1
|
Wulff T, Hahnke K, Lécrivain AL, Schmidt K, Ahmed-Begrich R, Finstermeier K, Charpentier E. Dynamics of diversified A-to-I editing in Streptococcus pyogenes is governed by changes in mRNA stability. Nucleic Acids Res 2024; 52:11234-11253. [PMID: 39087550 PMCID: PMC11472039 DOI: 10.1093/nar/gkae629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing plays an important role in the post-transcriptional regulation of eukaryotic cell physiology. However, our understanding of the occurrence, function and regulation of A-to-I editing in bacteria remains limited. Bacterial mRNA editing is catalysed by the deaminase TadA, which was originally described to modify a single tRNA in Escherichia coli. Intriguingly, several bacterial species appear to perform A-to-I editing on more than one tRNA. Here, we provide evidence that in the human pathogen Streptococcus pyogenes, tRNA editing has expanded to an additional tRNA substrate. Using RNA sequencing, we identified more than 27 editing sites in the transcriptome of S. pyogenes SF370 and demonstrate that the adaptation of S. pyogenes TadA to a second tRNA substrate has also diversified the sequence context and recoding scope of mRNA editing. Based on the observation that editing is dynamically regulated in response to several infection-relevant stimuli, such as oxidative stress, we further investigated the underlying determinants of editing dynamics and identified mRNA stability as a key modulator of A-to-I editing. Overall, our findings reveal the presence and diversification of A-to-I editing in S. pyogenes and provide novel insights into the plasticity of the editome and its regulation in bacteria.
Collapse
Affiliation(s)
- Thomas F Wulff
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | | | - Katja Schmidt
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | | | | | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
- Institute for Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
2
|
Nakiboneka RF, Sabiiti W. The role and implications of RNAscope and mRNA in the diagnosis of tuberculosis. EBioMedicine 2024; 105:105230. [PMID: 38959847 PMCID: PMC11261753 DOI: 10.1016/j.ebiom.2024.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Affiliation(s)
- Ritah F Nakiboneka
- Division of Infection and Global Health, School of Medicine, University of St Andrews, UK; Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi; Helse Nord Tuberculosis Initiative (HNTI), Pathology Department, Kamuzu University of Health Sciences, Blantyre, Malawi; Uganda Virus Research Institute, Entebbe, Uganda
| | - Wilber Sabiiti
- Division of Infection and Global Health, School of Medicine, University of St Andrews, UK.
| |
Collapse
|
3
|
Poonawala H, Zhang Y, Kuchibhotla S, Green AG, Cirillo DM, Di Marco F, Spitlaeri A, Miotto P, Farhat MR. Transcriptomic responses to antibiotic exposure in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0118523. [PMID: 38587412 PMCID: PMC11064486 DOI: 10.1128/aac.01185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Transcriptional responses in bacteria following antibiotic exposure offer insights into antibiotic mechanism of action, bacterial responses, and characterization of antimicrobial resistance. We aimed to define the transcriptional antibiotic response (TAR) in Mycobacterium tuberculosis (Mtb) isolates for clinically relevant drugs by pooling and analyzing Mtb microarray and RNA-seq data sets. We generated 99 antibiotic transcription profiles across 17 antibiotics, with 76% of profiles generated using 3-24 hours of antibiotic exposure and 49% within one doubling of the WHO antibiotic critical concentration. TAR genes were time-dependent, and largely specific to the antibiotic mechanism of action. TAR signatures performed well at predicting antibiotic exposure, with the area under the receiver operating curve (AUC) ranging from 0.84-1.00 (TAR <6 hours of antibiotic exposure) and 0.76-1.00 (>6 hours of antibiotic exposure) for upregulated genes and 0.57-0.90 and 0.87-1.00, respectfully, for downregulated genes. This work desmonstrates that transcriptomics allows for the assessment of antibiotic activity in Mtb within 6 hours of exposure.
Collapse
Affiliation(s)
- Husain Poonawala
- Department of Medicine and Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Medicine and Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yu Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Anna G. Green
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Spitlaeri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maha R. Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Zhou Y, Sun H, Rapiejko AR, Vargas-Blanco DA, Martini MC, Chase MR, Joubran SR, Davis AB, Dainis JP, Kelly JM, Ioerger TR, Roberts LA, Fortune SM, Shell SS. Mycobacterial RNase E cleaves with a distinct sequence preference and controls the degradation rates of most Mycolicibacterium smegmatis mRNAs. J Biol Chem 2023; 299:105312. [PMID: 37802316 PMCID: PMC10641625 DOI: 10.1016/j.jbc.2023.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
The mechanisms and regulation of RNA degradation in mycobacteria have been subject to increased interest following the identification of interplay between RNA metabolism and drug resistance. Mycobacteria encode multiple ribonucleases predicted to participate in mRNA degradation and/or processing of stable RNAs. RNase E is hypothesized to play a major role in mRNA degradation because of its essentiality in mycobacteria and its role in mRNA degradation in gram-negative bacteria. Here, we defined the impact of RNase E on mRNA degradation rates transcriptome-wide in the nonpathogenic model Mycolicibacterium smegmatis. RNase E played a rate-limiting role in degradation of the transcripts encoded by at least 89% of protein-coding genes, with leadered transcripts often being more affected by RNase E repression than leaderless transcripts. There was an apparent global slowing of transcription in response to knockdown of RNase E, suggesting that M. smegmatis regulates transcription in responses to changes in mRNA degradation. This compensation was incomplete, as the abundance of most transcripts increased upon RNase E knockdown. We assessed the sequence preferences for cleavage by RNase E transcriptome-wide in M. smegmatis and Mycobacterium tuberculosis and found a consistent bias for cleavage in C-rich regions. Purified RNase E had a clear preference for cleavage immediately upstream of cytidines, distinct from the sequence preferences of RNase E in gram-negative bacteria. We furthermore report a high-resolution map of mRNA cleavage sites in M. tuberculosis, which occur primarily within the RNase E-preferred sequence context, confirming that RNase E has a broad impact on the M. tuberculosis transcriptome.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Huaming Sun
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Abigail R Rapiejko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Maria Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Michael R Chase
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Samantha R Joubran
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Alexa B Davis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Joseph P Dainis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Jessica M Kelly
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Thomas R Ioerger
- Department of Computer Science & Engineering, Texas A&M University, College Station, Texas, USA
| | - Louis A Roberts
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| |
Collapse
|
5
|
Baatjies L, van Rensberg IC, Snyders C, Gutschmidt A, Loxton AG, Williams MJ. Investigating Mycobacterium tuberculosis sufR (rv1460) in vitro and ex vivo expression and immunogenicity. PLoS One 2023; 18:e0286965. [PMID: 37319185 PMCID: PMC10270350 DOI: 10.1371/journal.pone.0286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Iron is vital metal for Mycobacterium tuberculosis infection, survival, and persistence within its human host. The mobilization of sulphur (SUF) operon encodes the primary iron-sulphur (Fe-S) biogenesis system in M. tuberculosis and is induced during iron limitation and intracellular growth of M. tuberculosis, pointing to its importance during infection. To study sufR expression at single cell level during intracellular growth of M. tuberculosis a fluorescent reporter was generated by cloning a 123 bp sufR promoter region upstream of a promotorless mcherry gene in an integrating vector. Expression analysis and fluorescence measurements during in vitro culture revealed that the reporter was useful for measuring induction of the promoter but was unable to detect subsequent repression due to the stability of mCherry. During intracellular growth in THP-1 macrophages, increased fluorescence was observed in the strain harbouring the reporter relative to the control strain, however this induction was only observed in a small sub-set of the population. Since SufR levels are predicted to be elevated during infection we hypothesize that it is immunogenic and may induce an immune response in M. tuberculosis infected individuals. The immune response elicited by SufR for both whole blood assay (WBA, a short term 12-hr stimulation to characterise the production of cytokines/growth factors suggestive of an effector response) and lymphocyte proliferation assay (LPA, a longer term 7-day stimulation to see if SufR induces a memory type immune response) were low and did not show a strong immune response for the selected Luminex analytes (MCP-1, RANTES, IL-1b, IL-8, MIP-1b, IFN-g, IL-6 and MMP-9) measured in three clinical groups, namely active TB, QuantiFERON positive (QFN pos) and QFN negative (QFN neg) individuals.
Collapse
Affiliation(s)
- Lucinda Baatjies
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ilana C. van Rensberg
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice Snyders
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrea Gutschmidt
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Monique J. Williams
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Barnabas V, Kashyap A, Raja R, Newar K, Rai D, Dixit NM, Mehra S. The Extent of Antimicrobial Resistance Due to Efflux Pump Regulation. ACS Infect Dis 2022; 8:2374-2388. [PMID: 36264222 DOI: 10.1021/acsinfecdis.2c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A key mechanism driving antimicrobial resistance (AMR) stems from the ability of bacteria to up-regulate efflux pumps upon exposure to drugs. The resistance gained by this up-regulation is pliable because of the tight regulation of efflux pump levels. This leads to temporary enhancement in survivability of bacteria due to higher efflux pump levels in the presence of antibiotics, which can be reversed when the cells are no longer exposed to the drug. Knowledge of the extent of resistance thus gained would inform intervention strategies aimed at mitigating AMR. Here, we combine mathematical modeling and experiments to quantify the maximum extent of resistance that efflux pump up-regulation can confer via phenotypic induction in the presence of drugs and genotypic abrogation of regulation. Our model describes the dynamics of drug transport in and out of cells coupled with the associated regulation of efflux pump levels and predicts the increase in the minimum inhibitory concentration (MIC) of drugs due to such regulation. To test the model, we measured the uptake and efflux as well as the MIC of the compound ethidium bromide (EtBr), a substrate of the efflux pump LfrA, in wild-type Mycobacterium smegmatis mc2155, as well as in two laboratory-generated strains. Our model captured the observed EtBr levels and MIC fold-changes quantitatively. Further, the model identified key parameters associated with the resulting resistance, variations in which could underlie the extent to which such resistance arises across different drug-bacteria combinations, potentially offering tunable handles to optimize interventions aimed at minimizing AMR.
