1
|
Fallah A, Imani Fooladi AA, Havaei SA, Mahboobi M, Sedighian H. Recent advances in aptamer discovery, modification and improving performance. Biochem Biophys Rep 2024; 40:101852. [PMID: 39525567 PMCID: PMC11546948 DOI: 10.1016/j.bbrep.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aptamers are nucleic acid (Ribonucleic acid (RNA) and single strand deoxyribonucleic acid (ssDNA)) with a length of approximately 25-80 bases that can bind to particular target molecules, similar to monoclonal antibodies. Due to their many benefits, which include a long shelf life, minimal batch-to-batch variations, extremely low immunogenicity, the possibility of chemical modifications for improved stability, an extended serum half-life, and targeted delivery, they are receiving a lot of attention in a variety of clinical applications. The development of high-affinity modification approaches has attracted significant attention in aptamer applications. Stable three-dimensional aptamers that have undergone chemical modification can engage firmly with target proteins through improved non-covalent binding, potentially leading to hundreds of affinity improvements. This review demonstrates how cutting-edge methodologies for aptamer discovery are being developed to consistently and effectively construct high-performing aptamers that need less money and resources yet have a high chance of success. Also, High-affinity aptamer modification techniques were discussed.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Mahboobi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Liu R, Li J, Salena BJ, Li Y. Aptamer and DNAzyme Based Colorimetric Biosensors for Pathogen Detection. Angew Chem Int Ed Engl 2024:e202418725. [PMID: 39551709 DOI: 10.1002/anie.202418725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The detection of pathogens is critical for preventing and controlling health hazards across clinical, environmental, and food safety sectors. Functional nucleic acids (FNAs), such as aptamers and DNAzymes, have emerged as versatile molecular tools for pathogen detection due to their high specificity and affinity. This review focuses on the in vitro selection of FNAs for pathogens, with emphasis on the selection of aptamers for specific biomarkers and intact pathogens, including bacteria and viruses. Additionally, the selection of DNAzymes for bacterial detection is discussed. The integration of these FNAs into colorimetric biosensors has enabled the development of simple, cost-effective diagnostic platforms. Both non-catalytic and catalytic colorimetric biosensors are explored, including those based on gold nanoparticles, polydiacetylenes, protein enzymes, G-quadruplexes, and nanozymes. These biosensors offer visible detection through color changes, making them ideal for point-of-care diagnostics. The review concludes by highlighting current challenges and future perspectives for advancing FNA-based colorimetric biosensing technologies for pathogen detection.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
3
|
Bian T, Pei Y, Gao S, Zhou S, Sun X, Dong M, Song J. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Adv Healthc Mater 2024; 13:e2401207. [PMID: 39036821 DOI: 10.1002/adhm.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Xeno nucleic acid (XNA) are artificial nucleic acids, in which the chemical composition of the sugar moiety is changed. These modifications impart distinct physical and chemical properties to XNAs, leading to changes in their biological, chemical, and physical stability. Additionally, these alterations influence the binding dynamics of XNAs to their target molecules. Consequently, XNAs find expanded applications as functional materials in diverse fields. This review provides a comprehensive summary of the distinctive biophysical properties exhibited by various modified XNAs and explores their applications as innovative functional materials in expanded fields.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou, 310014, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Aarhus, DK-8000, Denmark
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
4
|
Murray M, Wetmore S. Unlocking precision in aptamer engineering: a case study of the thrombin binding aptamer illustrates why modification size, quantity, and position matter. Nucleic Acids Res 2024; 52:10823-10835. [PMID: 39217472 PMCID: PMC11472061 DOI: 10.1093/nar/gkae729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The thrombin binding aptamer (TBA) is a prototypical platform used to understand the impact of chemically-modified nucleotides on aptamer stability and target affinity. To provide structural insight into the experimentally-observed effects of modification size, location, and number on aptamer performance, long time-scale molecular dynamics (MD) simulations were performed on multiple binding orientations of TBA-thrombin complexes that contain a large, flexible tryptophan thymine derivative (T-W) or a truncated analogue (T-K). Depending on modification position, T-W alters aptamer-target binding orientations, fine-tunes aptamer-target interactions, strengthens networks of nucleic acid-protein contacts, and/or induces target conformational changes to enhance binding. The proximity and 5'-to-3' directionality of nucleic acid structural motifs also play integral roles in the behavior of the modifications. Modification size can differentially influence target binding by promoting more than one aptamer-target binding pose. Multiple modifications can synergistically strengthen aptamer-target binding by generating novel nucleic acid-protein structural motifs that are unobtainable for single modifications. By studying a diverse set of modified aptamers, our work uncovers design principles that must be considered in the future development of aptamers containing chemically-modified nucleotides for applications in medicine and biotechnology, highlighting the value of computational studies in nucleic acids research.
Collapse
Affiliation(s)
- Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
5
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
6
|
Brown A, Brill J, Amini R, Nurmi C, Li Y. Development of Better Aptamers: Structured Library Approaches, Selection Methods, and Chemical Modifications. Angew Chem Int Ed Engl 2024; 63:e202318665. [PMID: 38253971 DOI: 10.1002/anie.202318665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) has been used to discover thousands of aptamers since its development in 1990. Aptamers are short single-stranded oligonucleotides capable of binding to targets with high specificity and selectivity through structural recognition. While aptamers offer advantages over other molecular recognition elements such as their ease of production, smaller size, extended shelf-life, and lower immunogenicity, they have yet to show significant success in real-world applications. By analyzing the importance of structured library designs, reviewing different SELEX methodologies, and the effects of chemical modifications, we provide a comprehensive overview on the production of aptamers for applications in drug delivery systems, therapeutics, diagnostics, and molecular imaging.
Collapse
Affiliation(s)
- Alex Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Jake Brill
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Connor Nurmi
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| |
Collapse
|
7
|
Han G, Zhang Y, Zhong L, Wang B, Qiu S, Song J, Lin C, Zou F, Wu J, Yu H, Liang C, Wen K, Seow Y, Yin H. Generalizable anchor aptamer strategy for loading nucleic acid therapeutics on exosomes. EMBO Mol Med 2024; 16:1027-1045. [PMID: 38448545 PMCID: PMC11018858 DOI: 10.1038/s44321-024-00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.
Collapse
Affiliation(s)
- Gang Han
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Yao Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Li Zhong
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Biaobiao Wang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Shuai Qiu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Jun Song
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Caorui Lin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Fangdi Zou
- Public Laboratory & Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center & Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Jingqiao Wu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Huanan Yu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ke Wen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yiqi Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Genome, Singapore, 138672, Republic of Singapore
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China.
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, 300052, Tianjin, China.
| |
Collapse
|
8
|
Niogret G, Bouvier-Müller A, Figazzolo C, Joyce JM, Bonhomme F, England P, Mayboroda O, Pellarin R, Gasser G, Tucker JHR, Tanner JA, Savage GP, Hollenstein M. Interrogating Aptamer Chemical Space Through Modified Nucleotide Substitution Facilitated by Enzymatic DNA Synthesis. Chembiochem 2024; 25:e202300539. [PMID: 37837257 DOI: 10.1002/cbic.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Chemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties. This method lowers the synthetic burden often associated with post-SELEX approaches and allowed to identify one additional sequence that maintains binding to the PvLDH target protein, albeit with reduced specificity. In addition, while bioisosteres often improve the potency of small molecule drugs, this does not extend to chemically modified aptamers. Overall, this versatile method can be applied for the post-SELEX modification of other aptamers and functional nucleic acids.
