1
|
Bejarano Franco M, Boujataoui S, Hadji M, Hammer L, Ulrich HD, Reuter LM. Analysis of cell cycle stage, replicated DNA, and chromatin-associated proteins using high-throughput flow cytometry. Biol Chem 2024:hsz-2024-0058. [PMID: 39241223 DOI: 10.1515/hsz-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024]
Abstract
Flow cytometry is a versatile tool used for cell sorting, DNA content imaging, and determining various cellular characteristics. With the possibility of high-throughput analyses, it combines convenient labelling techniques to serve rapid, quantitative, and qualitative workflows. The ease of sample preparation and the broad range of applications render flow cytometry a preferred approach for many scientific questions. Yet, we lack practical adaptations to fully harness the quantitative and high-throughput capabilities of most cytometers for many organisms. Here, we present simple and advanced protocols for the analysis of total DNA content, de novo DNA synthesis, and protein association to chromatin in budding yeast and human cells. Upon optimization of experimental conditions and choice of fluorescent dyes, up to four parameters can be measured simultaneously and quantitatively for each cell of a population in a multi-well plate format. Reducing sample numbers, plastic waste, costs per well, and hands-on time without compromising signal quality or single-cell accuracy are the main advantages of the presented protocols. In proof-of-principle experiments, we show that DNA content increase in S-phase correlates with de novo DNA synthesis and can be predicted by the presence of the replicative helicase MCM2-7 on genomic DNA.
Collapse
Affiliation(s)
| | - Safia Boujataoui
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Majd Hadji
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Louis Hammer
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - L Maximilian Reuter
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
2
|
Fang T, Lu W, Zhang J, Ge K, Chen Z, Wang M, Yao B. Study of Drug Resistance in Chemotherapy Induced by Extracellular Vesicles on a Microchip. Anal Chem 2022; 94:16919-16926. [DOI: 10.1021/acs.analchem.2c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Tianyuan Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310030, China
| | - Wei Lu
- GeneX (Zhejiang) Precision Medicine Co., Ltd., Hangzhou 311121, China
| | - Jingfeng Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310030, China
| | - Ke Ge
- Department of Chemistry, Zhejiang University, Hangzhou 310030, China
| | - Zhanhong Chen
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Min Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310030, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
3
|
Yang Y, Ye Y, Liu M, Zheng Y, Wu G, Chen Z, Wang Y, Guo Q, Ji R, Zhou Y. Family with sequence similarity 153 member B as a potential prognostic biomarker of gastric cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:12581-12600. [PMID: 36654012 DOI: 10.3934/mbe.2022587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gastric cancer (GC) is one of the most common digestive tumors in Northwest China. Previous sequencing analysis revealed that family with sequence similarity 153 member B (FAM153B) might be the primary driver gene of GC. In this study, we aim to explore the potential roles of FAM153B in GC. Microarray data were firstly obtained from public databases with the aim to evaluate the genetic expression of FAM153B between GC and normal tissues. The results were verified in immunohistochemistry (IHC). We also performed the co-expression network analysis and enrichment analysis to identify underlying mechanisms. A correlation analysis of FAM153B expression and immune infiltration was performed then. Furthermore, two GC cell lines were used to evaluate the effect of FAM153B on gastric cell proliferation by employing MTT and Edu assays. Our findings suggest that FAM153B is downregulated in tumoral tissue, and positively associated with unfavorable survival. The enrichment pathways of FAM153B were regulation of signaling receptor activity, DNA replication, cell cycle transition, chromosomal regulation, and so on. Besides, from the perspective of bioinformatics, the protein expression level of FAM153B is related to the degree of immune cell infiltration. In vitro, overexpression of FAM153B inhibit the proliferation of two cell lines. In summary, this study demonstrates that FAM153B might serve as an effective prognostic and therapeutic biomarker in GC.