Collapse
Affiliation(s)
- Vinay Barnabas
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Akanksha Kashyap
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Kapil Newar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Deepika Rai
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| |
Collapse
|
7
|
Mtafya B, Sabi I, John J, Sichone E, Olomi W, Gillespie SH, Ntinginya NE, Sabiiti W. Systematic assessment of clinical and bacteriological markers for tuberculosis reveals discordance and inaccuracy of symptom-based diagnosis for treatment response monitoring. Front Med (Lausanne) 2022; 9:992451. [DOI: 10.3389/fmed.2022.992451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundClinical symptoms are the benchmark of tuberculosis (TB) diagnosis and monitoring of treatment response but are not clear how they relate to TB bacteriology, particularly the novel tuberculosis-molecular bacterial load assay (TB-MBLA).MethodsPresumptive cases were bacteriologically confirmed for TB and assessed for symptoms and bacteriological resolution using smear microscopy (SM), culture, and TB-MBLA over 6-month treatment course. Kaplan–Meier and Kappa statistics were used to test the relationship between symptoms and bacteriological positivity.ResultsA cohort of 46 bacteriologically confirmed TB cases were analyzed for treatment response over a 6-month treatment course. Pre-treatment symptoms and bacteriological positivity concurred in over 70% of the cases. This agreement was lost in over 50% of cases whose chest pain, night sweat, and loss of appetite had resolved by week 2 of treatment. Cough resolved at a 3.2% rate weekly and was 0.3% slower than the combined bacteriological (average of MGIT and TB-MBLA positivity) resolution rate, 3.5% per week. A decrease in TB-MBLA positivity reflected a fall in bacillary load, 5.7 ± 1.3- at baseline to 0.30 ± 1.0- log10 eCFU/ml at month 6, and closer to cough resolution than other bacteriological measures, accounting for the only one bacteriologically positive case out of seven still coughing at month 6. Low baseline bacillary load patients were more likely to be bacteriologically negative, HR 5.6, p = 0.003 and HR 3.2, p = 0.014 by months 2 and 6 of treatment, respectively.ConclusionThe probability of clinical symptoms reflecting bacteriological positivity weakens as the patient progresses on anti-TB therapy, making the symptom-based diagnosis a less reliable marker of treatment response.
Collapse
|
8
|
Martini MC, Hicks ND, Xiao J, Alonso MN, Barbier T, Sixsmith J, Fortune SM, Shell SS. Loss of RNase J leads to multi-drug tolerance and accumulation of highly structured mRNA fragments in Mycobacterium tuberculosis. PLoS Pathog 2022; 18:e1010705. [PMID: 35830479 PMCID: PMC9312406 DOI: 10.1371/journal.ppat.1010705] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.
Collapse
Affiliation(s)
- Maria Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Junpei Xiao
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Maria Natalia Alonso
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Thibault Barbier
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
9
|
Expression, Purification, and In Silico Characterization of Mycobacterium smegmatis Alternative Sigma Factor SigB. DISEASE MARKERS 2022; 2022:7475704. [PMID: 35634445 PMCID: PMC9142298 DOI: 10.1155/2022/7475704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Sigma factor B (SigB), an alternative sigma factor (ASF), is very similar to primary sigma factor SigA (σ 70) but dispensable for growth in both Mycobacterium smegmatis (Msmeg) and Mycobacterium tuberculosis (Mtb). It is involved in general stress responses including heat, oxidative, surface, starvation stress, and macrophage infections. Despite having an extremely short half-life, SigB tends to operate downstream of at least three stress-responsive extra cytoplasmic function (ECF) sigma factors (SigH, SigE, SigL) and SigF involved in multiple signaling pathways. There is very little information available regarding the regulation of SigB sigma factor and its interacting protein partners. Hence, we cloned the SigB gene into pET28a vector and optimized its expression in three different strains of E. coli, viz., (BL21 (DE3), C41 (DE3), and CodonPlus (DE3)). We also optimized several other parameters for the expression of recombinant SigB including IPTG concentration, temperature, and time duration. We achieved the maximum expression of SigB at 25°C in the soluble fraction of the cell which was purified by affinity chromatography using Ni-NTA and further confirmed by Western blotting. Further, structural characterization demonstrates the instability of SigB in comparison to SigA that is carried out using homology modeling and structure function relationship. We have done protein-protein docking of RNA polymerase (RNAP) of Msmeg and SigB. This effort provides a platform for pulldown assay, structural, and other studies with the recombinant protein to deduce the SigB interacting proteins, which might pave the way to study its signaling networks along with its regulation.
Collapse
|
10
|
Griego A, Douché T, Gianetto QG, Matondo M, Manina G. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness. iScience 2022; 25:104233. [PMID: 35521527 PMCID: PMC9062218 DOI: 10.1016/j.isci.2022.104233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
RNA turnover is a primary source of gene expression variation, in turn promoting cellular adaptation. Mycobacteria leverage reversible mRNA stabilization to endure hostile conditions. Although RNase E is essential for RNA turnover in several species, its role in mycobacterial single-cell physiology and functional phenotypic diversification remains unexplored. Here, by integrating live-single-cell and quantitative-mass-spectrometry approaches, we show that RNase E forms dynamic foci, which are associated with cellular homeostasis and fate, and we discover a versatile molecular interactome. We show a likely interaction between RNase E and the nucleoid-associated protein HupB, which is particularly pronounced during drug treatment and infection, where phenotypic diversity increases. Disruption of RNase E expression affects HupB levels, impairing Mycobacterium tuberculosis growth homeostasis during treatment, intracellular replication, and host spread. Our work lays the foundation for targeting the RNase E and its partner HupB, aiming to undermine M. tuberculosis cellular balance, diversification capacity, and persistence. Single mycobacterial cells exhibit phenotypic variation in RNase E expression RNase E is implicated in the maintenance of mycobacterial cell growth homeostasis RNase E and HupB show a functional interplay in single mycobacterial cells RNase E-HupB disruption impairs Mycobacterium tuberculosis fate under drug and in macrophages
Collapse
|
11
|
Sharma K, Gupta A, Sharma M, Singh S, Sharma A, Singh R, Gupta V. Detection of viable Mycobacterium tuberculosis in ocular fluids using mRNA-based multiplex polymerase chain reaction. Indian J Med Microbiol 2022; 40:254-257. [DOI: 10.1016/j.ijmmb.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022]
|
12
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Benda M, Woelfel S, Faßhauer P, Gunka K, Klumpp S, Poehlein A, Kálalová D, Šanderová H, Daniel R, Krásný L, Stülke J. Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis. Nucleic Acids Res 2021; 49:7088-7102. [PMID: 34157109 PMCID: PMC8266666 DOI: 10.1093/nar/gkab528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase—α, β, β′. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the β or β’ subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.
Collapse
Affiliation(s)
- Martin Benda
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Simon Woelfel
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Gunka
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Debora Kálalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Bokolia NP, Khan IA. Regulation of polyphosphate glucokinase gene expression through co-transcriptional processing in Mycobacterium tuberculosis H37Rv. J Biochem 2021; 170:593-609. [PMID: 34247237 DOI: 10.1093/jb/mvab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Transcription is a molecular process that involves the synthesis of RNA chain into the 5'-3' direction, and simultaneously nascent RNA chain tends to form geometric structures, known as co-transcriptional folding. This folding determines the functional properties of RNA molecules and possibly has a critical role during the synthesis. This functioning includes the characterized properties of riboswitches and ribozymes, which are significant when the transcription rate is comparable to the cellular environment. This study reports a novel non-coding region important in the genetic expression of polyphosphate glucokinase (ppgk) in Mycobacterium tuberculosis. This non-coding element of ppgk gene undergoes cleavage activity during the transcriptional process in Mycobacterium tuberculosis. We revealed that cleavage occurs within the nascent RNA, and the resultant cleaved 3'RNA fragment carries the Shine- Dalgarno (SD) sequence and expression platform. We concluded co-transcriptional processing at the non-coding region as the required mechanism for ppgk expression that remains constitutive within the bacterial environment. This study defines the molecular mechanism dependent on the transient but highly active structural features of the nascent RNA.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Inshad Ali Khan
- Department of Microbiology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
15
|
Sawyer EB, Phelan JE, Clark TG, Cortes T. A snapshot of translation in Mycobacterium tuberculosis during exponential growth and nutrient starvation revealed by ribosome profiling. Cell Rep 2021; 34:108695. [PMID: 33535039 PMCID: PMC7856553 DOI: 10.1016/j.celrep.2021.108695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, can undergo prolonged periods of non-replicating persistence in the host. The mechanisms underlying this are not fully understood, but translational regulation is thought to play a role. A large proportion of mRNA transcripts expressed in M. tuberculosis lack canonical bacterial translation initiation signals, but little is known about the implications of this for fine-tuning of translation. Here, we perform ribosome profiling to characterize the translational landscape of M. tuberculosis under conditions of exponential growth and nutrient starvation. Our data reveal robust, widespread translation of non-canonical transcripts and point toward different translation initiation mechanisms compared to canonical Shine-Dalgarno transcripts. During nutrient starvation, patterns of ribosome recruitment vary, suggesting that regulation of translation in this pathogen is more complex than originally thought. Our data represent a rich resource for others seeking to understand translational regulation in bacterial pathogens.