Collapse
Affiliation(s)
- Germain Niogret
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Alix Bouvier-Müller
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Chiara Figazzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jack M Joyce
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique UMR CNRS 3523, 28, rue du Docteur Roux, CEDEX 15, 75724, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Olena Mayboroda
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
9
|
Brannetti S, Gentile S, Chamorro-Garcia A, Barbero L, Del Grosso E, Ricci F. Decorated DNA-Based Scaffolds as Lateral Flow Biosensors. Angew Chem Int Ed Engl 2023; 62:e202313243. [PMID: 37804080 DOI: 10.1002/anie.202313243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Here we develop Lateral Flow Assays (LFAs) that employ as functional elements DNA-based structures decorated with reporter tags and recognition elements. We have rationally re-engineered tile-based DNA tubular structures that can act as scaffolds and can be decorated with recognition elements of different nature (i.e. antigens, aptamers or proteins) and with orthogonal fluorescent dyes. As a proof-of-principle we have developed sandwich and competitive multiplex lateral flow platforms for the detection of several targets, ranging from small molecules (digoxigenin, Dig and dinitrophenol, DNP), to antibodies (Anti-Dig, Anti-DNP and Anti-MUC1/EGFR bispecific antibodies) and proteins (thrombin). Coupling the advantages of functional DNA-based scaffolds together with the simplicity of LFAs, our approach offers the opportunity to detect a wide range of targets with nanomolar sensitivity and high specificity.
Collapse
Affiliation(s)
- Simone Brannetti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alejandro Chamorro-Garcia
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Luca Barbero
- RBM-Merck an affiliate of Merck KGaA, Via Ribes 1, 10010, Turin, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
10
|
Johnson RE, Murray MT, Bycraft LJ, Myler P, Wetmore SD, Manderville RA. Harnessing a 4-Formyl-Aniline Handle to Tune the Stability of a DNA Aptamer-Protein Complex via Fluorescent Surrogates. Bioconjug Chem 2023; 34:2066-2076. [PMID: 37857354 DOI: 10.1021/acs.bioconjchem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Interactions between DNA aptamers and protein targets hold promise for the development of pharmaceuticals and diagnostics. As such, the utilization of fluorescent nucleobase surrogates in studying aptamer-protein interactions is a powerful tool due to their ability to provide site-specific information through turn-on fluorescence. Unfortunately, previously described turn-on probes serving as nucleobase replacements have only been strongly disruptive to the affinity of aptamer-protein interactions. Herein, we present a modified TBA15 aptamer for thrombin containing a fluorescent surrogate that provides site-specific turn-on emission with low nanomolar affinity. The modification, referred to as AnBtz, was substituted at position T3 and provided strong turn-on emission (Irel ≈ 4) and brightness (ε·Φ > 20 000 cm-1 M-1) with an apparent dissociation constant (Kd) of 15 nM to afford a limit of detection (LOD) of 10 nM for thrombin in 20% human serum. The probe was selected through a modular "on-strand" synthesis process that utilized a 4-formyl-aniline (4FA) handle. Using this platform, we were able to enhance the affinity of the final aptamer conjugate by ∼30-fold in comparison with the initial conjugate design. Molecular dynamics simulations provide insight into the structural basis for this phenomenon and highlight the importance of targeting hydrophobic protein binding sites with fluorescent nucleobase surrogates to create new contacts with protein targets.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Lucas J Bycraft
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Peter Myler
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A Manderville
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Virgilio A, Benigno D, Aliberti C, Vellecco V, Bucci M, Esposito V, Galeone A. Improving the Biological Properties of Thrombin-Binding Aptamer by Incorporation of 8-Bromo-2'-Deoxyguanosine and 2'-Substituted RNA Analogues. Int J Mol Sci 2023; 24:15529. [PMID: 37958511 PMCID: PMC10647374 DOI: 10.3390/ijms242115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Thrombin-binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers. By adopting its peculiar chair-like G4 structure, TBA can efficiently bind to thrombin, thus producing an anticoagulant effect. The major limit to its therapeutic application is represented by its poor thermal and biological resistance. Therefore, numerous research studies have been focused on the design of TBA analogues with chemical modifications to improve its pharmacokinetic and pharmacodynamic properties. To maintain the functional recognition to protein surface on which TBA anticoagulant activity depends, it is essential to preserve the canonical antiparallel topology of the TBA quadruplex core. In this paper, we have designed three TBA variants with modified G-tetrads to evaluate the effects of nucleobase and sugar moiety chemical modifications on biological properties of TBA, preserving its chair-like G-quadruplex structure. All derivatives contain 8-bromo-2'-deoxyguanosine (GBr) in syn positions, while in the anti-positions, locked nucleic acid guanosine (GLNA) in the analogue TBABL, 2'-O-methylguanosine (GOMe) in TBABM, and 2'-F-riboguanosine (GF) in TBABF is present. CD (Circular Dichroism), CD melting, 1H-NMR (Nuclear Magnetic Resonance), and non-denaturing PAGE (Polyacrylamide Gel Electrophoresis), nuclease stability, prothrombin time (PT) and fibrinogen-clotting assays have been performed to investigate the structural and biological properties of these TBA analogues. The most interesting results have been obtained with TBABF, which revealed extraordinary thermal stability (Tm approximately 40 °C higher than that of TBA), anticoagulant activity almost doubled compared to the original aptamer, and, above all, a never-observed resistance to nucleases, as 50% of its G4 species was still present in 50% FBS at 24 h. These data indicate TBABF as one of the best TBA analogue ever designed and investigated, to the best of our knowledge, overcoming the main limitations to therapeutic applications of this aptamer.
Collapse
Affiliation(s)
| | | | | | | | | | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (A.V.); (D.B.); (V.V.); (M.B.); (A.G.)
| | | |
Collapse
|
12
|
Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023; 11:1609-1627. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aptamers, a class of oligonucleotides that can bind with molecular targets with high affinity and specificity, have been widely applied in research fields including biosensing, imaging, diagnosing, and therapy of diseases. However, compared with the rapid development in the research fields, the clinical application of aptamers is progressing at a much slower speed, especially in the therapy of cancer. Obstructions including nuclease degradation, renal clearance, a complex selection process, and potential side effects have inhibited the clinical transformation of aptamer-conjugated drugs. To overcome these problems, taking certain measures to improve the biocompatibility and stability of aptamer-conjugated drugs in vivo is necessary. In this review, the obstructions mentioned above are thoroughly discussed and the methods to overcome these problems are introduced in detail. Furthermore, landmark research works and the most recent studies on aptamer-conjugated drugs for cancer therapy are also listed as examples, and the future directions of research for aptamer clinical transformation are discussed.