Collapse
Affiliation(s)
- Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Yuwei Ye
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Zhaofeng Chen
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Esumi S, Nasu M, Kawauchi T, Miike K, Morooka K, Yanagawa Y, Seki T, Sakimura K, Fukuda T, Tamamaki N. Characterization and Stage-Dependent Lineage Analysis of Intermediate Progenitors of Cortical GABAergic Interneurons. Front Neurosci 2021; 15:607908. [PMID: 34305510 PMCID: PMC8297055 DOI: 10.3389/fnins.2021.607908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Intermediate progenitors of both excitatory and inhibitory neurons, which can replenish neurons in the adult brain, were recently identified. However, the generation of intermediate progenitors of GABAergic inhibitory neurons (IPGNs) has not been studied in detail. Here, we characterized the spatiotemporal distribution of IPGNs in mouse cerebral cortex. IPGNs generated neurons during both embryonic and postnatal stages, but the embryonic IPGNs were more proliferative. Our lineage tracing analyses showed that the embryonically proliferating IPGNs tended to localize to the superficial layers rather than the deep cortical layers at 3 weeks after birth. We also found that embryonic IPGNs derived from the medial and caudal ganglionic eminence (CGE) but more than half of the embryonic IPGNs were derived from the CGE and broadly distributed in the cerebral cortex. Taken together, our data indicate that the broadly located IPGNs during embryonic and postnatal stages exhibit a different proliferative property and layer distribution.
Collapse
Affiliation(s)
- Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nasu
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Koichiro Miike
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Furuhata T, Komoto Y, Ohshiro T, Taniguchi M, Ueki R, Sando S. Key aurophilic motif for robust quantum-tunneling-based characterization of a nucleoside analogue marker. Chem Sci 2020; 11:10135-10142. [PMID: 34094276 PMCID: PMC8162310 DOI: 10.1039/d0sc03946b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A quantum sequencer offers a scalable electrical platform for single-molecule analysis of genomic events. A thymidine (dT) analog exhibiting uniquely high single-molecule conductance is a key element in capturing DNA synthesis dynamics by serving as a decodable marker for enzymatic labeling of nascent strands. However, the current design strategies of dT analogs that focus on their molecular orbital energy levels require bulky chemical modifications to extend the π-conjugation, which hinders polymerase recognition. We report herein a polymerase-compatible dT analog that is highly identifiable in quantum sequencing. An ethynyl group is introduced as a small gold-binding motif to differentiate the nucleobase-gold electronic coupling, which has been an overlooked factor in modifying nucleobase conductance. The resulting C5-ethynyl-2'-deoxyuridine exhibits characteristic signal profiles that allowed its correct identification at a 93% rate while maintaining polymerase compatibility. This study would expand the applicability of quantum sequencing by demonstrating a robust nucleoside marker with high identifiability.
Collapse
Affiliation(s)
- Takafumi Furuhata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yuki Komoto
- The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Takahito Ohshiro
- The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
6
|
Rodríguez-Martínez M, Hills SA, Diffley JFX, Svejstrup JQ. Multiplex Cell Fate Tracking by Flow Cytometry. Methods Protoc 2020; 3:E50. [PMID: 32709120 PMCID: PMC7565161 DOI: 10.3390/mps3030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/02/2022] Open
Abstract
Measuring differences in cell cycle progression is often essential to understand cell behavior under different conditions, treatments and environmental changes. Cell synchronization is widely used for this purpose, but unfortunately, there are many cases where synchronization is not an option. Many cell lines, patient samples or primary cells cannot be synchronized, and most synchronization methods involve exposing the cells to stress, which makes the method incompatible with the study of stress responses such as DNA damage. The use of dual-pulse labelling using EdU and BrdU can potentially overcome these problems, but the need for individual sample processing may introduce a great variability in the results and their interpretation. Here, we describe a method to analyze cell proliferation and cell cycle progression by double staining with thymidine analogues in combination with fluorescent cell barcoding, which allows one to multiplex the study and reduces the variability due to individual sample staining, reducing also the cost of the experiment.
Collapse
Affiliation(s)
- Marta Rodríguez-Martínez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephanie A. Hills
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; (S.A.H.); (J.F.X.D.)
| | - John F. X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; (S.A.H.); (J.F.X.D.)
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
7
|
Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat Methods 2019; 16:429-436. [PMID: 31011185 DOI: 10.1038/s41592-019-0394-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
Replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We report a sequencing method for the measurement of replication fork movement on single molecules by detecting nucleotide analog signal currents on extremely long nanopore traces (D-NAscent). Using this method, we detect 5-bromodeoxyuridine (BrdU) incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse-labeling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20-160 kilobases to generate a whole-genome single-molecule map of DNA replication dynamics and discover a class of low-frequency stochastic origins in budding yeast. The D-NAscent software is available at https://github.com/MBoemo/DNAscent.git .
