1
|
Shovon SR, Uematsu T, Osaki Y, Masui T, Koyama T, Fujiwara T, Ushida C. Starvation changes the pre-rRNA accumulations in Caenorhabditis elegans. Biochem Biophys Res Commun 2025; 742:151125. [PMID: 39657346 DOI: 10.1016/j.bbrc.2024.151125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The precursor rRNA (pre-rRNA) processing pathway in Caenorhabditis elegans remains unidentified. We have determined the cleavage site within the internal transcribed spacer 2, which generates pre-rRNA f of 5.8S rRNA and pre-rRNA g of 26S rRNA. Ribosome biogenesis is the most energetically demanding process of the cell. Under starved conditions, cells conserve energy by reconfiguring ribosome biogenesis to sustain proper growth. We investigated the short-term effects of starvation on the ribosomal RNA (rRNA) maturation in C. elegans. Northern blot analysis revealed significant changes in both small and large pre-rRNAs, with a substantial decrease in pre-rRNA c'1/27SA2 of the large subunit and an increase in pre-rRNA d of the small subunit. Additionally, most pre-rRNAs accumulated in the nucleolar center, while the rRNA maturation factor FIB-1 accumulated at the nucleolar periphery. Nutritional replenishment restored the pre-rRNA accumulation pattern and the distribution of pre-rRNAs in the nucleolus to pre-starvation conditions.
Collapse
Affiliation(s)
- Shahriar Rahman Shovon
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
| | - Tomoki Uematsu
- Graduate School of Agriculture and Life Science, Hiorosaki University, Hirosaki, 036-8561, Japan
| | - Yuki Osaki
- Department of Biochemistry and Molecular Biology, Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Tatsushi Masui
- Graduate School of Agriculture and Life Science, Hiorosaki University, Hirosaki, 036-8561, Japan
| | - Takashi Koyama
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Graduate School of Pharmaceutical Sciences, Kindai University, Higashi, Osaka, Japan
| | - Chisato Ushida
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan; Graduate School of Agriculture and Life Science, Hiorosaki University, Hirosaki, 036-8561, Japan; Department of Biochemistry and Molecular Biology, Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan.
| |
Collapse
|
2
|
Jagielski NP, Rai AK, Rajan KS, Mangal V, Garikipati VNS. A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102087. [PMID: 38178918 PMCID: PMC10765057 DOI: 10.1016/j.omtn.2023.102087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
As cardiovascular diseases continue to be the leading cause of death worldwide, groundbreaking research is being conducted to mitigate their effects. This review looks into the potential of small nucleolar RNAs (snoRNAs) and the opportunity to use these molecular agents as therapeutic biomarkers for cardiovascular issues specific to the heart. Through an investigation of snoRNA biogenesis, functionality, and roles in cardiovascular diseases, this review relates our past and present knowledge of snoRNAs to the current scientific literature. Considering the initial discovery of snoRNAs and the studies thereafter analyzing the roles of snoRNAs in disease, we look forward to uncovering many other noncanonical functions that could lead researchers closer to finding preventive and curative solutions for cardiovascular diseases.
Collapse
Affiliation(s)
- Noah Peter Jagielski
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute, Rehovot 76100 001, Israel
| | - Vatsal Mangal
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs vital for ribosomal RNA (rRNA) maturation. The U8 snoRNA, encoded by the SNORD118 gene in humans, is an atypical C/D box snoRNA as it promotes rRNA cleavage rather than 2′–O–methylation and is unique to vertebrates. The U8 snoRNA is critical for cleavage events that produce the mature 5.8S and 28S rRNAs of the large ribosomal subunit. Unexpectedly, single nucleotide polymorphisms (SNPs) in the SNORD118 gene were recently found causal to the neurodegenerative disease leukoencephalopathy, brain calcifications, and cysts (LCC; aka Labrune syndrome), but its molecular pathogenesis is unclear. Here, we will review current knowledge on the function of the U8 snoRNA in ribosome biogenesis, and connect it to the preservation of brain function in humans as well as to its dysregulation in inherited white matter disease.