Collapse
Affiliation(s)
- Baijiang Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhukang Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanying Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Nanjing 210009, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. .,Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
13
|
Shanmugasundaram M, Senthilvelan A, Kore AR. An efficient green synthesis of UNA-nucleoside-5′-triphosphates: a versatile synthon for RNA modification with broad therapeutic potential. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
14
|
Roxo C, Pasternak A. Changes in physicochemical and anticancer properties modulated by chemically modified sugar moieties within sequence-related G-quadruplex structures. PLoS One 2022; 17:e0273528. [PMID: 35998148 PMCID: PMC9397905 DOI: 10.1371/journal.pone.0273528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
We systematically investigated the influence of locked nucleic acid (LNA), unlock nucleic acid (UNA), and 2’-O-methyl-RNA (2’-O-Me-RNA) residues on the thermal stability, structure folding topology, biological activity and enzymatic resistance of three sequence-related DNA G-quadruplexes. In order to better understand the mechanism of action of the studied modifications, a single-position substitution in the loops or G-tetrads was performed and their influence was analyzed for a total of twenty-seven modified G-quadruplex variants. The studies show that the influence of each modification on the physicochemical properties of G-quadruplexes is position-dependent, due to mutual interactions between G-tetrads, loops, and additional guanosine at 5’ or 3’ end. Nevertheless, the anticancer activity of the modified G-quadruplexes is determined by their structure, thus also by the local changes of chemical character of sugar moieties, what might influence the specific interactions with therapeutic targets. In general, UNA modifications are efficient modulators of the G-quadruplex thermodynamic stability, however they are poor tools to improve the anticancer properties. In contrast, LNA and 2’-O-Me-RNA modified G-quadruplexes demonstrated certain antiproliferative potential and might be used as molecular tools for designing novel G-quadruplex-based therapeutics.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- * E-mail:
| |
Collapse
|
15
|
Yuhan J, Zhu L, Zhu L, Huang K, He X, Xu W. Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress. J Control Release 2022; 346:405-420. [PMID: 35489545 DOI: 10.1016/j.jconrel.2022.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
Abstract
Cell-specific aptamers are a promising emerging player in the field of disease therapy. This paper reviews the multidimensional research progress made in terms of their classification, modification, and application. Based on the target location of cell-specific aptamers, it is defined and classified cell-specific aptamers into three groups including aptamers for cell surface markers, aptamers for intracellular components, and aptamers for extracellular components. Moreover, the modification methods of aptamers to achieve improved stability and affinity are concluded. In addition, recent advances in the application of cell-specific aptamers are discussed, mainly focusing on the increasing research attraction of cell state improving helpers and cell recruitment mediators in the improvement of cellular microenvironments to achieve successful disease therapy. This review also highlights 11 types of clinical aptamer drugs. Finally, the challenges and future directions of potential clinical applications are presented. In summary, we believe that cell-specific aptamers are promising drugs in disease therapy.
Collapse
Affiliation(s)
- Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
16
|
Huang Y, Nguyen MK, Nguyen VH, Loo J, Lehtonen AJ, Kuzyk A. Characterizing Aptamers with Reconfigurable Chiral Plasmonic Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2954-2960. [PMID: 35212547 PMCID: PMC8908738 DOI: 10.1021/acs.langmuir.1c03434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Aptamers have emerged as versatile affinity ligands and as promising alternatives to protein antibodies. However, the inconsistency in the reported affinities and specificities of aptamers has greatly hindered the development of aptamer-based applications. Herein, we present a strategy to characterize aptamers by using DNA origami-based chiral plasmonic assemblies as reporters and establishing a competitive hybridization reaction-based thermodynamic model. We demonstrate the characterization of several DNA aptamers, including aptamers for small molecules and macromolecules, as well as aptamers with high and low affinities. The presented characterization scheme can be readily adapted to a wide selection of aptamers. We anticipate that our approach will advance the development of aptamer-based applications by enabling reliable and reproducible characterization of aptamers.
Collapse
Affiliation(s)
- Yike Huang
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Minh-Kha Nguyen
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dist. 10, 700000 Ho Chi Minh City, Vietnam
- Vietnam
National University Ho Chi Minh City,
Linh Trung Ward, Thu Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Vu Hoang Nguyen
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Jacky Loo
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Arttu J. Lehtonen
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Anton Kuzyk
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
17
|
A Comprehensive Analysis of the Thrombin Binding Aptamer Containing Functionalized Pyrrolo-2'-deoxycytidines. Pharmaceuticals (Basel) 2021; 14:ph14121326. [PMID: 34959726 PMCID: PMC8709445 DOI: 10.3390/ph14121326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
Aptamers constitute an answer for the growing need for targeted therapy development. One of the most well-known representatives of this group of compounds is thrombin binding aptamers (TBA) targeted towards thrombin. The TBA inhibitory activity is determined by its spatial arrangement, which consists of two G-tetrads linked by two shorter TT loops and one longer TGT loop and folds into a unimolecular, antiparallel G-quadruplex structure. Interesting properties of the aptamer can be further improved via the introduction of a number of chemical modifications. Herein, a comprehensive analysis of the influence of pyrrolo-2’-deoxycytidine (Py-dC) and its derivatives on TBA physicochemical and biological properties has been presented. The studies have shown that the presence of modified residues at the T7 position of the TGT loop has only minor effects on TBA thermodynamic stability without affecting its folding topology. All analyzed oligomers exhibit anticoagulant properties, but only aptamer modified with a decyl derivative of Py-dC was able to inhibit thrombin activity more efficiently than unmodified, parental compounds. Importantly, the same compound also possessed the potential to effectively restrain HeLa cell line growth.
Collapse
|
18
|
Oliveira R, Pinho E, Sousa AL, DeStefano JJ, Azevedo NF, Almeida C. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches. Trends Biotechnol 2021; 40:549-563. [PMID: 34756455 DOI: 10.1016/j.tibtech.2021.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are structural single-stranded oligonucleotides generated in vitro to bind to a specific target molecule. Aptamers' versatility can be enhanced with nucleic acid mimics (NAMs) during or after a selection process, also known as systematic evolution of ligands by exponential enrichment (SELEX). We address advantages and limitations of the technologies used to generate NAM aptamers, especially the applicability of existing engineered polymerases to replicate NAMs and methodologies to improve aptamers after SELEX. We also discuss the limitations of existing methods for sequencing NAM sequences and bioinformatic tools to predict NAM aptamer structures. As a conclusion, we suggest that NAM aptamers might successfully compete with molecular tools based on proteins such as antibodies for future application.
Collapse
Affiliation(s)
- Ricardo Oliveira
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal
| | - Ana Luísa Sousa
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
19
|
Redox manipulation of enzyme activity through physiologically active molecule. iScience 2021; 24:102977. [PMID: 34485859 PMCID: PMC8405983 DOI: 10.1016/j.isci.2021.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
The effective utility of physiologically active molecules is crucial in numerous biological processes. However, the regulation of enzyme functions through active substances remains challenging at present. Here, glutathione (GSH), produced in cells, was used to modulate the catalytic activity of thrombin without external stimulus. It was found that high concentrations of GSH was more conducive to initiate the cleavage of compound AzoDiTAB in the range of concentration used to mimic the difference between cancer and normal cells, which has practical implications for targeting cancel cells since GSH is overexpressed in cancer cells. Importantly, GSH treatment caused the deformation of G4 structure by cleaving AzoDiTAB and thus triggered the transition of thrombin from being free to be inhibited in complex biological systems. This work would open up a new route for the specific manipulation of enzyme-catalyzed systems in cancer cells. The transition of telomere DNA structures based on redox switch Achieving redox manipulation of thrombin activity through active substance This switch can be specifically used for enzyme regulation in cancer cells
Collapse
|
20
|
Beyond G-Quadruplexes-The Effect of Junction with Additional Structural Motifs on Aptamers Properties. Int J Mol Sci 2021; 22:ijms22189948. [PMID: 34576112 PMCID: PMC8466185 DOI: 10.3390/ijms22189948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022] Open
Abstract
G-quadruplexes constitute an important type of nucleic acid structure, which can be found in living cells and applied by cell machinery as pivotal regulatory elements. Importantly, robust development of SELEX technology and modern, nucleic acid-based therapeutic strategies targeted towards various molecules have also revealed a large group of potent aptamers whose structures are grounded in G-quadruplexes. In this review, we analyze further extension of tetraplexes by additional structural elements and investigate whether G-quadruplex junctions with duplex, hairpin, triplex, or second G-quadruplex motifs are favorable for aptamers stability and biological activity. Furthermore, we indicate the specific and pivotal role of the G-quadruplex domain and the additional structural elements in interactions with target molecules. Finally, we consider the potency of G-quadruplex junctions in future applications and indicate the emerging research area that is still waiting for development to obtain highly specific and effective nucleic acid-based molecular tools.