Collapse
|
8
|
Pai CC, Kishkevich A, Deegan RS, Keszthelyi A, Folkes L, Kearsey SE, De León N, Soriano I, de Bruin RAM, Carr AM, Humphrey TC. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription. Cell Rep 2017; 20:2693-2705. [PMID: 28903048 PMCID: PMC5608972 DOI: 10.1016/j.celrep.2017.08.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/10/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6B, UK
| | - Rachel S Deegan
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Lisa Folkes
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Nagore De León
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ignacio Soriano
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
9
|
Fleck O, Fahnøe U, Løvschal KV, Gasasira MFU, Marinova IN, Kragelund BB, Carr AM, Hartsuiker E, Holmberg C, Nielsen O. Deoxynucleoside Salvage in Fission Yeast Allows Rescue of Ribonucleotide Reductase Deficiency but Not Spd1-Mediated Inhibition of Replication. Genes (Basel) 2017; 8:E128. [PMID: 28441348 PMCID: PMC5448002 DOI: 10.3390/genes8050128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
In fission yeast, the small, intrinsically disordered protein S-phase delaying protein 1 (Spd1) blocks DNA replication and causes checkpoint activation at least in part, by inhibiting the enzyme ribonucleotide reductase, which is responsible for the synthesis of DNA. The CRL4Cdt2 E3 ubiquitin ligase mediates degradation of Spd1 and the related protein Spd2 at S phase of the cell cycle. We have generated a conditional allele of CRL4Cdt2, by expressing the highly unstable substrate-recruiting protein Cdt2 from a repressible promoter. Unlike Spd1, Spd2 does not regulate deoxynucleotide triphosphate (dNTP) pools; yet we find that Spd1 and Spd2 together inhibit DNA replication upon Cdt2 depletion. To directly test whether this block of replication was solely due to insufficient dNTP levels, we established a deoxy-nucleotide salvage pathway in fission yeast by expressing the human nucleoside transporter human equilibrative nucleoside transporter 1 (hENT1) and the Drosophila deoxynucleoside kinase. We present evidence that this salvage pathway is functional, as 2 µM of deoxynucleosides in the culture medium is able to rescue the growth of two different temperature-sensitive alleles controlling ribonucleotide reductase. However, salvage completely failed to rescue S phase delay, checkpoint activation, and damage sensitivity, which was caused by CRL4Cdt2 inactivation, suggesting that Spd1-in addition to repressing dNTP synthesis-together with Spd2, can inhibit other replication functions. We propose that this inhibition works at the point of the replication clamp proliferating cell nuclear antigen, a co-factor for DNA replication.
Collapse
Affiliation(s)
- Oliver Fleck
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Ulrik Fahnøe
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Vyff Løvschal
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | - Irina N Marinova
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.
