Suetake I, Shirane K, Sasaki H. The DNMT3A ADD domain is required for efficient de novo DNA methylation and maternal imprinting in mouse oocytes. PLoS Genet 2023; 19:e1010855. [PMID: 37527244 PMCID: PMC10393158 DOI: 10.1371/journal.pgen.1010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Establishment of a proper DNA methylation landscape in mammalian oocytes is important for maternal imprinting and embryonic development. De novo DNA methylation in oocytes is mediated by the DNA methyltransferase DNMT3A, which has an ATRX-DNMT3-DNMT3L (ADD) domain that interacts with histone H3 tail unmethylated at lysine-4 (H3K4me0). The domain normally blocks the methyltransferase domain via intramolecular interaction and binding to histone H3K4me0 releases the autoinhibition. However, H3K4me0 is widespread in chromatin and the role of the ADD-histone interaction has not been studied in vivo. We herein show that amino-acid substitutions in the ADD domain of mouse DNMT3A cause dwarfism. Oocytes derived from homozygous females show mosaic loss of CG methylation and almost complete loss of non-CG methylation. Embryos derived from such oocytes die in mid-to-late gestation, with stochastic and often all-or-none-type CG-methylation loss at imprinting control regions and misexpression of the linked genes. The stochastic loss is a two-step process, with loss occurring in cleavage-stage embryos and regaining occurring after implantation. These results highlight an important role for the ADD domain in efficient, and likely processive, de novo CG methylation and pose a model for stochastic inheritance of epigenetic perturbations in germ cells to the next generation.
Collapse
Affiliation(s)
- Ryuji Uehara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ohishi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Naoki Kubo
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Isao Suetake
- Department of Nutrition Science, Nakamura Gakuen University, Fukuoka, Japan
| | - Kenjiro Shirane
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
De Riso G, Sarnataro A, Scala G, Cuomo M, Della Monica R, Amente S, Chiariotti L, Miele G, Cocozza S. MC profiling: a novel approach to analyze DNA methylation heterogeneity in genome-wide bisulfite sequencing data. NAR Genom Bioinform 2022; 4:lqac096. [PMID: 36601577 PMCID: PMC9803872 DOI: 10.1093/nargab/lqac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is an epigenetic mark implicated in crucial biological processes. Most of the knowledge about DNA methylation is based on bulk experiments, in which DNA methylation of genomic regions is reported as average methylation. However, average methylation does not inform on how methylated cytosines are distributed in each single DNA molecule. Here, we propose Methylation Class (MC) profiling as a genome-wide approach to the study of DNA methylation heterogeneity from bulk bisulfite sequencing experiments. The proposed approach is built on the concept of MCs, groups of DNA molecules sharing the same number of methylated cytosines. The relative abundances of MCs from sequencing reads incorporates the information on the average methylation, and directly informs on the methylation level of each molecule. By applying our approach to publicly available bisulfite-sequencing datasets, we individuated cell-to-cell differences as the prevalent contributor to methylation heterogeneity. Moreover, we individuated signatures of loci undergoing imprinting and X-inactivation, and highlighted differences between the two processes. When applying MC profiling to compare different conditions, we identified methylation changes occurring in regions with almost constant average methylation. Altogether, our results indicate that MC profiling can provide useful insights on the epigenetic status and its evolution at multiple genomic regions.
Collapse
Affiliation(s)
- Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonella Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126 Naples, Italy
| | - Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Naples, Italy
| | - Rosa Della Monica
- CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Naples, Italy
| | - Gennaro Miele
- Department of Physics “E. Pancini”, University of Naples “Federico II”, Via Cinthia, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, 80126 Naples, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
4
|
Spinelli P, Latchney SE, Reed JM, Fields A, Baier BS, Lu X, McCall MN, Murphy SP, Mak W, Susiarjo M. Identification of the novel Ido1 imprinted locus and its potential epigenetic role in pregnancy loss. Hum Mol Genet 2019; 28:662-674. [PMID: 30403776 DOI: 10.1093/hmg/ddy383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
Previous studies show that aberrant tryptophan catabolism reduces maternal immune tolerance and adversely impacts pregnancy outcomes. Tryptophan depletion in pregnancy is facilitated by increased activity of tryptophan-depleting enzymes [i.e. the indolamine-2,3 dioxygenase (IDO)1 and IDO2) in the placenta. In mice, inhibition of IDO1 activity during pregnancy results in fetal loss; however, despite its important role, regulation of Ido1 gene transcription is unknown. The current study shows that the Ido1 and Ido2 genes are imprinted and maternally expressed in mouse placentas. DNA methylation analysis demonstrates that nine CpG sites at the Ido1 promoter constitute a differentially methylated region that is highly methylated in sperm but unmethylated in oocytes. Bisulfite cloning sequencing analysis shows that the paternal allele is hypermethylated while the maternal allele shows low levels of methylation in E9.5 placenta. Further study in E9.5 placentas from the CBA/J X DBA/2 spontaneous abortion mouse model reveals that aberrant methylation of Ido1 is linked to pregnancy loss. DNA methylation analysis in humans shows that IDO1 is hypermethylated in human sperm but partially methylated in placentas, suggesting similar methylation patterns to mouse. Importantly, analysis in euploid placentas from first trimester pregnancy loss reveals that IDO1 methylation significantly differs between the two placenta cohorts, with most CpG sites showing increased percent of methylation in miscarriage placentas. Our study suggests that DNA methylation is linked to regulation of Ido1/IDO1 expression and altered Ido1/IDO1 DNA methylation can adversely influence pregnancy outcomes.