Collapse
|
21
|
Identification and Engineering of Aptamers for Theranostic Application in Human Health and Disorders. Int J Mol Sci 2021; 22:ijms22189661. [PMID: 34575825 PMCID: PMC8469434 DOI: 10.3390/ijms22189661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
An aptamer is a short sequence of synthetic oligonucleotides which bind to their cognate target, specifically while maintaining similar or higher sensitivity compared to an antibody. The in-vitro selection of an aptamer, applying a conjoining approach of chemistry and molecular biology, is referred as Systematic Evolution of Ligands by Exponential enrichment (SELEX). These initial products of SELEX are further modified chemically in an attempt to make them stable in biofluid, avoiding nuclease digestion and renal clearance. While the modification is incorporated, enough care should be taken to maintain its sensitivity and specificity. These modifications and several improvisations have widened the window frame of aptamer applications that are currently not only restricted to in-vitro systems, but have also been used in molecular imaging for disease pathology and treatment. In the food industry, it has been used as sensor for detection of different diseases and fungal infections. In this review, we have discussed a brief history of its journey, along with applications where its role as a therapeutic plus diagnostic (theranostic) tool has been demonstrated. We have also highlighted the potential aptamer-mediated strategies for molecular targeting of COVID-19. Finally, the review focused on its future prospective in immunotherapy, as well as in identification of novel biomarkers in stem cells and also in single cell proteomics (scProteomics) to study intra or inter-tumor heterogeneity at the protein level. Small size, chemical synthesis, low batch variation, cost effectiveness, long shelf life and low immunogenicity provide advantages to the aptamer over the antibody. These physical and chemical properties of aptamers render them as a strong biomedical tool for theranostic purposes over the existing ones. The significance of aptamers in human health was the key finding of this review.
Collapse
|
22
|
Structural and Binding Effects of Chemical Modifications on Thrombin Binding Aptamer (TBA). Molecules 2021; 26:molecules26154620. [PMID: 34361773 PMCID: PMC8348300 DOI: 10.3390/molecules26154620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
The thrombin binding aptamer (TBA) is a promising nucleic acid-based anticoagulant. We studied the effects of chemical modifications, such as dendrimer Trebler and NHS carboxy group, on TBA with respect to its structures and thrombin binding affinity. The two dendrimer modifications were incorporated into the TBA at the 5' end and the NHS carboxy group was added into the thymine residues in the thrombin binding site of the TBA G-quadruplex (at T4, T13 and both T4/T13) using solid phase oligonucleotide synthesis. Circular dichroism (CD) spectroscopy confirmed that all of these modified TBA variants fold into a stable G-quadruplex. The binding affinity of TBA variants with thrombin was measured by surface plasmon resonance (SPR). The binding patterns and equilibrium dissociation constants (KD) of the modified TBAs are very similar to that of the native TBA. Molecular dynamics simulations studies indicate that the additional interactions or stability enhancement introduced by the modifications are minimized either by the disruption of TBA-thrombin interactions or destabilization elsewhere in the aptamer, providing a rational explanation for our experimental data. Overall, this study identifies potential positions on the TBA that can be modified without adversely affecting its structure and thrombin binding preference, which could be useful in the design and development of more functional TBA analogues.
Collapse
|
23
|
Kosman J, Juskowiak B. Thrombin-Binding Aptamer with Inversion of Polarity Sites (IPS): Effect on DNAzyme Activity and Anticoagulant Properties. Int J Mol Sci 2021; 22:ijms22157902. [PMID: 34360665 PMCID: PMC8347255 DOI: 10.3390/ijms22157902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023] Open
Abstract
In this work we examined the properties of thrombin-binding aptamer (TBA) modified by the introduction of inversion of polarity sites (IPS) in order to assess the effect of modification on the activation of TBA to serve as DNAzyme with peroxidase-like activity. Two oligonucleotides were designed to possess one (IPS1) or three (IPS2) inversion sites. TBA typically forms antiparallel G-quadruplexes with two G-tetrads, which exhibits very low DNAzyme peroxidise activity. DNAzyme activity is generally attributed to parallel G-quadruplexes. Hence, inversion of polarity was introduced in the TBA molecule to force the change of G-quadruplex topology. All oligonucleotides were characterized using circular dichroism and UV-Vis melting profiles. Next, the activity of the DNAzymes formed by studied oligonucleotides and hemin was investigated. The enhancement of peroxidase activity was observed when inversion of polarity was introduced. DNAzyme based on IPS2 showed the highest peroxidase activity in the presence of K+ or NH4+ ions. This proves that inversion of polarity can be used to convert a low-activity DNAzyme into a DNAzyme with high activity. Since TBA is known for its anticoagulant properties, the relevant experiments with IPS1 and IPS2 oligonucleotides were performed. Both IPS1 and IPS2 retain some anticoagulant activity in comparison to TBA in the reaction with fibrinogen. Additionally, the introduction of inversion of polarity makes these oligonucleotides more resistant to nucleases.
Collapse
|
24
|
Smirnov I, Kolganova N, Troisi R, Sica F, Timofeev E. Expanding the recognition interface of the thrombin-binding aptamer HD1 through modification of residues T3 and T12. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:863-871. [PMID: 33614235 PMCID: PMC7868722 DOI: 10.1016/j.omtn.2021.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
Post-SELEX modification of DNA aptamers is an established strategy to improve their affinity or inhibitory characteristics. In this study, we examined the possibility of increasing the recognition interface between the thrombin-binding aptamer HD1 (TBA) and thrombin by adding a chemically modified side chain to selected nucleotide residues. A panel of 22 TBA variants with N3-modified residues T3 and T12 was prepared by a two-step modification procedure. Aptamers were characterized by a combination of biophysical and biochemical methods. We identified mutants with enhanced affinity and improved anticoagulant activity. The crystal structures of thrombin complexes with three selected modified variants revealed that the modified pyrimidine base invariably allocates in proximity to thrombin residues Tyr76 and Ile82 due to the directing role of the unmodified TT loop. The modifications induced an increase in the contact areas between thrombin and the modified TBAs. Comparative analysis of the structural, biochemical, and biophysical data suggests that the non-equivalent binding modes of the mutants with thrombin in the T3- and T12-modified series account for the observed systematic differences in their affinity characteristics. In this study, we show that extending the recognition surface between the protein and modified aptamers is a promising approach that may improve characteristics of aptamer ligands.