| | - Edgar Hartsuiker
- North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Christian Holmberg
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Olaf Nielsen
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Ligasová A, Konečný P, Frydrych I, Koberna K. Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2'-deoxyuridine, low concentration of hydrochloric acid and exonuclease III. PLoS One 2017; 12:e0175880. [PMID: 28426799 PMCID: PMC5398562 DOI: 10.1371/journal.pone.0175880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/31/2017] [Indexed: 11/19/2022] Open
Abstract
The approach for the detection of replicational activity in cells using 5-bromo-2'-deoxyuridine, a low concentration of hydrochloric acid and exonuclease III is presented in the study. The described method was optimised with the aim to provide a fast and robust tool for the detection of DNA synthesis with minimal impact on the cellular structures using image and flow cytometry. The approach is based on the introduction of breaks into the DNA by the low concentration of hydrochloric acid followed by the subsequent enzymatic extension of these breaks using exonuclease III. Our data showed that the method has only a minimal effect on the tested protein localisations and is applicable both for formaldehyde- and ethanol-fixed cells. The approach partially also preserves the fluorescence of the fluorescent proteins in the HeLa cells expressing Fluorescent Ubiquitin Cell Cycle Indicator. In the case of the short labelling pulses that disabled the use of 5-ethynyl-2'-deoxyuridine because of the low specific signal, the described method provided a bright signal enabling reliable recognition of replicating cells. The optimized protocol was also successfully tested for the detection of trifluridine, the nucleoside used as an antiviral drug and in combination with tipiracil also for the treatment of some types of cancer.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic
- * E-mail: (AL); (KK)
| | - Petr Konečný
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic
- * E-mail: (AL); (KK)
| |
Collapse
|
11
|
Sequential and counter-selectable cassettes for fission yeast. BMC Biotechnol 2016; 16:76. [PMID: 27825338 PMCID: PMC5101803 DOI: 10.1186/s12896-016-0307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/21/2016] [Indexed: 01/26/2023] Open
Abstract
Background Fission yeast is one of the most commonly used model organisms for studying genetics. For selection of desirable genotypes, antibiotic resistance cassettes are widely integrated into the genome near genes of interest. In yeasts, this is achieved by PCR amplification of the cassette flanked by short homology sequences, which can be incorporated by homology directed repair. However, the currently available cassettes all share the same tef promoter and terminator sequences. It can therefore be challenging to perform multiple genetic modifications by PCR-based targeting, as existing resistance cassettes in strains can be favored for recombination due to shared homology between the cassettes. Results Here we have generated new selection cassettes that do not recombine with those traditionally used. We achieved this by swapping the tef promoter and terminator sequences in the established antibiotic resistance MX6 cassette series for alternative promoters and/or terminators. The newly created selection cassettes did not recombine with the tef-containing MX6 cassettes already present in the genome, allowing for sequential gene targeting using the PCR-based method. In addition, we have generated a series of plasmids to facilitate the C-terminal tagging of genes with desired epitopes. We also utilized the anti-selection gene HSV-TK, which results in cell death in strains grown on the drug 5-Fluoro-2’-deoxyuridine (FdU, Floxuridin or FUDR). By fusing an antibiotic resistance gene to HSV-TK, we were able to select on the relevant antibiotic as well as counter-select on FdU media to confirm the desired genomic modification had been made. We noted that the efficiency of the counter selection by FdU was enhanced by treatment with hydroxyurea. However, a number of DNA replication checkpoint and homologous recombination mutants, including rad3∆, cds1∆, rad54∆ and rad55∆, exhibited sensitivity to FdU even though those strains did not carry the HSV-TK gene. To remove counter-selectable markers, we introduced the Cre-loxP irreversible recombination method. Finally, utilizing the negative selectable markers, we showed efficient induction of point mutations in an endogenous gene by a two-step transformation method. Conclusions The plasmid constructs and techniques described here are invaluable tools for sequential gene targeting and will simplify construction of fission yeast strains required for study.
Collapse
|
12
|
Boye E, Anda S, Rothe C, Stokke T, Grallert B. Analyzing Schizosaccharomyces pombe DNA Content by Flow Cytometry. Cold Spring Harb Protoc 2016; 2016:2016/6/pdb.prot091280. [PMID: 27250946 DOI: 10.1101/pdb.prot091280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Flow cytometry can be used to measure the DNA content of individual cells. The data are usually presented as DNA histograms that can be used to examine the cells' progression through the cell cycle. Under standard growth conditions, fission yeast cells do not complete cytokinesis until after G1 phase; therefore, DNA histograms show one major peak representing cells in G1 (2×1C DNA) and G2 phase (1×2C DNA). By analysis of the duration of the fluorescence signal as well as the intensity of the DNA-related signal, it is possible to discriminate between cells in M/G1, S, and G2 This protocol describes how to prepare cells for flow cytometry and analyze them. We also describe the application of barcoding for more accurate comparison of samples.
Collapse
Affiliation(s)
- Erik Boye
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Silje Anda
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Christiane Rothe
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
13
|
Identification of proliferative progenitors associated with prominent postnatal growth of the pons. Nat Commun 2016; 7:11628. [PMID: 27188978 PMCID: PMC4873968 DOI: 10.1038/ncomms11628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/14/2016] [Indexed: 01/28/2023] Open
Abstract
The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0–4 (P0–P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2+Olig2+, but by P8 a Sox2− subpopulation emerges, suggesting a lineage progression from Sox2+ ‘early' to Sox2− ‘late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2–P3 Sox2+ progenitors. These results demonstrate the importance of postnatal Sox2+Olig2+ progenitors in pontine growth and oligodendrogenesis. Postnatal growth of the pons is not well characterized. Here the authors show that growth of the murine pons is fastest during postnatal day 0–4, a period preceding myelination, and is primarily driven by an expansion of the oligodendrocyte population that derive from Sox2+Olig2+ progenitors.
