1
|
Han J, Welch T, Voß U, Vernoux T, Bhosale R, Bishopp A. The first intron of ARF7 is required for expression in root tips. iScience 2024; 27:109936. [PMID: 38832021 PMCID: PMC11145351 DOI: 10.1016/j.isci.2024.109936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Auxin regulates plant growth and development through the transcription factors of the AUXIN RESPONSE FACTOR (ARF) gene family. ARF7 is one of five activators that bind DNA and elicit downstream transcriptional responses. In roots, ARF7 regulates growth, gravitropism and redundantly with ARF19, lateral root organogenesis. In this study we analyzed ARF7 cis-regulation, using different non-coding sequences of the ARF7 locus to drive GFP. We show that constructs containing the first intron led to increased signal in the root tip. Although bioinformatics analyses predicted several transcription factor binding sites in the first intron, we were unable to significantly alter expression of GFP in the root by mutating these. We instead observed the intronic sequences needed to be present within the transcribed sequences to drive expression in the root meristem. These data support a mechanism by which intron-mediated enhancement regulates the tissue specific expression of ARF7 in the root meristem.
Collapse
Affiliation(s)
- Jingyi Han
- School of Biosciences, University of Nottingham, Loughborough, UK
- Department of Biosciences, Durham University, Durham, UK
| | - Thomas Welch
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Ute Voß
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, Loughborough, UK
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, Loughborough, UK
| |
Collapse
|
2
|
Wang H, Xu F. Identification and expression analysis of the GLK gene family in tea plant (Camellia sinensis) and a functional study of CsGLK54 under low-temperature stress. Sci Rep 2024; 14:12465. [PMID: 38816567 PMCID: PMC11139860 DOI: 10.1038/s41598-024-63323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
The Golden2-like (GLK) transcription factor family is a significant group of transcription factors in plantae. The currently available studies have shown that GLK transcription factors have been studied mainly in chloroplast growth and development, with fewer studies in abiotic stress regulation. In this study, all tea plant GLK transcription factors were identified for the first time in tea plants, and genome-wide identification, phylogenetic analysis, and thematic characterization were performed to identify 66 GLK transcription factors in tea plants. These genes are categorized into seven groups, and an amino acid sequence comparison analysis is performed. This study revealed that the structure of GLK genes in tea plants is highly conserved and that these genes are distributed across 14 chromosomes. Collinearity analysis revealed 17 pairs of genes with fragment duplications and one pair of genes with tandem duplications, and the analysis of Ka/Ks ratios indicated that most of the genes underwent negative purifying selection. Analysis of promoter cis-elements revealed that the promoters of tea plant GLK genes contain a large number of cis-acting elements related to phytohormones and stress tolerance. In addition, a large number of genes contain LTR elements, suggesting that tea plant GLK genes are involved in low-temperature stress. qRT‒PCR analysis revealed that the expression of CsGLK17, CsGLK38, CsGLK54, CsGLK11 and CsGLK60 significantly increased and that the expression of CsGLK7 and CsGLK13 decreased in response to low-temperature induction. Taken together, the results of the transcription profile analysis suggested that CsGLK54 may play an important regulatory role under low-temperature stress. The subcellular localization of CsGLK54 was in the nucleus. Furthermore, CsGLK54 positively regulated the transcription levels of the NbPOD and NbSOD genes under low-temperature stress, which led to an increase in POD and SOD enzyme activities and a decrease in MDA content. These findings provide valuable insights into the regulatory mechanism of low-temperature stress in tea plants.
Collapse
Affiliation(s)
- Hongtao Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Fangfang Xu
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| |
Collapse
|
3
|
Liu M, Liu H, Zhang J, Li C, Li Y, Yang G, Xia T, Huang H, Xu Y, Kong W, Hou B, Qi X, Wang J. Knockout of CAFFEOYL-COA 3-O-METHYLTRANSFERASE 6/6L enhances the S/G ratio of lignin monomers and disease resistance in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2023; 14:1216702. [PMID: 37868314 PMCID: PMC10585270 DOI: 10.3389/fpls.2023.1216702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023]
Abstract
Background Nicotiana tabacum is an important economic crop, which is widely planted in the world. Lignin is very important for maintaining the physiological and stress-resistant functions of tobacco. However, higher lignin content will produce lignin gas, which is not conducive to the formation of tobacco quality. To date, how to precisely fine-tune lignin content or composition remains unclear. Results Here, we annotated and screened 14 CCoAOMTs in Nicotiana tabacum and obtained homozygous double mutants of CCoAOMT6 and CCoAOMT6L through CRSIPR/Cas9 technology. The phenotype showed that the double mutants have better growth than the wild type whereas the S/G ratio increased and the total sugar decreased. Resistance against the pathogen test and the extract inhibition test showed that the transgenic tobacco has stronger resistance to tobacco bacterial wilt and brown spot disease, which are infected by Ralstonia solanacearum and Alternaria alternata, respectively. The combined analysis of metabolome and transcriptome in the leaves and roots suggested that the changes of phenylpropane and terpene metabolism are mainly responsible for these phenotypes. Furthermore, the molecular docking indicated that the upregulated metabolites, such as soyasaponin Bb, improve the disease resistance due to highly stable binding with tyrosyl-tRNA synthetase targets in Ralstonia solanacearum and Alternaria alternata. Conclusions CAFFEOYL-COA 3-O-METHYLTRANSFERASE 6/6L can regulate the S/G ratio of lignin monomers and may affect tobacco bacterial wilt and brown spot disease resistance by disturbing phenylpropane and terpene metabolism in leaves and roots of Nicotiana tabacum, such as soyasaponin Bb.
Collapse
Affiliation(s)
- Mingxin Liu
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Huayin Liu
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Jianduo Zhang
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Cui Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinke Li
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Guangyu Yang
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Tong Xia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Huang
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Yong Xu
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Weisong Kong
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Bingzhu Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jin Wang
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| |
Collapse
|
4
|
Lebedev V. Impact of Intron and Retransformation on Transgene Expression in Leaf and Fruit Tissues of Field-Grown Pear Trees. Int J Mol Sci 2023; 24:12883. [PMID: 37629068 PMCID: PMC10454629 DOI: 10.3390/ijms241612883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Stable and high expression of introduced genes is a prerequisite for using transgenic trees. Transgene stacking enables combining several valuable traits, but repeated transformation increases the risk of unintended effects. This work studied the stability and intron-mediated enhancement of uidA gene expression in leaves and different anatomical parts of pear fruits during field trials over 14 years. The stability of reporter and herbicide resistance transgenes in retransformed pear plants, as well as possible unintended effects using high-throughput phenotyping tools, were also investigated. The activity of β-glucuronidase (GUS) varied depending on the year, but silencing did not occur. The uidA gene was expressed to a maximum in seeds, slightly less in the peel and peduncles, and much less in the pulp of pear fruits. The intron in the uidA gene stably increased expression in leaves and fruits by approximately twofold. Retransformants with the bar gene showed long-term herbicide resistance and exhibited no consistent changes in leaf size and shape. The transgenic pear was used as rootstock and scion, but grafted plants showed no transport of the GUS protein through the graft in the greenhouse and field. This longest field trial of transgenic fruit trees demonstrates stable expression under varying environmental conditions, the expression-enhancing effect of intron and the absence of unintended effects in single- and double-transformed woody plants.
Collapse
Affiliation(s)
- Vadim Lebedev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
5
|
Petrillo E. Do not panic: An intron-centric guide to alternative splicing. THE PLANT CELL 2023; 35:1752-1761. [PMID: 36648241 PMCID: PMC10226583 DOI: 10.1093/plcell/koad009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 05/30/2023]
Abstract
This review is an attempt to establish concepts of splicing and alternative splicing giving proper relevance to introns, the key actors in this mechanism. It might also work as a guide for those who found their favorite gene undergoes alternative splicing and could benefit from gaining a theoretical framework to understand the possible impacts of this process. This is not a thorough review of all the work in the field, but rather a critical review of some of the most relevant work done to understand the underlying mechanisms of splicing and the key questions that remain unanswered such as: What is the physiological relevance of alternative splicing? What are the functions of the different outcomes? To what extent do different alternative splicing types contribute to the proteome? Intron retention is the most frequent alternative splicing event in plants and, although scientifically neglected, it is also common in animals. This is a heterogeneous type of alternative splicing that includes different sub-types with features that have distinctive consequences in the resulting transcripts. Remarkably, intron retention can be a dead end for a transcript, but it could also be a stable intermediate whose processing is resumed upon a particular signal or change in the cell status. New sequencing technologies combined with the study of intron lariats in different conditions might help to answer key questions and could help us to understand the actual relevance of introns in gene expression regulation.
Collapse
Affiliation(s)
- Ezequiel Petrillo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología, Molecular, y Celular, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), C1428EHA Buenos Aires, Argentina
| |
Collapse
|
6
|
Kong Y, Liu Y, Li W, Du H, Li X, Zhang C. Allelic Variation in GmPAP14 Alters Gene Expression to Affect Acid Phosphatase Activity in Soybean. Int J Mol Sci 2023; 24:5398. [PMID: 36982472 PMCID: PMC10049298 DOI: 10.3390/ijms24065398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 03/18/2023] Open
Abstract
Improvement in acid phosphatase (APase) activity is considered as an important approach to enhance phosphorus (P) utilization in crops. Here, GmPAP14 was significantly induced by low P (LP), and its transcription level in ZH15 (P efficient soybean) was higher than in NMH (P inefficient soybean) under LP conditions. Further analyses demonstrated that there were several variations in gDNA (G-GmPAP14Z and G-GmPAP14N) and the promoters (P-GmPAP14Z and P-GmPAP14N) of GmPAP14, which might bring about differential transcriptional levels of GmPAP14 in ZH15 and NMH. Histochemical staining measurements revealed that a stronger GUS signal was present in transgenic Arabidopsis with P-GmPAP14Z under LP and normal P (NP) conditions compared with the P-GmPAP14N plant. Functional research demonstrated that transgenic Arabidopsis with G-GmPAP14Z had a higher level of GmPAP14 expression than the G-GmPAP14N plant. Meanwhile, higher APase activity was also observed in the G-GmPAP14Z plant, which led to increases in shoot weight and P content. Additionally, validation of variation in 68 soybean accessions showed that varieties with Del36 displayed higher APase activities than the del36 plant. Thus, these results uncovered that allelic variation in GmPAP14 predominantly altered gene expression to influence APase activity, which provided a possible direction for research of this gene in plants.