Collapse
Affiliation(s)
- Emily J McFadden
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Nguyen D, Buisine N, Fayol O, Michels AA, Bensaude O, Price DH, Uguen P. An alternative D. melanogaster 7SK snRNP. BMC Mol Cell Biol 2021; 22:43. [PMID: 34461828 PMCID: PMC8406779 DOI: 10.1186/s12860-021-00381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7SK small nuclear RNA (snRNA) found in most metazoans is a key regulator of P-TEFb which in turn regulates RNA polymerase II elongation. Although its primary sequence varies in protostomes, its secondary structure and function are conserved across evolutionary distant taxa. RESULTS Here, we describe a novel ncRNA sharing many features characteristic of 7SK RNAs, in D. melanogaster. We examined the structure of the corresponding gene and determined the expression profiles of the encoded RNA, called snRNA:7SK:94F, during development. It is probably produced from the transcription of a lncRNA which is processed into a mature snRNA. We also addressed its biological function and we show that, like dm7SK, this alternative 7SK interacts in vivo with the different partners of the P-TEFb complex, i.e. HEXIM, LARP7 and Cyclin T. This novel RNA is widely expressed across tissues. CONCLUSION We propose that two distinct 7SK genes might contribute to the formation of the 7SK snRNP complex in D. melanogaster.
Collapse
Affiliation(s)
- Duy Nguyen
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France
| | | | - Olivier Fayol
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France
| | | | - Olivier Bensaude
- IBENS Paris, UMR CNRS 8197; UA INSERM 1024, 75005, Paris, France
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Patricia Uguen
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France.
- Present address: Université Paris-Saclay, CNRS, INSERM, Institut Curie, Intégrité du Génome, ARN et cancer, Bât. 110, 91401, Orsay cedex, France.
| |
Collapse
|
5
|
Heissenberger C, Rollins JA, Krammer TL, Nagelreiter F, Stocker I, Wacheul L, Shpylovyi A, Tav K, Snow S, Grillari J, Rogers AN, Lafontaine DLJ, Schosserer M. The ribosomal RNA m 5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans. eLife 2020; 9:56205. [PMID: 33289480 PMCID: PMC7746234 DOI: 10.7554/elife.56205] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Our knowledge about the repertoire of ribosomal RNA modifications and the enzymes responsible for installing them is constantly expanding. Previously, we reported that NSUN-5 is responsible for depositing m5C at position C2381 on the 26S rRNA in Caenorhabditis elegans. Here, we show that NSUN-1 is writing the second known 26S rRNA m5C at position C2982. Depletion of nsun-1 or nsun-5 improved thermotolerance and slightly increased locomotion at midlife, however, only soma-specific knockdown of nsun-1 extended lifespan. Moreover, soma-specific knockdown of nsun-1 reduced body size and impaired fecundity, suggesting non-cell-autonomous effects. While ribosome biogenesis and global protein synthesis were unaffected by nsun-1 depletion, translation of specific mRNAs was remodeled leading to reduced production of collagens, loss of structural integrity of the cuticle, and impaired barrier function. We conclude that loss of a single enzyme required for rRNA methylation has profound and highly specific effects on organismal development and physiology.
Collapse
Affiliation(s)
- Clemens Heissenberger
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Teresa L Krammer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Fabian Nagelreiter
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Isabella Stocker
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Anton Shpylovyi
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Koray Tav
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Santina Snow
- MDI Biological Laboratory, Bar Harbor, United States
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Vienna, Austria
| | - Aric N Rogers
- MDI Biological Laboratory, Bar Harbor, United States
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,MDI Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
6
|
Abstract
The 7SK RNA is a small nuclear RNA that is involved in the regulation of Pol-II transcription. It is very well conserved in vertebrates, but shows extensive variations in both sequence and structure across invertebrates. A systematic homology search extended the collection of 7SK genes in both Arthropods and Lophotrochozoa making use of the large number of recently published invertebrate genomes. The extended data set made it possible to infer complete consensus structures for invertebrate 7SK RNAs. These show that not only the well-conserved 5'- and 3'- domains but all the interior Stem A domain is universally conserved. In contrast, Stem B region exhibits substantial structural variation and does not adhere to a common structural model beyond phylum level.