Collapse
Affiliation(s)
- Igor Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Natalia Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Edward Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
25
|
Bao HL, Ishizuka T, Yamashita A, Furukoji E, Asada Y, Xu Y. Improving Thermodynamic Stability and Anticoagulant Activity of a Thrombin Binding Aptamer by Incorporation of 8-trifluoromethyl-2'-deoxyguanosine. J Med Chem 2020; 64:711-718. [PMID: 33289557 DOI: 10.1021/acs.jmedchem.0c01711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we incorporated 8-trifluoromethyl-2'-deoxyguanosine (FG) into a thrombin binding aptamer (TBA). Circular dichroism, nuclear magnetic resonance (NMR), electrophoresis, and prothrombin time (PT) assay were performed to investigate the structure, thermodynamic stability, biological stability, and anticoagulant activity of the FG-modified TBA sequences. We found that the replacement of FG into TBA sequences led to a remarkable improvement in the melting temperature up to 30 °C compared with the native sequence. The trifluoromethyl group allowed us to investigate the TBA G-quadruplex structure by 19F NMR spectroscopy. Furthermore, PT assays showed that the modified sequences can significantly improve the anticoagulant activity in comparison with the native TBA. Finally, we demonstrated that the trifluoromethyl-modified TBA sequence could function as an anticoagulant reagent in live rats. Our results strongly suggested that FG is a powerful nucleoside derivative to increase the thermodynamic stability and anticoagulant activity of TBA.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Atsushi Yamashita
- Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Eiji Furukoji
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yujiro Asada
- Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
26
|
Amato J, Mashima T, Kamatari YO, Kuwata K, Novellino E, Randazzo A, Giancola C, Katahira M, Pagano B. Improved Anti-Prion Nucleic Acid Aptamers by Incorporation of Chemical Modifications. Nucleic Acid Ther 2020; 30:414-421. [PMID: 32991255 DOI: 10.1089/nat.2020.0899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nucleic acid aptamers are innovative and promising candidates to block the hallmark event in the prion diseases, that is the conversion of prion protein (PrP) into an abnormal form; however, they need chemical modifications for effective therapeutic activity. This communication reports on the development and biophysical characterization of a small library of chemically modified G-quadruplex-forming aptamers targeting the cellular PrP and the evaluation of their anti-prion activity. The results show the possibility of enhancing anti-prion aptamer properties through straightforward modifications.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Uji, Japan.,Graduate School of Energy Science, Kyoto University, Uji, Japan
| | | | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Japan.,Graduate School of Energy Science, Kyoto University, Uji, Japan
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Shujuan Xu
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - He Yan
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Xiaowei Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Hoda Safari Yazd
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Xiang Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Tong Huang
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
- Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Weihong Tan
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
- Institute of Molecular Medicine (IMM) Renji Hospital State Key Laboratory of Oncogenes and Related Genes Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
28
|
Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angew Chem Int Ed Engl 2020; 60:2221-2231. [PMID: 32282107 DOI: 10.1002/anie.202003563] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/11/2022]
Abstract
The advent of SELEX (systematic evolution of ligands by exponential enrichment) technology has shown the ability to evolve artificial ligands with affinity and specificity able to meet growing clinical demand for probes that can, for example, distinguish between the target leukemia cells and other cancer cells within the matrix of heterogeneity, which characterizes cancer cells. Though antibodies are the conventional and ideal choice as a molecular recognition tool for many applications, aptamers complement the use of antibodies due to many unique advantages, such as small size, low cost, and facile chemical modification. This Minireview will focus on the novel applications of aptamers and SELEX, as well as opportunities to develop molecular tools able to meet future clinical needs in biomedicine.
Collapse
Affiliation(s)
- Long Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Shujuan Xu
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - He Yan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaowei Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Hoda Safari Yazd
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Xiang Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Tong Huang
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
29
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
30
|
De Fenza M, Eremeeva E, Troisi R, Yang H, Esposito A, Sica F, Herdewijn P, D'Alonzo D, Guaragna A. Structure-Activity Relationship Study of a Potent α-Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chemistry 2020; 26:9589-9597. [PMID: 32363791 DOI: 10.1002/chem.202001504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Indexed: 12/13/2022]
Abstract
The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Elena Eremeeva
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Romualdo Troisi
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Hui Yang
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Anna Esposito
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Filomena Sica
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Piet Herdewijn
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Daniele D'Alonzo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Annalisa Guaragna
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| |
Collapse
|
31
|
Kovačič M, Podbevšek P, Tateishi-Karimata H, Takahashi S, Sugimoto N, Plavec J. Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Res 2020; 48:3975-3986. [PMID: 32095808 PMCID: PMC7144916 DOI: 10.1093/nar/gkaa118] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Guanine-rich regions of the human genome can adopt non-canonical secondary structures. Their role in regulating gene expression has turned them into promising targets for therapeutic intervention. Ligands based on polyaromatic moieties are especially suitable for targeting G-quadruplexes utilizing their size complementarity to interact with the large exposed surface area of four guanine bases. A predictable way of (de)stabilizing specific G-quadruplex structures through efficient base stacking of polyaromatic functional groups could become a valuable tool in our therapeutic arsenal. We have investigated the effect of pyrene-modified uridine nucleotides incorporated at several positions of the thrombin binding aptamer (TBA) as a model system. Characterization using spectroscopic and biophysical methods provided important insights into modes of interaction between pyrene groups and the G-quadruplex core as well as (de)stabilization by enthalpic and entropic contributions. NMR data demonstrated that incorporation of pyrene group into G-rich oligonucleotide such as TBA may result in significant changes in 3D structure such as formation of novel dimeric topology. Site specific structural changes induced by stacking of the pyrene moiety on nearby nucleobases corelate with distinct thrombin binding affinities and increased resistance against nuclease degradation.
Collapse
Affiliation(s)
- Matic Kovačič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Varada M, Aher M, Erande N, Kumar VA, Fernandes M. Methoxymethyl Threofuranosyl Thymidine (4'-MOM-TNA-T) at the T7 Position of the Thrombin-Binding Aptamer Boosts Anticoagulation Activity, Thermal Stability, and Nuclease Resistance. ACS OMEGA 2020; 5:498-506. [PMID: 31956796 PMCID: PMC6964305 DOI: 10.1021/acsomega.9b03042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of 4'-methoxymethyl threofuranosyl (4'-MOM-TNA) thymidine and derived oligomers of the G-rich thrombin-binding aptameric (TBA) sequence is reported. The G-quadruplex stability, anticoagulation activity, and the enzymatic stability of these oligomers bearing the 2'-3'-phosphodiester backbone as single substitutions in the loop regions are studied. Amongst all the oligomers, TBA-7T bearing the 4'-MOM-TNA unit at the T7 position formed a quadruplex with the highest thermal stability. It also resulted in enhanced anticlotting activity that allowed a one-third reduction in the dose, relative to TBA. Further, TBA-7T exhibited enhanced nuclease resistance properties to both endo- and exonucleases.
Collapse
Affiliation(s)
- Manojkumar Varada
- Organic Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Manisha Aher
- Organic Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Namrata Erande
- Organic Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaijayanti A. Kumar
- Organic Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Moneesha Fernandes
- Organic Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
33
|
Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019; 25:E3. [PMID: 31861277 PMCID: PMC6982925 DOI: 10.3390/molecules25010003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.