Collapse
|
14
|
Fennessy RT, Owen-Hughes T. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing. Nucleic Acids Res 2016; 44:7189-203. [PMID: 27106059 PMCID: PMC5009725 DOI: 10.1093/nar/gkw331] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/15/2016] [Indexed: 12/18/2022] Open
Abstract
Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths.
Collapse
Affiliation(s)
- Ross T Fennessy
- Centre for Gene Regulation and Expression, School of Life Sceinces, University of Dundee, Dundee, DD1 5EH, UK
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sceinces, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
15
|
Balthazart J, Ball GF. Endocrine and social regulation of adult neurogenesis in songbirds. Front Neuroendocrinol 2016; 41:3-22. [PMID: 26996818 DOI: 10.1016/j.yfrne.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
The identification of pronounced seasonal changes in the volume of avian song control nuclei stimulated the discovery of adult neurogenesis in songbirds as well as renewed studies in mammals including humans. Neurogenesis in songbirds is modulated by testosterone and other factors such as photoperiod, singing activity and social environment. Adult neurogenesis has been widely studied by labeling, with tritiated thymidine or its analog BrdU, cells duplicating their DNA in anticipation of their last mitotic division and following their fate as new neurons. New methods based on endogenous markers of cell cycling or of various stages of neuronal life have allowed for additional progress. In particular immunocytochemical visualization of the microtubule-associated protein doublecortin has provided an integrated view of neuronal replacement in the song control nucleus HVC. Multiple questions remain however concerning the specific steps in the neuronal life cycle that are modulated by various factors and the underlying cellular mechanisms.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, College Park, MD, USA.
| |
Collapse
|
16
|
Seo S, Onizuka K, Nishioka C, Takahashi E, Tsuneda S, Abe H, Ito Y. Phosphorylated 5-ethynyl-2'-deoxyuridine for advanced DNA labeling. Org Biomol Chem 2016; 13:4589-95. [PMID: 25777799 DOI: 10.1039/c5ob00199d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The representative DNA-labeling agent 5-ethynyl-2'-deoxyuridine (EdU) was chemically modified to improve its function. Chemical monophosphorylation was expected to enhance the efficiency of the substrate in DNA polymerization by circumventing the enzymatic monophosphorylation step that consumes energy. In addition, to enhance cell permeability, the phosphates were protected with bis-pivaloyloxymethyl that is stable in buffer and plasma, and degradable inside various cell types. The phosphorylated EdU (PEdU) was less toxic than EdU, and had the same or a slightly higher DNA-labeling ability in vitro. PEdU was also successfully applied to DNA labeling in vivo. In conclusion, PEdU can be used as a less toxic DNA-labeling agent for studies that require long-term cell survival or very sensitive cell lines.
Collapse
Affiliation(s)
- Siyoong Seo
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jajoo R, Jung Y, Huh D, Viana MP, Rafelski SM, Springer M, Paulsson J. Accurate concentration control of mitochondria and nucleoids. Science 2016; 351:169-72. [PMID: 26744405 DOI: 10.1126/science.aaa8714] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
All cellular materials are partitioned between daughters at cell division, but by various mechanisms and with different accuracy. In the yeast Schizosaccharomyces pombe, the mitochondria are pushed to the cell poles by the spindle. We found that mitochondria spatially reequilibrate just before division, and that the mitochondrial volume and DNA-containing nucleoids instead segregate in proportion to the cytoplasm inherited by each daughter. However, nucleoid partitioning errors are suppressed by control at two levels: Mitochondrial volume is actively distributed throughout a cell, and nucleoids are spaced out in semiregular arrays within mitochondria. During the cell cycle, both mitochondria and nucleoids appear to be produced without feedback, creating a net control of fluctuations that is just accurate enough to avoid substantial growth defects.