Collapse
Affiliation(s)
- Youbin Kong
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Yuan Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Hui Du
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xihuan Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Caiying Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
7
|
Xu F, Liu W, Wang H, Alam P, Zheng W, Faizan M. Genome Identification of the Tea Plant ( Camellia sinensis) ASMT Gene Family and Its Expression Analysis under Abiotic Stress. Genes (Basel) 2023; 14:409. [PMID: 36833335 PMCID: PMC9957374 DOI: 10.3390/genes14020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The tea plant (Camellia sinensis (L.) O. Ktze) is an important cash crop grown worldwide. It is often subjected to environmental stresses that influence the quality and yield of its leaves. Acetylserotonin-O-methyltransferase (ASMT) is a key enzyme in melatonin biosynthesis, and it plays a critical role in plant stress responses. In this paper, a total of 20 ASMT genes were identified in tea plants and classified into three subfamilies based on a phylogenetic clustering analysis. The genes were unevenly distributed on seven chromosomes; two pairs of genes showed fragment duplication. A gene sequence analysis showed that the structures of the ASMT genes in the tea plants were highly conserved and that the gene structures and motif distributions slightly differed among the different subfamily members. A transcriptome analysis showed that most CsASMT genes did not respond to drought and cold stresses, and a qRT-PCR analysis showed that CsASMT08, CsASMT09, CsASMT10, and CsASMT20 significantly responded to drought and low-temperature stresses; in particular, CsASMT08 and CsASMT10 were highly expressed under low-temperature stress and negatively regulated in response to drought stress. A combined analysis revealed that CsASMT08 and CsASMT10 were highly expressed and that their expressions differed before and after treatment, which indicates that they are potential regulators of abiotic stress resistance in the tea plant. Our results can facilitate further studies on the functional properties of CsASMT genes in melatonin synthesis and abiotic stress in the tea plant.
Collapse
Affiliation(s)
- Fangfang Xu
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Wenxiang Liu
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Hui Wang
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Wei Zheng
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| |
Collapse
|
8
|
Li Q, Peng A, Yang J, Zheng S, Li Z, Mu Y, Chen L, Si J, Ren X, Song H. A 215-bp indel at intron I of BoFLC2 affects flowering time in Brassica oleracea var. capitata during vernalization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2785-2797. [PMID: 35760921 DOI: 10.1007/s00122-022-04149-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In response to cold, a 215-bp deletion at intron I of BoFLC2 slows its silencing activity by feedback to the core genes of the PHD-PRC2 complex, resulting in late flowering in cabbage. Cabbage is a plant-vernalization-responsive flowering type. In response to cold, BoFLC2 is an important transcription factor, which allows cabbage plants to remain in the vegetative phase. However, there have been few reports on the detailed and functional effects of genetic variation in BoFLC2 on flowering time in cabbage. Herein, BoFLC2E and BoFLC2L, cloned from extremely early and extremely late flowering cabbages, respectively, exhibited a 215-bp indel at intron I, three non-synonymous SNPs and a 3-bp indel at exon II. BoFLC2L was found to be related to late flowering, as verified in 40 extremely early/late flowering accessions, a diverse set of cabbage inbred lines and two F2 generations by using indel-FLC2 marker. Among the genetic variation of BoFLC2, the 215-bp deletion at intron I was the main reason for the delayed flowering time, as verified in the transgenic progenies of seed-vernalization-responsive Arabidopsis thaliana (Col) and rapid cycler B. oleracea (TO1000, boflc2). This is the first report to show that the intron I indel of BoFLC2 affects the flowering time of cabbage. Although the intron I 215-bp indel between BoFLC2E and BoFLC2L did not cause alternative splicing, it slowed BoFLC2L silencing during vernalization and feedback to the core genes of the PHD-PRC2 complex, resulting in their lower transcription levels. Our study not only provides an effective molecular marker-assisted selective strategy for identifying bolting-resistant resources and breeding improved varieties in cabbage, but also provides an entry point for exploring the mechanisms of flowering time in plant-vernalization-responsive plants.
Collapse
Affiliation(s)
- Qinfei Li
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ao Peng
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Jiaqin Yang
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Sidi Zheng
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhangping Li
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yinhui Mu
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Lei Chen
- Chongqing Academy of Agricultural Sciences, Chongqing Sanqian Seed Industry Co., Ltd, Chongqing, 400060, China
| | - Jun Si
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xuesong Ren
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| | - Hongyuan Song
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Zhang M, Jian S, Wang Z. Comprehensive Analysis of the Hsp20 Gene Family in Canavalia rosea Indicates Its Roles in the Response to Multiple Abiotic Stresses and Adaptation to Tropical Coral Islands. Int J Mol Sci 2022; 23:ijms23126405. [PMID: 35742848 PMCID: PMC9223760 DOI: 10.3390/ijms23126405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Heat shock protein 20 (Hsp20) is a major family of heat shock proteins that mainly function as molecular chaperones and are markedly accumulated in cells when organisms are subjected to environmental stress, particularly heat. Canavalia rosea is an extremophile halophyte with good adaptability to environmental high temperature and is widely distributed in coastal areas or islands in tropical and subtropical regions. In this study, we identified a total of 41 CrHsp20 genes in the C. rosea genome. The gene structures, phylogenetic relationships, chromosome locations, and conserved motifs of each CrHsp20 or encoding protein were analyzed. The promoters of CrHsp20s contained a series of predicted cis-acting elements, which indicates that the expression of different CrHsp20 members is regulated precisely. The expression patterns of the CrHsp20 family were analyzed by RNA sequencing both at the tissue-specific level and under different abiotic stresses, and were further validated by quantitative reverse transcription PCR. The integrated expression profiles of the CrHsp20s indicated that most CrHsp20 genes were greatly upregulated (up to dozens to thousands of times) after 2 h of heat stress. However, some of the heat-upregulated CrHsp20 genes showed completely different expression patterns in response to salt, alkaline, or high osmotic stresses, which indicates their potential specific function in mediating the response of C. rosea to abiotic stresses. In addition, some of CrHsp20s were cloned and functionally characterized for their roles in abiotic stress tolerance in yeast. Taken together, these findings provide a foundation for functionally characterizing Hsp20s to unravel their possible roles in the adaptation of this species to tropical coral reefs. Our results also contribute to the understanding of the complexity of the response of CrHsp20 genes to other abiotic stresses and may help in future studies evaluating the functional characteristics of CrHsp20s for crop genetic improvement.
Collapse
Affiliation(s)
- Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- Correspondence: (M.Z.); (Z.W.)
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany and South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (M.Z.); (Z.W.)
| |
Collapse
|
10
|
Identification, Characterization and Comparison of the Genome-Scale UTR Introns from Six Citrus Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ever since their discovery, introns within the coding sequence (CDS) of transcripts have been paid great attention. However, the introns located in the untranslated regions (UTRs) are often ignored. Here, we identified, characterized and compared the UTR introns (UIs) from six citrus species. Results showed that the average intron number of UTRs is greatly lower than that of CDSs. Among all six citrus species, the number and density of 5′UTR introns (5UIs) are higher than those of 3′UTR introns (3UIs). The UI densities varied greatly among different citrus species. There are 11 and 9 types of splice site (SS) pairs for the UIs of C. sinensis and C. medica, respectively. However, the UIs of the other four citrus species all own only three kinds of SS pairs. The ‘GT-AG’, accounting for more than 95% of both 5UIs and 3UIs SS pairs for all the six species, is the most popular type. Moreover, 81 5UIs and 26 3UIs were identified as common UIs among the six citrus species, and the transcripts containing these common UIs were mostly involved in gene expression or gene expression regulation. Our study revealed that the UIs’ length, abundance, density and SS pair types varied among different citrus species and that many UI-containing genes play important roles in gene expression regulation. Our findings have great implications for future citrus UI function research.
Collapse
|
11
|
Tian Z, Han J, Che G, Hasi A. Genome-wide characterization and expression analysis of SAUR gene family in Melon (Cucumis melo L.). PLANTA 2022; 255:123. [PMID: 35552537 DOI: 10.1007/s00425-022-03908-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
We identified 66 melon SAUR genes by bioinformatic analyses. CmSAUR19, 38, 58, 62 genes are specifically expressed in different stages of fruit growth, suggesting their participation in regulating fruit development. Auxin plays a crucial role in plant growth by regulating the multiple auxin response genes. However, in melon (Cucumis melo L.), the functions of the auxin early response gene family SAUR (Small auxin up RNA) genes in fruit development are still poorly understood. Through genome-wide characterization of CmSAUR family in melon, we identified a total of 66 CmSAUR genes. The open reading frames of the CmSAUR genes ranged from 234 to 525 bp, containing only one exon and lacking introns. Chromosomal position and phylogenetic tree analyses found that the two gene clusters in the melon chromosome are highly homologous in the Cucurbitaceae plants. Among the four conserved motifs in CmSAUR proteins, motif 1, motif 2, and motif 3 located in most of the family protein sequences, and motif 4 showed a close correlation with the two gene clusters. The CmSAUR28 and CmSAUR58 genes have auxin response elements located in the promoters, suggesting they may be involved in the auxin signaling pathway to regulate fruit development. Through transcriptomic profiling in the four developmental stages of fruit and different lateral organs, we selected 16 differentially-expressed SAUR genes for performing further expression analyses. qRT-PCR results showed that five SAUR genes are specifically expressed in flower organs and ovaries. CmSAUR19 and CmSAUR58 were significantly accumulated in the early developmental stage of the fruit. CmSAUR38 and CmAUR62 showed high expression in the climacteric and post-climacteric stages, suggesting their specific role in controlling fruit ripening. This work provides a foundation for further exploring the function of the SAUR gene in fruit development.
