1
|
Chen T, Hojka M, Davey P, Sun Y, Dykes GF, Zhou F, Lawson T, Nixon PJ, Lin Y, Liu LN. Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis. Nat Commun 2023; 14:2118. [PMID: 37185249 PMCID: PMC10130085 DOI: 10.1038/s41467-023-37490-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The growth in world population, climate change, and resource scarcity necessitate a sustainable increase in crop productivity. Photosynthesis in major crops is limited by the inefficiency of the key CO2-fixing enzyme Rubisco, owing to its low carboxylation rate and poor ability to discriminate between CO2 and O2. In cyanobacteria and proteobacteria, carboxysomes function as the central CO2-fixing organelles that elevate CO2 levels around encapsulated Rubisco to enhance carboxylation. There is growing interest in engineering carboxysomes into crop chloroplasts as a potential route for improving photosynthesis and crop yields. Here, we generate morphologically correct carboxysomes in tobacco chloroplasts by transforming nine carboxysome genetic components derived from a proteobacterium. The chloroplast-expressed carboxysomes display a structural and functional integrity comparable to native carboxysomes and support autotrophic growth and photosynthesis of the transplastomic plants at elevated CO2. Our study provides proof-of-concept for a route to engineering fully functional CO2-fixing modules and entire CO2-concentrating mechanisms into chloroplasts to improve crop photosynthesis and productivity.
Collapse
Affiliation(s)
- Taiyu Chen
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Marta Hojka
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Philip Davey
- School of Life Sciences, University of Essex, Colchester, CO4 4SQ, UK
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, CO4 4SQ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 266003, Qingdao, China.
| |
Collapse
|
2
|
Bock R. Transplastomic approaches for metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102185. [PMID: 35183927 DOI: 10.1016/j.pbi.2022.102185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The plastid (chloroplast) genome of seed plants represents an attractive target of metabolic pathway engineering by genetic transformation. Although the plastid genome is relatively small, it can accommodate large amounts of foreign DNA that precisely integrates via homologous recombination, and is largely excluded from pollen transmission due to the maternal mode of plastid inheritance. Since the engineering of metabolic pathways often requires the expression of multiple transgenes, the possibility to conveniently stack transgenes in synthetic operons makes the transplastomic technology particularly appealing in the area of metabolic engineering. Absence of epigenetic gene silencing mechanisms from plastids and the possibility to achieve high transgene expression levels further add to the attractiveness of plastid genome transformation. This review focuses on engineering principles and available tools for the transplastomic expression of enzymes and pathways, and highlights selected recent applications in metabolic engineering.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Li S, Chang L, Zhang J. Advancing organelle genome transformation and editing for crop improvement. PLANT COMMUNICATIONS 2021; 2:100141. [PMID: 33898977 PMCID: PMC8060728 DOI: 10.1016/j.xplc.2021.100141] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 05/05/2023]
Abstract
Plant cells contain three organelles that harbor DNA: the nucleus, plastids, and mitochondria. Plastid transformation has emerged as an attractive platform for the generation of transgenic plants, also referred to as transplastomic plants. Plastid genomes have been genetically engineered to improve crop yield, nutritional quality, and resistance to abiotic and biotic stresses, as well as for recombinant protein production. Despite many promising proof-of-concept applications, transplastomic plants have not been commercialized to date. Sequence-specific nuclease technologies are widely used to precisely modify nuclear genomes, but these tools have not been applied to edit organelle genomes because the efficient homologous recombination system in plastids facilitates plastid genome editing. Unlike plastid transformation, successful genetic transformation of higher plant mitochondrial genome transformation was tested in several research group, but not successful to date. However, stepwise progress has been made in modifying mitochondrial genes and their transcripts, thus enabling the study of their functions. Here, we provide an overview of advances in organelle transformation and genome editing for crop improvement, and we discuss the bottlenecks and future development of these technologies.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Abstract
Expression of transgenes from the plastid genome offers a number of attractions to biotechnologists, with the potential to attain very high protein accumulation levels arguably being the most attractive one. High-level transgene expression is of particular importance in resistance engineering (e.g., for expression of insecticidal proteins) and molecular farming (e.g., for expression of pharmaceutical proteins and industrial enzymes). Over the past decades, the production of many commercially valuable proteins in chloroplast-transgenic (transplastomic) plants has been attempted, including pharmaceutical proteins (e.g., subunit vaccines and protein antibiotics) and industrial enzymes. Although in some cases, spectacularly high foreign protein accumulation levels have been obtained, expression levels were disappointingly poor in other cases. In this review, I summarize our current knowledge about the factors influencing the efficiency of plastid transgene expression, and highlight possible optimization strategies to alleviate problems with poor expression levels. I also discuss available techniques for inducible expression of chloroplast transgenes.
Collapse
|
5
|
Kage U, Powell JJ, Gardiner DM, Kazan K. Ribosome profiling in plants: what is not lost in translation? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5323-5332. [PMID: 32459844 DOI: 10.1093/jxb/eraa227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 05/03/2023]
Abstract
Translation is a highly dynamic cellular process whereby genetic information residing in an mRNA molecule is converted into a protein that in turn executes specific functions. However, pre-synthesized mRNA levels do not always correlate with corresponding protein levels, suggesting that translational control plays an essential role in gene regulation. A better understanding of how gene expression is regulated during translation will enable the discovery of new genes and mechanisms that control important traits in plants. Therefore, in recent years, several methods have been developed to analyse the translatome; that is, all mRNAs being actively translated at a given time, tissue, and/or developmental stage. Ribosome profiling or ribo-seq is one such technology revolutionizing our ability to analyse the translatome and in turn understand translational control of gene expression. Ribo-seq involves isolating mRNA-ribosome complexes, treating them with a RNase, and then identifying ribosome-protected mRNA regions by deep sequencing. Here, we briefly review recent ribosome profiling studies that revealed new insights into plant biology. Manipulation of novel genes identified using ribosome profiling could prove useful for increasing yield through improved biotic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Udaykumar Kage
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Xu S, Zhang Y, Li S, Chang L, Wu Y, Zhang J. Plastid-expressed Bacillus thuringiensis (Bt) cry3Bb confers high mortality to a leaf eating beetle in poplar. PLANT CELL REPORTS 2020; 39:317-323. [PMID: 31797051 DOI: 10.1007/s00299-019-02492-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/13/2019] [Indexed: 05/03/2023]
Abstract
The Bacillus thuringiensis (Bt) cry3Bb gene was successfully introduced into poplar plastid genome, leading to transplastomic poplar with high mortality to Plagiodera versicolora. Poplar (Populus L.) is one of the main resource of woody industry, but being damaged by insect pests. The feasibility and efficiency of plastid transformation technology for controlling two lepidopteran caterpillars have been demonstrated previously. Here, we introduced B. thuringiensis (Bt) cry3Bb into poplar plastid genome by biolistic bombardment for controlling P. versicolora, a widely distributed forest pest. Chimeric cry3Bb gene is controlled by the tobacco plastid rRNA operon promoter combined with the 5'UTR from gene10 of bacteriophage T7 (NtPrrn:T7g10) and the 3'UTR from the E. coli ribosomal RNA operon rrnB (TrrnB). The integration of transgene and homoplasmy of transplastomic poplar plants was confirmed by Southern blot analysis. Northern blot analysis indicated that cry3Bb was transcribed to both read through and shorter length transcripts in plastid. The transplastomic poplar expressing Cry3Bb insecticidal protein showed the highest accumulation level in young leaves, which reach up to 16.8 μg/g fresh weight, and comparatively low levels in mature and old leaves. Feeding the young leaves from Bt-Cry3Bb plastid lines to P. versicolora caused 100% mortality in the first-instar larvae after only 1 day, in the second-instar larvae after 2 days, and in the third-instar larvae for 3 days. Thus, we report a successful extension of plastid engineering poplar against the chrysomelid beetle.