Collapse
Affiliation(s)
- Elizabeth B Sawyer
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Jody E Phelan
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Taane G Clark
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Teresa Cortes
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
16
|
Gale GAR, Wang B, McCormick AJ. Evaluation and Comparison of the Efficiency of Transcription Terminators in Different Cyanobacterial Species. Front Microbiol 2021; 11:624011. [PMID: 33519785 PMCID: PMC7843447 DOI: 10.3389/fmicb.2020.624011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria utilize sunlight to convert carbon dioxide into a wide variety of secondary metabolites and show great potential for green biotechnology applications. Although cyanobacterial synthetic biology is less mature than for other heterotrophic model organisms, there are now a range of molecular tools available to modulate and control gene expression. One area of gene regulation that still lags behind other model organisms is the modulation of gene transcription, particularly transcription termination. A vast number of intrinsic transcription terminators are now available in heterotrophs, but only a small number have been investigated in cyanobacteria. As artificial gene expression systems become larger and more complex, with short stretches of DNA harboring strong promoters and multiple gene expression cassettes, the need to stop transcription efficiently and insulate downstream regions from unwanted interference is becoming more important. In this study, we adapted a dual reporter tool for use with the CyanoGate MoClo Assembly system that can quantify and compare the efficiency of terminator sequences within and between different species. We characterized 34 intrinsic terminators in Escherichia coli, Synechocystis sp. PCC 6803, and Synechococcus elongatus UTEX 2973 and observed significant differences in termination efficiencies. However, we also identified five terminators with termination efficiencies of >96% in all three species, indicating that some terminators can behave consistently in both heterotrophic species and cyanobacteria.
Collapse
Affiliation(s)
- Grant A. R. Gale
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair J. McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Bandekar AC, Subedi S, Ioerger TR, Sassetti CM. Cell-Cycle-Associated Expression Patterns Predict Gene Function in Mycobacteria. Curr Biol 2020; 30:3961-3971.e6. [PMID: 32916109 PMCID: PMC7578119 DOI: 10.1016/j.cub.2020.07.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
Abstract
Although the major events in prokaryotic cell cycle progression are likely to be coordinated with transcriptional and metabolic changes, these processes remain poorly characterized. Unlike many rapidly growing bacteria, DNA replication and cell division are temporally resolved in mycobacteria, making these slow-growing organisms a potentially useful system to investigate the prokaryotic cell cycle. To determine whether cell-cycle-dependent gene regulation occurs in mycobacteria, we characterized the temporal changes in the transcriptome of synchronously replicating populations of Mycobacterium tuberculosis (Mtb). By enriching for genes that display a sinusoidal expression pattern, we discover 485 genes that oscillate with a period consistent with the cell cycle. During cytokinesis, the timing of gene induction could be used to predict the timing of gene function, as mRNA abundance was found to correlate with the order in which proteins were recruited to the developing septum. Similarly, the expression pattern of primary metabolic genes could be used to predict the relative importance of these pathways for different cell cycle processes. Pyrimidine synthetic genes peaked during DNA replication, and their depletion caused a filamentation phenotype that phenocopied defects in this process. In contrast, the inosine monophasphate dehydrogenase dedicated to guanosine synthesis, GuaB2, displayed the opposite expression pattern and its depletion perturbed septation. Together, these data imply obligate coordination between primary metabolism and cell division and identify periodically regulated genes that can be related to specific cell biological functions.
Collapse
Affiliation(s)
- Aditya C Bandekar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Sishir Subedi
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
19
|
Buongiorno J, Sipes K, Wasmund K, Loy A, Lloyd KG. Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. PLoS One 2020; 15:e0234839. [PMID: 32853201 PMCID: PMC7451513 DOI: 10.1371/journal.pone.0234839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022] Open
Abstract
Distinct lineages of Gammaproteobacteria clade Woeseiales are globally distributed in marine sediments, based on metagenomic and 16S rRNA gene analysis. Yet little is known about why they are dominant or their ecological role in Arctic fjord sediments, where glacial retreat is rapidly imposing change. This study combined 16S rRNA gene analysis, metagenome-assembled genomes (MAGs), and genome-resolved metatranscriptomics uncovered the in situ abundance and transcriptional activity of Woeseiales with burial in four shallow sediment sites of Kongsfjorden and Van Keulenfjorden of Svalbard (79°N). We present five novel Woeseiales MAGs and show transcriptional evidence for metabolic plasticity during burial, including sulfur oxidation with reverse dissimilatory sulfite reductase (dsrAB) down to 4 cm depth and nitrite reduction down to 6 cm depth. A single stress protein, spore protein SP21 (hspA), had a tenfold higher mRNA abundance than any other transcript, and was a hundredfold higher on average than other transcripts. At three out of the four sites, SP21 transcript abundance increased with depth, while total mRNA abundance and richness decreased, indicating a shift in investment from metabolism and other cellular processes to build-up of spore protein SP21. The SP21 gene in MAGs was often flanked by genes involved in membrane-associated stress response. The ability of Woeseiales to shift from sulfur oxidation to nitrite reduction with burial into marine sediments with decreasing access to overlying oxic bottom waters, as well as enter into a dormant state dominated by SP21, may account for its ubiquity and high abundance in marine sediments worldwide, including those of the rapidly shifting Arctic.
Collapse
Affiliation(s)
- Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
20
|
Abstract
RNA degradation is an important process that affects the final concentration of individual mRNAs, affecting protein expression and cellular physiology. Studies of how RNA is degraded increase our knowledge of this fundamental process as well as enable the creation of genetic tools to manipulate RNA stability. By studying global transcript turnover, we searched for sequence elements that correlated with transcript (in)stability and used these sequences to guide tool design. This study probes global RNA turnover in a cyanobacterium, Synechococcus sp. strain PCC 7002, that both has a unique array of RNases that facilitate RNA degradation and is an industrially relevant strain that could be used to convert CO2 and sunlight into useful products. RNA degradation is an important process that influences the ultimate concentration of individual proteins inside cells. While the main enzymes that facilitate this process have been identified, global maps of RNA turnover are available for only a few species. Even in these cases, there are few sequence elements that are known to enhance or destabilize a native transcript; even fewer confer the same effect when added to a heterologous transcript. To address this knowledge gap, we assayed genome-wide RNA degradation in the cyanobacterium Synechococcus sp. strain PCC 7002 by collecting total RNA samples after stopping nascent transcription with rifampin. We quantified the abundance of each position in the transcriptome as a function of time using RNA-sequencing data and later analyzed the global mRNA decay map using machine learning principles. Half-lives, calculated on a per-ORF (open reading frame) basis, were extremely short, with a median half-life of only 0.97 min. Despite extremely rapid turnover of most mRNA, transcripts encoding proteins involved in photosynthesis were both highly expressed and highly stable. Upon inspection of these stable transcripts, we identified an enriched motif in the 3′ untranslated region (UTR) that had similarity to Rho-independent terminators. We built statistical models for half-life prediction and used them to systematically identify sequence motifs in both 5′ and 3′ UTRs that correlate with stabilized transcripts. We found that transcripts linked to a terminator containing a poly(U) tract had a longer half-life than both those without a poly(U) tract and those without a terminator. IMPORTANCE RNA degradation is an important process that affects the final concentration of individual mRNAs, affecting protein expression and cellular physiology. Studies of how RNA is degraded increase our knowledge of this fundamental process as well as enable the creation of genetic tools to manipulate RNA stability. By studying global transcript turnover, we searched for sequence elements that correlated with transcript (in)stability and used these sequences to guide tool design. This study probes global RNA turnover in a cyanobacterium, Synechococcus sp. strain PCC 7002, that both has a unique array of RNases that facilitate RNA degradation and is an industrially relevant strain that could be used to convert CO2 and sunlight into useful products.
Collapse
|
21
|
Atahan E, Saribas S, Demirci M, Babalık A, Akkus S, Balıkcı A, Satana D, Ziver T, Dinc HO, Keskin M, Ozbey D, Kocak BT, Gareayaghi N, Kirmusaoglu S, Tokman HB, Kocazeybek B. Evaluating the effectiveness of anti-tuberculosis treatment by detecting Mycobacterium tuberculosis 85B messenger RNA expression in sputum. J Infect Public Health 2020; 13:1490-1494. [PMID: 32616395 DOI: 10.1016/j.jiph.2020.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND The antigen 85 complex (85B) is secreted in large quantities from growing mycobacteria and the presence of bacterial mRNA is an indicator of cell viability. The quantitative detection of 85B mRNA expression levels can be used to assess the success of anti-tuberculosis treatment outcomes to detect viable mycobacteria cells. Therefore, we evaluated the levels of 85B mRNA of Mycobacterium tuberculosis strains in patients with pulmonary tuberculosis. METHODS Thirty patients with primary tuberculosis were included in this study. The sputum specimens of patients were collected on days 0, 15, and 30 days and were cultured and evaluated by 85B mRNA-based RT-qPCR. RESULTS Overall, 23 of the studied tuberculosis strains were susceptible to the primary anti-tuberculosis antibiotics used in this study, 7 were resistant. By the 30th day of treatment, 85B mRNA was detected in only one of the susceptible strains, but in all 7 of the resistant strains, though the relative gene expression varied between the strains. This difference between the susceptible and resistant strains at day 30 was statistically significant (p < 0.05). CONCLUSION 85B mRNA expression levels could be used to follow up on primary tuberculosis cases. 85B mRNA seems to be a good diagnostic marker for monitoring anti-tuberculosis treatment outcomes.