Collapse
Affiliation(s)
- Ze Tian
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jiadi Han
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Gen Che
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Agula Hasi
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
12
|
Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, Puiu D, Allen BJ, Moore ZJ, Sekhwal MK, De La Torre AR, McGuire PE, Burns E, Timp W, Wegrzyn JL, Salzberg SL. Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 (BETHESDA, MD.) 2022; 12:6460957. [PMID: 35100403 PMCID: PMC8728005 DOI: 10.1093/g3journal/jkab380] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Alison D Scott
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Bikash Shrestha
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Zane J Moore
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Manoj K Sekhwal
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Emily Burns
- Save the Redwoods League, San Francisco, CA 94104, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Kumar M, Ayzenshtat D, Marko A, Bocobza S. Optimization of T-DNA configuration with UBIQUITIN10 promoters and tRNA-sgRNA complexes promotes highly efficient genome editing in allotetraploid tobacco. PLANT CELL REPORTS 2022; 41:175-194. [PMID: 34623476 DOI: 10.1007/s00299-021-02796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Combination of UBIQUITIN10 promoter-directed CAS9 and tRNA-gRNA complexes in gene-editing assay induces 80% mutant phenotype with a knockout of the four allelic copies in the T0 generation of allotetraploid tobaccos. While gene-editing methodologies, such as CRISPR-Cas9, have been developed and successfully used in many plant species, their use remains challenging, because they most often rely on stable or transient transgene expression. Regrettably, in all plant species, transformation causes epigenetic effects such as gene silencing and variable transgene expression. Here, UBIQUITIN10 promoters from several plant species were characterized and showed their capacity to direct high levels of transgene expression in transient and stable transformation assays, which in turn was used to improve the selection process of regenerated transformants. Furthermore, we compared various sgRNAs delivery systems and showed that the combination of UBIQUITIN10 promoters and tRNA-sgRNA complexes produced 80% mutant phenotype with a complete knockout of the four allelic copies, while the remaining 20% exhibited weaker phenotype, which suggested partial allelic knockout, in the T0 generation of the allotetraploid Nicotiana tabacum. These data provide valuable information to optimize future designs of gene editing constructs for plant research and crop improvement and open the way for valuable gene editing projects in non-model Solanaceae species.
Collapse
MESH Headings
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Editing/methods
- Genome, Plant
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Tetraploidy
- Nicotiana/genetics
- Ubiquitins/genetics
- Ubiquitins/metabolism
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel.
| |
Collapse
|
14
|
To JPC, Davis IW, Marengo MS, Shariff A, Baublite C, Decker K, Galvão RM, Gao Z, Haragutchi O, Jung JW, Li H, O'Brien B, Sant A, Elich TD. Expression Elements Derived From Plant Sequences Provide Effective Gene Expression Regulation and New Opportunities for Plant Biotechnology Traits. FRONTIERS IN PLANT SCIENCE 2021; 12:712179. [PMID: 34745155 PMCID: PMC8569612 DOI: 10.3389/fpls.2021.712179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plant biotechnology traits provide a means to increase crop yields, manage weeds and pests, and sustainably contribute to addressing the needs of a growing population. One of the key challenges in developing new traits for plant biotechnology is the availability of expression elements for efficacious and predictable transgene regulation. Recent advances in genomics, transcriptomics, and computational tools have enabled the generation of new expression elements in a variety of model organisms. In this study, new expression element sequences were computationally generated for use in crops, starting from native Arabidopsis and maize sequences. These elements include promoters, 5' untranslated regions (5' UTRs), introns, and 3' UTRs. The expression elements were demonstrated to drive effective transgene expression in stably transformed soybean plants across multiple tissues types and developmental stages. The expressed transcripts were characterized to demonstrate the molecular function of these expression elements. The data show that the promoters precisely initiate transcripts, the introns are effectively spliced, and the 3' UTRs enable predictable processing of transcript 3' ends. Overall, our results indicate that these new expression elements can recapitulate key functional properties of natural sequences and provide opportunities for optimizing the expression of genes in future plant biotechnology traits.
Collapse
Affiliation(s)
- Jennifer P. C. To
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Ian W. Davis
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Matthew S. Marengo
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Aabid Shariff
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
- Pairwise Plants, Durham, NC, United States
| | | | - Keith Decker
- Bayer Crop Science, Chesterfield, MO, United States
| | - Rafaelo M. Galvão
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Zhihuan Gao
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Olivia Haragutchi
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Jee W. Jung
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
- Duke University, Office for Translation and Commercialization, Durham, NC, United States
| | - Hong Li
- Bayer Crop Science, Chesterfield, MO, United States
| | - Brent O'Brien
- Bayer Crop Science, Chesterfield, MO, United States
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
| | - Anagha Sant
- Bayer Crop Science, Chesterfield, MO, United States
| | - Tedd D. Elich
- GrassRoots Biotechnology, Durham, NC, United States
- Monsanto Company, Research Triangle Park, Durham, NC, United States
- LifeEDIT Therapeutics, Durham, NC, United States
| |
Collapse
|
15
|
Diao P, Sun H, Bao Z, Li W, Niu N, Li W, Wuriyanghan H. Expression of an Antiviral Gene GmRUN1 from Soybean Is Regulated via Intron-Mediated Enhancement (IME). Viruses 2021; 13:2032. [PMID: 34696462 PMCID: PMC8539222 DOI: 10.3390/v13102032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Most of R (resistance) genes encode the protein containing NBS-LRR (nucleotide binding site and leucine-rich repeat) domains. Here, N. benthamiana plants were used for transient expression assays at 3-4 weeks of age. We identified a TNL (TIR-NBS-LRR) encoding gene GmRUN1 that was resistant to both soybean mosaic virus (SMV) and tobacco mosaic virus (TMV). Truncation analysis indicated the importance of all three canonical domains for GmRUN1-mediated antiviral activity. Promoter-GUS analysis showed that GmRUN1 expression is inducible by both salicylic acid (SA) and a transcription factor GmDREB3 via the cis-elements as-1 and ERE (ethylene response element), which are present in its promoter region. Interestingly, GmRUN1 gDNA (genomic DNA) shows higher viral resistance than its cDNA (complementary DNA), indicating the existence of intron-mediated enhancement (IME) for GmRUN1 regulation. We provided evidence that intron2 of GmRUN1 increased the mRNA level of native gene GmRUN1, a soybean antiviral gene SRC7 and also a reporter gene Luciferase, indicating the general transcriptional enhancement of intron2 in different genes. In summary, we identified an antiviral TNL type soybean gene GmRUN1, expression of which was regulated at different layers. The investigation of GmRUN1 gene regulatory network would help to explore the mechanism underlying soybean-SMV interactions.
Collapse
Affiliation(s)
- Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Hongyu Sun
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Zhuo Bao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Wenxia Li
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Niu Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| |
Collapse
|
16
|
Meng F, Zhao H, Zhu B, Zhang T, Yang M, Li Y, Han Y, Jiang J. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis thaliana. THE PLANT CELL 2021; 33:1997-2014. [PMID: 33764459 PMCID: PMC8290289 DOI: 10.1093/plcell/koab093] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/23/2021] [Indexed: 05/22/2023]
Abstract
Enhancers located in introns are abundant and play a major role in the regulation of gene expression in mammalian species. By contrast, the functions of intronic enhancers in plants have largely been unexplored and only a handful of plant intronic enhancers have been reported. We performed a genome-wide prediction of intronic enhancers in Arabidopsis thaliana using open chromatin signatures based on DNase I sequencing. We identified 941 candidate intronic enhancers associated with 806 genes in seedling tissue and 1,271 intronic enhancers associated with 1,069 genes in floral tissue. We validated the function of 15 of 21 (71%) of the predicted intronic enhancers in transgenic assays using a reporter gene. We also created deletion lines of three intronic enhancers associated with two different genes using CRISPR/Cas. Deletion of these enhancers, which span key transcription factor binding sites, did not abolish gene expression but caused varying levels of transcriptional repression of their cognate genes. Remarkably, the transcriptional repression of the deletion lines occurred at specific developmental stages and resulted in distinct phenotypic effects on plant morphology and development. Clearly, these three intronic enhancers are important in fine-tuning tissue- and development-specific expression of their cognate genes.
Collapse
Affiliation(s)
- Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mingyu Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
- Author for correspondence:
| |
Collapse
|
17
|
Identification of Candidate Gene-Based Markers for Girth Growth in Rubber Trees. PLANTS 2021; 10:plants10071440. [PMID: 34371639 PMCID: PMC8309273 DOI: 10.3390/plants10071440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/01/2023]
Abstract
Girth growth is an important factor in both latex and timber production of the rubber tree. In this study, we performed candidate gene association mapping for girth growth in rubber trees using intron length polymorphism markers (ILP) in identifying the candidate genes responsible for girth growth. The COBL064_1 marker developed from the candidate gene (COBL4) regulating cellulose deposition and oriented cell expansion in the plant cell wall showed the strongest association with girth growth across two seasons in the Amazonian population and was validated in the breeding lines. We then applied single molecule real-time (SMRT) circular consensus sequencing (CCS) to analyze a wider gene region of the COBL4 to pinpoint the single nucleotide polymorphism (SNP) that best explains the association with the traits. A SNP in the 3’ UTR showing linkage disequilibrium with the COBL064_1 most associated with girth growth. This study showed that the cost-effective method of ILP gene-based markers can assist in identification of SNPs in the candidate gene associated with girth growth. The SNP markers identified in this study added useful markers for the improvement of girth growth in rubber tree breeding programs.