Collapse
Affiliation(s)
- Rishi Jajoo
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yoonseok Jung
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dann Huh
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matheus P Viana
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Susanne M Rafelski
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Ligasová A, Strunin D, Friedecký D, Adam T, Koberna K. A fatal combination: a thymidylate synthase inhibitor with DNA damaging activity. PLoS One 2015; 10:e0117459. [PMID: 25671308 PMCID: PMC4324964 DOI: 10.1371/journal.pone.0117459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/25/2014] [Indexed: 12/28/2022] Open
Abstract
2′-deoxy-5-ethynyluridine (EdU) has been previously shown to be a cell poison whose toxicity depends on the particular cell line. The reason is not known. Our data indicates that different efficiency of EdU incorporation plays an important role. The EdU-mediated toxicity was elevated by the inhibition of 2′-deoxythymidine 5′-monophosphate synthesis. EdU incorporation resulted in abnormalities of the cell cycle including the slowdown of the S phase and a decrease in DNA synthesis. The slowdown but not the cessation of the first cell division after EdU administration was observed in all of the tested cell lines. In HeLa cells, a 10 μM EdU concentration led to the cell death in the 100% of cells probably due to the activation of an intra S phase checkpoint in the subsequent S phase. Our data also indicates that this EdU concentration induces interstrand DNA crosslinks in HeLa cells. We suppose that these crosslinks are the primary DNA damage resulting in cell death. According to our results, the EdU-mediated toxicity is further increased by the inhibition of thymidylate synthase by EdU itself at its higher concentrations.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, 779 00, Czech Republic
- * E-mail:
| | - Dmytro Strunin
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, 779 00, Czech Republic
| | - David Friedecký
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, 779 00, Czech Republic
| | - Tomáš Adam
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, 779 00, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, 779 00, Czech Republic
| |
Collapse
|
19
|
Talarek N, Petit J, Gueydon E, Schwob E. EdU Incorporation for FACS and Microscopy Analysis of DNA Replication in Budding Yeast. Methods Mol Biol 2015; 1300:105-12. [PMID: 25916708 DOI: 10.1007/978-1-4939-2596-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA replication is a key determinant of chromosome segregation and stability in eukaryotes. The yeast Saccharomyces cerevisiae has been extensively used for cell cycle studies, yet simple but key parameters such as the fraction of cells in S phase in a population or the subnuclear localization of DNA synthesis have been difficult to gather for this organism. 5-ethynyl-2'-deoxyuridine (EdU) is a thymidine analogue that can be incorporated in vivo and later detected using copper-catalyzed azide alkyne cycloaddition (Click reaction) without prior DNA denaturation. This chapter describes a budding yeast strain and conditions that allow rapid EdU incorporation at moderate extracellular concentrations, followed by its efficient detection for the analysis of DNA replication in single cells by flow cytometry and fluorescence microscopy.
Collapse
Affiliation(s)
- Nicolas Talarek
- Institute of Molecular Genetics, CNRS UMR5535 & University Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
20
|
Green MD, Sabatinos SA, Forsburg SL. Microscopy techniques to examine DNA replication in fission yeast. Methods Mol Biol 2015; 1300:13-41. [PMID: 25916703 DOI: 10.1007/978-1-4939-2596-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Temporal and spatial visualization of replication proteins and associated structures within the narrow confines of a yeast nucleus is technically challenging. Choosing the appropriate method depends upon the parameters of the experiment, the nature of the molecules to be observed, and the hypothesis to be tested. In this chapter, we review three broad types of visualization: whole-cell fluorescence or immunofluorescence, which is useful for questions of timing and chromatin association; nuclear spreads, which provide greater resolution within the chromatin for co-localization and region-specific effects; and chromatin fibers, which allow observation of labeled proteins and newly synthesized DNA on a linear chromosome. We also suggest a mounting procedure for live fission yeast with fluorescent proteins. We discuss applications of these protocols and some considerations for choosing methods and fluorophores.