Collapse
Affiliation(s)
- Fadwa Odeh
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Ezaldeen Esawi
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Baraa Qaqish
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Abeer Al Bawab
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Said I. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
- Qatar Genome Project, Qatar Foundation, Doha 5825, Qatar
| |
Collapse
|
34
|
Riccardi C, Meyer A, Vasseur JJ, Russo Krauss I, Paduano L, Morvan F, Montesarchio D. Fine-tuning the properties of the thrombin binding aptamer through cyclization: Effect of the 5'-3' connecting linker on the aptamer stability and anticoagulant activity. Bioorg Chem 2019; 94:103379. [PMID: 31699393 DOI: 10.1016/j.bioorg.2019.103379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
A small library of cyclic TBA analogues (named cycTBA I-IV), obtained by covalently connecting its 5'- and 3'-ends with flexible linkers, has been synthesized with the aim of improving its chemical and enzymatic stability, as well as its anticoagulant properties. Two chemical procedures have been exploited to achieve the desired cyclization, based on the oxime ligation method (providing cycTBA I and II) or on Cu(I)-assisted azide-alkyne cycloaddition (CuAAC) protocols (for cycTBA III and IV), leading to analogues containing circularizing linkers with different chemical nature and length, overall spanning from 22 to 48 atoms. The resulting cyclic TBAs have been characterized using a variety of biophysical methods (UV, CD, gel electrophoresis, SE-HPLC analyses) and then tested for their serum resistance and anticoagulant activity under in vitro experiments. A fine-tuning of the length and flexibility of the linker allowed identifying a cyclic analogue, cycTBA II, with improved anticoagulant activity, associated with a dramatically stabilized G-quadruplex structure (ΔTm = +17 °C) and a 6.6-fold higher enzymatic resistance in serum compared to unmodified TBA.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - François Morvan
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy.
| |
Collapse
|
35
|
Roxo C, Kotkowiak W, Pasternak A. G-Quadruplex-Forming Aptamers-Characteristics, Applications, and Perspectives. Molecules 2019; 24:E3781. [PMID: 31640176 PMCID: PMC6832456 DOI: 10.3390/molecules24203781] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes constitute a unique class of nucleic acid structures formed by G-rich oligonucleotides of DNA- or RNA-type. Depending on their chemical nature, loops length, and localization in the sequence or structure molecularity, G-quadruplexes are highly polymorphic structures showing various folding topologies. They may be formed in the human genome where they are believed to play a pivotal role in the regulation of multiple biological processes such as replication, transcription, and translation. Thus, natural G-quadruplex structures became prospective targets for disease treatment. The fast development of systematic evolution of ligands by exponential enrichment (SELEX) technologies provided a number of G-rich aptamers revealing the potential of G-quadruplex structures as a promising molecular tool targeted toward various biologically important ligands. Because of their high stability, increased cellular uptake, ease of chemical modification, minor production costs, and convenient storage, G-rich aptamers became interesting therapeutic and diagnostic alternatives to antibodies. In this review, we describe the recent advances in the development of G-quadruplex based aptamers by focusing on the therapeutic and diagnostic potential of this exceptional class of nucleic acid structures.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
36
|
Aptamer-Based Nanoporous Anodic Alumina Interferometric Biosensor for Real-Time Thrombin Detection. SENSORS 2019; 19:s19204543. [PMID: 31635027 PMCID: PMC6833485 DOI: 10.3390/s19204543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
Aptamer biosensors are one of the most powerful techniques in biosensing. Achieving the best platform to use in aptamer biosensors typically includes crucial chemical modifications that enable aptamer immobilization on the surface in the most efficient manner. These chemical modifications must be well defined. In this work we propose nanoporous anodic alumina (NAA) chemically modified with streptavidin as a platform for aptamer immobilization. The immobilization of biotinylated thrombin binding aptamer (TBA) was monitored in real time by means of reflective interferometric spectroscopy (RIfS). The study has permitted to characterize in real time the path to immobilize TBA on the inner pore walls of NAA. Furthermore, this study provides an accurate label-free method to detect thrombin in real-time with high affinity and specificity.
Collapse
|
37
|
Wagh AA, Fernandes M. 2′‐5′‐Isomerically Linked Thrombin‐Binding Aptamer (isoTBA) Forms a Stable Unimolecular Parallel G‐Quadruplex in the Presence of Sr
2+
Ions. ChemistrySelect 2019. [DOI: 10.1002/slct.201902005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Atish A. Wagh
- Organic Chemistry DivisionCSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Moneesha Fernandes
- Organic Chemistry DivisionCSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
38
|
Revealing conformational dynamics of 2'-O-methyl-RNA guanine modified G-quadruplex by replica exchange molecular dynamics. Biochem Biophys Res Commun 2019; 520:14-19. [PMID: 31564415 DOI: 10.1016/j.bbrc.2019.09.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Thrombin-binding DNA aptamer (TBA) can fold into an antiparallel unimolecular G-quadruplex (G4) structure. Different types of modifications lead to various effects on the structure and stability of the G4 structure. Previous study has shown that a modified TBA (mTBA) that 2'-deoxy guanine (dG) at positions 10 and 11 in the TBA sequence were replaced by 2'-O-methyl-RNA guanine (2'OMe-G) can't fold into a well-defined G4 structure. In order to investigate the detailed structural information and probe the instability factors, we successfully employed the replica exchange molecular dynamics (REMD) to characterize the large conformational variations of the mTBA and systemically describe the influences of the 2'OMe-G on the mTBA in terms of conformation variations and the probability distributions of Hoogsteen hydrogen bonds, dihedral, sugar pucker and glycosyl torsion angle. Replacing position 10 with the 2'OMe-G (2'OMe-G10) induced a strong destabilization of the aptamer, while the 2'OMe-G at position 11(2'OMe-G11) was less destabilizing. More importantly, the glycosyl torsion angle and sugar pucker of 2'OMe-G10 were the most critical destabilization factors. These results were in good agreement with the theoretical and experimental results. Moreover, the structure information can be used as guidelines for the further design of modifications on G4 structure.
Collapse
|
39
|
Ma X, Gosai A, Shrotriya P. Resolving electrical stimulus triggered molecular binding and force modulation upon thrombin-aptamer biointerface. J Colloid Interface Sci 2019; 559:1-12. [PMID: 31605780 DOI: 10.1016/j.jcis.2019.09.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/28/2019] [Accepted: 09/21/2019] [Indexed: 11/15/2022]
Abstract
Experimental and computational approaches are utilized to investigate the influence of electrostatic fields on the binding force between human coagulation protein thrombin and its DNA aptamer. The thiolated aptamer was deposited onto gold substrate located in a liquid cell filled with binding buffer, then the thrombin-functionalized atomic force microscopy (AFM) probe was repeatedly brought into contact with the aptamer-coated surface under applied electrical potentials of -100, 0, and 100 mV respectively. Force drops during the pull-off process were measured to determine the unbinding forces between thrombin and aptamer in a range of loading rates spanning from ~3 × 102 to ~1 × 104 pN/s. The results from experiments showed that both of the binding strength and propensity of the complex are drastically diminished under positive electrode potential, whereas there is no influence on the molecular binding from negative electrode potential. We also used a theoretical analysis to explain the nature of electrostatic potential and field inside the aptamer-thrombin layer, which in turn could quantify the influence of the electrostatically repulsive force on a thrombin molecule that promotes dissociation from the aptamer due to positive electrode potential, and achieve good agreement with the experimental results. The study confirms the feasibility of electrostatic modulation upon the binding interaction between thrombin and aptamer, and implicates an underlying application perspective upon nanoscale manipulation of the stimuli responsive biointerface.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Agnivo Gosai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Pranav Shrotriya
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
40
|
Kotlarek D, Vorobii M, Ogieglo W, Knoll W, Rodriguez-Emmenegger C, Dostálek J. Compact Grating-Coupled Biosensor for the Analysis of Thrombin. ACS Sens 2019; 4:2109-2116. [PMID: 31364363 DOI: 10.1021/acssensors.9b00827] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A compact optical biosensor for direct detection of thrombin in human blood plasma (HBP) is reported. This biosensor platform is based on wavelength spectroscopy of diffraction-coupled surface plasmons on a chip with a periodically corrugated gold film that carries an antifouling thin polymer layer consisting of poly[(N-(2-hydroxypropyl)methacrylamide)-co-(carboxybetaine methacrylamide)] (poly(HPMA-co-CBMAA)) brushes. This surface architecture provides superior resistance to nonspecific and irreversible adsorption of abundant compounds in the analyzed HBP samples in comparison to standard surface modifications. The carboxylate groups along the polymer brushes were exploited for the covalent immobilization of aptamer ligands. These ligands were selected to specifically capture the target thrombin analyte from the analyzed HBP sample in a way that does not activate the coagulatory process at the biosensor surface with poly(HPMA-co-CBMAA) brushes. Direct label-free analysis of thrombin in the medically relevant concentration range (1-20 nM) is demonstrated without the need for diluting the HBP samples or using additional steps for signal enhancement. The reported platform constitutes the first step toward a portable and sensitive point-of-care device for direct detection of thrombin in human blood.