Collapse
Affiliation(s)
- Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jasmine M Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ashley Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian S Baier
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiang Lu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Shawn P Murphy
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Winifred Mak
- Department of Obstetric Gynecology, Dell Medical School, University of Texas, Austin, TX, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
5
|
Suzuki D, Morimoto H, Yoshimura K, Kono T, Ogawa H. The Differentiation Potency of Trophoblast Stem Cells from Mouse Androgenetic Embryos. Stem Cells Dev 2019; 28:290-302. [PMID: 30526365 DOI: 10.1089/scd.2018.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mice, trophoblast stem (TS) cells are derived from the polar trophectoderm of blastocysts. TS cells cultured in the presence of fibroblast growth factor 4 (Fgf4) are in an undifferentiated state and express undifferentiated marker genes such as Cdx2. After removing Fgf4 from the culture medium, TS cells drastically reduce the expression of undifferentiated marker genes, stop cell proliferation, and differentiate into all trophoblast cell subtypes. To clarify the roles of the parental genomes in placentation, we previously established TS cells from androgenetic embryos (AGTS cells). AGTS cells are in the undifferentiated state when cultured with Fgf4 and express undifferentiated marker genes. After removing Fgf4, AGTS cells differentiate into trophoblast giant cells (TGCs), but not into spongiotrophoblast cells, and some of the AGTS cells continue to proliferate. In this study, we investigated the differentiation potency of AGTS cells by analyzing the expression of undifferentiated marker genes and all trophoblast cell subtype-specific genes. After removing Fgf4, some undifferentiated marker genes (Cdx2, Eomes and Elf5) continued to be expressed. Interestingly, TGCs differentiated from AGTS cells also expressed Cdx2, but not Prl3d1. Moreover, the expression of Gcm1 and Synb was induced after the differentiation, indicating that AGTS cells preferentially differentiated into labyrinth progenitor cells. Cdx2 knockdown resulted in increased Prl3d1 expression, suggesting that Fgf4-independent Cdx2 expression inhibited the functional TGCs. Moreover, Fgf4-independent Cdx2 expression was activated by Gab1, one of the paternally expressed imprinted genes via the mitogen-activated protein kinase kinase (MEK)-extracellular signal regulated protein kinase (ERK) pathway. These results suggested that the paternal genome activates the MEK-ERK pathway without the Fgf4 signal, accelerates the differentiation into labyrinth progenitor cells and controls the function of TGCs.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaoru Yoshimura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
6
|
Ogawa H, Takyu R, Morimoto H, Toei S, Sakon H, Goto S, Moriya S, Kono T. Cell proliferation potency is independent of FGF4 signaling in trophoblast stem cells derived from androgenetic embryos. J Reprod Dev 2015; 62:51-8. [PMID: 26498204 PMCID: PMC4768778 DOI: 10.1262/jrd.2015-097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously established trophoblast stem cells from mouse androgenetic embryos (AGTS cells). In this study, to further characterize AGTS cells, we compared cell proliferation activity between trophoblast stem (TS) cells and AGTS cells under fibroblast growth factor 4 (FGF4) signaling. TS cells continued to proliferate and maintained mitotic cell division in the presence of FGF4. After FGF4 deprivation, the cell proliferation stopped, the rate of M-phase cells decreased, and trophoblast giant cells formed. In contrast, some of AGTS cells continued to proliferate, and the rate of M-phase cells did not decrease after FGF4 deprivation, although the other cells differentiated into giant cells. RO3306, an ATP competitor that selectively inhibits CDK1, inhibited the cell proliferation of both TS and AGTS cells. Under RO3306 treatment, cell death was induced in AGTS cells but not in TS cells. These results indicate that RO3306 caused TS cells to shift mitotic cell division to endoreduplication but that some of AGTS cells did not shift to endoreduplication and induced cell death. In conclusion, the paternal genome facilitated the proliferation of trophoblast cells without FGF4 signaling.
Collapse
Affiliation(s)
- Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Monk D. Genomic imprinting in the human placenta. Am J Obstet Gynecol 2015; 213:S152-62. [PMID: 26428495 DOI: 10.1016/j.ajog.2015.06.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022]
Abstract
With the launch of the National Institute of Child Health and Human Development/National Institutes of Health Human Placenta Project, the anticipation is that this often-overlooked organ will be the subject of much intense research. Compared with somatic tissues, the cells of the placenta have a unique epigenetic profile that dictates its transcription patterns, which when disturbed may be associated with adverse pregnancy outcomes. One major class of genes that is dependent on strict epigenetic regulation in the placenta is subject to genomic imprinting, the parent-of-origin-dependent monoallelic gene expression. This review discusses the differences in allelic expression and epigenetic profiles of imprinted genes that are identified between different species, which reflect the continuous evolutionary adaption of this form of epigenetic regulation. These observations divulge that placenta-specific imprinted gene that is reliant on repressive histone signatures in mice are unlikely to be imprinted in humans, whereas intense methylation profiling in humans has uncovered numerous maternally methylated regions that are restricted to the placenta that are not conserved in mice. Imprinting has been proposed to be a mechanism that regulates parental resource allocation and ultimately can influence fetal growth, with the placenta being the key in this process. Furthermore, I discuss the developmental dynamics of both classic and transient placenta-specific imprinting and examine the evidence for an involvement of these genes in intrauterine growth restriction and placenta-associated complications. Finally, I focus on examples of genes that are regulated aberrantly in complicated pregnancies, emphasizing their application as pregnancy-related disease biomarkers to aid the diagnosis of at-risk pregnancies early in gestation.
Collapse
Affiliation(s)
- David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain.
| |
Collapse
|
8
|
Ci W, Liu J. Programming and inheritance of parental DNA methylomes in vertebrates. Physiology (Bethesda) 2015; 30:63-8. [PMID: 25559156 DOI: 10.1152/physiol.00037.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5-Methylcytosine (5mC) is a major epigenetic modification in animals. The programming and inheritance of parental DNA methylomes ensures the compatibility for totipotency and embryonic development. In vertebrates, the DNA methylomes of sperm and oocyte are significantly different. During early embryogenesis, the paternal and maternal methylomes will reset to the same state. Herein, we focus on recent advances in how offspring obtain the DNA methylation information from parents in vertebrates.
Collapse
Affiliation(s)
- Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Being Institute of Genomics, CAS, Beijing, China; and
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Developmental windows of susceptibility for epigenetic inheritance through the male germline. Semin Cell Dev Biol 2015; 43:96-105. [DOI: 10.1016/j.semcdb.2015.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023]
|
10
|
Strogantsev R, Krueger F, Yamazawa K, Shi H, Gould P, Goldman-Roberts M, McEwen K, Sun B, Pedersen R, Ferguson-Smith AC. Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression. Genome Biol 2015; 16:112. [PMID: 26025256 PMCID: PMC4491874 DOI: 10.1186/s13059-015-0672-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Selective maintenance of genomic epigenetic imprints during pre-implantation development is required for parental origin-specific expression of imprinted genes. The Kruppel-like zinc finger protein ZFP57 acts as a factor necessary for maintaining the DNA methylation memory at multiple imprinting control regions in early mouse embryos and embryonic stem (ES) cells. Maternal-zygotic deletion of ZFP57 in mice presents a highly penetrant phenotype with no animals surviving to birth. Additionally, several cases of human transient neonatal diabetes are associated with somatic mutations in the ZFP57 coding sequence. RESULTS Here, we comprehensively map sequence-specific ZFP57 binding sites in an allele-specific manner using hybrid ES cell lines from reciprocal crosses between C57BL/6J and Cast/EiJ mice, assigning allele specificity to approximately two-thirds of all binding sites. While half of these are biallelic and include endogenous retrovirus (ERV) targets, the rest show monoallelic binding based either on parental origin or on genetic background of the allele. Parental-origin allele-specific binding is methylation-dependent and maps only to imprinting control differentially methylated regions (DMRs) established in the germline. We identify a novel imprinted gene, Fkbp6, which has a critical function in mouse male germ cell development. Genetic background-specific sequence differences also influence ZFP57 binding, as genetic variation that disrupts the consensus binding motif and its methylation is often associated with monoallelic expression of neighboring genes. CONCLUSIONS The work described here uncovers further roles for ZFP57-mediated regulation of genomic imprinting and identifies a novel mechanism for genetically determined monoallelic gene expression.