Collapse
Affiliation(s)
- Ersan Atahan
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul, Turkey
| | - Suat Saribas
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Mehmet Demirci
- Beykent University Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Aylin Babalık
- Clinic of Chest Diseases, University of Health Sciences, Sureyyapasa Chest Diseases and Chest Surgery Training and Research Hospital, Istanbul, Turkey
| | - Seher Akkus
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Ahmet Balıkcı
- Clinic of Chest Diseases, University of Health Sciences, Sureyyapasa Chest Diseases and Chest Surgery Training and Research Hospital, Istanbul, Turkey
| | - Dilek Satana
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Tevhide Ziver
- Eastern Mediterranean University, Faculty of Health Sciences, Nutrition and Dietetic Department, Famagusta, Cyprus
| | - Harika Oyku Dinc
- Okan University, Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Melike Keskin
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Dogukan Ozbey
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Banu Tufan Kocak
- T.C. Health Ministry Erenkoy Mental Health and Neurology Training and Research Hospital, Istanbul, Turkey
| | - Nesrin Gareayaghi
- Istanbul Sisli Hamidiye Etfal Training and Research Hospital, Blood Center, University of Health Sciences, Istanbul, Turkey
| | - Sahra Kirmusaoglu
- T.C. Haliç University, Faculty of Arts & Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Hrisi Bahar Tokman
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Bekir Kocazeybek
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| |
Collapse
|
22
|
Abstract
The ability to rapidly respond to changing nutrients is crucial for E. coli to survive in many environments, including the gut. Reorganization of gene expression is the first step used by bacteria to adjust their metabolism accordingly. It involves fine-tuning of both transcription (transcriptional regulation) and mRNA stability (posttranscriptional regulation). While the forms of transcriptional regulation have been extensively studied, the role of mRNA stability during a metabolic switch is poorly understood. Investigating E. coli genomewide transcriptome and mRNA stability during metabolic transitions representative of the carbon source fluctuations in many environments, we have documented the role of mRNA stability in the response to nutrient changes. mRNAs are globally stabilized during carbon depletion. For a few genes, this leads directly to expression upregulation. As these genes are regulators of stress responses and metabolism, our work sheds new light on the likely importance of posttranscriptional regulations in response to environmental stress. Bacteria have to continuously adjust to nutrient fluctuations from favorable to less-favorable conditions and in response to carbon starvation. The glucose-acetate transition followed by carbon starvation is representative of such carbon fluctuations observed in Escherichia coli in many environments. Regulation of gene expression through fine-tuning of mRNA pools constitutes one of the regulation levels required for such a metabolic adaptation. It results from both mRNA transcription and degradation controls. However, the contribution of transcript stability regulation in gene expression is poorly characterized. Using combined transcriptome and mRNA decay analyses, we investigated (i) how transcript stability changes in E. coli during the glucose-acetate-starvation transition and (ii) if these changes contribute to gene expression changes. Our work highlights that transcript stability increases with carbon depletion. Most of the stabilization occurs at the glucose-acetate transition when glucose is exhausted, and then stabilized mRNAs remain stable during acetate consumption and carbon starvation. Meanwhile, expression of most genes is downregulated and we observed three times less gene expression upregulation. Using control analysis theory on 375 genes, we show that most of gene expression regulation is driven by changes in transcription. Although mRNA stabilization is not the controlling phenomenon, it contributes to the emphasis or attenuation of transcriptional regulation. Moreover, upregulation of 18 genes (33% of our studied upregulated set) is governed mainly by transcript stabilization. Because these genes are associated with responses to nutrient changes and stress, this underscores a potentially important role of posttranscriptional regulation in bacterial responses to nutrient starvation. IMPORTANCE The ability to rapidly respond to changing nutrients is crucial for E. coli to survive in many environments, including the gut. Reorganization of gene expression is the first step used by bacteria to adjust their metabolism accordingly. It involves fine-tuning of both transcription (transcriptional regulation) and mRNA stability (posttranscriptional regulation). While the forms of transcriptional regulation have been extensively studied, the role of mRNA stability during a metabolic switch is poorly understood. Investigating E. coli genomewide transcriptome and mRNA stability during metabolic transitions representative of the carbon source fluctuations in many environments, we have documented the role of mRNA stability in the response to nutrient changes. mRNAs are globally stabilized during carbon depletion. For a few genes, this leads directly to expression upregulation. As these genes are regulators of stress responses and metabolism, our work sheds new light on the likely importance of posttranscriptional regulations in response to environmental stress.
Collapse
|
23
|
The Impact of Leadered and Leaderless Gene Structures on Translation Efficiency, Transcript Stability, and Predicted Transcription Rates in Mycobacterium smegmatis. J Bacteriol 2020; 202:JB.00746-19. [PMID: 32094162 PMCID: PMC7148126 DOI: 10.1128/jb.00746-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5' untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5' UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5' UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5' UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5' UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium's survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5' untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5' untranslated regions and are unusually prevalent in mycobacteria.
Collapse
|
24
|
Płociński P, Macios M, Houghton J, Niemiec E, Płocińska R, Brzostek A, Słomka M, Dziadek J, Young D, Dziembowski A. Proteomic and transcriptomic experiments reveal an essential role of RNA degradosome complexes in shaping the transcriptome of Mycobacterium tuberculosis. Nucleic Acids Res 2019; 47:5892-5905. [PMID: 30957850 PMCID: PMC6582357 DOI: 10.1093/nar/gkz251] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
The phenotypic adjustments of Mycobacterium tuberculosis are commonly inferred from the analysis of transcript abundance. While mechanisms of transcriptional regulation have been extensively analysed in mycobacteria, little is known about mechanisms that shape the transcriptome by regulating RNA decay rates. The aim of the present study is to identify the core components of the RNA degradosome of M. tuberculosis and to analyse their function in RNA metabolism. Using an approach involving cross-linking to 4-thiouridine-labelled RNA, we mapped the mycobacterial RNA-bound proteome and identified degradosome-related enzymes polynucleotide phosphorylase (PNPase), ATP-dependent RNA helicase (RhlE), ribonuclease E (RNase E) and ribonuclease J (RNase J) as major components. We then carried out affinity purification of eGFP-tagged recombinant constructs to identify protein-protein interactions. This identified further interactions with cold-shock proteins and novel KH-domain proteins. Engineering and transcriptional profiling of strains with a reduced level of expression of core degradosome ribonucleases provided evidence of important pleiotropic roles of the enzymes in mycobacterial RNA metabolism highlighting their potential vulnerability as drug targets.
Collapse
Affiliation(s)
- Przemysław Płociński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland.,Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.,Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Maria Macios
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Joanna Houghton
- Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Emilia Niemiec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Renata Płocińska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pilarskiego 14/16, Łódź 90-231, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Douglas Young
- Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland.,Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5A, Warsaw 02-106, Poland
| |
Collapse
|
25
|
Prasad D, Arora D, Nandicoori VK, Muniyappa K. Elucidating the functional role of Mycobacterium smegmatis recX in stress response. Sci Rep 2019; 9:10912. [PMID: 31358794 PMCID: PMC6662834 DOI: 10.1038/s41598-019-47312-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The RecX protein has attracted considerable interest because the recX mutants exhibit multiple phenotypes associated with RecA functions. To further our understanding of the functional relationship between recA and recX, the effect of different stress treatments on their expression profiles, cell yield and viability were investigated. A significant correlation was found between the expression of Mycobacterium smegmatis recA and recX genes at different stages of growth, and in response to different stress treatments albeit recX exhibiting lower transcript and protein abundance at the mid-log and stationary phases of the bacterial growth cycle. To ascertain their roles in vivo, a targeted deletion of the recX and recArecX was performed in M. smegmatis. The growth kinetics of these mutant strains and their sensitivity patterns to different stress treatments were assessed relative to the wild-type strain. The deletion of recA affected normal cell growth and survival, while recX deletion showed no significant effect. Interestingly, deletion of both recX and recA genes results in a phenotype that is intermediate between the phenotypes of the ΔrecA mutant and the wild-type strain. Collectively, these results reveal a previously unrecognized role for M. smegmatis recX and support the notion that it may regulate a subset of the yet unknown genes involved in normal cell growth and DNA-damage repair.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Divya Arora
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
26
|
Abstract
The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mycobacterium tuberculosis survives in part by entering nongrowing states in which it is metabolically less active and thus less susceptible to antibiotics. Basic knowledge on how M. tuberculosis survives during these low-metabolism states is incomplete, and we hypothesize that optimized energy resource management is important. Here, we report that slowed mRNA turnover is a common feature of mycobacteria under energy stress but is not dependent on the mechanisms that have generally been postulated in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic status rather than to growth rate per se. Our findings suggest a need to reorient studies of global mRNA stabilization to identify novel mechanisms that are presumably responsible. The success of Mycobacterium tuberculosis as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, M. tuberculosis can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including M. tuberculosis, have been shown to reduce their rates of mRNA degradation under growth limitation and stress. While the existence of this response appears to be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain unknown. To better understand the biology of nongrowing mycobacteria, we sought to identify the mechanistic basis of mRNA stabilization in the nonpathogenic model Mycobacterium smegmatis. We found that mRNA half-life was responsive to energy stress, with carbon starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly reversed when hypoxia-adapted cultures were reexposed to oxygen, even in the absence of new transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that metabolic changes during growth cessation impact the activities of degradation proteins, increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated by growth status but rather is dependent on the status of energy metabolism.