Collapse
Affiliation(s)
- Daria Kotlarek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Mariia Vorobii
- DWI − Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Wojciech Ogieglo
- DWI − Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Wolfgang Knoll
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Cesar Rodriguez-Emmenegger
- DWI − Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Jakub Dostálek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| |
Collapse
|
41
|
Seelam Prabhakar P, A Manderville R, D Wetmore S. Impact of the Position of the Chemically Modified 5-Furyl-2'-Deoxyuridine Nucleoside on the Thrombin DNA Aptamer-Protein Complex: Structural Insights into Aptamer Response from MD Simulations. Molecules 2019; 24:molecules24162908. [PMID: 31405145 PMCID: PMC6720718 DOI: 10.3390/molecules24162908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Aptamers are functional nucleic acids that bind to a range of targets (small molecules, proteins or cells) with a high affinity and specificity. Chemically-modified aptamers are of interest because the incorporation of novel nucleobase components can enhance aptamer binding to target proteins, while fluorescent base analogues permit the design of functional aptasensors that signal target binding. However, since optimally modified nucleoside designs have yet to be identified, information about how to fine tune aptamer stability and target binding affinity is required. The present work uses molecular dynamics (MD) simulations to investigate modifications to the prototypical thrombin-binding aptamer (TBA), which is a 15-mer DNA sequence that folds into a G-quadruplex structure connected by two TT loops and one TGT loop. Specifically, we modeled a previously synthesized thymine (T) analog, namely 5-furyl-2′-deoxyuridine (5FurU), into each of the six aptamer locations occupied by a thymine base in the TT or TGT loops of unbound and thrombin bound TBA. This modification and aptamer combination were chosen as a proof-of-principle because previous experimental studies have shown that TBA displays emissive sensitivity to target binding based on the local environment polarity at different 5FurU modification sites. Our simulations reveal that the chemically-modified base imparts noticeable structural changes to the aptamer without affecting the global conformation. Depending on the modification site, 5FurU performance is altered due to changes in the local environment, including the modification site structural dynamics, degree of solvent exposure, stacking with neighboring bases, and interactions with thrombin. Most importantly, these changes directly correlate with the experimentally-observed differences in the stability, binding affinity and emissive response of the modified aptamers. Therefore, the computational protocols implemented in the present work can be used in subsequent studies in a predictive way to aid the fine tuning of aptamer target recognition for use as biosensors (aptasensors) and/or therapeutics.
Collapse
Affiliation(s)
- Preethi Seelam Prabhakar
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada.
| |
Collapse
|
42
|
Riccardi C, Meyer A, Vasseur JJ, Russo Krauss I, Paduano L, Oliva R, Petraccone L, Morvan F, Montesarchio D. Stability Is Not Everything: The Case of the Cyclisation of a Thrombin-Binding Aptamer. Chembiochem 2019; 20:1789-1794. [PMID: 30860635 DOI: 10.1002/cbic.201900045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 12/30/2022]
Abstract
With the aim of developing a new approach to obtain improved aptamers, a cyclic thrombin-binding aptamer (TBA) analogue (cycTBA) has been prepared by exploiting a copper(I)-assisted azide-alkyne cycloaddition. The markedly increased serum resistance and exceptional thermal stability of the G-quadruplex versus TBA were associated with halved thrombin inhibition, which suggested that some flexibility in the TBA structure was necessary for protein recognition.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, ENSCM, University of Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, ENSCM, University of Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy.,CSGI-Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande, Interfase, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy.,CSGI-Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande, Interfase, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - François Morvan
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, ENSCM, University of Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| |
Collapse
|
43
|
Sun L, Xie X, Weng W, Jin H. Structural and mechanistic insights into modified G-quadruplex thrombin-binding DNA aptamers. Biochem Biophys Res Commun 2019; 513:753-759. [PMID: 30992128 DOI: 10.1016/j.bbrc.2019.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Thrombin-binding aptamer (TBA) can fold into a G-quadruplex structure necessary for interacting with thrombin. When one thymidine residue of the TGT loop at position 7 is replaced with unlocked uracil (UNA), d-isothymidine (D-isoT) or l-isothymidine (L-isoT), these modified sequences display different activities. To date, the mechanisms of how D/L-isoT and UNA influence the biological properties of TBA have not been illustrated in the literature. In this paper, we fill this gap by probing the structure variations and binding modes of these modified TBAs via molecular dynamics (MD) simulation and free energy calculation. Comparative structural analyses demonstrated that both D-IsoT and UNA changed the local conformation of TGT loop and formed stronger interactions with the target protein. Particularly, D-IsoT and UNA adopted similar conformation which can well explain their similar biological activities. In addition, the flexibility of the two TT loops were described clearly. In contrast, L-IsoT at position 7 led to an obvious tendency to unfold. Free energy calculation and the analysis of key residues energy contributions eventually provide a clear picture of interactions for further understanding of the structure-activity relationships. Collectively, our findings open the way for a rational design of modified aptamers.
Collapse
Affiliation(s)
- Lidan Sun
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China.
| | - Xiaolan Xie
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China
| | - Wenting Weng
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
44
|
Chai Z, Guo L, Jin H, Li Y, Du S, Shi Y, Wang C, Shi W, He J. TBA loop mapping with 3'-inverted-deoxythymidine for fine-tuning of the binding affinity for α-thrombin. Org Biomol Chem 2019; 17:2403-2412. [PMID: 30735210 DOI: 10.1039/c9ob00053d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
TBA is a 15-mer DNA aptamer for human α-thrombin, and its three T-rich loops are involved in the binding interactions with thrombin differently. In order to clarify their specific spatial locations in the binding interactions and search for more favourable positions, here a systematic investigation of all the loop residues was conducted with 3'-inverted thymidine (iT), by which both unnatural 3'-3'- and 5'-5'-linkages for each incorporation were introduced in the tertiary structure. The changes in Tm values and CD spectra revealed that motifs T3T12 and T4T13 are structurally distinct. Longer anti-clotting time was obtained for the T3 and T12 modifications, respectively, while T4 and T13 were completely intolerant with such changes, in terms of stability and binding to thrombin. In particular, the increased affinity bindings and longer anti-clotting time were obtained with the replacement on the central loop T7G8T9, which were closely related to the existence of a monovalent ion, K+ or Na+, consistently with the supposed binding site of these ions in TBA. It is worthwhile to note that both the subtle variations of the loop residues induced by iT and the monovalent ions determined the interacting residues of TBA and the binding strength rather than the thermal stability of the TBA structure.