Collapse
Affiliation(s)
- Ruslan Strogantsev
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK. .,Present address: Epigenetics ISP, Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Felix Krueger
- Bioinformatics Department, Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Kazuki Yamazawa
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
| | - Hui Shi
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
| | - Poppy Gould
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
| | - Megan Goldman-Roberts
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
| | - Kirsten McEwen
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
| | - Bowen Sun
- The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK.
| | - Roger Pedersen
- The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK.
| | - Anne C Ferguson-Smith
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK. .,Present address: Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
11
|
Meredith GD, D'Ippolito A, Dudas M, Zeidner LC, Hostetter L, Faulds K, Arnold TH, Popkie AP, Doble BW, Marnellos G, Adams C, Wang Y, Phiel CJ. Glycogen synthase kinase-3 (Gsk-3) plays a fundamental role in maintaining DNA methylation at imprinted loci in mouse embryonic stem cells. Mol Biol Cell 2015; 26:2139-50. [PMID: 25833708 PMCID: PMC4472022 DOI: 10.1091/mbc.e15-01-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
A genome-wide analysis is given of DNA methylation in mouse embryonic stem cells in which both Gsk-3α and Gsk-3β have been genetically deleted. DNA methylation patterns are compared to those of wild-type cells. More than 75% of known imprinted loci have reduced DNA methylation in the Gsk-3–knockout cells. Glycogen synthase kinase-3 (Gsk-3) is a key regulator of multiple signal transduction pathways. Recently we described a novel role for Gsk-3 in the regulation of DNA methylation at imprinted loci in mouse embryonic stem cells (ESCs), suggesting that epigenetic changes regulated by Gsk-3 are likely an unrecognized facet of Gsk-3 signaling. Here we extend our initial observation to the entire mouse genome by enriching for methylated DNA with the MethylMiner kit and performing next-generation sequencing (MBD-Seq) in wild-type and Gsk-3α−/−;Gsk-3β−/− ESCs. Consistent with our previous data, we found that 77% of known imprinted loci have reduced DNA methylation in Gsk-3-deficient ESCs. More specifically, we unambiguously identified changes in DNA methylation within regions that have been confirmed to function as imprinting control regions. In many cases, the reduced DNA methylation at imprinted loci in Gsk-3α−/−;Gsk-3β−/− ESCs was accompanied by changes in gene expression as well. Furthermore, many of the Gsk-3–dependent, differentially methylated regions (DMRs) are identical to the DMRs recently identified in uniparental ESCs. Our data demonstrate the importance of Gsk-3 activity in the maintenance of DNA methylation at a majority of the imprinted loci in ESCs and emphasize the importance of Gsk-3–mediated signal transduction in the epigenome.
Collapse
Affiliation(s)
| | - Anthony D'Ippolito
- Thermo Fisher Scientific, Carlsbad, CA 92008 Center for Human and Molecular Genetics, Nationwide Children's Hospital, Columbus, OH 43205
| | | | - Leigh C Zeidner
- Center for Human and Molecular Genetics, Nationwide Children's Hospital, Columbus, OH 43205
| | - Logan Hostetter
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Kelsie Faulds
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Thomas H Arnold
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Anthony P Popkie
- Graduate Program in Molecular, Cellular and Developmental Biology, Ohio State University, Columbus, OH 43210
| | - Bradley W Doble
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | | - Yulei Wang
- Thermo Fisher Scientific, Foster City, CA 94404
| | - Christopher J Phiel
- Center for Human and Molecular Genetics, Nationwide Children's Hospital, Columbus, OH 43205 Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| |
Collapse
|
12
|
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J. Programming and inheritance of parental DNA methylomes in mammals. Cell 2014; 157:979-991. [PMID: 24813617 DOI: 10.1016/j.cell.2014.04.017] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.
Collapse
Affiliation(s)
- Lu Wang
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jialei Duan
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinxing Gao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Wei Zhu
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Lu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Lu Yang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Zhang
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoqiang Li
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Ci
- Laboratory of Disease Genomics and Individualized Medicine Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Zhou
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Neel Aluru
- Woods Hole Oceanographic Institution, MA 02543, USA
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Xingxu Huang
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Duffié R, Ajjan S, Greenberg MV, Zamudio N, Escamilla del Arenal M, Iranzo J, Okamoto I, Barbaux S, Fauque P, Bourc'his D. The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals. Genes Dev 2014; 28:463-78. [PMID: 24589776 PMCID: PMC3950344 DOI: 10.1101/gad.232058.113] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development. Whether this form of transient genomic imprinting could functionally impact mammalian genome regulation is unknown. Here, Duffié et al. describe a mechanism by which a transient maternal imprint at the mouse Gpr1/Zdbf2 locus regulates the paternal-specific expression of long isoforms of Zdbf2 (Liz) in the early embryo. This study demonstrates the potential for short-term and long-term effects of genomic imprinting on mammalian genome regulation. Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development: Whether this form of transient genomic imprinting can impact the early embryonic transcriptome or even have life-long consequences on genome regulation and possibly phenotypes is currently unknown. Here, we report a maternal germline differentially methylated region (DMR) at the mouse Gpr1/Zdbf2 (DBF-type zinc finger-containing protein 2) locus, which controls the paternal-specific expression of long isoforms of Zdbf2 (Liz) in the early embryo. This DMR loses parental specificity by gain of DNA methylation at implantation in the embryo but is maintained in extraembryonic tissues. As a consequence of this transient, tissue-specific maternal imprinting, Liz expression is restricted to the pluripotent embryo, extraembryonic tissues, and pluripotent male germ cells. We found that Liz potentially functions as both Zdbf2-coding RNA and cis-regulatory RNA. Importantly, Liz-mediated events allow a switch from maternal to paternal imprinted DNA methylation and from Liz to canonical Zdbf2 promoter use during embryonic differentiation, which are stably maintained through somatic life and conserved in humans. The Gpr1/Zdbf2 locus lacks classical imprinting histone modifications, but analysis of mutant embryonic stem cells reveals fine-tuned regulation of Zdbf2 dosage through DNA and H3K27 methylation interplay. Together, our work underlines the developmental and evolutionary need to ensure proper Liz/Zdbf2 dosage as a driving force for dynamic genomic imprinting at the Gpr1/Zdbf2 locus.