Collapse
Affiliation(s)
- Shijing Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yiqiu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuyong Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
7
|
Wu Y, Xu L, Chang L, Ma M, You L, Jiang C, Li S, Zhang J. Bacillus thuringiensis cry1C expression from the plastid genome of poplar leads to high mortality of leaf-eating caterpillars. TREE PHYSIOLOGY 2019; 39:1525-1532. [PMID: 31222266 DOI: 10.1093/treephys/tpz073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/23/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Plastid transformation technology has several attractive features compared with traditional nuclear transformation technology. However, only a handful of species are able to be successfully transformed. Here, we report an efficient and stable plastid transformation protocol for poplar, an economically important tree species grown worldwide. We transformed the Bacillus thuringiensis cry1C gene into the poplar plastid genome, and homoplasmic transplastomic poplar was obtained after two to three rounds of regeneration under antibiotic selection for 7-12 months. The transplastomic poplar expressing Cry1C insecticidal protein showed the highest accumulation level in young leaves, which reached up to 20.7 μg g-1 fresh weight, and comparatively low levels in mature and old leaves, and hardly detectable levels in non-green tissues, such as phloem, xylem and roots. Transplastomic poplar showed high toxicity to Hyphantria cunea and Lymantria dispar, two notorious forest pests worldwide, without affecting plant growth. These results are the first successful examples of insect-resistant poplar generation by plastid genome engineering and provide a new avenue for future genetic improvement of poplar plants.
Collapse
Affiliation(s)
- Yuyong Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lili You
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chunmei Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
8
|
RAZMI SHAHLA, JALALI JAVARAN MOKHTAR, BAGHERI ABDOLREZA, HONARI HOSSEIN, SOLEIMANI ZADEH MOJGAN. Expression of human interferon gamma in tobacco chloroplasts. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/208.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Shahar N, Weiner I, Stotsky L, Tuller T, Yacoby I. Prediction and large-scale analysis of primary operons in plastids reveals unique genetic features in the evolution of chloroplasts. Nucleic Acids Res 2019; 47:3344-3352. [PMID: 30828719 PMCID: PMC6468310 DOI: 10.1093/nar/gkz151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/14/2022] Open
Abstract
While bacterial operons have been thoroughly studied, few analyses of chloroplast operons exist, limiting the ability to study fundamental elements of these structures and utilize them for synthetic biology. Here, we describe the creation of a plastome-specific operon database (link provided below) achieved by combining experimental tools and predictive modeling. Using a Reverse-Transcription-PCR based method and published data, we determined the transcription-state of 213 gene pairs from four plastomes of evolutionary distinct organisms. By analyzing sequence-based features computed for our dataset, we were able to highlight fundamental characteristics differentiating between operon pairs and non-operon pairs. These include an interesting tendency toward maintaining similar messenger RNA-folding profiles in operon gene pairs, a feature that failed to yield any informative separation in cyanobacteria, suggesting that it catches unique traits of operon gene expression, which have evolved post-endosymbiosis. Subsequently, we used this feature set to train a random-forest classifier for operon prediction. As our results demonstrate the ability of our predictor to obtain accurate (84%) and robust predictions on unlabeled datasets, we proceeded to building operon maps for 2018 sequenced plastids. Our database may now present new opportunities for promoting metabolic engineering and synthetic biology in chloroplasts.
Collapse
Affiliation(s)
- Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Iddo Weiner
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lior Stotsky
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Yang Z, Pei X, Xu G, Wu J, Yang L. Efficient inducible expression of nitrile hydratase in Corynebacterium glutamicum. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Schindel HS, Piatek AA, Stewart CN, Lenaghan SC. The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression. PLANT CELL REPORTS 2018; 37:1419-1429. [PMID: 30039465 DOI: 10.1007/s00299-018-2323-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/10/2018] [Indexed: 05/21/2023]
Abstract
Owing to its small size, prokaryotic-like molecular genetics, and potential for very high transgene expression, the plastid genome (plastome) is an attractive plant synthetic biology chassis for metabolic engineering. The plastome exists as a homogenous, compact, multicopy genome within multiple-specialized differentiated plastid compartments. Because of this multiplicity, transgenes can be highly expressed. For coordinated gene expression, it is the prokaryotic molecular genetics that is an especially attractive feature. Multiple genes in a metabolic pathway can be expressed in a series of operons, which are regulated at the transcriptional and translational levels with cross talk from the plant's nuclear genome. Key features of each regulatory level are reviewed, as well as some examples of plastome-enabled metabolic engineering. We also speculate about the transformative future of plastid-based synthetic biology to enable metabolic engineering in plants as well as the problems that must be solved before routine plastome-enabled synthetic circuits can be installed.
Collapse
Affiliation(s)
- Heidi S Schindel
- Department of Food Science, University of Tennessee, 2600 River Dr., Knoxville, TN, 37996-4561, USA
| | - Agnieszka A Piatek
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996-4561, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996-4561, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, 2600 River Dr., Knoxville, TN, 37996-4561, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
Zoschke R, Bock R. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation. THE PLANT CELL 2018; 30:745-770. [PMID: 29610211 PMCID: PMC5969280 DOI: 10.1105/tpc.18.00016] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 05/20/2023]
Abstract
Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems.