Collapse
Affiliation(s)
- Zhilong Chai
- School of Pharmaceutical Sciences, Guizhou University, Guizhou 550025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kotkowiak W, Wengel J, Scotton CJ, Pasternak A. Improved RE31 Analogues Containing Modified Nucleic Acid Monomers: Thermodynamic, Structural, and Biological Effects. J Med Chem 2019; 62:2499-2507. [PMID: 30735377 DOI: 10.1021/acs.jmedchem.8b01806] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RE31 is a 31-nt DNA aptamer, consisting of the G-quadruplex and a duplex domain, which is able to effectively prolong thrombin time. This article reports on the influence of certain modified nucleotide residues on thermodynamic and biological properties as well as the folding topology of RE31. Particularly, the effect of the presence of nucleosides in unlocked nucleic acid (UNA), locked nucleic acid (LNA), or β-l-RNA series was evaluated. The studies presented herein show that all modified residues can influence thermal and biological stabilities of G-quadruplex in a position-dependent manner. The aptamers modified simultaneously with UNA at the T15 position and LNAs in the duplex part possess the highest value of melting temperature and a 2-fold higher anticoagulant effect. Importantly, RE31 variants modified with nucleosides in UNA, LNA, or β-l-RNA series exhibit unchanged G-quadruplex folding topology. Crucially, introduction of any of the modified residues into RE31 causes prolongation of aptamer stability in human serum.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry , Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| | - Jesper Wengel
- Department of Physics, Chemistry, and Pharmacy, Biomolecular Nanoscale Engineering Center , University of Southern Denmark , Campusvej 55 , Odense M 5230 , Denmark
| | - Chris J Scotton
- Institute of Biomedical and Clinical Science, College of Medicine & Health , University of Exeter, St Luke's Campus , Exeter EX1 2LU , U.K
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry , Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| |
Collapse
|
46
|
Mo M, Kong D, Ji H, Lin D, Tang X, Yang Z, He Y, Wu L. Reversible Photocontrol of Thrombin Activity by Replacing Loops of Thrombin Binding Aptamer using Azobenzene Derivatives. Bioconjug Chem 2019; 30:231-241. [PMID: 30582682 DOI: 10.1021/acs.bioconjchem.8b00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The photoisomerization of azobenzenes provides a general means for the photocontrol of many important biomolecular structures and organismal functions. For temporal and spatial control activity of thrombin binding aptamer (TBA) by light, azobenzene derivatives were carefully selected as light-triggered molecular switches to replace TT loops and the TGT loop of TBA to reversibly control enzyme activity. These molecules interconverted between the trans and cis states under alternate UV and visible light irradiation, which consequently triggered reversible formation of G-quadruplex morphology. In addition, we investigated the impact of three azobenzene derivatives on stability, thrombin binding ability, and anticoagulant properties. The result showed that 4,4'-bis(hydroxymethyl)azobenzene at the TGT loop position significantly photoregulated affinity to thrombin and blood clotting in human plasma, which provided a successful strategy to control blood clotting in human plasma and a further evidence for design of TBA analogues with pivotal positions of modifications.
Collapse
Affiliation(s)
- Mengwu Mo
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dejia Kong
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Heming Ji
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dao Lin
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Yujian He
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Li Wu
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| |
Collapse
|
47
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
48
|
Pal S, Paul S. Conformational deviation of Thrombin binding G-quadruplex aptamer (TBA) in presence of divalent cation Sr 2+: A classical molecular dynamics simulation study. Int J Biol Macromol 2018; 121:350-363. [PMID: 30308284 DOI: 10.1016/j.ijbiomac.2018.09.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
Thrombin binding TBA-G-quadruplex aptamer (TBA) plays a major role in blood coagulation cascade. The 15-mer TBA sequence tends to form four-stranded TBA-G-quadruplex structure. In this research work, a series of explicit solvent classical MD simulations of the TBA is carried out using different salt (SrCl2) concentrations (0, 50, 100 and 200 mM). Here we have also testified the effect of salt concentration of divalent cation Sr2+ on the conformational change of quadruplex DNA. The structural deviations, fluctuations, torsional angles and the affinity of the ion are explored at different salt concentrations. It is found that the conformation of TBA-G-quadruplex at 0 mM and 50 mM salt concentrations, is very much different than the other salt concentrations (100 mM and 200 mM). Also observed are as follows: (i) no exchange of Sr2+ ion between inside and outside of the channel, (ii) an enhancement in the Sr2+ ion density around the phosphate region of the loop residues as salt concentration increases and (iii) the stacking of T3 and T4 residues of loop-1 that appears up to 50 mM concentration, vanishes as the salt concentration is increased further.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
49
|
Le BT, Hughes Q, Rakesh S, Baker R, Jørgensen PT, Wengel J, Veedu RN. Unlocked nucleic acid modified primer-based enzymatic polymerization assay: towards allele-specific genotype detection of human platelet antigens. RSC Adv 2018; 8:32770-32774. [PMID: 35547719 PMCID: PMC9086379 DOI: 10.1039/c8ra06050a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022] Open
Abstract
Accurate detection of single nucleotide polymorphisms (SNPs) is paramount for the appropriate therapeutic intervention of debilitating diseases associated with SNPs. However, in some cases current nucleic acid probes fail to detect allele-specific mutations, for example, human platelet antigens, HPA-15a (TCC) and HPA-15b (TAC) alleles associated with neonatal alloimmune thrombocytopenia. Towards this, it is necessary to develop a novel assay for detection of allele-specific mutations. In this study, we investigated the potential of unlocked nucleic acid (UNA)-modified primers in SNP detection utilising an enzymatic polymerisation-based approach. Our results of primer extension and asymmetric polymerase chain reaction by KOD XL DNA polymerase revealed that UNA-modified primers achieved excellent allele-specificity in discriminating the human platelet antigen DNA template, whereas the DNA control primers were not able to differentiate between the normal and mutant alleles, demonstrating the scope of this novel UNA-based enzymatic approach as a robust methodology for efficient detection of allele-specific mismatches. Although further evaluation is required for other disease conditions, we firmly believe that our findings offer a great promise for the diagnosis of neonatal alloimmune thrombocytopenia and other SNP-related diseases.
Collapse
Affiliation(s)
- Bao T Le
- Centre for Comparative Genomics, Murdoch University Perth Australia-6150
- Perron Institute for Neurological and Translational Science Perth Australia-6009
| | | | | | - Ross Baker
- Perth Blood Institute Nedlands Perth WA Australia
| | - Per T Jørgensen
- BioNEC, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense M 5231 Denmark
| | - Jesper Wengel
- BioNEC, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense M 5231 Denmark
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University Perth Australia-6150
- Perron Institute for Neurological and Translational Science Perth Australia-6009
- BioNEC, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense M 5231 Denmark
| |
Collapse
|
50
|
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018; 154:132-155. [PMID: 30193856 DOI: 10.1016/j.biochi.2018.09.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method used to isolate high-affinity single stranded oligonucleotides from a large random sequence pool. These SELEX-derived oligonucleotides named aptamer, can be selected against a broad spectrum of target molecules including proteins, cells, microorganisms and chemical compounds. Like antibodies, aptamers have a great potential in interacting with and binding to their targets through structural recognition and are therefore called "chemical antibodies". However, aptamers offer advantages over antibodies including smaller size, better tissue penetration, higher thermal stability, lower immunogenicity, easier production, lower cost of synthesis and facilitated conjugation or modification with different functional moieties. Thus, aptamers represent an attractive substitution for protein antibodies in the fields of biomarker discovery, diagnosis, imaging and targeted therapy. Enormous interest in aptamer technology triggered the development of SELEX that has underwent numerous modifications since its introduction in 1990. This review will discuss the recent advances in SELEX methods and their advantages and limitations. Aptamer applications are also briefly outlined in this review.
Collapse
Affiliation(s)
- Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Khedri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|