Collapse
Affiliation(s)
- Rachel Duffié
- INSERM U934/CNRS UMR3215, Institut Curie, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Provençal N, Suderman MJ, Guillemin C, Vitaro F, Côté SM, Hallett M, Tremblay RE, Szyf M. Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One 2014; 9:e89839. [PMID: 24691403 PMCID: PMC3972178 DOI: 10.1371/journal.pone.0089839] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chronic physical aggression (CPA) is characterized by frequent use of physical aggression from early childhood to adolescence. Observed in approximately 5% of males, CPA is associated with early childhood adverse environments and long-term negative consequences. Alterations in DNA methylation, a covalent modification of DNA that regulates genome function, have been associated with early childhood adversity. AIMS To test the hypothesis that a trajectory of chronic physical aggression during childhood is associated with a distinct DNA methylation profile during adulthood. METHODS We analyzed genome-wide promoter DNA methylation profiles of T cells from two groups of adult males assessed annually for frequency of physical aggression between 6 and 15 years of age: a group with CPA and a control group. Methylation profiles covering the promoter regions of 20 000 genes and 400 microRNAs were generated using MeDIP followed by hybridization to microarrays. RESULTS In total, 448 distinct gene promoters were differentially methylated in CPA. Functionally, many of these genes have previously been shown to play a role in aggression and were enriched in biological pathways affected by behavior. Their locations in the genome tended to form clusters spanning millions of bases in the genome. CONCLUSIONS This study provides evidence of clustered and genome-wide variation in promoter DNA methylation in young adults that associates with a history of chronic physical aggression from 6 to 15 years of age. However, longitudinal studies of methylation during early childhood will be necessary to determine if and how this methylation variation in T cells DNA plays a role in early development of chronic physical aggression.
Collapse
Affiliation(s)
- Nadine Provençal
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| | - Matthew J. Suderman
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Claire Guillemin
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| | - Frank Vitaro
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- School of Psycho-Education, University of Montreal, Montréal, Quebec, Canada
| | - Sylvana M. Côté
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- School of Social and Preventive Medicine, University of Montreal, Montréal, Quebec, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Richard E. Tremblay
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Department of Psychology and Pediatrics, University of Montreal, Montreal, Quebec, Canada
- School of Public Health, Physiotherapy and Population Sciences, University College Dublin, Dublin, Ireland
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, Sugahara N, Simón C, Moore H, Harness JV, Keirstead H, Sanchez-Mut JV, Kaneki E, Lapunzina P, Soejima H, Wake N, Esteller M, Ogata T, Hata K, Nakabayashi K, Monk D. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 2014; 24:554-69. [PMID: 24402520 PMCID: PMC3975056 DOI: 10.1101/gr.164913.113] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/26/2013] [Indexed: 12/16/2022]
Abstract
Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.
Collapse
Affiliation(s)
- Franck Court
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Valeria Romanelli
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Isabel Iglesias-Platas
- Servicio de Neonatología, Hospital Sant Joan de Déu, Fundació Sant Joan de Déu, 08950 Barcelona, Spain
| | - Kohji Okamura
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Naoko Sugahara
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Carlos Simón
- Fundación IVI-Instituto Universitario IVI-Universidad de Valencia, INCLIVA, 46980 Paterna, Valencia, Spain
| | - Harry Moore
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Julie V. Harness
- Reeve-Irvine Research Centre, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Hans Keirstead
- Reeve-Irvine Research Centre, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Jose Vicente Sanchez-Mut
- Cancer Epigenetics Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Eisuke Kaneki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular, CIBERER, IDIPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28046 Madrid, Spain
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Norio Wake
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| |
Collapse
|
16
|
Kobayashi H, Higashiura Y, Koike N, Akasaka J, Uekuri C, Iwai K, Niiro E, Morioka S, Yamada Y. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes. Reprod Sci 2014; 21:966-972. [PMID: 24615936 DOI: 10.1177/1933719114526473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is now accumulating evidence that endometriosis is a disease associated with an epigenetic disorder. Genomic imprinting is an epigenetic phenomenon known to regulate DNA methylation of either maternal or paternal alleles. We hypothesize that hypermethylated endometriosis-associated genes may be enriched at imprinted gene loci. We sought to determine whether downregulated genes associated with endometriosis susceptibility are associated with chromosomal location of the known paternally and maternally expressed imprinting genes. Gene information has been gathered from National Center for Biotechnology Information database geneimprint.com. Several researchers have identified specific loci with strong DNA methylation in eutopic endometrium and ectopic lesion with endometriosis. Of the 29 hypermethylated genes in endometriosis, 19 genes were located near 45 known imprinted foci. There may be an association of the genomic location between genes specifically downregulated in endometriosis and epigenetically imprinted genes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yumi Higashiura
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Natsuki Koike
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Juria Akasaka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Kana Iwai
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Emiko Niiro
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Sachiko Morioka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
17
|
Tran DA, Bai AY, Singh P, Wu X, Szabó PE. Characterization of the imprinting signature of mouse embryo fibroblasts by RNA deep sequencing. Nucleic Acids Res 2013; 42:1772-83. [PMID: 24217910 PMCID: PMC3919614 DOI: 10.1093/nar/gkt1042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mouse embryo fibroblasts (MEFs) are convenient sources for biochemical studies when cell number in mouse embryos is limiting. To derive the imprinting signature of MEFs and potentially detect novel imprinted genes we performed strand- and allele-specific RNA deep sequencing. We used sequenom allelotyping in embryo and adult organs to verify parental allele-specific expression. Thirty-two known ubiquitously imprinted genes displayed correct parental allele-specific transcripts in MEFs. Our analysis did not reveal any novel imprinted genes, but detected extended parental allele-specific transcripts in several known imprinted domains: maternal allele-specific transcripts downstream of Grb10 and downstream of Meg3, Rtl1as and Rian in the Dlk1-Dio3 cluster, an imprinted domain implicated in development and pluripotency. We detected paternal allele-specific transcripts downstream of Nespas, Peg3, Peg12 and Snurf/Snrpn. These imprinted transcript extensions were not unique to MEFs, but were also present in other somatic cells. The 5′ end points of the imprinted transcript extensions did not carry opposing chromatin marks or parental allele-specific DNA methylation, suggesting that their parental allele-specific transcription is under the control of the extended imprinted genes. Based on the imprinting signature of MEFs, these cells provide valid models for understanding the biochemical aspects of genomic imprinting.
Collapse
Affiliation(s)
- Diana A Tran
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA, Eugene and Ruth Roberts Summer Academy, City of Hope National Medical Center, Duarte, CA 91010, USA and Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
18
|
MacDonald WA, Mann MRW. Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev 2013; 81:126-40. [PMID: 23893518 DOI: 10.1002/mrd.22220] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/20/2013] [Indexed: 01/25/2023]
Abstract
Genomic imprinting is an epigenetic process that distinguishes parental alleles, resulting in parent-specific expression of a gene or cluster of genes. Imprints are acquired during gametogenesis when genome-wide epigenetic remodeling occurs. These imprints must then be maintained during preimplantation development, when another wave of genome-wide epigenetic remodeling takes place. Thus, for imprints to persist as parent-specific epigenetic marks, coordinated factors and processes must be involved to both recognize an imprint and protect it from genome-wide remodeling. Parent-specific DNA methylation has long been recognized as a primary epigenetic mark demarcating a genomic imprint. Recent work has advanced our understanding of how and when parent-specific DNA methylation is erased and acquired in the germ line as well as maintained during preimplantation development. Epigenetic factors have also been identified that are recruited to imprinted regions to protect them from genome-wide DNA demethylation during preimplantation development. Intriguingly, asynchrony in epigenetic reprogramming appears to be a recurrent theme with asynchronous acquisition between male and female germ lines, between different imprinted genes, and between the two parental alleles of a gene. Here, we review recent advancements and discuss how they impact our current understanding of the epigenetic regulation of genomic imprinting.