Collapse
|
18
|
Dwyer K, Agarwal N, Gega A, Ansari A. Proximity to the Promoter and Terminator Regions Regulates the Transcription Enhancement Potential of an Intron. Front Mol Biosci 2021; 8:712639. [PMID: 34291091 PMCID: PMC8287100 DOI: 10.3389/fmolb.2021.712639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 11/15/2022] Open
Abstract
An evolutionarily conserved feature of introns is their ability to enhance expression of genes that harbor them. Introns have been shown to regulate gene expression at the transcription and post-transcription level. The general perception is that a promoter-proximal intron is most efficient in enhancing gene expression and the effect diminishes with the increase in distance from the promoter. Here we show that the intron regains its positive influence on gene expression when in proximity to the terminator. We inserted ACT1 intron into different positions within IMD4 and INO1 genes. Transcription Run-On (TRO) analysis revealed that the transcription of both IMD4 and INO1 was maximal in constructs with a promoter-proximal intron and decreased with the increase in distance of the intron from the promoter. However, activation was partially restored when the intron was placed close to the terminator. We previously demonstrated that the promoter-proximal intron stimulates transcription by affecting promoter directionality through gene looping-mediated recruitment of termination factors in the vicinity of the promoter region. Here we show that the terminator-proximal intron also enhances promoter directionality and results in compact gene architecture with the promoter and terminator regions in close physical proximity. Furthermore, we show that both the promoter and terminator-proximal introns facilitate assembly or stabilization of the preinitiation complex (PIC) on the promoter. On the basis of these findings, we propose that proximity to both the promoter and the terminator regions affects the transcription regulatory potential of an intron, and the terminator-proximal intron enhances transcription by affecting both the assembly of preinitiation complex and promoter directionality.
Collapse
Affiliation(s)
| | | | | | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
19
|
Back G, Walther D. Identification of cis-regulatory motifs in first introns and the prediction of intron-mediated enhancement of gene expression in Arabidopsis thaliana. BMC Genomics 2021; 22:390. [PMID: 34039279 PMCID: PMC8157754 DOI: 10.1186/s12864-021-07711-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intron mediated enhancement (IME) is the potential of introns to enhance the expression of its respective gene. This essential function of introns has been observed in a wide range of species, including fungi, plants, and animals. However, the mechanisms underlying the enhancement are as of yet poorly understood. The goal of this study was to identify potential IME-related sequence motifs and genomic features in first introns of genes in Arabidopsis thaliana. RESULTS Based on the rationale that functional sequence motifs are evolutionarily conserved, we exploited the deep sequencing information available for Arabidopsis thaliana, covering more than one thousand Arabidopsis accessions, and identified 81 candidate hexamer motifs with increased conservation across all accessions that also exhibit positional occurrence preferences. Of those, 71 were found associated with increased correlation of gene expression of genes harboring them, suggesting a cis-regulatory role. Filtering further for effect on gene expression correlation yielded a set of 16 hexamer motifs, corresponding to five consensus motifs. While all five motifs represent new motif definitions, two are similar to the two previously reported IME-motifs, whereas three are altogether novel. Both consensus and hexamer motifs were found associated with higher expression of alleles harboring them as compared to alleles containing mutated motif variants as found in naturally occurring Arabidopsis accessions. To identify additional IME-related genomic features, Random Forest models were trained for the classification of gene expression level based on an array of sequence-related features. The results indicate that introns contain information with regard to gene expression level and suggest sequence-compositional features as most informative, while position-related features, thought to be of central importance before, were found with lower than expected relevance. CONCLUSIONS Exploiting deep sequencing and broad gene expression information and on a genome-wide scale, this study confirmed the regulatory role on first-introns, characterized their intra-species conservation, and identified a set of novel sequence motifs located in first introns of genes in the genome of the plant Arabidopsis thaliana that may play a role in inducing high and correlated gene expression of the genes harboring them.
Collapse
Affiliation(s)
- Georg Back
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
| |
Collapse
|
20
|
Sciorra MD, Fantino E, Grossi CEM, Ulloa RM. Characterization of two group III potato CDPKs, StCDPK22 and StCDPK24, that contain three EF-Hand motifs in their CLDs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:716-729. [PMID: 33799183 DOI: 10.1016/j.plaphy.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Four members of the potato (Solanum tuberosum L.) calcium-dependent protein kinase (CDPK) family StCDPK22/23/24 and StCDPK27, present three functional EF-hands motifs in their calmodulin-like domain (CLD). StCDPK22/23/24 are clustered in clade III-b1 with tomato and Arabidopsis CDPKs that lack the first EF-hand motif, while StCDPK27 is clustered in clade III-b3 with CDPKs that lack EF-hand 2. Members of each clade share similar intron-exon structures and acylation profiles. 3D model predictions suggested that StCDPK22 and StCDPK24 are active kinases that undergo a conformational switch in the presence of Ca2+ even when lacking one functional EF-hand motif; however, assays performed with recombinant proteins indicated that StCDPK24:6xHis was active in all the conditions tested, and its activity was enhanced in the presence of Ca2+, but StCDPK22:6xHis had scarce or null activity. Both kinases share with AtCPK8 the same autophosphorylation pattern in the autoinhibitory (AD) and C-terminal variable (CTV) domains, suggesting that it could be a characteristic of clade III-b1. RT-qPCR analysis revealed that StCDPK22 is mainly expressed in early stages of tuberization, but not limited to, while StCDPK24 expression is more ubiquitous. In silico analysis predicted several abiotic stress-responsive elements in its promoters. Accordingly, StCDPK24 expression peaked at 10 h in in vitro plants exposed to salt shock and then declined. Moreover, a significant increase was observed at 2 h in stems of salt-treated greenhouse plants, suggesting that this CDPK could participate in the early events of the signaling cascade triggered in response to salt.
Collapse
Affiliation(s)
- Marcelo Daniel Sciorra
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Elisa Fantino
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Cecilia Eugenia María Grossi
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Rita María Ulloa
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina; Departamento de Química Biológica, UBA, C.A.B.A, Argentina.
| |
Collapse
|
21
|
Municio C, Antosz W, Grasser KD, Kornobis E, Van Bel M, Eguinoa I, Coppens F, Bräutigam A, Lermontova I, Bruckmann A, Zelkowska K, Houben A, Schubert V. The Arabidopsis condensin CAP-D subunits arrange interphase chromatin. THE NEW PHYTOLOGIST 2021; 230:972-987. [PMID: 33475158 DOI: 10.1111/nph.17221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Condensins are best known for their role in shaping chromosomes. Other functions such as organizing interphase chromatin and transcriptional control have been reported in yeasts and animals, but little is known about their function in plants. To elucidate the specific composition of condensin complexes and the expression of CAP-D2 (condensin I) and CAP-D3 (condensin II), we performed biochemical analyses in Arabidopsis. The role of CAP-D3 in interphase chromatin organization and function was evaluated using cytogenetic and transcriptome analysis in cap-d3 T-DNA insertion mutants. CAP-D2 and CAP-D3 are highly expressed in mitotically active tissues. In silico and pull-down experiments indicate that both CAP-D proteins interact with the other condensin I and II subunits. In cap-d3 mutants, an association of heterochromatic sequences occurs, but the nuclear size and the general histone and DNA methylation patterns remain unchanged. Also, CAP-D3 influences the expression of genes affecting the response to water, chemicals, and stress. The expression and composition of the condensin complexes in Arabidopsis are similar to those in other higher eukaryotes. We propose a model for the CAP-D3 function during interphase in which CAP-D3 localizes in euchromatin loops to stiffen them and consequently separates centromeric regions and 45S rDNA repeats.
Collapse
Affiliation(s)
- Celia Municio
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
| | - Wojciech Antosz
- Cell Biology and Plant Biochemistry, Biochemistry Center, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemistry Center, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Etienne Kornobis
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015, Paris, France
- Hub de Bioinformatique et Biostatistique -Département Biologie Computationnelle, Institut Pasteur, 75015, Paris, France
| | - Michiel Van Bel
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, 9052, Gent, Belgium
| | - Ignacio Eguinoa
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, 9052, Gent, Belgium
| | - Frederik Coppens
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, 9052, Gent, Belgium
| | - Andrea Bräutigam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Center, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Katarzyna Zelkowska
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
| |
Collapse
|
22
|
Liu B, Iwata-Otsubo A, Yang D, Baker RL, Liang C, Jackson SA, Liu S, Ma J, Zhao M. Analysis of CACTA transposase genes unveils the mechanism of intron loss and distinct small RNA silencing pathways underlying divergent evolution of Brassica genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:34-48. [PMID: 33098166 DOI: 10.1111/tpj.15037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In comparison with retrotransposons, DNA transposons make up a smaller proportion of most plant genomes. However, these elements are often proximal to genes to affect gene expression depending on the activity of the transposons, which is largely reflected by the activity of the transposase genes. Here, we show that three AT-rich introns were retained in the TNP2-like transposase genes of the Bot1 (Brassica oleracea transposon 1) CACTA transposable elements in Brassica oleracea, but were lost in the majority of the Bot1 elements in Brassica rapa. A recent burst of transposition of Bot1 was observed in B. oleracea, but not in B. rapa. This burst of transposition is likely related to the activity of the TNP2-like transposase genes as the expression values of the transposase genes were higher in B. oleracea than in B. rapa. In addition, distinct populations of small RNAs (21, 22 and 24 nt) were detected from the Bot1 elements in B. oleracea, but the vast majority of the small RNAs from the Bot1 elements in B. rapa are 24 nt in length. We hypothesize that the different activity of the TNP2-like transposase genes is likely associated with the three introns, and intron loss is likely reverse transcriptase mediated. Furthermore, we propose that the Bot1 family is currently undergoing silencing in B. oleracea, but has already been silenced in B. rapa. Taken together, our data provide new insights into the differentiation of transposons and their role in the asymmetric evolution of these two closely related Brassica species.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602,, USA
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Robert L Baker
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602,, USA
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Meixia Zhao
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
23
|
Bettaieb I, Hamdi J, Bouktila D. Genome-wide analysis of HSP90 gene family in the Mediterranean olive ( Olea europaea subsp. europaea) provides insight into structural patterns, evolution and functional diversity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2301-2318. [PMID: 33268931 PMCID: PMC7688888 DOI: 10.1007/s12298-020-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 05/09/2023]
Abstract
Plants regularly experience multiple abiotic and biotic pressures affecting their normal development. The 90-kDa heat shock protein (HSP90) plays a dynamic role in countering abiotic and biotic stresses via a plethora of functional mechanisms. The HSP90 has been investigated in many plant species. However, there is little information available about this gene family in the cultivated Mediterranean olive tree, Olea europaea subsp. europaea var. europaea. In the current study, we systematically performed genome-wide identification and characterization of the HSP90 gene family in O. europaea var. europaea (OeHSP90s). Twelve regular OeHSP90s were identified, which were phylogenetically grouped into two major clusters and four sub-clusters, showing five paralogous gene pairs evolving under purifying selection. All of the 12 proteins contained a Histidine kinase-like ATPase (HATPase_c) domain, justifying the role played by HSP90 proteins in ATP binding and hydrolysis. The predicted 3D structure of OeHSP90 proteins provided information to understand their functions at the biochemical level. Consistent with their phylogenetic relationships, OeHSP90 members were predicted to be localized in different cellular compartments, suggesting their involvement in various subcellular processes. In consonance with their spatial organization, olive HSP90 family members were found to share similar motif arrangements and similar number of exons. We found that OeHSP90 promoters contained various cis-acting elements associated with light responsiveness, hormone signaling pathways and reaction to various stress conditions. In addition, expression sequence tags (ESTs) analysis offered a view of OeHSP90 tissue- and developmental stage specific pattern of expression. Proteins interacting with OeHSP90s were predicted and their potential roles were discussed. Overall, our results offer premises for further investigation of the implication of HSP90 genes in the physiological processes of the olive and its adaptation to stresses.