Collapse
Affiliation(s)
- Marc D Green
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, RRI 108, Los Angeles, CA, 90089-2910, USA,
| | | | | |
Collapse
|
21
|
Abstract
Flow cytometry is an essential tool to monitor DNA content and determine cell cycle distribution. Its utility in fission yeast reflects the ease of sample preparation, the stochiometric binding of the most popular DNA dyes (propidium iodide and Sytox Green), and ability to monitor cell size. However, the study of DNA replication with multicolour flow analysis has lagged behind its use in mammalian cells. We present basic and advanced protocols for analysis of DNA replication in fission yeast by flow cytometry including whole cell, nuclear "ghosts," two-color imaging with BrdU, and estimates of DNA synthesis using EdU.
Collapse
|
22
|
Anda S, Boye E, Grallert B. Cell-cycle analyses using thymidine analogues in fission yeast. PLoS One 2014; 9:e88629. [PMID: 24551125 PMCID: PMC3923809 DOI: 10.1371/journal.pone.0088629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/14/2014] [Indexed: 11/22/2022] Open
Abstract
Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.
Collapse
Affiliation(s)
- Silje Anda
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
| | - Beata Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
- * E-mail:
| |
Collapse
|
23
|
Hua H, Namdar M, Ganier O, Gregan J, Méchali M, Kearsey SE. Sequential steps in DNA replication are inhibited to ensure reduction of ploidy in meiosis. Mol Biol Cell 2013; 24:578-87. [PMID: 23303250 PMCID: PMC3583662 DOI: 10.1091/mbc.e12-11-0825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reduction in ploidy in meiosis is assumed to be due to a block to the licensing step (Mcm helicase association with replication origins). When the licensing block is subverted, replication is still only partial due to inefficient elongation replication forks. This might constitute an additional level of replication regulation. Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I–II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry.
Collapse
Affiliation(s)
- Hui Hua
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Guo J, Li D, Bai S, Xu T, Zhou Z, Zhang Y. Detecting DNA synthesis of neointimal formation after catheter balloon injury in GK and in Wistar rats: using 5-ethynyl-2'-deoxyuridine. Cardiovasc Diabetol 2012; 11:150. [PMID: 23237526 PMCID: PMC3537571 DOI: 10.1186/1475-2840-11-150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/13/2012] [Indexed: 01/19/2023] Open
Abstract
Background Neointimal formation plays an important role in the pathogenesis of coronary restenosis after percutaneous coronary intervention (PCI), especially in patients with diabetes mellitus. Recently, some studies have shown that 5-ethynyl-2'-deoxyuridine (EdU) incorporation can serve as a novel alternative to the 5-bromo-2'-deoxyuridine (BrdU) antibody detection method for detection of DNA synthesis in regenerating avian cochlea, chick embryo and the adult nervous system. However, few studies have been performed to assess the suitability of EdU for detecting DNA synthesis in vascular neointima. Methods The carotid artery balloon injury model was established in Goto-Kakizaki (GK) and Wistar rats. A Cell-LightTM EdU Kit was used to detect EdU-labeled cell nuclei of common carotid arteries at day 7 after catheter balloon injury. Different methods of injecting EdU were tested. The protein levels of proliferating cell nuclear antigen (PCNA) and p-Akt (Ser473), as well as the mRNA levels of PCNA were evaluated by Western blotting and quantitative real-time PCR (qRT-PCR), respectively. Immunohistochemical staining was also employed to visualize PCNA-positive cells. Results At day 7 after catheter balloon injury, far more EdU-positive and PCNA-positive cells were observed in GK rats. When comparing groups that received different EdU doses, it was found that the percentage of EdU-positive cells at a dose of 100 mg/kg body weight was than at doses of 25 mg/kg and 50 mg/kg. The number of positive cells was significantly higher in the repeated injection group compared to the single injection group. Further, after balloon injury DNA synthesis in GK rats was more notable than in Wistar rats. Neointimal formation in GK rats was more obvious than in Wistar rats. The protein levels of PCNA and p-Akt (Ser473) and the mRNA levels of PCNA were increased in injured rats as compared to uninjured rats, and were significantly higher in GK rats than in Wistar rats. Conclusion By intraperitoneal injections of EdU at a dose of 100 mg/kg three times, EdU incorporation can detect carotid arterial DNA synthesis caused by neointimal formation in GK rats and Wistar rats at day 7 after balloon injury by the EdU click reaction quickly and effectively. Moreover, more obvious DNA synthesis in the vascular neointima could be observed in GK rats than in Wistar rats.