Collapse
Affiliation(s)
- William A MacDonald
- Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | | |
Collapse
|
19
|
Singh P, Li AX, Tran DA, Oates N, Kang ER, Wu X, Szabó PE. De novo DNA methylation in the male germ line occurs by default but is excluded at sites of H3K4 methylation. Cell Rep 2013; 4:205-19. [PMID: 23810559 DOI: 10.1016/j.celrep.2013.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/01/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022] Open
Abstract
To understand what dictates the emerging patterns of de novo DNA methylation in the male germline, we mapped DNA methylation, chromatin, and transcription changes in purified fetal mouse germ cells by using methylated CpG island recovery assay (MIRA)-chip, chromatin immunoprecipitation (ChIP)-chip, and strand-specific RNA deep sequencing, respectively. Global de novo methylation occurred by default in prospermatogonia without any apparent trigger from preexisting repressive chromatin marks but was preceded by broad, low-level transcription along the chromosomes, including the four known paternally imprinted differentially methylated regions (DMRs). Default methylation was excluded only at precisely aligned constitutive or emerging peaks of H3K4me2, including most CpG islands and some intracisternal A particles (IAPs). Similarly, each maternally imprinted DMR was protected from default DNA methylation among highly methylated DNA by an H3K4me2 peak and transcription initiation at least in one strand. Our results suggest that the pattern of de novo DNA methylation in prospermatogonia is dictated by opposing actions of broad, low-level transcription and dynamic patterns of active chromatin.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Stelzer Y, Ronen D, Bock C, Boyle P, Meissner A, Benvenisty N. Identification of novel imprinted differentially methylated regions by global analysis of human-parthenogenetic-induced pluripotent stem cells. Stem Cell Reports 2013; 1:79-89. [PMID: 24052944 PMCID: PMC3757747 DOI: 10.1016/j.stemcr.2013.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022] Open
Abstract
Parental imprinting is an epigenetic phenomenon by which genes are expressed in a monoallelic fashion, according to their parent of origin. DNA methylation is considered the hallmark mechanism regulating parental imprinting. To identify imprinted differentially methylated regions (DMRs), we compared the DNA methylation status between multiple normal and parthenogenetic human pluripotent stem cells (PSCs) by performing reduced representation bisulfite sequencing. Our analysis identified over 20 previously unknown imprinted DMRs in addition to the known DMRs. These include DMRs in loci associated with human disorders, and a class of intergenic DMRs that do not seem to be related to gene expression. Furthermore, the study showed some DMRs to be unstable, liable to differentiation or reprogramming. A comprehensive comparison between mouse and human DMRs identified almost half of the imprinted DMRs to be species specific. Taken together, our data map novel DMRs in the human genome, their evolutionary conservation, and relation to gene expression.
Collapse
Affiliation(s)
- Yonatan Stelzer
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
21
|
Kobayashi H, Yanagisawa E, Sakashita A, Sugawara N, Kumakura S, Ogawa H, Akutsu H, Hata K, Nakabayashi K, Kono T. Epigenetic and transcriptional features of the novel human imprinted lncRNA GPR1AS suggest it is a functional ortholog to mouse Zdbf2linc. Epigenetics 2013; 8:635-45. [PMID: 23764515 PMCID: PMC3857343 DOI: 10.4161/epi.24887] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), transcribed from the intergenic regions of animal genomes, play important roles in key biological processes. In mice, Zdbf2linc was recently identified as an lncRNA isoform of the paternally expressed imprinted Zdbf2 gene. The functional role of Zdbf2linc remains undefined, but it may control parent-of-origin-specific expression of protein-coding neighbors through epigenetic modification in cis, similar to imprinted Nespas, Kcnq1ot1 and Airn lncRNAs. Here, we identified a novel imprinted long-range non-coding RNA, termed GPR1AS, in the human GPR1-ZDBF2 intergenic region. Although GPR1AS contains no human ZDBF2 exons, this lncRNA is transcribed in the antisense orientation from the GPR1 intron to a secondary, differentially methylated region upstream of the ZDBF2 gene (ZDBF2 DMR), similar to mouse Zdbf2linc. Interestingly, GPR1AS/Zdbf2linc is exclusively expressed in human/mouse placenta with paternal-allele-specific expression and maternal-allele-specific promoter methylation (GPR1/Gpr1 DMR). The paternal-allele specific methylation of the secondary ZDBF2 DMR was established in human placentas as well as somatic lineage. Meanwhile, the ZDBF2 gene showed stochastic paternal-allele-specific expression, possibly methylation-independent, in placental tissues. Overall, we demonstrated that epigenetic regulation mechanisms in the imprinted GPR1-GPR1AS-ZDBF2 region were well-conserved between human and mouse genomes without the high sequence conservation of the intergenic lncRNAs. Our findings also suggest that lncRNAs with highly conserved epigenetic and transcriptional regulation across species arose by divergent evolution from a common ancestor, if they do not have identical exon structures.
Collapse
Affiliation(s)
- Hisato Kobayashi
- Department of BioScience; Tokyo University of Agriculture; Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hiura H, Toyoda M, Okae H, Sakurai M, Miyauchi N, Sato A, Kiyokawa N, Okita H, Miyagawa Y, Akutsu H, Nishino K, Umezawa A, Arima T. Stability of genomic imprinting in human induced pluripotent stem cells. BMC Genet 2013; 14:32. [PMID: 23631808 PMCID: PMC3751563 DOI: 10.1186/1471-2156-14-32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/22/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND hiPSCs are generated through epigenetic reprogramming of somatic tissue. Genomic imprinting is an epigenetic phenomenon through which monoallelic gene expression is regulated in a parent-of-origin-specific manner. Reprogramming relies on the successful erasure of marks of differentiation while maintaining those required for genomic imprinting. Loss of imprinting (LOI), which occurs in many types of malignant tumors, would hinder the clinical application of hiPSCs. RESULTS We examined the imprinting status, expression levels and DNA methylation status of eight imprinted genes in five independently generated hiPSCs. We found a low frequency of LOI in some lines. Where LOI was identified in an early passage cell line, we found that this was maintained through subsequent passages of the cells. Just as normal imprints are maintained in long-term culture, this work suggests that abnormal imprints are also stable in culture. CONCLUSIONS Analysis of genomic imprints in hiPSCs is a necessary safety step in regenerative medicine, with relevance both to the differentiation potential of these stem cells and also their potential tumorigenic properties.