Collapse
|
27
|
Cereija TB, Alarico S, Lourenço EC, Manso JA, Ventura MR, Empadinhas N, Macedo-Ribeiro S, Pereira PJB. The structural characterization of a glucosylglycerate hydrolase provides insights into the molecular mechanism of mycobacterial recovery from nitrogen starvation. IUCRJ 2019; 6:572-585. [PMID: 31316802 PMCID: PMC6608630 DOI: 10.1107/s2052252519005372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/18/2019] [Indexed: 06/10/2023]
Abstract
Bacteria are challenged to adapt to environmental variations in order to survive. Under nutritional stress, several bacteria are able to slow down their metabolism into a nonreplicating state and wait for favourable conditions. It is almost universal that bacteria accumulate carbon stores to survive during this nonreplicating state and to fuel rapid proliferation when the growth-limiting stress disappears. Mycobacteria are exceedingly successful in their ability to become dormant under harsh circumstances and to be able to resume growth when conditions are favourable. Rapidly growing mycobacteria accumulate glucosylglycerate under nitrogen-limiting conditions and quickly mobilize it when nitrogen availability is restored. The depletion of intracellular glucosyl-glycerate levels in Mycolicibacterium hassiacum (basonym Mycobacterium hassiacum) was associated with the up-regulation of the gene coding for glucosylglycerate hydrolase (GgH), an enzyme that is able to hydrolyse glucosylglycerate to glycerate and glucose, a source of readily available energy. Highly conserved among unrelated phyla, GgH is likely to be involved in bacterial reactivation following nitrogen starvation, which in addition to other factors driving mycobacterial recovery may also provide an opportunity for therapeutic intervention, especially in the serious infections caused by some emerging opportunistic pathogens of this group, such as Mycobacteroides abscessus (basonym Mycobacterium abscessus). Using a combination of biochemical methods and hybrid structural approaches, the oligomeric organization of M. hassiacum GgH was determined and molecular determinants of its substrate binding and specificity were unveiled.
Collapse
Affiliation(s)
- Tatiana Barros Cereija
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Susana Alarico
- CNC – Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
- IIIUC – Instituto de Investigação Interdisciplinar, Universidade de Coimbra, Coimbra, Portugal
| | - Eva C. Lourenço
- ITQB – Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José António Manso
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - M. Rita Ventura
- ITQB – Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nuno Empadinhas
- CNC – Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
- IIIUC – Instituto de Investigação Interdisciplinar, Universidade de Coimbra, Coimbra, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Shaikh A, Sriraman K, Vaswani S, Oswal V, Mistry N. Detection of Mycobacterium tuberculosis RNA in bioaerosols from pulmonary tuberculosis patients. Int J Infect Dis 2019; 86:5-11. [PMID: 31202909 DOI: 10.1016/j.ijid.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bioaerosols from pulmonary tuberculosis (PTB) patients are a quantitative predictor of transmission. Current methods involve sophisticated instruments and time-consuming techniques to assess viable TB bacteria in bioaerosols. We tested the feasibility of detecting Mycobacterium tuberculosis (Mtb) specific RNA from bioaerosols retained on TB patients' masks. METHODS Adult PTB patients (n=33) were recruited at diagnosis before GeneXpert confirmation between April-2017 to February-2019 from private TB clinics in Mumbai. Face mask worn for 1 or 3h or N95 mask containing a cellulose acetate membrane worn for 5min by the patients were tested for the presence of Mtb RNA by quantitative PCR and bacterial load was estimated. RESULTS Quantitative PCR targeting rpoB, sigA,16S and fgd1 and sequencing of rpoB confirmed the presence of Mtb specific RNA in mask samples including masks of two patients with unproductive sputum. Membrane samples had seven-fold higher RNA and bacterial load that correlated to bacterial load estimated by sputum GeneXpert. CONCLUSION The study demonstrates that patient masks can be used to sample bioaerosols for detection of viable Mtb. The findings have translational value in the diagnosis of TB and monitoring Mtb variations between and within patients useful for assessing infectiousness and treatment response.
Collapse
Affiliation(s)
- Ambreen Shaikh
- The Foundation for Medical Research, Dr. Kantilal J. Sheth Memorial Building, 84-A, RG Thadani Marg, Worli, Mumbai, Maharashtra 400018, India
| | - Kalpana Sriraman
- The Foundation for Medical Research, Dr. Kantilal J. Sheth Memorial Building, 84-A, RG Thadani Marg, Worli, Mumbai, Maharashtra 400018, India
| | - Smriti Vaswani
- The Foundation for Medical Research, Dr. Kantilal J. Sheth Memorial Building, 84-A, RG Thadani Marg, Worli, Mumbai, Maharashtra 400018, India
| | - Vikas Oswal
- Sai Hospital, 90 Feet Rd., Masiha Islampura Co-op Hsg. Soc. Ltd., Dharavi, Mumbai, Maharashtra 400017, India; Vikas Nursing Home, Plot no. 18/U/1/2, Shivaji Nagar, Govandi East, Mumbai, Maharashtra 400043, India
| | - Nerges Mistry
- The Foundation for Medical Research, Dr. Kantilal J. Sheth Memorial Building, 84-A, RG Thadani Marg, Worli, Mumbai, Maharashtra 400018, India.
| |
Collapse
|
29
|
Heat Inactivation Renders Sputum Safe and Preserves Mycobacterium tuberculosis RNA for Downstream Molecular Tests. J Clin Microbiol 2019; 57:JCM.01778-18. [PMID: 30728191 DOI: 10.1128/jcm.01778-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/23/2019] [Indexed: 02/01/2023] Open
Abstract
The World Health Organization End Tuberculosis (TB) strategy has called for the development of-and increased access to-effective tools for diagnosis and treatment of TB disease. Mycobacterium tuberculosis , the causative agent of TB, is categorized as a highly infectious agent. Consequently, diagnostic tests that involve comprehensive manipulation of specimens from presumed tuberculosis cases must be performed in a category 3 laboratory. We have evaluated the use of heat inactivation to render TB samples safe to work with while preserving RNA for downstream molecular tests. Using Mycobacterium bovis bacillus Calmette-Guérin (BCG) cultures and TB-positive sputum samples, we show that boiling for 20 min at 80, 85, and 95°C inactivates all M. tuberculosis bacilli. The efficiency of inactivation was verified by culturing heat-treated and untreated (live) fractions of BCG and TB sputum samples for 42 days. No growth was observed in the cultures of heat-treated samples. In contrast, the optical density of untreated BCG in Middlebrook 7H9 broth rose from 0.04 to 0.85, and the untreated sputum samples flagged positive at 3 days of incubation in mycobacterial growth indicator tubes. Quantification of reference genes 16S rRNA, transfer-messenger RNA (tmRNA), pre-16S rRNA, and rpoB by reverse transcriptase quantitative PCR (RT-qPCR) showed minimal loss in estimated bacterial load. The loss was RNA species dependent, <1 log10, 1.1 log10, 1.3 log10, and 2.4 log10 estimated CFU/ml for 16S rRNA, tmRNA, pre-16S rRNA, and rpoB, respectively. The RNA loss was independent of inactivation temperature. These findings show that heat inactivation could obviate the need for category 3 laboratories to perform RNA-based testing of TB samples.
Collapse
|
30
|
Montoya DJ, Andrade P, Silva BJA, Teles RMB, Ma F, Bryson B, Sadanand S, Noel T, Lu J, Sarno E, Arnvig KB, Young D, Lahiri R, Williams DL, Fortune S, Bloom BR, Pellegrini M, Modlin RL. Dual RNA-Seq of Human Leprosy Lesions Identifies Bacterial Determinants Linked to Host Immune Response. Cell Rep 2019; 26:3574-3585.e3. [PMID: 30917313 PMCID: PMC6508871 DOI: 10.1016/j.celrep.2019.02.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
To understand how the interaction between an intracellular bacterium and the host immune system contributes to outcome at the site of infection, we studied leprosy, a disease that forms a clinical spectrum, in which progressive infection by the intracellular bacterium Mycobacterium leprae is characterized by the production of type I IFNs and antibody production. Dual RNA-seq on patient lesions identifies two independent molecular measures of M. leprae, each of which correlates with distinct aspects of the host immune response. The fraction of bacterial transcripts, reflecting bacterial burden, correlates with a host type I IFN gene signature, known to inhibit antimicrobial responses. Second, the bacterial mRNA:rRNA ratio, reflecting bacterial viability, links bacterial heat shock proteins with the BAFF-BCMA host antibody response pathway. Our findings provide a platform for the interrogation of host and pathogen transcriptomes at the site of infection, allowing insight into mechanisms of inflammation in human disease.