Collapse
Affiliation(s)
- Jingsheng Guo
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Nucleoside analogs are frequently used to label newly synthesized DNA. These analogs are toxic in many cells, with the exception of the budding yeast. We show that Schizosaccharomyces pombe behaves similarly to metazoans in response to analogs 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU). Incorporation causes DNA damage that activates the damage checkpoint kinase Chk1 and sensitizes cells to UV light and other DNA-damaging drugs. Replication checkpoint mutant cds1Δ shows increased DNA damage response after exposure. Finally, we demonstrate that the response to BrdU is influenced by the ribonucleotide reductase inhibitor, Spd1, suggesting that BrdU causes dNTP pool imbalance in fission yeast, as in metazoans. Consistent with this, we show that excess thymidine induces G1 arrest in wild-type fission yeast expressing thymidine kinase. Thus, fission yeast responds to nucleoside analogs similarly to mammalian cells, which has implications for their use in replication and damage research, as well as for dNTP metabolism.
Collapse
|
26
|
Ohno S, Okano H, Tanji Y, Ohashi A, Watanabe K, Takai K, Imachi H. A method for evaluating the host range of bacteriophages using phages fluorescently labeled with 5-ethynyl-2'-deoxyuridine (EdU). Appl Microbiol Biotechnol 2012; 95:777-88. [PMID: 22660768 DOI: 10.1007/s00253-012-4174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 01/09/2023]
Abstract
The evaluation of bacteriophage (phage) host range is a significant issue in understanding phage and prokaryotic community interactions. However, in conventional methods, such as plaque assay, target host strains must be isolated, although almost all environmental prokaryotes are recalcitrant to cultivation. Here, we introduce a novel phage host range evaluation method using fluorescently labeled phages (the FLP method), which consists of the following four steps: (i) Fluorescently labeled phages are added to a microbial consortium, and host cells are infected and fluorescently labeled. (ii) Fluorescent cells are sorted by fluorescence-activated cell sorting. (iii) 16S rRNA gene sequences retrieved from sorted cells are analyzed, and specific oligonucleotide probes for fluorescence in situ hybridization (FISH) are designed. (iv) Cells labeled with both fluorescently labeled phage and FISH probe are identified as host cells. To verify the feasibility of this method, we used T4 phage and Escherichia coli as a model. We first used nucleic acid stain reagents for phage labeling; however, the reagents also stained non-host cells. Next, we employed the Click-iT EdU (5-ethynyl-2'-deoxyuridine) assay kit from Invitrogen for phage labeling. Using EdU-labeled T4 phage, we could specifically detect E. coli cells in a complex microbial consortium from municipal sewage. We also confirmed that FISH could be applied to the infected E. coli cells. These results suggest that this FLP method using the EdU assay kit is a useful method for evaluating phage host range and may have a potential application for various types of phages, even if their prokaryotic hosts are currently unculturable.
Collapse
Affiliation(s)
- Sayaka Ohno
- Subsurface Geobiology Advanced Research-SUGAR Project, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology-JAMSTEC, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Cavanagh BL, Walker T, Norazit A, Meedeniya AC. Thymidine analogues for tracking DNA synthesis. Molecules 2011; 16:7980-93. [PMID: 21921870 PMCID: PMC6264245 DOI: 10.3390/molecules16097980] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/08/2011] [Indexed: 01/24/2023] Open
Abstract
Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in “tagging DNA synthesis” is the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU). The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using ‘Huisgen’s reaction’ (1,3-dipolar cycloaddition or ‘click chemistry’). This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other “unnatural bases”. These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.
Collapse
Affiliation(s)
- Brenton L. Cavanagh
- Health Institute and Eskitis Institute, Griffith University, Queensland 4107, Australia
| | - Tom Walker
- Health Institute and Eskitis Institute, Griffith University, Queensland 4107, Australia
| | - Anwar Norazit
- Health Institute and Eskitis Institute, Griffith University, Queensland 4107, Australia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Adrian C.B. Meedeniya
- Health Institute and Eskitis Institute, Griffith University, Queensland 4107, Australia
- Author to whom correspondence should be addressed; ; Tel.: +61-7-3735-4417, Fax: +61-7-3735-4255
| |
Collapse
|