Collapse
Affiliation(s)
- Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
24
|
The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J Neurosci 2013; 32:15626-42. [PMID: 23115197 DOI: 10.1523/jneurosci.1470-12.2012] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Early-life adversity is associated with a broad scope of life-long health and behavioral disorders. Particularly critical is the role of the mother. A possible mechanism is that these effects are mediated by "epigenetic" mechanisms. Studies in rodents suggest a causal relationship between early-life adversity and changes in DNA methylation in several "candidate genes" in the brain. This study examines whether randomized differential rearing (maternal vs surrogate-peer rearing) of rhesus macaques is associated with differential methylation in early adulthood. The data presented here show that differential rearing leads to differential DNA methylation in both prefrontal cortex and T cells. These differentially methylated promoters tend to cluster by both chromosomal region and gene function. The broad impact of maternal rearing on DNA methylation in both the brain and T cells supports the hypothesis that the response to early-life adversity is system-wide and genome-wide and persists to adulthood. Our data also point to the feasibility of studying the impact of the social environment in peripheral T-cell DNA methylation.
Collapse
|
25
|
Abstract
Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.
Collapse
Affiliation(s)
- Xiajun Li
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
| |
Collapse
|
26
|
Strogantsev R, Ferguson-Smith AC. Proteins involved in establishment and maintenance of imprinted methylation marks. Brief Funct Genomics 2012; 11:227-39. [PMID: 22760206 DOI: 10.1093/bfgp/els018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic phenomena are being increasingly recognized to play key roles in normal mammalian development and disease. This is exemplified by the process of genomic imprinting whereby despite identical DNA sequence, the two parental chromosomes are not equivalent and show either maternal- or paternal-specific expression at a subset of genes in the genome. These patterns are set up by differential DNA methylation marking at the imprinting control regions in male and female germ line. In this review, we discuss the specific mechanisms by which these methyl marks are established and then selectively maintained throughout pre-implantation development. Specifically, we discuss the recent findings of a critical role played by a KRAB zinc-finger protein ZFP57 and its co-factor KAP1/TRIM28 in mediating both processes.
Collapse
Affiliation(s)
- Ruslan Strogantsev
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | | |
Collapse
|
27
|
Proudhon C, Duffié R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, Saadeh H, Holland ML, Oakey RJ, Rakyan VK, Schulz R, Bourc'his D. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol Cell 2012; 47:909-20. [PMID: 22902559 PMCID: PMC3778900 DOI: 10.1016/j.molcel.2012.07.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/01/2012] [Accepted: 07/06/2012] [Indexed: 11/25/2022]
Abstract
Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life.
Collapse
|
28
|
Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 2012; 148:816-31. [PMID: 22341451 DOI: 10.1016/j.cell.2011.12.035] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/22/2011] [Accepted: 12/29/2011] [Indexed: 11/21/2022]
Abstract
Differential methylation of the two parental genomes in placental mammals is essential for genomic imprinting and embryogenesis. To systematically study this epigenetic process, we have generated a base-resolution, allele-specific DNA methylation (ASM) map in the mouse genome. We find parent-of-origin dependent (imprinted) ASM at 1,952 CG dinucleotides. These imprinted CGs form 55 discrete clusters including virtually all known germline differentially methylated regions (DMRs) and 23 previously unknown DMRs, with some occurring at microRNA genes. We also identify sequence-dependent ASM at 131,765 CGs. Interestingly, methylation at these sites exhibits a strong dependence on the immediate adjacent bases, allowing us to define a conserved sequence preference for the mammalian DNA methylation machinery. Finally, we report a surprising presence of non-CG methylation in the adult mouse brain, with some showing evidence of imprinting. Our results provide a resource for understanding the mechanisms of imprinting and allele-specific gene expression in mammalian cells.
Collapse
|
29
|
Abstract
Prolonged seizures (status epilepticus) produce pathophysiological changes in the hippocampus that are associated with large-scale, wide-ranging changes in gene expression. Epileptic tolerance is an endogenous program of cell protection that can be activated in the brain by previous exposure to a non-harmful seizure episode before status epilepticus. A major transcriptional feature of tolerance is gene downregulation. Here, through methylation analysis of 34,143 discrete loci representing all annotated CpG islands and promoter regions in the mouse genome, we report the genome-wide DNA methylation changes in the hippocampus after status epilepticus and epileptic tolerance in adult mice. A total of 321 genes showed altered DNA methylation after status epilepticus alone or status epilepticus that followed seizure preconditioning, with >90% of the promoters of these genes undergoing hypomethylation. These profiles included genes not previously associated with epilepsy, such as the polycomb gene Phc2. Differential methylation events generally occurred throughout the genome without bias for a particular chromosomal region, with the exception of a small region of chromosome 4, which was significantly overrepresented with genes hypomethylated after status epilepticus. Surprisingly, only few genes displayed differential hypermethylation in epileptic tolerance. Nevertheless, gene ontology analysis emphasized the majority of differential methylation events between the groups occurred in genes associated with nuclear functions, such as DNA binding and transcriptional regulation. The present study reports select, genome-wide DNA methylation changes after status epilepticus and in epileptic tolerance, which may contribute to regulating the gene expression environment of the seizure-damaged hippocampus.
Collapse
|
30
|
Kobayashi H, Sakurai T, Sato S, Nakabayashi K, Hata K, Kono T. Imprinted DNA methylation reprogramming during early mouse embryogenesis at the Gpr1-Zdbf2 locus is linked to long cis-intergenic transcription. FEBS Lett 2012; 586:827-33. [PMID: 22449967 DOI: 10.1016/j.febslet.2012.01.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
Abstract
The paternally-expressed imprinted genes Gpr1 and Zdbf2 form a gene cluster wherein the imprinted-methylated regions of these two genes differ. We identified a novel, paternally expressed, long intergenic non-coding Zdbf2 variant (Zdbf2linc) transcribed from maternally methylated Gpr1 DMR during early embryogenesis in the mouse. While the Gpr1 DMR displayed biallelic hypermethylation, Zdbf2linc expression was rarely observed in the post-gastrulation, despite a positive correlation between the methylation of Zdbf2 DMRs and the mono-allelic transcription of the original Zdbf2 coding variant. Furthermore, lack of the maternal methylation imprint resulted in the biallelic expression of both coding and non-coding Zdbf2 transcripts as well as complete methylation of Zdbf2 DMRs. Globally, our findings suggest the role of Zdbf2linc in the establishment of secondary epigenetic modifications after implantation.
Collapse
Affiliation(s)
- Hisato Kobayashi
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 2012; 8:e1002440. [PMID: 22242016 PMCID: PMC3252278 DOI: 10.1371/journal.pgen.1002440] [Citation(s) in RCA: 382] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/14/2011] [Indexed: 12/14/2022] Open
Abstract
Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells. In mammals, germ-cell–specific methylation patterns and genomic imprints are established throughout large-scale de novo DNA methylation in oogenesis and spermatogenesis. These steps are required for normal germline differentiation and embryonic development; however, current DNA methylation analyses only provide us a partial picture of germ cell methylome. To the best of our knowledge, this is the first study to generate comprehensive maps of DNA methylomes and transcriptomes at single base resolution for mouse germ cells. These methylome maps revealed genome-wide opposing DNA methylation patterns and differential correlation between methylation and gene expression levels in oocyte and sperm genomes. In addition, our results indicate the presence of 2 types of methylation patterns in the oocytes: (i) methylation across the transcribed regions, which might be required for the establishment of maternal methylation imprints and normal embryogenesis, and (ii) retroviral methylation, which might be essential for silencing of retrotransposons and normal oogenesis. We believe that an extension of this work would lead to a better understanding of the epigenetic reprogramming in germline cells and of the role for gene regulations.