Collapse
Affiliation(s)
- Dennis J Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Priscila Andrade
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Bruno J A Silva
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Rosane M B Teles
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Bryan Bryson
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | | | - Teia Noel
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Euzenir Sarno
- Department of Mycobacteriosis, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Douglas Young
- National Institute for Medical Research, Mycobacterial Research Division, London NW7 1AA, UK; The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ramanuj Lahiri
- Health Resources and Services Administration (HRSA), National Hansen's Disease Program (NHDP), Baton Rouge, LA, USA
| | - Diana L Williams
- Health Resources and Services Administration (HRSA), National Hansen's Disease Program (NHDP), Baton Rouge, LA, USA; Department of Pathobiological Sciences, Louisiana State University (LSU), Baton Rouge, LA, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Barry R Bloom
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Modlin
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Martini MC, Zhou Y, Sun H, Shell SS. Defining the Transcriptional and Post-transcriptional Landscapes of Mycobacterium smegmatis in Aerobic Growth and Hypoxia. Front Microbiol 2019; 10:591. [PMID: 30984135 PMCID: PMC6448022 DOI: 10.3389/fmicb.2019.00591] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to infect, proliferate, and survive during long periods in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5′-end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase growth and under hypoxia, a physiologically relevant stress condition. Using the model organism Mycobacterium smegmatis, we identified 6,090 transcription start sites (TSSs) with high confidence during log phase growth, of which 67% were categorized as primary TSSs for annotated genes, and the remaining were classified as internal, antisense, or orphan, according to their genomic context. Interestingly, over 25% of the RNA transcripts lack a leader sequence, and of the coding sequences that do have leaders, 53% lack a strong consensus Shine-Dalgarno site. This indicates that like M. tuberculosis, M. smegmatis can initiate translation through multiple mechanisms. Our approach also allowed us to identify over 3,000 RNA cleavage sites, which occur at a novel sequence motif. To our knowledge, this represents the first report of a transcriptome-wide RNA cleavage site map in mycobacteria. The cleavage sites show a positional bias toward mRNA regulatory regions, highlighting the importance of post-transcriptional regulation in gene expression. We show that in low oxygen, a condition associated with the host environment during infection, mycobacteria change their transcriptomic profiles and endonucleolytic RNA cleavage is markedly reduced, suggesting a mechanistic explanation for previous reports of increased mRNA half-lives in response to stress. In addition, a number of TSSs were triggered in hypoxia, 56 of which contain the binding motif for the sigma factor SigF in their promoter regions. This suggests that SigF makes direct contributions to transcriptomic remodeling in hypoxia-challenged mycobacteria. Taken together, our data provide a foundation for further study of both transcriptional and posttranscriptional regulation in mycobacteria.
Collapse
Affiliation(s)
- M Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Ying Zhou
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Huaming Sun
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
32
|
Gordon GC, Pfleger BF. Regulatory Tools for Controlling Gene Expression in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1080:281-315. [PMID: 30091100 PMCID: PMC6662922 DOI: 10.1007/978-981-13-0854-3_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are attractive hosts for converting carbon dioxide and sunlight into desirable chemical products. To engineer these organisms and manipulate their metabolic pathways, the biotechnology community has developed genetic tools to control gene expression. Many native cyanobacterial promoters and related sequence elements have been used to regulate genes of interest, and heterologous tools that use non-native small molecules to induce gene expression have been demonstrated. Overall, IPTG-based induction systems seem to be leaky and initially demonstrate small dynamic ranges in cyanobacteria. Consequently, a variety of other induction systems have been optimized to enable tighter control of gene expression. Tools require significant optimization because they function quite differently in cyanobacteria when compared to analogous use in model heterotrophs. We hypothesize that these differences are due to fundamental differences in physiology between organisms. This review is not intended to summarize all known products made in cyanobacteria nor the performance (titer, rate, yield) of individual strains, but instead will focus on the genetic tools and the inherent aspects of cellular physiology that influence gene expression in cyanobacteria.
Collapse
Affiliation(s)
- Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
33
|
Dressaire C, Pobre V, Laguerre S, Girbal L, Arraiano CM, Cocaign-Bousquet M. PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli. BMC Genomics 2018; 19:848. [PMID: 30486791 PMCID: PMC6264599 DOI: 10.1186/s12864-018-5259-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background Exoribonucleases are crucial for RNA degradation in Escherichia coli but the roles of RNase R and PNPase and their potential overlap in stationary phase are not well characterized. Here, we used a genome-wide approach to determine how RNase R and PNPase affect the mRNA half-lives in the stationary phase. The genome-wide mRNA half-lives were determined by a dynamic analysis of transcriptomes after transcription arrest. We have combined the analysis of mRNA half-lives with the steady-state concentrations (transcriptome) to provide an integrated overview of the in vivo activity of these exoribonucleases at the genome-scale. Results The values of mRNA half-lives demonstrated that the mRNAs are very stable in the stationary phase and that the deletion of RNase R or PNPase caused only a limited mRNA stabilization. Intriguingly the absence of PNPase provoked also the destabilization of many mRNAs. These changes in mRNA half-lives in the PNPase deletion strain were associated with a massive reorganization of mRNA levels and also variation in several ncRNA concentrations. Finally, the in vivo activity of the degradation machinery was found frequently saturated by mRNAs in the PNPase mutant unlike in the RNase R mutant, suggesting that the degradation activity is limited by the deletion of PNPase but not by the deletion of RNase R. Conclusions This work had identified PNPase as a central player associated with mRNA degradation in stationary phase. Electronic supplementary material The online version of this article (10.1186/s12864-018-5259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Laurence Girbal
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - Cecilia Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | | |
Collapse
|
34
|
Kranz A, Steinmann A, Degner U, Mengus-Kaya A, Matamouros S, Bott M, Polen T. Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H. BMC Genomics 2018; 19:753. [PMID: 30326828 PMCID: PMC6191907 DOI: 10.1186/s12864-018-5111-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Gluconobacter oxydans is a strictly aerobic Gram-negative acetic acid bacterium used industrially for oxidative biotransformations due to its exceptional type of catabolism. It incompletely oxidizes a wide variety of carbohydrates regio- and stereoselectively in the periplasm using membrane-bound dehydrogenases with accumulation of the products in the medium. As a consequence, only a small fraction of the carbon and energy source enters the cell, resulting in a low biomass yield. Additionally, central carbon metabolism is characterized by the absence of a functional glycolysis and absence of a functional tricarboxylic acid (TCA) cycle. Due to these features, G. oxydans is a highly interesting model organism. Here we analyzed global mRNA decay in G. oxydans to describe its characteristic features and to identify short-lived mRNAs representing potential bottlenecks in the metabolism for further growth improvement by metabolic engineering. Results Using DNA microarrays we estimated the mRNA half-lives in G. oxydans. Overall, the mRNA half-lives ranged mainly from 3 min to 25 min with a global mean of 5.7 min. The transcripts encoding GroES and GroEL required for proper protein folding ranked at the top among transcripts exhibiting both long half-lives and high abundance. The F-type H+-ATP synthase transcripts involved in energy metabolism ranked among the transcripts with the shortest mRNA half-lives. RNAseq analysis revealed low expression levels for genes of the incomplete TCA cycle and also the mRNA half-lives of several of those were short and below the global mean. The mRNA decay analysis also revealed an apparent instability of full-length 23S rRNA. Further analysis of the ribosome-associated rRNA revealed a 23S rRNA fragmentation pattern exhibiting new cleavage regions in 23S rRNAs which were previously not known. Conclusions The very short mRNA half-lives of the H+-ATP synthase, which is likely responsible for the ATP-proton motive force interconversion in G. oxydans under many or most conditions, is notably in contrast to mRNA decay data from other bacteria. Together with the short mRNA half-lives and low expression of some other central metabolic genes it could limit intended improvements of G. oxydans’ biomass yield by metabolic engineering. Also, further studies are needed to unravel the multistep process of the 23S rRNA fragmentation in G. oxydans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5111-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela Kranz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andrea Steinmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ursula Degner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Aliye Mengus-Kaya
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
35
|
VapC proteins from Mycobacterium tuberculosis share ribonuclease sequence specificity but differ in regulation and toxicity. PLoS One 2018; 13:e0203412. [PMID: 30169502 PMCID: PMC6118392 DOI: 10.1371/journal.pone.0203412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
The chromosome of Mycobacterium tuberculosis (Mtb) contains a large number of Type II toxin-antitoxin (TA) systems. The majority of these belong to the VapBC TA family, characterised by the VapC protein consisting of a PIN domain with four conserved acidic residues, and proposed ribonuclease activity. Characterisation of five VapC (VapC1, 19, 27, 29 and 39) proteins from various regions of the Mtb chromosome using a combination of pentaprobe RNA sequences and mass spectrometry revealed a shared ribonuclease sequence-specificity with a preference for UAGG sequences. The TA complex VapBC29 is auto-regulatory and interacts with inverted repeat sequences in the vapBC29 promoter, whereas complexes VapBC1 and VapBC27 display no auto-regulatory properties. The difference in regulation could be due to the different properties of the VapB proteins, all of which belong to different VapB protein families. Regulation of the vapBC29 operon is specific, no cross-talk among Type II TA systems was observed. VapC29 is bacteriostatic when expressed in Mycobacterium smegmatis, whereas VapC1 and VapC27 displayed no toxicity upon expression in M. smegmatis. The shared sequence specificity of the five VapC proteins characterised is intriguing, we propose that the differences observed in regulation and toxicity is the key to understanding the role of these TA systems in the growth and persistence of Mtb.