Collapse
Affiliation(s)
- Ali M Yazbeck
- a Bioinformatics Group, Department of Computer Science , Leipzig University , Härtelstraße 16-18, Leipzig , Germany.,b Lebanese University, Doctoral School for Science and Technology, Rafic Hariri University Campus , Hadath , Lebanon
| | - Kifah R Tout
- b Lebanese University, Doctoral School for Science and Technology, Rafic Hariri University Campus , Hadath , Lebanon
| | - Peter F Stadler
- a Bioinformatics Group, Department of Computer Science , Leipzig University , Härtelstraße 16-18, Leipzig , Germany.,c Interdisciplinary Center for Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases , Leipzig University.,d Department of Diagnostics , Fraunhofer Institute for Cell Therapy and Immunology - IZI , Perlickstraße 1, D-04103 Leipzig , Germany.,e Max Planck Institute for Mathematics in the Sciences , Inselstraße 22, D-04103 Leipzig , Germany.,f Department of Theoretical Chemistry , University of Vienna , Währingerstraße 17, A-1090 Wien , Austria.,g Center for non-coding RNA in Technology and Health , University of Copenhagen , Grønnegårdsvej 3, DK-1870 Frederiksberg C , Denmark.,h Santa Fe Institute , 1399 Hyde Park Rd., Santa Fe , NM 87501 , USA
| |
Collapse
|
7
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
8
|
Zhou X, Chen X, Wang Y, Feng X, Guang S. A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biol 2017. [PMID: 28640690 DOI: 10.1080/15476286.2017.1341034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ribosome biogenesis drives cell growth and proliferation, but mechanisms that modulate this process remain poorly understood. For a long time, small rRNA sequences have been widely treated as non-specific degradation products and neglected as garbage sequences. Recently, we identified a new class of antisense ribosomal siRNAs (risiRNAs) that downregulate pre-rRNA through the nuclear RNAi pathway in C. elegans. risiRNAs exhibit sequence characteristics similar to 22G RNA while complement to 18S and 26S rRNA. risiRNAs elicit the translocation of the nuclear Argonaute protein NRDE-3 from the cytoplasm to nucleus and nucleolus, in which the risiRNA/NRDE complex binds to pre-rRNA and silences rRNA expression. Interestingly, when C. elegans is exposed to environmental stimuli, such as cold shock and ultraviolet illumination, risiRNAs accumulate and further turn on the nuclear RNAi-mediated gene silencing pathway. risiRNA may act in a quality control mechanism of rRNA homeostasis. When the exoribonuclease SUSI-1(ceDis3L2) is mutated, risiRNAs are dramatically increased. In this Point of View article, we will summarize our understanding of the small antisense ribosomal siRNAs in a variety of organisms, especially C. elegans, and their possible roles in the quality control mechanism of rRNA homeostasis.
Collapse
Affiliation(s)
- Xufei Zhou
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Xiangyang Chen
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Yun Wang
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Xuezhu Feng
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Shouhong Guang
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| |
Collapse
|
9
|
Zhou X, Feng X, Mao H, Li M, Xu F, Hu K, Guang S. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol 2017; 24:258-269. [DOI: 10.1038/nsmb.3376] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022]
|
10
|
Andersen KL, Nielsen H. Experimental identification and analysis of macronuclear non-coding RNAs from the ciliate Tetrahymena thermophila. Nucleic Acids Res 2011; 40:1267-81. [PMID: 21967850 PMCID: PMC3273799 DOI: 10.1093/nar/gkr792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ciliate Tetrahymena thermophila is an important eukaryotic model organism that has been used in pioneering studies of general phenomena, such as ribozymes, telomeres, chromatin structure and genome reorganization. Recent work has shown that Tetrahymena has many classes of small RNA molecules expressed during vegetative growth or sexual reorganization. In order to get an overview of medium-sized (40-500 nt) RNAs expressed from the Tetrahymena genome, we created a size-fractionated cDNA library from macronuclear RNA and analyzed 80 RNAs, most of which were previously unknown. The most abundant class was small nucleolar RNAs (snoRNAs), many of which are formed by an unusual maturation pathway. The modifications guided by the snoRNAs were analyzed bioinformatically and experimentally and many Tetrahymena-specific modifications were found, including several in an essential, but not conserved domain of ribosomal RNA. Of particular interest, we detected two methylations in the 5'-end of U6 small nuclear RNA (snRNA) that has an unusual structure in Tetrahymena. Further, we found a candidate for the first U8 outside metazoans, and an unusual U14 candidate. In addition, a number of candidates for new non-coding RNAs were characterized by expression analysis at different growth conditions.
Collapse
Affiliation(s)
- Kasper L Andersen
- Department of Cellular and Molecular Medicine and Center for Non-coding RNA in Technology and Health, The Panum Institute, University of Copenhagen, 3 Blegdamsvej, DK-2200N, Denmark
| | | |
Collapse
|