Collapse
Affiliation(s)
- Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Legen J, Ruf S, Kroop X, Wang G, Barkan A, Bock R, Schmitz-Linneweber C. Stabilization and translation of synthetic operon-derived mRNAs in chloroplasts by sequences representing PPR protein-binding sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:8-21. [PMID: 29418028 DOI: 10.1111/tpj.13863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 05/08/2023]
Abstract
The chloroplast is a prime target for genetic engineering in plants, offering various advantages over nuclear transformation. For example, chloroplasts allow the expression of polycistronic transcripts and thus to engineer complex metabolic pathways. Each cistron within such a longer transcript needs its own expression elements. Within the 5'-UTR, such expression elements are needed for stabilizing mRNAs and for translation of the downstream reading frame. One of the few effective expression elements used so far in transplastomic approaches is the intercistronic expression element (IEE). The IEE is derived from the psbT-psbH intergenic region and includes a target sequence of the RNA binding protein HCF107. We here show that excessive expression of the IEE can lead to specific defects of endogenous chloroplast mRNA stabilization, likely via depletion of HCF107. Key players in chloroplast transcript stabilization and translation are pentatricopeptide repeat (PPR) proteins, which are structurally related to HCF107. PPR proteins that stabilize mRNAs leave behind short RNA footprints that are indicators of their activity. We identified such sRNAs in tobacco, and demonstrate that they are sufficient to stabilize and stimulate translation of mRNAs from synthetic dicistronic transgenes in chloroplasts. Thus, minimal sequence elements are generally adequate to support key steps in chloroplast gene expression, i.e. RNA stability and translation. Furthermore, our analysis expands the repertoire of available expression elements to facilitate the assembly and expression of multi-gene ensembles in the chloroplast.
Collapse
Affiliation(s)
- Julia Legen
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Gongwei Wang
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
14
|
CMS-G from Beta vulgaris ssp. maritima is maintained in natural populations despite containing an atypical cytochrome c oxidase. Biochem J 2018; 475:759-773. [PMID: 29358189 DOI: 10.1042/bcj20170655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
While mitochondrial mutants of the respiratory machinery are rare and often lethal, cytoplasmic male sterility (CMS), a mitochondrially inherited trait that results in pollen abortion, is frequently encountered in wild populations. It generates a breeding system called gynodioecy. In Beta vulgaris ssp. maritima, a gynodioecious species, we found CMS-G to be widespread across the distribution range of the species. Despite the sequencing of the mitochondrial genome of CMS-G, the mitochondrial sterilizing factor causing CMS-G is still unknown. By characterizing biochemically CMS-G, we found that the expression of several mitochondrial proteins is altered in CMS-G plants. In particular, Cox1, a core subunit of the cytochrome c oxidase (complex IV), is larger but can still assemble into complex IV. However, the CMS-G-specific complex IV was only detected as a stabilized dimer. We did not observe any alteration of the affinity of complex IV for cytochrome c; however, in CMS-G, complex IV capacity is reduced. Our results show that CMS-G is maintained in many natural populations despite being associated with an atypical complex IV. We suggest that the modified complex IV could incur the associated cost predicted by theoretical models to maintain gynodioecy in wild populations.
Collapse
|
15
|
Scharff LB, Ehrnthaler M, Janowski M, Childs LH, Hasse C, Gremmels J, Ruf S, Zoschke R, Bock R. Shine-Dalgarno Sequences Play an Essential Role in the Translation of Plastid mRNAs in Tobacco. THE PLANT CELL 2017; 29:3085-3101. [PMID: 29133466 PMCID: PMC5757275 DOI: 10.1105/tpc.17.00524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 05/23/2023]
Abstract
In prokaryotic systems, the translation initiation of many, though not all, mRNAs depends on interaction between a sequence element upstream of the start codon (the Shine-Dalgarno sequence [SD]) and a complementary sequence in the 3' end of the 16S rRNA (anti-Shine-Dalgarno sequence [aSD]). Although many chloroplast mRNAs harbor putative SDs in their 5' untranslated regions and the aSD displays strong conservation, the functional relevance of SD-aSD interactions in plastid translation is unclear. Here, by generating transplastomic tobacco (Nicotiana tabacum) mutants with point mutations in the aSD coupled with genome-wide analysis of translation by ribosome profiling, we provide a global picture of SD-dependent translation in plastids. We observed a pronounced correlation between weakened predicted SD-aSD interactions and reduced translation efficiency. However, multiple lines of evidence suggest that the strength of the SD-aSD interaction is not the only determinant of the translational output of many plastid mRNAs. Finally, the translation efficiency of mRNAs with strong secondary structures around the start codon is more dependent on the SD-aSD interaction than weakly structured mRNAs. Thus, our data reveal the importance of the aSD in plastid translation initiation, uncover chloroplast genes whose translation is influenced by SD-aSD interactions, and provide insights into determinants of translation efficiency in plastids.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Miriam Ehrnthaler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Marcin Janowski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Liam H Childs
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Claudia Hasse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Jürgen Gremmels
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
16
|
Ahmed T, Shi J, Bhushan S. Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation. Nucleic Acids Res 2017; 45:8581-8595. [PMID: 28582576 PMCID: PMC5737520 DOI: 10.1093/nar/gkx499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chloroplastic translation is mediated by a bacterial-type 70S chloroplast ribosome. During the evolution, chloroplast ribosomes have acquired five plastid-specific ribosomal proteins or PSRPs (cS22, cS23, bTHXc, cL37 and cL38) which have been suggested to play important regulatory roles in translation. However, their exact locations on the chloroplast ribosome remain elusive due to lack of a high-resolution structure, hindering our progress to understand their possible roles. Here we present a cryo-EM structure of the 70S chloroplast ribosome from spinach resolved to 3.4 Å and focus our discussion mainly on the architecture of the 30S small subunit (SSU) which is resolved to 3.7 Å. cS22 localizes at the SSU foot where it seems to compensate for the deletions in 16S rRNA. The mRNA exit site is highly remodeled due to the presence of cS23 suggesting an alternative mode of translation initiation. bTHXc is positioned at the SSU head and appears to stabilize the intersubunit bridge B1b during thermal fluctuations. The translation factor plastid pY binds to the SSU on the intersubunit side and interacts with the conserved nucleotide bases involved in decoding. Most of the intersubunit bridges are conserved compared to the bacteria, except for a new bridge involving uL2c and bS6c.