Collapse
Affiliation(s)
- Inchirah Bettaieb
- Laboratoire LR11ES41 Génétique, Biodiversité & Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Jihen Hamdi
- Laboratoire LR11ES41 Génétique, Biodiversité & Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Dhia Bouktila
- Laboratoire LR11ES41 Génétique, Biodiversité & Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
- Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| |
Collapse
|
24
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
25
|
First Come, First Served: Sui Generis Features of the First Intron. PLANTS 2020; 9:plants9070911. [PMID: 32707681 PMCID: PMC7411622 DOI: 10.3390/plants9070911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Most of the transcribed genes in eukaryotic cells are interrupted by intervening sequences called introns that are co-transcriptionally removed from nascent messenger RNA through the process of splicing. In Arabidopsis, 79% of genes contain introns and more than 60% of intron-containing genes undergo alternative splicing (AS), which ostensibly is considered to increase protein diversity as one of the intrinsic mechanisms for fitness to the varying environment or the internal developmental program. In addition, recent findings have prevailed in terms of overlooked intron functions. Here, we review recent progress in the underlying mechanisms of intron function, in particular by focusing on unique features of the first intron that is located in close proximity to the transcription start site. The distinct deposition of epigenetic marks and nucleosome density on the first intronic DNA sequence, the impact of the first intron on determining the transcription start site and elongation of its own expression (called intron-mediated enhancement, IME), translation control in 5′-UTR, and the new mechanism of the trans-acting function of the first intron in regulating gene expression at the post-transcriptional level are summarized.
Collapse
|
26
|
Espinas NA, Tu LN, Furci L, Shimajiri Y, Harukawa Y, Miura S, Takuno S, Saze H. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet 2020; 16:e1008637. [PMID: 32187179 PMCID: PMC7145194 DOI: 10.1371/journal.pgen.1008637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/09/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Intronic regions of eukaryotic genomes accumulate many Transposable Elements (TEs). Intronic TEs often trigger the formation of transcriptionally repressive heterochromatin, even within transcription-permissive chromatin environments. Although TE-bearing introns are widely observed in eukaryotic genomes, their epigenetic states, impacts on gene regulation and function, and their contributions to genetic diversity and evolution, remain poorly understood. In this study, we investigated the genome-wide distribution of intronic TEs and their epigenetic states in the Oryza sativa genome, where TEs comprise 35% of the genome. We found that over 10% of rice genes contain intronic heterochromatin, most of which are associated with TEs and repetitive sequences. These heterochromatic introns are longer and highly enriched in promoter-proximal positions. On the other hand, introns also accumulate hypomethylated short TEs. Genes with heterochromatic introns are implicated in various biological functions. Transcription of genes bearing intronic heterochromatin is regulated by an epigenetic mechanism involving the conserved factor OsIBM2, mutation of which results in severe developmental and reproductive defects. Furthermore, we found that heterochromatic introns evolve rapidly compared to non-heterochromatic introns. Our study demonstrates that heterochromatin is a common epigenetic feature associated with actively transcribed genes in the rice genome.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama city, Kanagawa, Japan
| | - Le Ngoc Tu
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Yasuka Shimajiri
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- EditForce, Fukuoka, Japan
| | - Yoshiko Harukawa
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Saori Miura
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
27
|
Salimonti A, Carbone F, Romano E, Pellegrino M, Benincasa C, Micali S, Tondelli A, Conforti FL, Perri E, Ienco A, Zelasco S. Association Study of the 5'UTR Intron of the FAD2-2 Gene With Oleic and Linoleic Acid Content in Olea europaea L. FRONTIERS IN PLANT SCIENCE 2020; 11:66. [PMID: 32117401 PMCID: PMC7031445 DOI: 10.3389/fpls.2020.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 05/21/2023]
Abstract
Cultivated olive (Olea europaea L. subsp. europaea var. europaea) is the most ancient and spread tree crop in the Mediterranean basin. An important quality trait for the extra virgin olive oil is the fatty acid composition. In particular, a high content of oleic acid and low of linoleic, linolenic, and palmitic acid is considered very relevant in the health properties of the olive oil. The oleate desaturase enzyme encoding-gene (FAD2-2) is the main responsible for the linoleic acid content in the olive fruit mesocarp and, therefore, in the olive oil revealing to be the most important candidate gene for the linoleic acid biosynthesis. In this study, an in silico and structural analysis of the 5'UTR intron of the FAD2-2 gene was conducted with the aim to explore the natural sequence variability and its role in the gene expression regulation. In order to identify functional allele variants, the 5'UTR intron was isolated and partially sequenced in 97 olive cultivars. The sequence analysis allowed to find a 117-bp insertion including two long duplications never found before in FAD2-2 genes in olive and the existence of many intron-mediated enhancement (IME) elements. The sequence polymorphism analysis led to detect 39 SNPs. The candidate gene association study conducted for oleic and linoleic acids content revealed seven SNPs and one indel significantly associated able to explain a phenotypic variation ranging from 7% to 16% among the years. Our study highlighted new structural variants within the FAD2-2 gene in olive, putatively involved in the regulation mechanisms of gene expression associated with the variation of the content of oleic and linoleic acid.
Collapse
Affiliation(s)
- Amelia Salimonti
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Fabrizio Carbone
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Elvira Romano
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | | | - Cinzia Benincasa
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Sabrina Micali
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Roma, Italy
| | - Alessandro Tondelli
- Research Centre for Genomics and Bioinformatics, CREA, Fiorenzuola D’Arda, Italy
| | - Francesca L. Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Enzo Perri
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | | | - Samanta Zelasco
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
- *Correspondence: Samanta Zelasco,
| |
Collapse
|
28
|
Sega P, Kruszka K, Szewc Ł, Szweykowska-Kulińska Z, Pacak A. Identification of transcription factors that bind to the 5'-UTR of the barley PHO2 gene. PLANT MOLECULAR BIOLOGY 2020; 102:73-88. [PMID: 31745747 DOI: 10.1007/s11103-019-00932-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
In barley and other higher plants, phosphate homeostasis is maintained by a regulatory network involving the PHO2 (PHOSPHATE2) encoding ubiquitin-conjugating (UBC) E2 enzyme, the PHR1 (PHOSPHATE STARVATION RESPONSE 1) transcription factor (TF), IPS1 (INDUCED BYPHOSPHATESTARVATION1) RNA, and miR399. During phosphate ion (Pi) deprivation, PHR1 positively regulates MIR399 expression, after transcription and processing mature miR399 guides the Ago protein to the 5'-UTR of PHO2 transcripts. Non-coding IPS1 RNA is highly expressed during Pi starvation, and the sequestration of miR399 molecules protects PHO2 mRNA from complete degradation. Here, we reveal new cis- and trans-regulatory elements that are crucial for efficient PHO2 gene expression in barley. We found that the 5'-UTR of PHO2 contains two PHR1 binding sites (P1BSs) and one Pi-responsive PHO element. Using a yeast one-hybrid (Y1H) assay, we identified two candidate proteins that might mediate this transcriptional regulation: a barley PHR1 ortholog and a TF containing an uncharacterized MYB domain. Additional results classified this new potential TF as belonging to the APL (ALTERED PHLOEM DEVELOPMENT) protein family, and we observed its nuclear localization in barley protoplasts. Pi starvation induced the accumulation of barley APL transcripts in both the shoots and roots. Interestingly, the deletion of the P1BS motif from the first intron of the barley 5'-UTR led to a significant increase in the transcription of a downstream β-glucuronidase (GUS) reporter gene in tobacco leaves. Our work extends the current knowledge about putative cis- and trans-regulatory elements that may affect the expression of the barley PHO2 gene.