Collapse
Affiliation(s)
- Hisato Kobayashi
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takayuki Sakurai
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Misaki Imai
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Nozomi Takahashi
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Atsushi Fukuda
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Obata Yayoi
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shun Sato
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier, The University of Tokyo, Kashiwa, Japan
| | - Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
- * E-mail:
| |
Collapse
|
32
|
Antisense noncoding RNA promoter regulates the timing of de novo methylation of an imprinting control region. Dev Biol 2012; 361:403-11. [DOI: 10.1016/j.ydbio.2011.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/24/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022]
|
33
|
Henckel A, Chebli K, Kota SK, Arnaud P, Feil R. Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO J 2011; 31:606-15. [PMID: 22117218 DOI: 10.1038/emboj.2011.425] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
Genomic imprinting in mammals is controlled by DNA methylation imprints that are acquired in the gametes, at essential sequence elements called 'imprinting control regions' (ICRs). What signals paternal imprint acquisition in male germ cells remains unknown. To address this question, we explored histone methylation at ICRs in mouse primordial germ cells (PGCs). By 13.5 days post coitum (d.p.c.), H3 lysine-9 and H4 lysine-20 trimethylation are depleted from ICRs in male (and female) PGCs, indicating that these modifications do not signal subsequent imprint acquisition, which initiates at ∼15.5 d.p.c. Furthermore, during male PGC development, H3 lysine-4 trimethylation becomes biallelically enriched at 'maternal' ICRs, which are protected against DNA methylation, and whose promoters are active in the male germ cells. Remarkably, high transcriptional read-through is detected at the paternal ICRs H19-DMR and Ig-DMR at the time of imprint establishment, from one of the strands predominantly. Combined, our data evoke a model in which differential histone modification states linked to transcriptional events may signal the specificity of imprint acquisition during spermatogenesis.
Collapse
Affiliation(s)
- Amandine Henckel
- Institute of Molecular Genetics (IGMM), CNRS, Universities of Montpellier I and II, Montpellier, France
| | | | | | | | | |
Collapse
|
34
|
Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S, Chiba H, Yaegashi N, Nakayama K, Sasaki H, Arima T. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet 2011; 21:548-58. [PMID: 22025075 DOI: 10.1093/hmg/ddr488] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the vertebrate groups, only mammals are subject to a specialized epigenetic process termed genomic imprinting in which genes are preferentially expressed from one parental allele. Imprinted expression has been reported for >100 mouse genes and, for approximately one-quarter of these genes, the imprinted expression is specific to the placenta (or extraembryonic tissues). This seemingly placenta-specific imprinted expression has garnered much attention, as has the apparent lack of conserved imprinting between the human and mouse placenta. In this study, we used a novel approach to re-investigate the placenta-specific expression using embryo transfer and trophoblast stem cells. We analyzed 20 genes previously reported to show maternal allele-specific expression in the placenta, and only 8 genes were confirmed to be imprinted. Other genes were likely to be falsely identified as imprinted due to their relatively high expression in contaminating maternal cells. Next, we performed a genome-wide transcriptome assay and identified 133 and 955 candidate imprinted genes with paternal allele- and maternal allele-specific expression. Of those we analyzed in detail, 1/6 (Gab1) of the candidates for paternal allele-specific expression and only 1/269 (Ano1) candidates for maternal allele-specific expression were authentically imprinted genes. Imprinting of Ano1 and Gab1 was specific to the placenta and neither gene displayed allele-specific promoter DNA methylation. Imprinting of ANO1, but not GAB1, was conserved in the human placenta. Our findings impose a considerable revision of the current views of placental imprinting.
Collapse
Affiliation(s)
- Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Murrell A. Setting up and maintaining differential insulators and boundaries for genomic imprinting. Biochem Cell Biol 2011; 89:469-78. [PMID: 21936680 DOI: 10.1139/o11-043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is becoming increasingly clear that gene expression is strongly regulated by the surrounding chromatin and nuclear environment. Gene regulatory elements can influence expression over long distances and the genome needs mechanisms whereby transcription can be contained. Our current understanding of the mechanisms whereby insulator/boundary elements organise the genome into active and silent domains is based on chromatin looping models that separate genes and regulatory elements. Imprinted genes have parent-of-origin specific chromatin conformation that seems to be maintained in somatic tissues and reprogrammed in the germline. This review focuses on the proteins found to be present at insulator/boundary sequences at imprinted genes and examines the experimental evidence at the IGF2-H19 locus for a model in which CTCF or other proteins determine primary looping scaffolds that are maintained in most cell lineages and speculates how these loops may enable dynamic secondary associations that can activate or silence genes.
Collapse
|
36
|
Nakabayashi K, Trujillo AM, Tayama C, Camprubi C, Yoshida W, Lapunzina P, Sanchez A, Soejima H, Aburatani H, Nagae G, Ogata T, Hata K, Monk D. Methylation screening of reciprocal genome-wide UPDs identifies novel human-specific imprinted genes. Hum Mol Genet 2011; 20:3188-97. [PMID: 21593219 DOI: 10.1093/hmg/ddr224] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nuclear transfer experiments undertaken in the mid-80's revealed that both maternal and paternal genomes are necessary for normal development. This is due to genomic imprinting, an epigenetic mechanism that results in parent-of-origin monoallelic expression of genes regulated by germline-derived allelic methylation. To date, ∼100 imprinted transcripts have been identified in mouse, with approximately two-thirds showing conservation in humans. It is currently unknown how many imprinted genes are present in humans, and to what extent these transcripts exhibit human-specific imprinted expression. This is mainly due to the fact that the majority of screens for imprinted genes have been undertaken in mouse, with subsequent analysis of the human orthologues. Utilizing extremely rare reciprocal genome-wide uniparental disomy samples presenting with Beckwith-Wiedemann and Silver-Russell syndrome-like phenotypes, we analyzed ∼0.1% of CpG dinculeotides present in the human genome for imprinted differentially methylated regions (DMRs) using the Illumina Infinium methylation27 BeadChip microarray. This approach identified 15 imprinted DMRs associated with characterized imprinted domains, and confirmed the maternal methylation of the RB1 DMR. In addition, we discovered two novel DMRs, first, one maternally methylated region overlapping the FAM50B promoter CpG island, which results in paternal expression of this retrotransposon. Secondly, we found a paternally methylated, bidirectional repressor located between maternally expressed ZNF597 and NAT15 genes. These three genes are biallelically expressed in mice due to lack of differential methylation, suggesting that these genes have become imprinted after the divergence of mouse and humans.