Collapse
Affiliation(s)
- Tofayel Ahmed
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jian Shi
- Center for BioImaging Sciences, National University of Singapore, 117546, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
17
|
Wu Y, You L, Li S, Ma M, Wu M, Ma L, Bock R, Chang L, Zhang J. In vivo Assembly in Escherichia coli of Transformation Vectors for Plastid Genome Engineering. FRONTIERS IN PLANT SCIENCE 2017; 8:1454. [PMID: 28871270 PMCID: PMC5566966 DOI: 10.3389/fpls.2017.01454] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/04/2017] [Indexed: 05/03/2023]
Abstract
Plastid transformation for the expression of recombinant proteins and entire metabolic pathways has become a promising tool for plant biotechnology. However, large-scale application of this technology has been hindered by some technical bottlenecks, including lack of routine transformation protocols for agronomically important crop plants like rice or maize. Currently, there are no standard or commercial plastid transformation vectors available for the scientific community. Construction of a plastid transformation vector usually requires tedious and time-consuming cloning steps. In this study, we describe the adoption of an in vivo Escherichia coli cloning (iVEC) technology to quickly assemble a plastid transformation vector. The method enables simple and seamless build-up of a complete plastid transformation vector from five DNA fragments in a single step. The vector assembled for demonstration purposes contains an enhanced green fluorescent protein (GFP) expression cassette, in which the gfp transgene is driven by the tobacco plastid ribosomal RNA operon promoter fused to the 5' untranslated region (UTR) from gene10 of bacteriophage T7 and the transcript-stabilizing 3'UTR from the E. coli ribosomal RNA operon rrnB. Successful transformation of the tobacco plastid genome was verified by Southern blot analysis and seed assays. High-level expression of the GFP reporter in the transplastomic plants was visualized by confocal microscopy and Coomassie staining, and GFP accumulation was ~9% of the total soluble protein. The iVEC method represents a simple and efficient approach for construction of plastid transformation vector, and offers great potential for the assembly of increasingly complex vectors for synthetic biology applications in plastids.
Collapse
Affiliation(s)
- Yuyong Wu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Lili You
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Shengchun Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Meiqi Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Mengting Wu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei UniversityWuhan, China
| | - Ralph Bock
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
- Department III, Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam, Germany
| | - Ling Chang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei UniversityWuhan, China
- *Correspondence: Ling Chang
| | - Jiang Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei UniversityWuhan, China
- Jiang Zhang
| |
Collapse
|
18
|
Bieri P, Leibundgut M, Saurer M, Boehringer D, Ban N. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO J 2016; 36:475-486. [PMID: 28007896 PMCID: PMC5694952 DOI: 10.15252/embj.201695959] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023] Open
Abstract
Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo‐EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid‐specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid‐specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light‐ and temperature‐dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A‐site and P‐site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non‐rotated state, in which the intersubunit bridges to the large subunit are stabilized.
Collapse
Affiliation(s)
- Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Hanson MR, Lin MT, Carmo-Silva AE, Parry MA. Towards engineering carboxysomes into C3 plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:38-50. [PMID: 26867858 PMCID: PMC4970904 DOI: 10.1111/tpj.13139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Photosynthesis in C3 plants is limited by features of the carbon-fixing enzyme Rubisco, which exhibits a low turnover rate and can react with O2 instead of CO2 , leading to photorespiration. In cyanobacteria, bacterial microcompartments, known as carboxysomes, improve the efficiency of photosynthesis by concentrating CO2 near the enzyme Rubisco. Cyanobacterial Rubisco enzymes are faster than those of C3 plants, though they have lower specificity toward CO2 than the land plant enzyme. Replacement of land plant Rubisco by faster bacterial variants with lower CO2 specificity will improve photosynthesis only if a microcompartment capable of concentrating CO2 can also be installed into the chloroplast. We review current information about cyanobacterial microcompartments and carbon-concentrating mechanisms, plant transformation strategies, replacement of Rubisco in a model C3 plant with cyanobacterial Rubisco and progress toward synthesizing a carboxysome in chloroplasts.
Collapse
Affiliation(s)
- Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | - Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853 USA
| | | | - Martin A.J. Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| |
Collapse
|
20
|
Fuentes P, Zhou F, Erban A, Karcher D, Kopka J, Bock R. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife 2016; 5:e13664. [PMID: 27296645 PMCID: PMC4907697 DOI: 10.7554/elife.13664] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/08/2016] [Indexed: 12/18/2022] Open
Abstract
Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output.
Collapse
Affiliation(s)
- Paulina Fuentes
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Fei Zhou
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
21
|
Guo FM, Wu JP, Yang LR, Xu G. Overexpression of a nitrile hydratase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:148-60. [PMID: 26662726 PMCID: PMC4718753 DOI: 10.1111/tpj.13098] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 05/18/2023]
Abstract
Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.
Collapse
Affiliation(s)
| | - Myat T. Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - P. John Andralojc
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Martin A. J. Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| |
Collapse
|
23
|
Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:263-85. [DOI: 10.1007/978-3-319-27216-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Klinger J, Fischer R, Commandeur U. Comparison of Thermobifida fusca Cellulases Expressed in Escherichia coli and Nicotiana tabacum Indicates Advantages of the Plant System for the Expression of Bacterial Cellulases. FRONTIERS IN PLANT SCIENCE 2015; 6:1047. [PMID: 26648951 PMCID: PMC4664618 DOI: 10.3389/fpls.2015.01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The economic conversion of lignocellulosic biomass to biofuels requires in addition to pretreatment techniques access to large quantities of inexpensive cellulases to be competitive with established first generation processes. A solution to this problem could be achieved by plant based expression of these enzymes. We expressed the complete set of six cellulases and an additional β-glucosidase expressed from Thermobifida fusca in the bacterium Escherichia coli and in tobacco plants (Nicotiana tabacum). This was done to determine whether functional enzyme expression was feasible in these organisms. In extracts of recombinant E. coli cells, five of the proteins were detected by western blot analysis, but exocellulases E3 and E6 were undetectable. In the plant-based expression system we were able to detect all six cellulases but not the β-glucosidase even though activity was detectable. When E. coli was used as the expression system, endocellulase E2 was active, while endocellulases E1 and E5 showed only residual activity. The remaining cellulases appeared completely inactive against the model substrates azo-carboxymethyl-cellulose (Azo-CMC) and 4-methylumbelliferyl-cellobioside (4-MUC). Only the β-glucosidase showed high activity against 4-MUC. In contrast, all the plant-derived enzymes were active against the respective model substrates. Our data indicate that some enzymes of bacterial origin are more active and more efficiently expressed in plants than in a bacterial host.
Collapse
Affiliation(s)
- Johannes Klinger
- Institute for Biology VII (Molecular Biotechnology), RWTH Aachen UniversityAachen, Germany
| | - Rainer Fischer
- Institute for Biology VII (Molecular Biotechnology), RWTH Aachen UniversityAachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied EcologyAachen, Germany
| | - Ulrich Commandeur
- Institute for Biology VII (Molecular Biotechnology), RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
25
|
Emadpour M, Karcher D, Bock R. Boosting riboswitch efficiency by RNA amplification. Nucleic Acids Res 2015; 43:e66. [PMID: 25824954 PMCID: PMC4446413 DOI: 10.1093/nar/gkv165] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 01/17/2023] Open
Abstract
Riboswitches are RNA sensors that regulate gene expression in response to binding of small molecules. Although they conceptually represent simple on/off switches and, therefore, hold great promise for biotechnology and future synthetic biology applications, the induction of gene expression by natural riboswitches after ligand addition or removal is often only moderate and, consequently, the achievable expression levels are not very high. Here, we have designed an RNA amplification-based system that strongly improves the efficiency of riboswitches. We have successfully implemented the method in a biological system for which currently no efficient endogenous tools for inducible (trans)gene expression are available: the chloroplasts of higher plants. We further show that an HIV antigen whose constitutive expression from the chloroplast genome is deleterious to the plant can be inducibly expressed under the control of the RNA amplification-enhanced riboswitch (RAmpER) without causing a mutant phenotype, demonstrating the potential of the method for the production of proteins and metabolites that are toxic to the host cell.