Collapse
Affiliation(s)
- Paweł Sega
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Łukasz Szewc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zofia Szweykowska-Kulińska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
29
|
van Bezouw RFHM, Janssen EM, Ashrafuzzaman M, Ghahramanzadeh R, Kilian B, Graner A, Visser RGF, van der Linden CG. Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153029. [PMID: 31499444 DOI: 10.1016/j.jplph.2019.153029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
High affinity potassium transporters (HKT) are recognized as important genes for crop salt tolerance improvement. In this study, we investigated HvHKT1;5 as a candidate gene for a previously discovered quantitative trait locus that controls shoot Na+ and Na+/K+ ratio in salt-stressed barley lines on a hydroponic system. Two major haplotype groups could be distinguished for this gene in a barley collection of 95 genotypes based on the presence of three intronic insertions; a designated haplotype group A (HGA, same as reference sequence) and haplotype group B (HGB, with insertions). HGB was associated with a much stronger root expression of HKT1;5 compared to HGA, and consequently higher K+ and lower Na+ and Cl- concentrations and a lower Na+/K+ ratio in the shoots three weeks after exposure to 200 mM NaCl. Our experimental results suggest that allelic variation in the promoter region of the HGB gene is linked to the three insertions may be responsible for the observed increase in expression of HvHKT1;5 alleles after one week of salt stress induction. This study shows that in barley - similar to wheat and rice - HKT1;5 is an important contributor to natural variation in shoot Na+ exclusion.
Collapse
Affiliation(s)
- Roel F H M van Bezouw
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands.
| | - Elly M Janssen
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - Md Ashrafuzzaman
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - Robab Ghahramanzadeh
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany; Global Crop Diversity Trust, 53113, Bonn, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany
| | - Richard G F Visser
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - C Gerard van der Linden
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| |
Collapse
|
30
|
An intron-derived motif strongly increases gene expression from transcribed sequences through a splicing independent mechanism in Arabidopsis thaliana. Sci Rep 2019; 9:13777. [PMID: 31551463 PMCID: PMC6760150 DOI: 10.1038/s41598-019-50389-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Certain introns significantly increase mRNA accumulation by a poorly understood mechanism. These introns have no effect when located upstream, or more than ~1 Kb downstream, of the start of transcription. We tested the ability of a formerly non-stimulating intron containing 11 copies of the sequence TTNGATYTG, which is over-represented in promoter-proximal introns in Arabidopsis thaliana, to affect expression from various positions. The activity profile of this intron at different locations was similar to that of a natural intron from the UBQ10 gene, suggesting that the motif increases mRNA accumulation by the same mechanism. A series of introns with different numbers of this motif revealed that the effect on expression is linearly dependent on motif copy number up to at least 20, with each copy adding another 1.5-fold increase in mRNA accumulation. Furthermore, 6 copies of the motif stimulated mRNA accumulation to a similar degree from within an intron or when introduced into the 5'-UTR and coding sequences of an intronless construct, demonstrating that splicing is not required for this sequence to boost expression. The ability of this motif to substantially elevate expression from several hundred nucleotides downstream of the transcription start site reveals a novel type of eukaryotic gene regulation.
Collapse
|
31
|
Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize. Genomics 2019; 112:1233-1244. [PMID: 31323298 DOI: 10.1016/j.ygeno.2019.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
AT-hook motif nuclear localized (AHL) genes have diverse but poorly understood biological functions. We identified and analyzed 37 AHL genes in maize. We also discovered four and one additional AHLs in rice and sorghum, respectively, besides those reported earlier. The maize AHLs were classified into two clades (A and B) and three distinct types (I, II, and III) as also reported in Arabidopsis. Phylogenetic and ortholog analyses showed that, while the evolutionary classification was conserved in plants, expansion of the AHL gene family in maize was accompanied with new biological functions. Gene structure analysis showed that, while all but one Type-I AHLs lacked an intron, origin of Type-II and Type-III AHLs was associated with the gain of introns suggesting evolutionarily distinct temporal and spatial expression patterns and, likely, neofunctionalization. Gene duplication analysis revealed that AHLs in maize expanded via dispersive duplication further supporting their functional diversity. To discern these functions, we analyzed 71 transcriptomes from diverse tissues and developmental stages of maize and classified AHLs into eight groups with distinct temporal/spatial expression profiles. Coexpression analysis implicated 5 AHLs and 33 novel genes in networks specific to endosperm, seed, root, leaf, and reproductive tissues indicating their role in the development of these organs. Major processes coregulated by AHLs include pollen development, drought response, senescence, and wound response. We also identified interactions of AHL proteins in coregulating important processes including stress response. These novel insights into the role of AHLs in plant development provide a platform for functional analyses in maize and related grasses.
Collapse
|
32
|
Genome Wide Identification, Molecular Characterization, and Gene Expression Analyses of Grapevine NHX Antiporters Suggest Their Involvement in Growth, Ripening, Seed Dormancy, and Stress Response. Biochem Genet 2019; 58:102-128. [PMID: 31286319 DOI: 10.1007/s10528-019-09930-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/27/2019] [Indexed: 01/23/2023]
Abstract
Plant NHX antiporters are critical for cellular pH, Na+, and K+ homeostasis and salt tolerance. Even though their genomic and functional studies have been conducted in many species, the grapevine NHX family has not been described yet. Our work highlights the presence of six VvNHX genes whose phylogenetic analysis revealed their classification in two distinct groups: group I vacuolar (VvNHX1-5) and group II endosomal (VvNHX6). Several cis-acting regulatory elements related to tissue-specific expression, transcription factor binding, abiotic/biotic stresses response, and light regulation elements were identified in their promoter. Expression profile analyses of VvNHX genes showed variable transcription within organs and tissues with diverse patterns according to biochemical, environmental, and biotic treatments. All VvNHXs are involved in berry growth, except VvNHX5 that seems to be rather implicated in seed maturation. VvNHX4 would be more involved in floral development, while VvNHX2 and 3 display redundant roles. QPCR expression analyses of VvNHX1 showed its induction by NaCl and KNO3 treatments, whereas VvNHX6 was induced by ABA application and strongly repressed by PEG treatment. VvNHX1 plays a crucial role in a bunch of grape developmental steps and adaptation responses through mechanisms of phyto-hormonal signaling. Overall, VvNHX family members could be valuable candidate genes for grapevine improvement.
Collapse
|
33
|
Domenger C, Grimm D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28:R3-R14. [DOI: 10.1093/hmg/ddz148] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractRecombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput ‘top-down’ or (semi-)rational ‘bottom-up’ approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.
Collapse
Affiliation(s)
- Claire Domenger
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| |
Collapse
|
34
|
Crane MM, Sands B, Battaglia C, Johnson B, Yun S, Kaeberlein M, Brent R, Mendenhall A. In vivo measurements reveal a single 5'-intron is sufficient to increase protein expression level in Caenorhabditis elegans. Sci Rep 2019; 9:9192. [PMID: 31235724 PMCID: PMC6591249 DOI: 10.1038/s41598-019-45517-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/06/2019] [Indexed: 11/29/2022] Open
Abstract
Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). IME has been measured in cell culture and plant models by quantifying expression of intronless and intron-bearing reporter genes in vitro. We developed hardware and software to implement microfluidic chip-based gene expression quantification in vivo. We altered position, number and sequence of introns in reporter genes controlled by the hsp-90 promoter. Consistent with plant and mammalian studies, we determined a single, natural or synthetic, 5'-intron is sufficient for the full IME effect conferred by three synthetic introns, while a 3'-intron is not. We found coding sequence can affect IME; the same three synthetic introns that increase mcherry protein concentration by approximately 50%, increase mEGFP by 80%. We determined IME effect size is not greatly affected by the stronger vit-2 promoter. Our microfluidic imaging approach should facilitate screens for factors affecting IME and other intron-dependent processes.
Collapse
Affiliation(s)
- Matthew M Crane
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Bryan Sands
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Christian Battaglia
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Brock Johnson
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Soo Yun
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Matt Kaeberlein
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Roger Brent
- Fred Hutchinson Cancer Research Center, Division of Basic Science, Seattle, WA, USA
| | - Alex Mendenhall
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA.
| |
Collapse
|
35
|
Djemal R, Khoudi H. Combination of the endogenous promoter-intron significantly improves salt and drought tolerance conferred by TdSHN1 transcription factor in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:435-445. [PMID: 30999131 DOI: 10.1016/j.plaphy.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 05/08/2023]
Abstract
Recent years have witnessed a renewed interest in introns as a tool to increase gene expression. We previously isolated TdSHN1 gene encoding a transcription factor in durum wheat. Here we show that TdSHN1 intron contains many CT-stretches and the motif CGATT known to be important for IME. When subjected to bioinformatics analysis using IMEter software, TdSHN1 intron obtained a score of 17.04 which indicates that it can moderately enhance gene expression. TdSHN1 gene including its intron was placed under the control of TdSHN1 endogenous salt and drought-inducible promoter or the constitutive 35S promoter and transferred into tobacco. Transgenic lines were obtained and designated gD (with 35S promoter) and PI (with native promoter). A third construct was also used in which intron-less cDNA was driven by the 35S promoter (cD lines). Results showed that, gD lines exhibited lower stomatal density than cD lines. When subjected to drought and salt stresses, gD lines outperformed intron-less cD lines and WT. Indeed, gD lines exhibited longer roots, higher biomass production, retained more chlorophyll, produced less ROS and MDA and had higher antioxidant activity. qRT-PCR analysis revealed that gD lines had higher TdSHN1 expression levels than cD lines. In addition, expression of ROS-scavengering, stress-related and wax biosynthesis tobacco genes was higher in gD lines compared to cD lines and WT. Interestingly, under stress conditions, PI transgenic lines showed higher TdSHN1 expression levels and outperformed gD lines. These results suggest that TdSHN1 intron enhances gene expression when used alone or in combination with TdSHN1 endogenous promoter.