Collapse
|
36
|
Antonova AV, Gryadunov DA, Zimenkov DV. Molecular Mechanisms of Drug Tolerance in Mycobacterium tuberculosis. Mol Biol 2018. [DOI: 10.1134/s0026893318030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
|
38
|
Adachi K, Ohtani K, Kawano M, Singh RP, Yousuf B, Sonomoto K, Shimizu T, Nakayama J. Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens. J Biosci Bioeng 2018; 125:525-531. [PMID: 29373309 DOI: 10.1016/j.jbiosc.2017.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Clostridium perfringens produces various exotoxins and enzymes that cause food poisoning and gas gangrene. The genes involved in virulence are regulated by the agr-like quorum sensing (QS) system, which consists of a QS signal synthesis system and a VirSR two-component regulatory system (VirSR TCS) which is a global regulatory system composed of signal sensor kinase (VirS) and response regulator (VirR). We found that the perfringolysin O gene (pfoA) was transiently expressed during mid-log phase of bacterial growth; its expression was rapidly shut down thereafter, suggesting the existence of a self-quorum quenching (sQQ) system. The sQQ system was induced by the addition of stationary phase culture supernatant (SPCS). Activity of the sQQ system was heat stable, and was present following filtration through the ultrafiltration membrane, suggesting that small molecules acted as sQQ agents. In addition, sQQ was also induced by pure acetic and butyric acids at concentrations equivalent to those in the stationary phase culture, suggesting that organic acids produced by C. perfringens were involved in sQQ. In pH-controlled batch culture, sQQ was greatly diminished; expression level of pfoA extended to late-log growth phase, and was eventually increased by one order of magnitude. Furthermore, hydrochloric acid induced sQQ at the same pH as was used in organic acids. SPCS also suppressed the expression of genes regulated by VirSR TCS. Overall, the expression of virulence factors of C. perfringens was downregulated by the sQQ system, which was mediated by primary acidic metabolites and acidic environments. This suggested the possibility of pH-controlled anti-virulence strategies.
Collapse
Affiliation(s)
- Keika Adachi
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Kaori Ohtani
- Department of Bacteriology, Graduate School of Medical Science, University of Kanazawa, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8203, Japan; Miyarisan Pharmaceutical Co. Ltd., 1-10-3 Kaminakazato, Kita-ku, Tokyo 114-0016, Japan
| | - Michio Kawano
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Ravindra Pal Singh
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Basit Yousuf
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Tohru Shimizu
- Department of Bacteriology, Graduate School of Medical Science, University of Kanazawa, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8203, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
39
|
Nouaille S, Mondeil S, Finoux AL, Moulis C, Girbal L, Cocaign-Bousquet M. The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression. Nucleic Acids Res 2017; 45:11711-11724. [PMID: 28977619 PMCID: PMC5714132 DOI: 10.1093/nar/gkx781] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/28/2017] [Indexed: 01/19/2023] Open
Abstract
Changing mRNA stability is a major post-transcriptional way of controlling gene expression, particularly in newly encountered conditions. As the concentration of mRNA is the result of an equilibrium between transcription and degradation, it is generally assumed that at constant transcription, any change in mRNA concentration is the consequence of mRNA stabilization or destabilization. However, the literature reports many cases of opposite variations in mRNA concentration and stability in bacteria. Here, we analyzed the causal link between the concentration and stability of mRNA in two phylogenetically distant bacteria Escherichia coli and Lactococcus lactis. Using reporter mRNAs, we showed that modifying the stability of an mRNA had unpredictable effects, either higher or lower, on its concentration, whereas increasing its concentration systematically reduced stability. This inverse relationship between the concentration and stability of mRNA was generalized to native genes at the genome scale in both bacteria. Higher mRNA turnover in the case of higher concentrations appears to be a simple physical mechanism to regulate gene expression in the bacterial kingdom. The consequences for bacterial adaptation of this control of the stability of an mRNA by its concentration are discussed.
Collapse
Affiliation(s)
- Sébastien Nouaille
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Sophie Mondeil
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Anne-Laure Finoux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Claire Moulis
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Laurence Girbal
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Muriel Cocaign-Bousquet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| |
Collapse
|
40
|
Ferreira R, Borges V, Borrego MJ, Gomes JP. Global survey of mRNA levels and decay rates of Chlamydia trachomatis trachoma and lymphogranuloma venereum biovars. Heliyon 2017; 3:e00364. [PMID: 28795162 PMCID: PMC5541142 DOI: 10.1016/j.heliyon.2017.e00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum) strains of the obligate intracellular bacterium Chlamydia trachomatis. By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i) 60-70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in "Translation, ribosomal structure and biogenesis" for all strains; ii) the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii) the median of the half-life time (t1/2) values of transcripts were 15-17 min, indicating that the degree of transcripts' stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv) transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v) only at very few instances (essentially at gene functional category level) was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.
Collapse
Affiliation(s)
- Rita Ferreira
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Vítor Borges
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.,Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Maria José Borrego
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.,Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
41
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
42
|
Duncan C, Jamieson FB, Troudt J, Izzo L, Bielefeldt-Ohmann H, Izzo A, Mehaffy C. Whole transcriptomic and proteomic analyses of an isogenic M. tuberculosis clinical strain with a naturally occurring 15 Kb genomic deletion. PLoS One 2017; 12:e0179996. [PMID: 28650996 PMCID: PMC5484546 DOI: 10.1371/journal.pone.0179996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis remains one of the most difficult to control infectious diseases in the world. Many different factors contribute to the complexity of this disease. These include the ability of the host to control the infection which may directly relate to nutritional status, presence of co-morbidities and genetic predisposition. Pathogen factors, in particular the ability of different Mycobacterium tuberculosis strains to respond to the harsh environment of the host granuloma, which includes low oxygen and nutrient availability and the presence of damaging radical oxygen and nitrogen species, also play an important role in the success of different strains to cause disease. In this study we evaluated the impact of a naturally occurring 12 gene 15 Kb genomic deletion on the physiology and virulence of M. tuberculosis. The strains denominated ON-A WT (wild type) and ON-A NM (natural mutant) were isolated from a previously reported TB outbreak in an inner city under-housed population in Toronto, Canada. Here we subjected these isogenic strains to transcriptomic (via RNA-seq) and proteomic analyses and identified several gene clusters with differential expression in the natural mutant, including the DosR regulon and the molybdenum cofactor biosynthesis genes, both of which were found in lower abundance in the natural mutant. We also demonstrated lesser virulence of the natural mutant in the guinea pig animal model. Overall, our findings suggest that the ON-A natural mutant is less fit to cause disease, but nevertheless has the potential to cause extended transmission in at-risk populations.
Collapse
Affiliation(s)
| | - Frances B. Jamieson
- Public Health Ontario, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - JoLynn Troudt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Linda Izzo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, QLD, Australia
| | - Angelo Izzo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Carolina Mehaffy
- Public Health Ontario, Toronto, ON, Canada
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
43
|
Moores A, Riesco AB, Schwenk S, Arnvig KB. Expression, maturation and turnover of DrrS, an unusually stable, DosR regulated small RNA in Mycobacterium tuberculosis. PLoS One 2017; 12:e0174079. [PMID: 28323872 PMCID: PMC5360333 DOI: 10.1371/journal.pone.0174079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis depends on the ability to adjust to stresses encountered in a range of host environments, adjustments that require significant changes in gene expression. Small RNAs (sRNAs) play an important role as post-transcriptional regulators of prokaryotic gene expression, where they are associated with stress responses and, in the case of pathogens, adaptation to the host environment. In spite of this, the understanding of M. tuberculosis RNA biology remains limited. Here we have used a DosR-associated sRNA as an example to investigate multiple aspects of mycobacterial RNA biology that are likely to apply to other M. tuberculosis sRNAs and mRNAs. We have found that accumulation of this particular sRNA is slow but robust as cells enter stationary phase. Using reporter gene assays, we find that the sRNA core promoter is activated by DosR, and we have renamed the sRNA DrrS for DosR Regulated sRNA. Moreover, we show that DrrS is transcribed as a longer precursor, DrrS+, which is rapidly processed to the mature and highly stable DrrS. We characterise, for the first time in mycobacteria, an RNA structural determinant involved in this extraordinary stability and we show how the addition of a few nucleotides can lead to acute destabilisation. Finally, we show how this RNA element can enhance expression of a heterologous gene. Thus, the element, as well as its destabilising derivatives may be employed to post-transcriptionally regulate gene expression in mycobacteria in combination with different promoter variants. Moreover, our findings will facilitate further investigations into the severely understudied topic of mycobacterial RNA biology and into the role that regulatory RNA plays in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Alexandra Moores
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ana B. Riesco
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Stefan Schwenk
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Kristine B. Arnvig
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Peterson JR, Thor S, Kohler L, Kohler PR, Metcalf WW, Luthey-Schulten Z. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans. BMC Genomics 2016; 17:924. [PMID: 27852217 PMCID: PMC5112694 DOI: 10.1186/s12864-016-3219-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND While a few studies on the variations in mRNA expression and half-lives measured under different growth conditions have been used to predict patterns of regulation in bacterial organisms, the extent to which this information can also play a role in defining metabolic phenotypes has yet to be examined systematically. Here we present the first comprehensive study for a model methanogen. RESULTS We use expression and half-life data for the methanogen Methanosarcina acetivorans growing on fast- and slow-growth substrates to examine the regulation of its genes. Unlike Escherichia coli where only small shifts in half-lives were observed, we found that most mRNA have significantly longer half-lives for slow growth on acetate compared to fast growth on methanol or trimethylamine. Interestingly, half-life shifts are not uniform across functional classes of enzymes, suggesting the existence of a selective stabilization mechanism for mRNAs. Using the transcriptomics data we determined whether transcription or degradation rate controls the change in transcript abundance. Degradation was found to control abundance for about half of the metabolic genes underscoring its role in regulating metabolism. Genes involved in half of the metabolic reactions were found to be differentially expressed among the substrates suggesting the existence of drastically different metabolic phenotypes that extend beyond just the methanogenesis pathways. By integrating expression data with an updated metabolic model of the organism (iST807) significant differences in pathway flux and production of metabolites were predicted for the three growth substrates. CONCLUSIONS This study provides the first global picture of differential expression and half-lives for a class II methanogen, as well as provides the first evidence in a single organism that drastic genome-wide shifts in RNA half-lives can be modulated by growth substrate. We determined which genes in each metabolic pathway control the flux and classified them as regulated by transcription (e.g. transcription factor) or degradation (e.g. post-transcriptional modification). We found that more than half of genes in metabolism were controlled by degradation. Our results suggest that M. acetivorans employs extensive post-transcriptional regulation to optimize key metabolic steps, and more generally that degradation could play a much greater role in optimizing an organism's metabolism than previously thought.