Collapse
Affiliation(s)
- Masoumeh Emadpour
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
26
|
Hotto AM, Castandet B, Gilet L, Higdon A, Condon C, Stern DB. Arabidopsis chloroplast mini-ribonuclease III participates in rRNA maturation and intron recycling. THE PLANT CELL 2015; 27:724-40. [PMID: 25724636 PMCID: PMC4558656 DOI: 10.1105/tpc.114.134452] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 05/21/2023]
Abstract
RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3' end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3' extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/metabolism
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Bacillus subtilis/metabolism
- Base Sequence
- Chloroplasts/metabolism
- Evolution, Molecular
- Exons/genetics
- Genetic Complementation Test
- Introns/genetics
- Models, Biological
- Molecular Sequence Data
- Mutation/genetics
- Polyribosomes/metabolism
- Protein Structure, Tertiary
- RNA Stability
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Untranslated/genetics
- Ribonuclease III/metabolism
- Ribosomes/metabolism
- Sequence Analysis, RNA
- Sequence Homology, Amino Acid
- Transgenes
Collapse
Affiliation(s)
- Amber M Hotto
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Benoît Castandet
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Laetitia Gilet
- Centre National de la Recherche Scientifique FRE3630, Université de Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Andrea Higdon
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Ciarán Condon
- Centre National de la Recherche Scientifique FRE3630, Université de Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - David B Stern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| |
Collapse
|
27
|
Bock R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:211-41. [PMID: 25494465 DOI: 10.1146/annurev-arplant-050213-040212] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic transformation, generating cells and plants with transgenic plastid genomes, also referred to as transplastomic plants. The transformation process relies on homologous recombination, thereby facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a large toolbox has been assembled that is now nearly comparable to the techniques available for plant nuclear transformation and that has enabled new applications of transplastomic technology in basic and applied research. This review describes the state of the art in engineering the plastid genomes of algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome engineering, discusses current technological limitations, and highlights selected applications that demonstrate the immense potential of chloroplast transformation in several key areas of plant biotechnology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
28
|
Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR. A faster Rubisco with potential to increase photosynthesis in crops. Nature 2014; 513:547-50. [PMID: 25231869 PMCID: PMC4176977 DOI: 10.1038/nature13776] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/14/2014] [Indexed: 01/20/2023]
Abstract
In photosynthetic organisms, D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating atmospheric CO2 into the biosphere. Owing to the wasteful oxygenase activity and slow turnover of Rubisco, the enzyme is among the most important targets for improving the photosynthetic efficiency of vascular plants. It has been anticipated that introducing the CO2-concentrating mechanism (CCM) from cyanobacteria into plants could enhance crop yield. However, the complex nature of Rubisco's assembly has made manipulation of the enzyme extremely challenging, and attempts to replace it in plants with the enzymes from cyanobacteria and red algae have not been successful. Here we report two transplastomic tobacco lines with functional Rubisco from the cyanobacterium Synechococcus elongatus PCC7942 (Se7942). We knocked out the native tobacco gene encoding the large subunit of Rubisco by inserting the large and small subunit genes of the Se7942 enzyme, in combination with either the corresponding Se7942 assembly chaperone, RbcX, or an internal carboxysomal protein, CcmM35, which incorporates three small subunit-like domains. Se7942 Rubisco and CcmM35 formed macromolecular complexes within the chloroplast stroma, mirroring an early step in the biogenesis of cyanobacterial β-carboxysomes. Both transformed lines were photosynthetically competent, supporting autotrophic growth, and their respective forms of Rubisco had higher rates of CO2 fixation per unit of enzyme than the tobacco control. These transplastomic tobacco lines represent an important step towards improved photosynthesis in plants and will be valuable hosts for future addition of the remaining components of the cyanobacterial CCM, such as inorganic carbon transporters and the β-carboxysome shell proteins.
Collapse
Affiliation(s)
- Myat T Lin
- 1] Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA [2]
| | - Alessandro Occhialini
- 1] Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK [2]
| | - P John Andralojc
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Martin A J Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
29
|
Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. MOLECULAR PLANT 2014; 7:1105-20. [PMID: 24589494 PMCID: PMC4086613 DOI: 10.1093/mp/ssu022] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 05/18/2023]
Abstract
Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology.
Collapse
Affiliation(s)
- Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
30
|
Scharff LB, Bock R. Synthetic biology in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:783-98. [PMID: 24147738 DOI: 10.1111/tpj.12356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 05/21/2023]
Abstract
Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | |
Collapse
|
31
|
Abstract
Expression of transgenes from the plastid genome offers a number of attractions to biotechnologists, with the potential to attain very high protein accumulation levels arguably being the most attractive one. High-level transgene expression is of particular importance in resistance engineering (e.g., via expression of insecticidal proteins) and molecular farming. Over the past years, the production of many commercially valuable proteins in chloroplast-transgenic (transplastomic) plants has been attempted, including pharmaceutical proteins (such as subunit vaccines and protein antibiotics) and industrial enzymes. Although, in some cases, spectacularly high foreign protein accumulation levels have been obtained, expression levels were disappointingly poor in other cases. In this review, I summarize our current knowledge about the factors influencing the efficiency of plastid transgene expression and highlight possible optimization strategies to alleviate problems with poor expression levels.