Collapse
Affiliation(s)
- Rania Djemal
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018, Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
36
|
Rose AB. Introns as Gene Regulators: A Brick on the Accelerator. Front Genet 2019; 9:672. [PMID: 30792737 PMCID: PMC6374622 DOI: 10.3389/fgene.2018.00672] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 01/25/2023] Open
Abstract
A picture is beginning to emerge from a variety of organisms that for a subset of genes, the most important sequences that regulate expression are situated not in the promoter but rather are located within introns in the first kilobase of transcribed sequences. The actual sequences involved are difficult to identify either by sequence comparisons or by deletion analysis because they are dispersed, additive, and poorly conserved. However, expression-controlling introns can be identified computationally in species with relatively small introns, based on genome-wide differences in oligomer composition between promoter-proximal and distal introns. The genes regulated by introns are often expressed in most tissues and are among the most highly expressed in the genome. The ability of some introns to strongly stimulate mRNA accumulation from several hundred nucleotides downstream of the transcription start site, even when the promoter has been deleted, reveals that our understanding of gene expression remains incomplete. It is unlikely that any diseases are caused by point mutations or small deletions that reduce the expression of an intron-regulated gene unless splicing is also affected. However, introns may be particularly useful in practical applications such as gene therapy because they strongly activate expression but only affect the transcription unit in which they are located.
Collapse
Affiliation(s)
- Alan B Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
37
|
Chaudhary S, Khokhar W, Jabre I, Reddy ASN, Byrne LJ, Wilson CM, Syed NH. Alternative Splicing and Protein Diversity: Plants Versus Animals. FRONTIERS IN PLANT SCIENCE 2019; 10:708. [PMID: 31244866 PMCID: PMC6581706 DOI: 10.3389/fpls.2019.00708] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 05/11/2023]
Abstract
Plants, unlike animals, exhibit a very high degree of plasticity in their growth and development and employ diverse strategies to cope with the variations during diurnal cycles and stressful conditions. Plants and animals, despite their remarkable morphological and physiological differences, share many basic cellular processes and regulatory mechanisms. Alternative splicing (AS) is one such gene regulatory mechanism that modulates gene expression in multiple ways. It is now well established that AS is prevalent in all multicellular eukaryotes including plants and humans. Emerging evidence indicates that in plants, as in animals, transcription and splicing are coupled. Here, we reviewed recent evidence in support of co-transcriptional splicing in plants and highlighted similarities and differences between plants and humans. An unsettled question in the field of AS is the extent to which splice isoforms contribute to protein diversity. To take a critical look at this question, we presented a comprehensive summary of the current status of research in this area in both plants and humans, discussed limitations with the currently used approaches and suggested improvements to current methods and alternative approaches. We end with a discussion on the potential role of epigenetic modifications and chromatin state in splicing memory in plants primed with stresses.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Waqas Khokhar
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Lee J. Byrne
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Cornelia M. Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Naeem H. Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
- *Correspondence: Naeem H. Syed,
| |
Collapse
|
38
|
Gasparis S, Kała M, Przyborowski M, Łyżnik LA, Orczyk W, Nadolska-Orczyk A. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley ( Hordeum vulgare L.). PLANT METHODS 2018; 14:111. [PMID: 30568723 PMCID: PMC6297969 DOI: 10.1186/s13007-018-0382-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/10/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Genome editing of monocot plants can be accomplished by using the components of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR associated Cas9) technology specifically optimized for these types of plants. Here, we present the development of RNA-guided Cas9 system for simplex and multiplex genome editing in barley. RESULTS We developed a set of customizable RNA-guided Cas9 binary vectors and sgRNA modules for simplex and multiplex editing in barley. To facilitate the design of RNA-guided Cas9 constructs, the pBract derived binary vectors were adapted to Gateway cloning and only one restriction enzyme was required for construction of the sgRNA. We designed a synthetic, codon optimized Cas9 gene containing the N terminal SV40 nuclear localization signal and the UBQ10 Arabidopsis 1st intron. Two different sgRNAs were constructed for simplex editing and one polycistronic tRNA-gRNA construct (PTG) for multiplex editing using an endogenous tRNA processing system. The RNA-guided Cas9 constructs were validated in transgenic barley plants produced by Agrobacterium-mediated transformation. The highest mutation rate was observed in simplex editing of the cytokinin oxidase/dehydrogenase HvCKX1 gene, where mutations at the hvckx1 locus were detected in 88% of the screened T0 plants. We also proved the efficacy of the PTG construct in the multiplex editing of two CKX genes by obtaining 9 plants (21% of all edited plants) with mutations induced in both HvCKX1 and HvCKX3. Analysis of the T1 lines revealed that mutations in the HvCKX1 gene were transmitted to the next generation of plants. Among 220 screened T1 plants we identified 85 heterozygous and 28 homozygous mutants, most of them bearing frameshift mutations in the HvCKX1 gene. We also observed independent segregation of mutations and the Cas9-sgRNA T-DNA insert in several T1 plants. Moreover, the knockout mutations of the Nud gene generated phenotype mutants with naked grains, and the phenotypic changes were identifiable in T0 plants. CONCLUSIONS We demonstrated the effectiveness of an optimized RNA-guided Cas9 system that can be used for generating homozygous knockout mutants in the progeny of transgenic barely plants. This is also the first report of successful multiplex editing in barley using a tRNA processing system.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute – National Research Institute, 05-870 Radzików, Błonie, Poland
| | - Maciej Kała
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute – National Research Institute, 05-870 Radzików, Błonie, Poland
| | - Mateusz Przyborowski
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute – National Research Institute, 05-870 Radzików, Błonie, Poland
| | - Leszek A. Łyżnik
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Wacław Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, 05-870 Radzików, Błonie, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute – National Research Institute, 05-870 Radzików, Błonie, Poland
| |
Collapse
|
39
|
Mukherjee D, Saha D, Acharya D, Mukherjee A, Chakraborty S, Ghosh TC. The role of introns in the conservation of the metabolic genes of Arabidopsis thaliana. Genomics 2018; 110:310-317. [DOI: 10.1016/j.ygeno.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
40
|
Pydiura N, Pirko Y, Galinousky D, Postovoitova A, Yemets A, Kilchevsky A, Blume Y. Genome‐wide identification, phylogenetic classification, and exon–intron structure characterization of the tubulin and actin genes in flax (Linum usitatissimum). Cell Biol Int 2018; 43:1010-1019. [DOI: 10.1002/cbin.11001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/31/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Nikolay Pydiura
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| | - Yaroslav Pirko
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| | - Dmitry Galinousky
- Institute of Genetics and CytologyNational Academy of Sciences of BelarusMinsk Akademicheskaya st., 27220072 Belarus
| | - Anastasiia Postovoitova
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| | - Aleksandr Kilchevsky
- Institute of Genetics and CytologyNational Academy of Sciences of BelarusMinsk Akademicheskaya st., 27220072 Belarus
| | - Yaroslav Blume
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| |
Collapse
|
41
|
Srivastava AK, Lu Y, Zinta G, Lang Z, Zhu JK. UTR-Dependent Control of Gene Expression in Plants. TRENDS IN PLANT SCIENCE 2018; 23:248-259. [PMID: 29223924 PMCID: PMC5828884 DOI: 10.1016/j.tplants.2017.11.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 05/22/2023]
Abstract
Throughout their lives, plants sense many developmental and environmental stimuli, and activation of optimal responses against these stimuli requires extensive transcriptional reprogramming. To facilitate this activation, plant mRNA contains untranslated regions (UTRs) that significantly increase the coding capacity of the genome by producing multiple mRNA variants from the same gene. In this review we compare UTRs of arabidopsis (Arabidopsis thaliana) and rice (Oryza sativum) at the genome scale to highlight their complexity in crop plants. We discuss different modes of UTR-based regulation with emphasis on genes that regulate multiple plant processes, including flowering, stress responses, and nutrient homeostasis. We demonstrate functional specificity in genes with variable UTR length and propose future research directions.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Permanent address: Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
42
|
Jiménez-López D, Aguilar-Henonin L, González-Prieto JM, Aguilar-Hernández V, Guzmán P. CTLs, a new class of RING-H2 ubiquitin ligases uncovered by YEELL, a motif close to the RING domain that is present across eukaryotes. PLoS One 2018; 13:e0190969. [PMID: 29324855 PMCID: PMC5764321 DOI: 10.1371/journal.pone.0190969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
43
|
Architecture and Distribution of Introns in Core Genes of Four Fusarium Species. G3-GENES GENOMES GENETICS 2017; 7:3809-3820. [PMID: 28993438 PMCID: PMC5677156 DOI: 10.1534/g3.117.300344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Removal of introns from transcribed RNA represents a crucial step during the production of mRNA in eukaryotes. Available whole-genome sequences and expressed sequence tags (ESTs) have increased our knowledge of this process and revealed various commonalities among eukaryotes. However, certain aspects of intron structure and diversity are taxon-specific, which can complicate the accuracy of in silico gene prediction methods. Using core genes, we evaluated the distribution and architecture of Fusarium circinatum spliceosomal introns, and linked these characteristics to the accuracy of the predicted gene models of the genome of this fungus. We also evaluated intron distribution and architecture in F. verticillioides, F. oxysporum, and F. graminearum, and made comparisons with F. circinatum. Results indicated that F. circinatum and the three other Fusarium species have canonical 5′ and 3′ splice sites, but with subtle differences that are apparently not shared with those of other fungal genera. The polypyrimidine tract of Fusarium introns was also found to be highly divergent among species and genes. Furthermore, the conserved adenosine nucleoside required during the first step of splicing is contained within unique branch site motifs in certain Fusarium introns. Data generated here show that introns of F. circinatum, as well as F. verticillioides, F. oxysporum, and F. graminearum, are characterized by a number of unique features such as the CTHAH and ACCAT motifs of the branch site. Incorporation of such information into genome annotation software will undoubtedly improve the accuracy of gene prediction methods used for Fusarium species and related fungi.