Collapse
Affiliation(s)
- Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation. Mol Cell Biol 2011; 31:1757-70. [PMID: 21321082 DOI: 10.1128/mcb.00961-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.
Collapse
|
38
|
Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res 2011; 21:465-76. [PMID: 21324877 DOI: 10.1101/gr.111922.110] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Imprinted genes are critical for normal human growth and neurodevelopment. They are characterized by differentially methylated regions (DMRs) of DNA that confer parent of origin-specific transcription. We developed a new strategy to identify imprinted gene-associated DMRs. Using genome-wide methylation profiling of sodium bisulfite modified DNA from normal human tissues of biparental origin, candidate DMRs were identified by selecting CpGs with methylation levels consistent with putative allelic differential methylation. In parallel, the methylation profiles of tissues of uniparental origin, i.e., paternally-derived androgenetic complete hydatidiform moles (AnCHMs), and maternally-derived mature cystic ovarian teratoma (MCT), were examined and then used to identify CpGs with parent of origin-specific DNA methylation. With this approach, we found known DMRs associated with imprinted genomic regions as well as new DMRs for known imprinted genes, NAP1L5 and ZNF597, and novel candidate imprinted genes. The paternally methylated DMR for one candidate, AXL, a receptor tyrosine kinase, was also validated in experiments with mouse embryos that demonstrated Axl was expressed preferentially from the maternal allele in a DNA methylation-dependent manner.
Collapse
Affiliation(s)
- Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li Y, Sasaki H. Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res 2011; 21:466-73. [PMID: 21283132 DOI: 10.1038/cr.2011.15] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genomic imprinting, an epigenetic gene-marking phenomenon that occurs in the germline, leads to parental-origin-specific expression of a small subset of genes in mammals. Imprinting has a great impact on normal mammalian development, fetal growth, metabolism and adult behavior. The epigenetic imprints regarding the parental origin are established during male and female gametogenesis, passed to the zygote through fertilization, maintained throughout development and adult life, and erased in primordial germ cells before the new imprints are set. In this review, we focus on the recent discoveries on the mechanisms involved in the reprogramming and maintenance of the imprints. We also discuss the epigenetic changes that occur at imprinted loci in induced pluripotent stem cells.
Collapse
Affiliation(s)
- Yufeng Li
- Division of Epigenomics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
40
|
Schulz R, Proudhon C, Bestor TH, Woodfine K, Lin CS, Lin SP, Prissette M, Oakey RJ, Bourc'his D. The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet 2010; 6:e1001214. [PMID: 21124941 PMCID: PMC2987832 DOI: 10.1371/journal.pgen.1001214] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 10/20/2010] [Indexed: 11/24/2022] Open
Abstract
In mammals, imprinted gene expression results from the sex-specific methylation of imprinted control regions (ICRs) in the parental germlines. Imprinting is linked to therian reproduction, that is, the placenta and imprinting emerged at roughly the same time and potentially co-evolved. We assessed the transcriptome-wide and ontology effect of maternally versus paternally methylated ICRs at the developmental stage of setting of the chorioallantoic placenta in the mouse (8.5dpc), using two models of imprinting deficiency including completely imprint-free embryos. Paternal and maternal imprints have a similar quantitative impact on the embryonic transcriptome. However, transcriptional effects of maternal ICRs are qualitatively focused on the fetal-maternal interface, while paternal ICRs weakly affect non-convergent biological processes, with little consequence for viability at 8.5dpc. Moreover, genes regulated by maternal ICRs indirectly influence genes regulated by paternal ICRs, while the reverse is not observed. The functional dominance of maternal imprints over early embryonic development is potentially linked to selection pressures favoring methylation-dependent control of maternal over paternal ICRs. We previously hypothesized that the different methylation histories of ICRs in the maternal versus the paternal germlines may have put paternal ICRs under higher mutational pressure to lose CpGs by deamination. Using comparative genomics of 17 extant mammalian species, we show here that, while ICRs in general have been constrained to maintain more CpGs than non-imprinted sequences, the rate of CpG loss at paternal ICRs has indeed been higher than at maternal ICRs during evolution. In fact, maternal ICRs, which have the characteristics of CpG-rich promoters, have gained CpGs compared to non-imprinted CpG-rich promoters. Thus, the numerical and, during early embryonic development, functional dominance of maternal ICRs can be explained as the consequence of two orthogonal evolutionary forces: pressure to tightly regulate genes affecting the fetal-maternal interface and pressure to avoid the mutagenic environment of the paternal germline.
Collapse
Affiliation(s)
- Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | | | - Timothy H. Bestor
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Kathryn Woodfine
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Chyuan-Sheng Lin
- Transgenic Animal Facility, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Marine Prissette
- Department of Pathology, Columbia University, New York, New York, United States of America
| | - Rebecca J. Oakey
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | | |
Collapse
|
41
|
Jia J, Pekowska A, Jaeger S, Benoukraf T, Ferrier P, Spicuglia S. Assessing the efficiency and significance of Methylated DNA Immunoprecipitation (MeDIP) assays in using in vitro methylated genomic DNA. BMC Res Notes 2010; 3:240. [PMID: 20846371 PMCID: PMC2949662 DOI: 10.1186/1756-0500-3-240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation contributes to the regulation of gene expression during development and cellular differentiation. The recently developed Methylated DNA ImmunoPrecipitation (MeDIP) assay allows a comprehensive analysis of this epigenetic mark at the genomic level in normal and disease-derived cells. However, estimating the efficiency of the MeDIP technique is difficult without previous knowledge of the methylation status of a given cell population. Attempts to circumvent this problem have involved the use of in vitro methylated DNA in parallel to the investigated samples. Taking advantage of this stratagem, we sought to improve the sensitivity of the approach and to assess potential biases resulting from DNA amplification and hybridization procedures using MeDIP samples. FINDINGS We performed MeDIP assays using in vitro methylated DNA, with or without previous DNA amplification, and hybridization to a human promoter array. We observed that CpG content at gene promoters indeed correlates strongly with the MeDIP signal obtained using in vitro methylated DNA, even when lowering significantly the amount of starting material. In analyzing MeDIP products that were subjected to whole genome amplification (WGA), we also revealed a strong bias against CpG-rich promoters during this amplification procedure, which may potentially affect the significance of the resulting data. CONCLUSION We illustrate the use of in vitro methylated DNA to assess the efficiency and accuracy of MeDIP procedures. We report that efficient and reproducible genome-wide data can be obtained via MeDIP experiments using relatively low amount of starting genomic DNA; and emphasize for the precaution that must be taken in data analysis when an additional DNA amplification step is required.
Collapse
Affiliation(s)
- Jinsong Jia
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Aleksandra Pekowska
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Sebastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Touati Benoukraf
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Salvatore Spicuglia
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| |
Collapse
|