Collapse
|
32
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
33
|
Fristedt R, Scharff LB, Clarke CA, Wang Q, Lin C, Merchant SS, Bock R. RBF1, a plant homolog of the bacterial ribosome-binding factor RbfA, acts in processing of the chloroplast 16S ribosomal RNA. PLANT PHYSIOLOGY 2014; 164:201-15. [PMID: 24214533 PMCID: PMC3875801 DOI: 10.1104/pp.113.228338] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/07/2013] [Indexed: 05/20/2023]
Abstract
Plastids (chloroplasts) possess 70S ribosomes that are very similar in structure and function to the ribosomes of their bacterial ancestors. While most components of the bacterial ribosome (ribosomal RNAs [rRNAs] and ribosomal proteins) are well conserved in the plastid ribosome, little is known about the factors mediating the biogenesis of plastid ribosomes. Here, we have investigated a putative homolog of the bacterial RbfA (for ribosome-binding factor A) protein that was identified as a cold-shock protein and an auxiliary factor acting in the 5' maturation of the 16S rRNA. The unicellular green alga Chlamydomonas reinhardtii and the vascular plant Arabidopsis (Arabidopsis thaliana) both encode a single RbfA-like protein in their nuclear genomes. By generating specific antibodies against this protein, we show that the plant RbfA-like protein functions exclusively in the plastid, where it is associated with thylakoid membranes. Analysis of mutants for the corresponding gene (termed RBF1) reveals that the gene function is essential for photoautotrophic growth. Weak mutant alleles display reduced levels of plastid ribosomes, a specific depletion in 30S ribosomal subunits, and reduced activity of plastid protein biosynthesis. Our data suggest that, while the function in ribosome maturation and 16S rRNA 5' end processing is conserved, the RBF1 protein has assumed an additional role in 3' end processing. Together with the apparent absence of a homologous protein from plant mitochondria, our findings illustrate that the assembly process of the 70S ribosome is not strictly conserved and has undergone some modifications during organelle evolution.
Collapse
|
34
|
Bock R. Strategies for metabolic pathway engineering with multiple transgenes. PLANT MOLECULAR BIOLOGY 2013; 83:21-31. [PMID: 23504453 DOI: 10.1007/s11103-013-0045-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 05/21/2023]
Abstract
The engineering of metabolic pathways in plants often requires the concerted expression of more than one gene. While with traditional transgenic approaches, the expression of multiple transgenes has been challenging, recent progress has greatly expanded our repertoire of powerful techniques making this possible. New technological options include large-scale co-transformation of the nuclear genome, also referred to as combinatorial transformation, and transformation of the chloroplast genome with synthetic operon constructs. This review describes the state of the art in multigene genetic engineering of plants. It focuses on the methods currently available for the introduction of multiple transgenes into plants and the molecular mechanisms underlying successful transgene expression. Selected examples of metabolic pathway engineering are used to illustrate the attractions and limitations of each method and to highlight key factors that influence the experimenter's choice of the best strategy for multigene engineering.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
35
|
Krech K, Fu HY, Thiele W, Ruf S, Schöttler MA, Bock R. Reverse genetics in complex multigene operons by co-transformation of the plastid genome and its application to the open reading frame previously designated psbN. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:1062-74. [PMID: 23738654 DOI: 10.1111/tpj.12256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/24/2013] [Accepted: 06/03/2013] [Indexed: 05/28/2023]
Abstract
Reverse genetics approaches have contributed enormously to the elucidation of gene functions in plastid genomes and the determination of structure-function relationships in chloroplast multiprotein complexes. Gene knock-outs are usually performed by disrupting the reading frame of interest with a selectable marker cassette. Site-directed mutagenesis is done by placing the marker into the adjacent intergenic spacer and relying on co-integration of the desired mutation by homologous recombination. These strategies are not applicable to genes residing in large multigene operons or other gene-dense genomic regions, because insertion of the marker cassette into an operon-internal gene or into the nearest intergenic spacer is likely to interfere with expression of adjacent genes in the operon or disrupt cis-elements for the expression of neighboring genes and operons. Here we have explored the possibility of using a co-transformation strategy to mutate a small gene of unknown function (psbN) that is embedded in a complex multigene operon. Although inactivation of psbN resulted in strong impairment of photosynthesis, homoplasmic knock-out lines were readily recovered by co-transformation with a selectable marker integrating >38 kb away from the targeted psbN. Our results suggest co-transformation as a suitable strategy for the functional analysis of plastid genes and operons, which allows the recovery of unselected homoplasmic mutants even if the introduced mutations entail a significant selective disadvantage. Moreover, our data provide evidence for involvement of the psbN gene product in the biogenesis of both photosystem I and photosystem II. We therefore propose to rename the gene product 'photosystem biogenesis factor 1' and the gene pbf1.
Collapse
Affiliation(s)
- Katharina Krech
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Bock R. Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 2013; 26:7-13. [PMID: 24679252 DOI: 10.1016/j.copbio.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
The plastid genome represents an attractive target of genetic engineering in crop plants. Plastid transgenes often give high expression levels, can be stacked in operons and are largely excluded from pollen transmission. Recent research has greatly expanded our toolbox for plastid genome engineering and many new proof-of-principle applications have highlighted the enormous potential of the transplastomic technology in both crop improvement and the development of plants as bioreactors for the sustainable and cost-effective production of biopharmaceuticals, enzymes and raw materials for the chemical industry. This review describes recent technological advances with plastid transformation in seed plants. It focuses on novel tools for plastid genome engineering and transgene expression and summarizes progress with harnessing the potential of plastid transformation in biotechnology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
37
|
Zoschke R, Watkins KP, Barkan A. A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. THE PLANT CELL 2013; 25:2265-75. [PMID: 23735295 PMCID: PMC3723625 DOI: 10.1105/tpc.113.111567] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The profiling of ribosome footprints by deep sequencing has revolutionized the analysis of translation by mapping ribosomes with high resolution on a genome-wide scale. We present a variation on this approach that offers a rapid and cost-effective alternative for the genome-wide profiling of chloroplast ribosomes. Ribosome footprints from leaf tissue are hybridized to oligonucleotide tiling microarrays of the plastid ORFeome and report the abundance and translational status of every chloroplast mRNA. Each assay replaces several time-consuming traditional methods while also providing information that was previously inaccessible. To illustrate the utility of the approach, we show that it detects known defects in chloroplast gene expression in several nuclear mutants of maize (Zea mays) and that it reveals previously unsuspected defects. Furthermore, it provided firm answers to several lingering questions in chloroplast gene expression: (1) the overlapping atpB/atpE open reading frames, whose translation had been proposed to be coupled, are translated independently in vivo; (2) splicing is not a prerequisite for translation initiation on an intron-containing chloroplast RNA; and (3) a feedback control mechanism that links the synthesis of ATP synthase subunits in Chlamydomonas reinhardtii does not exist in maize. An analogous approach is likely to be useful for studies of mitochondrial gene expression.