Collapse
Affiliation(s)
- Joseph R. Peterson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Ave, Urbana, 60801 IL USA
| | - ShengShee Thor
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 60801 IL USA
| | - Lars Kohler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Ave, Urbana, 60801 IL USA
| | - Petra R.A. Kohler
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S Goodwin AveIL, Urbana, 60801 USA
| | - William W. Metcalf
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S Goodwin AveIL, Urbana, 60801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory DrIL, Urbana, 60801 USA
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Ave, Urbana, 60801 IL USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 60801 IL USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory DrIL, Urbana, 60801 USA
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, 60801 IL USA
| |
Collapse
|
45
|
Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med 2016; 22:1094-1100. [PMID: 27595324 PMCID: PMC5053881 DOI: 10.1038/nm.4177] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/29/2016] [Indexed: 01/07/2023]
Abstract
The absence of a gold standard to determine when antibiotics have induced sterilizing cure confounds the development of new approaches to treat pulmonary tuberculosis (PTB). We detected PET-CT imaging response patterns consistent with active disease along with the presence of Mycobacterium tuberculosis mRNA in sputum and bronchoalveolar lavage samples in a substantial proportion of adult, HIV-negative PTB patients after standard 6-month treatment plus one year follow-up, including patients with a durable cure and others who later developed recurrent disease. The presence of MTB mRNA in the context of non-resolving and intensifying lesions on PET-CT might indicate ongoing transcription, suggesting that even apparently curative PTB treatment may not eradicate all organisms in most patients. This suggests an important complementary role for the immune response in maintaining a disease-free state. Sterilizing drugs or host-directed therapies and better treatment response markers are likely needed for the successful development of improved and shortened PTB treatment strategies.
Collapse
|
46
|
Esquerré T, Bouvier M, Turlan C, Carpousis AJ, Girbal L, Cocaign-Bousquet M. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli. Sci Rep 2016; 6:25057. [PMID: 27112822 PMCID: PMC4844966 DOI: 10.1038/srep25057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 11/08/2022] Open
Abstract
Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.
Collapse
Affiliation(s)
- Thomas Esquerré
- Université de Toulouse, INSA, UPS, INP, LISBP, 135, avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France
- CNRS, UMR5504, 31400 Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Catherine Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Agamemnon J. Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Laurence Girbal
- Université de Toulouse, INSA, UPS, INP, LISBP, 135, avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France
- CNRS, UMR5504, 31400 Toulouse, France
| | - Muriel Cocaign-Bousquet
- Université de Toulouse, INSA, UPS, INP, LISBP, 135, avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France
- CNRS, UMR5504, 31400 Toulouse, France
| |
Collapse
|
47
|
Ha NR, Lee SC, Hyun JW, Yoon MY. Development of inhibitory ssDNA aptamers for the FtsZ cell division protein from citrus canker phytopathogen. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Ignatov DV, Salina EG, Fursov MV, Skvortsov TA, Azhikina TL, Kaprelyants AS. Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA. BMC Genomics 2015; 16:954. [PMID: 26573524 PMCID: PMC4647672 DOI: 10.1186/s12864-015-2197-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Background Dormant Mycobacterium tuberculosis bacilli are believed to play an important role in latent tuberculosis infection. Previously, we have demonstrated that cultivation of M. tuberculosis in K+-deficient medium resulted in generation of dormant cells. These bacilli were non-culturable on solid media (a key feature of dormant M. tuberculosis in vivo) and characterized by low metabolism and tolerance to anti-tuberculosis drugs. The dormant bacteria demonstrated a high potential to reactivation after K+ reintroduction even after prolonged persistence under rifampicin. In this work, we studied the transcriptome and stability of transcripts in persisting dormant bacilli under arrest of mRNA de novo synthesis. Results RNA-seq-based analysis of the dormant non-culturable population obtained under rifampicin exposure revealed a 30–50-fold decrease of the total mRNA level, indicating global transcriptional repression. However, the analysis of persisting transcripts displayed a cohort of mRNA molecules coding for biosynthetic enzymes, proteins involved in adaptation and repair processes, detoxification, and control of transcription initiation. This ‘dormant transcriptome’ demonstrated considerable stability during M. tuberculosis persistence and mRNA de novo synthesis arrest. On the contrary, several small non-coding RNAs showed increased abundance on dormancy. Interestingly, M. tuberculosis entry into dormancy was accompanied by the cleavage of 23S ribosomal RNA at a specific point located outside the ribosome catalytic center. Conclusions Dormant non-culturable M. tuberculosis bacilli are characterized by a global transcriptional repression. At the same time, the dormant bacilli retain low-abundant mRNAs, which are considerably stable during in vitro persistence, reflecting their readiness for translation upon early resuscitation steps. Increased abundance of non-coding RNAs on dormancy may indicate their role in the entry into and maintenance of M. tuberculosis dormant non-culturable state. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2197-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dmitriy V Ignatov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, GSP-7, Moscow, Russian Federation.
| | - Elena G Salina
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| | - Mikhail V Fursov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| | - Timofey A Skvortsov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation. .,Current address: The Queen's University of Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, GSP-7, Moscow, Russian Federation.
| | - Arseny S Kaprelyants
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| |
Collapse
|
49
|
Rustad TR, Minch KJ, Ma S, Winkler JK, Hobbs S, Hickey M, Brabant W, Turkarslan S, Price ND, Baliga NS, Sherman DR. Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network. Genome Biol 2015; 15:502. [PMID: 25380655 DOI: 10.1186/preaccept-1701638048134699] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis senses and responds to the shifting and hostile landscape of the host. To characterize the underlying intertwined gene regulatory network governed by approximately 200 transcription factors of M. tuberculosis, we have assayed the global transcriptional consequences of overexpressing each transcription factor from an inducible promoter. RESULTS We cloned and overexpressed 206 transcription factors in M. tuberculosis to identify the regulatory signature of each. We identified 9,335 regulatory consequences of overexpressing each of 183 transcription factors, providing evidence of regulation for 70% of the M. tuberculosis genome. These transcriptional signatures agree well with previously described M. tuberculosis regulons. The number of genes differentially regulated by transcription factor overexpression varied from hundreds of genes to none, with the majority of expression changes repressing basal transcription. Exploring the global transcriptional maps of transcription factor overexpressing (TFOE) strains, we predicted and validated the phenotype of a regulator that reduces susceptibility to a first line anti-tubercular drug, isoniazid. We also combined the TFOE data with an existing model of M. tuberculosis metabolism to predict the growth rates of individual TFOE strains with high fidelity. CONCLUSION This work has led to a systems-level framework describing the transcriptome of a devastating bacterial pathogen, characterized the transcriptional influence of nearly all individual transcription factors in M. tuberculosis, and demonstrated the utility of this resource. These results will stimulate additional systems-level and hypothesis-driven efforts to understand M. tuberculosis adaptations that promote disease.
Collapse
|
50
|
Rustad TR, Minch KJ, Ma S, Winkler JK, Hobbs S, Hickey M, Brabant W, Turkarslan S, Price ND, Baliga NS, Sherman DR. Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network. Genome Biol 2015. [PMID: 25380655 PMCID: PMC4249609 DOI: 10.1186/s13059-014-0502-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Mycobacterium tuberculosis senses and responds to the shifting and hostile landscape of the host. To characterize the underlying intertwined gene regulatory network governed by approximately 200 transcription factors of M. tuberculosis, we have assayed the global transcriptional consequences of overexpressing each transcription factor from an inducible promoter. Results We cloned and overexpressed 206 transcription factors in M. tuberculosis to identify the regulatory signature of each. We identified 9,335 regulatory consequences of overexpressing each of 183 transcription factors, providing evidence of regulation for 70% of the M. tuberculosis genome. These transcriptional signatures agree well with previously described M. tuberculosis regulons. The number of genes differentially regulated by transcription factor overexpression varied from hundreds of genes to none, with the majority of expression changes repressing basal transcription. Exploring the global transcriptional maps of transcription factor overexpressing (TFOE) strains, we predicted and validated the phenotype of a regulator that reduces susceptibility to a first line anti-tubercular drug, isoniazid. We also combined the TFOE data with an existing model of M. tuberculosis metabolism to predict the growth rates of individual TFOE strains with high fidelity. Conclusion This work has led to a systems-level framework describing the transcriptome of a devastating bacterial pathogen, characterized the transcriptional influence of nearly all individual transcription factors in M. tuberculosis, and demonstrated the utility of this resource. These results will stimulate additional systems-level and hypothesis-driven efforts to understand M. tuberculosis adaptations that promote disease. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0502-3) contains supplementary material, which is available to authorized users.
Collapse
|