Collapse
|
44
|
Chang Y, Yan M, Yu J, Zhu D, Zhao Q. The 5' untranslated region of potato SBgLR gene contributes to pollen-specific expression. PLANTA 2017; 246:389-403. [PMID: 28444448 DOI: 10.1007/s00425-017-2695-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION The 5'UTR of SBgLR enhances gene expression by regulating both its transcription and translation. SBgLR (Solanum tuberosum genomic lysine rich) is a pollen-specific gene in Solanum tuberosum that encodes a microtubule-associated protein. The region from -85 to +180 (transcription start site at +1) was determined to be critical for specific expression in pollen grains. Transient and stable expression assays showed that the 5'UTR (from +1 to +184) enhanced gene expression in all detected tissues of transgenic tobacco. Deletion analysis demonstrated that the secondary structure of the 5'UTR had no effect on pollen-specific SBgLR expression, while the region from +31 to +60 was crucial. Further investigation indicated that mRNA expression was slightly decreased when the +31 to +60 region was deleted, but the mRNA decay rate remained unchanged. Mutation analysis also confirmed that the pollen-specific element TTTCT, located at +37, played an important role in pollen-specific expression. Using yeast one-hybrid screening, we isolated a DNA-binding with one finger (Dof) protein gene (StDof23) and an AT-hook motif nuclear-localized (AHL) protein gene (StAHL) from potato pollen. Further investigation indicated that StDof23 interacted with and positively regulated the +31 to +60 region; moreover, StAHL interacted with and negatively regulated the -49 to +60 region. These results demonstrate that the 5'UTR not only enhanced gene expression but also altered the tissue-specific expression pattern by regulating both transcription and translation.
Collapse
Affiliation(s)
- Yujie Chang
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Min Yan
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
- , Building C, Block 88 Kechuang 6th Street Yizhuang Biomedical Park, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China.
| |
Collapse
|
45
|
Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol 2017; 91:145-155. [PMID: 28673892 DOI: 10.1016/j.biocel.2017.06.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
In many eukaryotes, including mammals, plants, yeast, and insects, introns can increase gene expression without functioning as a binding site for transcription factors. This phenomenon was termed 'intron-mediated enhancement'. Introns can increase transcript levels by affecting the rate of transcription, nuclear export, and transcript stability. Moreover, introns can also increase the efficiency of mRNA translation. This review discusses the current knowledge about these processes. The role of splicing in IME and the significance of intron position relative to the sites of transcription and translation initiation are elaborated. Particular emphasis is placed on the question why different introns, present at the same location of the same genes and spliced at a similar high efficiency, can have very different impacts on expression - from almost no effect to considerable stimulation. This situation can be at least partly accounted for by the identification of splicing-unrelated intronic elements with a special ability to enhance mRNA accumulation or translational efficiency. The many factors that could lead to the large variation observed between the impact of introns in different genes and experimental systems are highlighted. It is suggested that there is no sole, definite answer to the question "how do introns enhance gene expression". Rather, each intron-gene combination might undergo its own unique mixture of processes that lead to the perceptible outcome.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
46
|
Maniga A, Ghisaura S, Perrotta L, Marche MG, Cella R, Albani D. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana. PLoS One 2017; 12:e0179338. [PMID: 28594957 PMCID: PMC5464667 DOI: 10.1371/journal.pone.0179338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 01/16/2023] Open
Abstract
In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities.
Collapse
Affiliation(s)
- Antonio Maniga
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Stefania Ghisaura
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | - Lara Perrotta
- Department of Agriculture, University of Sassari, Sassari, Italy
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | | | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Diego Albani
- Department of Agriculture, University of Sassari, Sassari, Italy
- Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
47
|
Gallegos JE, Rose AB. Intron DNA Sequences Can Be More Important Than the Proximal Promoter in Determining the Site of Transcript Initiation. THE PLANT CELL 2017; 29:843-853. [PMID: 28373518 PMCID: PMC5435436 DOI: 10.1105/tpc.17.00020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/12/2017] [Accepted: 03/30/2017] [Indexed: 05/20/2023]
Abstract
To more precisely define the positions from which certain intronic regulatory sequences increase mRNA accumulation, the effect of a UBIQUITIN intron on gene expression was tested from six different positions surrounding the transcription start site (TSS) of a reporter gene fusion in Arabidopsis thaliana The intron increased expression from all transcribed positions but had no effect when upstream of the 5'-most TSS. While this implies that the intron must be transcribed to increase expression, the TSS changed when the intron was located in the 5'-untranslated region (UTR), suggesting that the intron affects transcription initiation. Remarkably, deleting 303 nucleotides of the promoter including all known TSSs and all but 18 nucleotides of the 5'-UTR had virtually no effect on the level of gene expression as long as an intron containing stimulatory sequences was included. Instead, transcription was initiated in normally untranscribed sequences the same distance upstream of the intron as when the promoter was intact. These results suggest that certain intronic DNA sequences play unexpectedly large roles in directing transcription initiation and constitute a previously unrecognized type of downstream regulatory element for genes transcribed by RNA polymerase II.
Collapse
Affiliation(s)
- Jenna E Gallegos
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Alan B Rose
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
48
|
Grant TNL, De La Torre CM, Zhang N, Finer JJ. Synthetic introns help identify sequences in the 5' UTR intron of the Glycine max polyubiquitin (Gmubi) promoter that give increased promoter activity. PLANTA 2017; 245:849-860. [PMID: 28070655 DOI: 10.1007/s00425-016-2646-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/26/2016] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION Specific sequences within the leader intron of a soybean polyubiquitin gene stimulated gene expression when placed either within a synthetic intron or upstream of a core promoter. The intron in the 5' untranslated region of the soybean polyubiquitin promoter, Gmubi, seems to contribute to the high activity of this promoter. To identify the stimulatory sequences within the intron, ten different sequential intronic sequences of 40 nt were isolated, cloned as tetrameric repeats and placed upstream of a minimal cauliflower mosaic virus 35S (35S) core promoter, which was used to control expression of the green fluorescent protein. Intron fragment tetramers were also cloned within a modified, native intron, creating a Synthetic INtron Cassette (SINC), which was then placed downstream of Gmubi and 35S core promoters. Intron fragment tetramers and SINC constructs were evaluated using transient expression in lima bean cotyledons and stable expression in soybean hairy roots. Intron fragments, used as tetramers upstream of the 35S core promoter, yielded up to 80 times higher expression than the core promoter in transient expression analyses and ten times higher expression in stably transformed hairy roots. Tetrameric intronic fragments, cloned downstream of the Gmubi and 35S core promoters and within the synthetic intron, also yielded increased transient and stable GFP expression that was up to 4 times higher than Gmubi alone and up to 40 times higher than the 35S core promoter alone. These intron fragments contain sequences that seem to act as promoter regulatory elements and may contribute to the increased expression observed with this native strong promoter. Intron regulatory elements and synthetic introns may provide additional tools for increasing transgene expression in plants.
Collapse
Affiliation(s)
- Trudi N L Grant
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 2725 Binion Road, Apopka, FL, 32703-8504, USA
| | - Carola M De La Torre
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Division of Plant Sciences, 315 Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Ning Zhang
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Rd, Ithaca, NY, 14853, USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA.
| |
Collapse
|
49
|
Lin CW, Huang LY, Huang CL, Wang YC, Lai PH, Wang HV, Chang WC, Chiang TY, Huang HJ. Common Stress Transcriptome Analysis Reveals Functional and Genomic Architecture Differences Between Early and Delayed Response Genes. PLANT & CELL PHYSIOLOGY 2017; 58:546-559. [PMID: 28115496 DOI: 10.1093/pcp/pcx002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
To identify the similarities among responses to diverse environmental stresses, we analyzed the transcriptome response of rice roots to three rhizotoxic perturbations (chromium, ferulic acid and mercury) and identified common early-transient, early-constant and delayed gene inductions. Common early response genes were mostly associated with signal transduction and hormones, and delayed response genes with lipid metabolism. Network component analysis revealed complicated interactions among common genes, the most highly connected signaling hubs being PP2C68, MPK5, LRR-RLK and NPR1. Gene architecture studies revealed different conserved promoter motifs and a different ratio of CpG island distribution between early and delayed genes. In addition, early-transient genes had more exons and a shorter first exon. IMEter was used to calculate the transcription regulation effects of introns, with greater effects for the first introns of early-transient than delayed genes. The higher Ka/Ks (non-synonymous/synonymous mutation) ratio of early-constant genes than early-transient, delayed and the genome median demonstrates the rapid evolution of early-constant genes. Our results suggest that finely tuned transcriptional control in response to environmental stress in rice depends on genomic architecture and signal intensity and duration.
Collapse
Affiliation(s)
- Chung-Wen Lin
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Li-Yao Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Li Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yong-Chuan Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Hsuan Lai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
50
|
Laxa M. Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression in Plants? FRONTIERS IN PLANT SCIENCE 2017; 7:1977. [PMID: 28111580 PMCID: PMC5216049 DOI: 10.3389/fpls.2016.01977] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 05/03/2023]
Abstract
Many plant promoters were characterized and used for transgene expression in plants. Even though these promoters drive high levels of transgene expression in plants, the expression patterns are rarely constitutive but restricted to some tissues and developmental stages. In terms of crop improvement not only the enhancement of expression per se but, in particular, tissue-specific and spatial expression of genes plays an important role. Introns were used to boost expression in transgenic plants in the field of crop improvement for a long time. However, the mechanism behind this so called intron-mediated enhancement (IME) is still largely unknown. This review highlights the complexity of IME on the levels of its regulation and modes of action and gives an overview on IME methodology, examples in fundamental research and models of proposed mechanisms. In addition, the application of IME in heterologous gene expression is discussed.
Collapse
Affiliation(s)
- Miriam Laxa
- Institute of Botany, Leibniz University HannoverHannover, Germany
| |
Collapse
|