Collapse
|
38
|
Kolotilin I, Kaldis A, Pereira EO, Laberge S, Menassa R. Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:65. [PMID: 23642171 PMCID: PMC3655837 DOI: 10.1186/1754-6834-6-65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/29/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chloroplast transformation in tobacco has been used extensively to produce recombinant proteins and enzymes. Chloroplast expression cassettes can be designed with different configurations of the cis-acting elements that govern foreign gene expression. With the aim to optimize production of recombinant hemicellulases in transplastomic tobacco, we developed a set of cassettes that incorporate elements known to facilitate protein expression in chloroplasts and examined expression and accumulation of a bacterial xylanase XynA. Biomass production is another important factor in achieving sustainable and high-volume production of cellulolytic enzymes. Therefore, we compared productivity of two tobacco cultivars - a low-alkaloid and a high-biomass - as transplastomic expression platforms. RESULTS Four different cassettes expressing XynA produced various mutant phenotypes of the transplastomic plants, affected their growth rate and resulted in different accumulation levels of the XynA enzyme. The most productive cassette was identified and used further to express XynA and two additional fungal xylanases, Xyn10A and Xyn11B, in a high-biomass tobacco cultivar. The high biomass cultivar allowed for a 60% increase in XynA production per plant. Accumulation of the fungal enzymes reached more than 10-fold higher levels than the bacterial enzyme, constituting up to 6% of the total soluble protein in the leaf tissue. Use of a well-characterized translational enhancer with the selected expression cassette revealed inconsistent effects on accumulation of the recombinant xylanases. Additionally, differences in the enzymatic activity of crude plant extracts measured in leaves of different age suggest presence of a specific xylanase inhibitor in the green leaf tissue. CONCLUSION Our results demonstrate the pivotal importance of the expression cassette design and appropriate tobacco cultivar for high-level transplastomic production of recombinant proteins.
Collapse
Affiliation(s)
- Igor Kolotilin
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Eridan Orlando Pereira
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Serge Laberge
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
39
|
Germain A, Hotto AM, Barkan A, Stern DB. RNA processing and decay in plastids. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:295-316. [PMID: 23536311 DOI: 10.1002/wrna.1161] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastids were derived through endosymbiosis from a cyanobacterial ancestor, whose uptake was followed by massive gene transfer to the nucleus, resulting in the compact size and modest coding capacity of the extant plastid genome. Plastid gene expression is essential for plant development, but depends on nucleus-encoded proteins recruited from cyanobacterial or host-cell origins. The plastid genome is heavily transcribed from numerous promoters, giving posttranscriptional events a critical role in determining the quantity and sizes of accumulating RNA species. The major events reviewed here are RNA editing, which restores protein conservation or creates correct open reading frames by converting C residues to U, RNA splicing, which occurs both in cis and trans, and RNA cleavage, which relies on a variety of exoribonucleases and endoribonucleases. Because the RNases have little sequence specificity, they are collectively able to remove extraneous RNAs whose ends are not protected by RNA secondary structures or sequence-specific RNA-binding proteins (RBPs). Other plastid RBPs, largely members of the helical-repeat superfamily, confer specificity to editing and splicing reactions. The enzymes that catalyze RNA processing are also the main actors in RNA decay, implying that these antagonistic roles are optimally balanced. We place the actions of RBPs and RNases in the context of a recent proteomic analysis that identifies components of the plastid nucleoid, a protein-DNA complex with multiple roles in gene expression. These results suggest that sublocalization and/or concentration gradients of plastid proteins could underpin the regulation of RNA maturation and degradation.
Collapse
|
40
|
Caroca R, Howell KA, Hasse C, Ruf S, Bock R. Design of chimeric expression elements that confer high-level gene activity in chromoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:368-79. [PMID: 23004223 DOI: 10.1111/tpj.12031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 05/05/2023]
Abstract
Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods.
Collapse
Affiliation(s)
- Rodrigo Caroca
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
41
|
Yang H, Gray BN, Ahner BA, Hanson MR. Bacteriophage 5' untranslated regions for control of plastid transgene expression. PLANTA 2013; 237:517-27. [PMID: 23053542 DOI: 10.1007/s00425-012-1770-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Expression of foreign proteins from transgenes incorporated into plastid genomes requires regulatory sequences that can be recognized by the plastid transcription and translation machinery. Translation signals harbored by the 5' untranslated region (UTR) of plastid transcripts can profoundly affect the level of accumulation of proteins expressed from chimeric transgenes. Both endogenous 5' UTRs and the bacteriophage T7 gene 10 (T7g10) 5' UTR have been found to be effective in combination with particular coding regions to mediate high-level expression of foreign proteins. We investigated whether two other bacteriophage 5' UTRs could be utilized in plastid transgenes by fusing them to the aadA (aminoglycoside-3'-adenyltransferase) coding region that is commonly used as a selectable marker in plastid transformation. Transplastomic plants containing either the T7g1.3 or T4g23 5' UTRs fused to Myc-epitope-tagged aadA were successfully obtained, demonstrating the ability of these 5' UTRs to regulate gene expression in plastids. Placing the Thermobifida fusca cel6A gene under the control of the T7g1.3 or T4g23 5' UTRs, along with a tetC downstream box, resulted in poor expression of the cellulase in contrast with high-level accumulation while using the T7g10 5' UTR. However, transplastomic plants with the bacteriophage 5' UTRs controlling the aadA coding region exhibited fewer undesired recombinant species than plants containing the same marker gene regulated by the Nicotiana tabacum psbA 5' UTR. Furthermore, expression of the T7g1.3 and T4g23 5' UTR::aadA fusions downstream of the cel6A gene provided sufficient spectinomycin resistance to allow selection of homoplasmic transgenic plants and had no effect on Cel6A accumulation.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
42
|
Hanson MR, Gray BN, Ahner BA. Chloroplast transformation for engineering of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:731-42. [PMID: 23162121 DOI: 10.1093/jxb/ers325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many efforts are underway to engineer improvements in photosynthesis to meet the challenges of increasing demands for food and fuel in rapidly changing environmental conditions. Various transgenes have been introduced into either the nuclear or plastid genomes in attempts to increase photosynthetic efficiency. We examine the current knowledge of the critical features that affect levels of expression of plastid transgenes and protein accumulation in transplastomic plants, such as promoters, 5' and 3' untranslated regions, RNA-processing sites, translation signals and amino acid sequences that affect protein turnover. We review the prior attempts to manipulate the properties of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through plastid transformation. We illustrate how plastid operons could be created for expression of the multiple genes needed to introduce new pathways or enzymes to enhance photosynthetic rates or reduce photorespiration. We describe here the past accomplishments and future prospects for manipulating plant enzymes and pathways to enhance carbon assimilation through plastid transformation.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
43
|
Extreme conservation of the psaA/psaB intercistronic spacer reveals a translational motif coincident with the evolution of land plants. J Mol Evol 2012. [PMID: 23192453 DOI: 10.1007/s00239-012-9526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although chloroplast transcriptional and translational mechanisms were derived originally from prokaryote endosymbionts, chloroplasts retain comparatively few genes as a consequence of the overall transfer to the nucleus of functions associated formerly with prokaryotic genomes. Various modifications reflect other evolutionary shifts toward eukaryotic regulation such as posttranscriptional transcript cleavage with individually processed cistrons in operons and gene expression regulated by nuclear-encoded sigma factors. We report a notable exception for the psaA-psaB-rps14 operon of land plant (embryophyte) chloroplasts, where the first two cistrons are separated by a spacer region to which no significant role had been attributed. We infer an important function of this region, as indicated by the conservation of identical, structurally significant sequences across embryophytes and their ancestral protist lineages, which diverged some 0.5 billion years ago. The psaA/psaB spacers of embryophytes and their progenitors exhibit few sequence and length variants, with most modeled transcripts resolving the same secondary structure: a loop with projecting Shine-Dalgarno site and well-defined stem that interacts with adjacent coding regions to sequester the psaB start codon. Although many functions of the original endosymbiont have been usurped by nuclear genes or interactions, conserved functional elements of embryophyte psaA/psaB spacers provide compelling evidence that translation of psaB is regulated here by a cis-acting mechanism comparable to those common in prokaryotes. Modeled transcripts also indicate that spacer variants in some plants (e.g., aquatic genus Najas) potentially reflect ecological adaptations to facilitate temperature-regulated translation of psaB.
Collapse
|
44
|
Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J Biomed Biotechnol 2012; 2012:158232. [PMID: 23093835 PMCID: PMC3474547 DOI: 10.1155/2012/158232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.
Collapse
|
45
|
De Marchis F, Pompa A, Bellucci M. Plastid proteostasis and heterologous protein accumulation in transplastomic plants. PLANT PHYSIOLOGY 2012; 160:571-81. [PMID: 22872774 PMCID: PMC3461539 DOI: 10.1104/pp.112.203778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
46
|
Kolotilin I, Kaldis A, Devriendt B, Joensuu J, Cox E, Menassa R. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco. PLoS One 2012; 7:e42405. [PMID: 22879967 PMCID: PMC3411772 DOI: 10.1371/journal.pone.0042405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/05/2012] [Indexed: 11/20/2022] Open
Abstract
Post-weaning diarrhea (PWD) in piglets is a major problem in piggeries worldwide and results in severe economic losses. Infection with Enterotoxigenic Escherichia coli (ETEC) is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeG(ntd/dsc), engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc). The generated transplastomic tobacco plants accumulated up to 2.0 g rFaeG(ntd/dsc) per 1 kg fresh leaf tissue (more than 1% of dry leaf tissue) and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that chloroplast-produced rFaeG(ntd/dsc) protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. Additionally, the plant biomass matrix was shown to delay degradation of the chloroplast-produced rFaeG(ntd/dsc) in gastrointestinal conditions, demonstrating a potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing the rFaeG(ntd/dsc) protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine PWD.
Collapse
Affiliation(s)
- Igor Kolotilin
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Bert Devriendt
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Gent University, Merelbeke, Belgium
| | - Jussi Joensuu
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Eric Cox
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Gent University, Merelbeke, Belgium
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
47
|
Segretin ME, Lentz EM, Wirth SA, Morgenfeld MM, Bravo-Almonacid FF. Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro. PLANTA 2012; 235:807-18. [PMID: 22071556 DOI: 10.1007/s00425-011-1541-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/21/2011] [Indexed: 05/03/2023]
Abstract
Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.
Collapse
Affiliation(s)
- María Eugenia Segretin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-INGEBI-CONICET, Vuelta de Obligado 2490, 2do. Piso, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
48
|
Scharff LB, Childs L, Walther D, Bock R. Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites. PLoS Genet 2011; 7:e1002155. [PMID: 21731509 PMCID: PMC3121790 DOI: 10.1371/journal.pgen.1002155] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/05/2011] [Indexed: 02/05/2023] Open
Abstract
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno–independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno–independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site. Protein biosynthesis (translation) is a highly regulated process in gene expression. In all organisms, initiation of translation depends on molecular recognition of the messenger RNA by ribosomes. In prokaryotes (bacteria, mitochondria, and chloroplasts), this recognition is mediated by a specific sequence motif in the 5′ untranslated region of the mRNA, called “ribosome-binding site” or “Shine-Dalgarno sequence.” However, many messenger RNAs lack Shine-Dalgarno sequences, and it is currently unknown how the correct translation initiation site is recognized in these mRNAs. Here, we provide insights into the mechanism of translation initiation in the absence of a ribosome-binding site. We have performed genome-wide searches for Shine-Dalgarno–independent translation in bacterial and organellar genomes and report that a large fraction of transcripts is translated in a Shine-Dalgarno–independent manner in all prokaryotic systems. We find that Shine-Dalgarno–independent translation initiation is strongly correlated with the presence of a local minimum in RNA secondary structure around the translational start codon. The significance of RNA unfoldedness as the key determinant of start codon recognition in Shine-Dalgarno–independent translation initiation was confirmed experimentally by employing reporter gene fusions in the bacterium Escherichia coli. In conclusion, our work suggests an intriguing mechanism for translation initiation on mRNAs that lack a ribosome-binding site.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
49
|
Barkan A. Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. PLANT PHYSIOLOGY 2011; 155:1520-32. [PMID: 21346173 PMCID: PMC3091090 DOI: 10.1104/pp.110.171231] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/29/2011] [Indexed: 05/19/2023]
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
50
|
Rott M, Martins NF, Thiele W, Lein W, Bock R, Kramer DM, Schöttler MA. ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen. THE PLANT CELL 2011; 23:304-21. [PMID: 21278125 PMCID: PMC3051256 DOI: 10.1105/tpc.110.079111] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/13/2010] [Accepted: 01/05/2011] [Indexed: 05/15/2023]
Abstract
Tobacco (Nicotiana tabacum) plants strictly adjust the contents of both ATP synthase and cytochrome b(6)f complex to the metabolic demand for ATP and NADPH. While the cytochrome b(6)f complex catalyzes the rate-limiting step of photosynthetic electron flux and thereby controls assimilation, the functional significance of the ATP synthase adjustment is unknown. Here, we reduced ATP synthase accumulation by an antisense approach directed against the essential nuclear-encoded γ-subunit (AtpC) and by the introduction of point mutations into the translation initiation codon of the plastid-encoded atpB gene (encoding the essential β-subunit) via chloroplast transformation. Both strategies yielded transformants with ATP synthase contents ranging from 100 to <10% of wild-type levels. While the accumulation of the components of the linear electron transport chain was largely unaltered, linear electron flux was strongly inhibited due to decreased rates of plastoquinol reoxidation at the cytochrome b(6)f complex (photosynthetic control). Also, nonphotochemical quenching was triggered at very low light intensities, strongly reducing the quantum efficiency of CO(2) fixation. We show evidence that this is due to an increased steady state proton motive force, resulting in strong lumen overacidification, which in turn represses photosynthesis due to photosynthetic control and dissipation of excitation energy in the antenna bed.
Collapse
Affiliation(s)
- Markus Rott
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Nádia F. Martins
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Wolfgang Lein
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - David M. Kramer
- Michigan State University–Department of Energy Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Mark A. Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|