1
|
Arslan K, Daldaban F, Yalcintan H, Kecici PD, Ozturk B, Ekiz B, Akyuz B. Relationship between the expression levels of myogenic regulatory factor genes and carcass characteristics in Kivircik and Hungarian Merino lambs. Anim Biotechnol 2025; 36:2479690. [PMID: 40122069 DOI: 10.1080/10495398.2025.2479690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
This study aimed to investigate the expression profiles of the myogenic regulatory genes MYOD1, MYOG, MYF5, MYF6, and MSTN in longissimus dorsi muscle, as well as the correlation of the expression levels of these genes with carcass characteristics and growth performance in the Kivircik and Hungarian Merino sheep breeds. The expression levels of the MYF5, MYF6, and MYOG genes were found to be significantly correlated with the rib proportion, the expression level of the MYOG gene was identified as being the main determinant of variations in the rib proportion in the Kivircik lambs. The regression analysis results revealed that the expression levels of the MYF5 and MSTN genes played an essential role in determining the cold carcass dressing percentage in Hungarian Merino lambs. Further, as a result of the regression analysis, the model including the expression level of the MYF6 gene demonstrated that this gene could be responsible for 36.4% of the differences observed in cold carcass weight. In conclusion, the findings of this study suggest that the expression levels of the MYF5, MYF6, and MYOG genes were associated with various carcass traits, particularly in the Kivircik breed, and these genes hold potential as markers for enhancing breed productivity.
Collapse
Affiliation(s)
- Korhan Arslan
- Department of Genetics, Erciyes University, Kayseri, Turkey
| | | | - Hulya Yalcintan
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pembe Dilara Kecici
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Bekir Ozturk
- Pınarhisar District Directorate of Agriculture and Forestry, Kırklareli, Turkey
| | - Bulent Ekiz
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Bilal Akyuz
- Department of Genetics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Barve PR, Barvkar VT, Giri AP, Kotkar HM. High levels of sinigrin trigger synthesis of fatty acids in Plutella xylostella (L.). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101424. [PMID: 39854962 DOI: 10.1016/j.cbd.2025.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Diamondback moth (Lepidoptera: Plutellidae; Plutella xylostella L.) is a specialist insect of the Brassicaceae family, damaging economically important crops, such as cabbage and cauliflower. Glucosinolates, also known as 'mustard oil bombs' are present in all Brassicaceae members, of which sinigrin (allyl-glucosinolate or 2-propenyl-glucosinolate) is a major aliphatic compound. During herbivory, glucosinolates are converted to toxic isothiocyanates that deter insect pests. P. xylostella possesses glucosinolate sulfatases that desulfate them. Such a conversion renders them unfit for degradation to toxic products. Changes in the larval performance prompted us for RNA sequencing to understand probable adaptation mechanism under sinigrin stress. Differentially expressed genes were found to be related to larval cuticle proteins. Further, gene ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses depict genes belonging to the categories, integral component of membrane, cellular processes and those involved in biosynthesis of fatty acids. Upregulation of cuticular genes viz. larval cuticle protein-17 (LCP-17), cuticular protein-19 (2CP-19) and ATP binding cassette transporter C7 (ABCC7), ABCC16 was validated by qRT-PCR. Liquid chromatography quadrupole time of flight mass spectrometry analysis of whole larvae feeding on sinigrin and their separated cuticle, depicted abundance of fatty acids. Changes in the topography of the larval cuticle were evident by scanning electron microscopy. Expression of PxABCH1 was corroborated to its role in the transport of cuticular lipids. Notably, molecular docking of PxABCH1 with cuticular fatty acids showed favorable binding interactions. To summarize, integrated transcriptomic and metabolomic analyses suggest that in response to a diet containing a high dose of sinigrin, P. xylostella re-programs metabolic pathways related to fatty acid biosynthesis that directly influence insect development.
Collapse
Affiliation(s)
- Pranoti R Barve
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune- 411 007, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune- 411 007, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hemlata M Kotkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune- 411 007, Maharashtra, India.
| |
Collapse
|
3
|
Schwerd‐Kleine P, Würth R, Cheytan T, Michel L, Thewes V, Gutjahr E, Seker‐Cin H, Kazdal D, Neuberth S, Thiel V, Schwickert J, Vorberg T, Wischhusen J, Stenzinger A, Zapatka M, Lichter P, Schneeweiss A, Trumpp A, Sprick MR. Biopsy-derived organoids in personalised early breast cancer care: Challenges of tumour purity and normal cell overgrowth cap their practical utility. Int J Cancer 2025; 156:2200-2209. [PMID: 40022208 PMCID: PMC11970545 DOI: 10.1002/ijc.35386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/05/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
The ability to establish organoids composed exclusively of tumour rather than healthy cells is essential for their implementation into clinical practice. Organoids have recently emerged as a powerful tool to expand patient material in culture and generate modifiable 3D models derived from humans or animal models. For translational research, they enable the creation of model systems for an ever-increasing number of cell types and diseases. And in personalised medicine, they potentially allow for functional drug testing with high predictive power in certain settings. We found that using biopsy material from untreated, early-stage primary breast cancer patients poses significant challenges for consistently culturing tumour cells as organoids. Specifically, we observed frequent outgrowth of genetically normal, non-cancerous epithelial cells. We analysed >100 biopsy samples from early-stage breast cancer and present our large collection of >70 organoid lines. We also show methods of assessing successful tumour cell culture in a time, and cost-efficient manner, proving a high rate (>85%) of normal cell overgrowth in early-stage breast cancer organoids. Finally, we show a number of successful attempts to culture cancer organoids from mastectomy-derived tissue of advanced, metastatic breast cancer. We conclude that the usefulness of organoids from early breast cancer for translational research and personalised medicine, especially guidance of adjuvant or post-surgical maintenance therapy, is strongly limited by the low success rate of culturing cancerous cells under organoid conditions.
Collapse
Affiliation(s)
- Paul Schwerd‐Kleine
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Roberto Würth
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | - Tasneem Cheytan
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Laura Michel
- Division of Gynecologic OncologyNational Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Verena Thewes
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Ewgenija Gutjahr
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Institute of Pathology, Heidelberg University HospitalHeidelbergGermany
| | - Huriye Seker‐Cin
- Institute of Pathology, Heidelberg University HospitalHeidelbergGermany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University HospitalHeidelbergGermany
| | - Sarah‐Jane Neuberth
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Vera Thiel
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Jonas Schwickert
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Tim Vorberg
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Jennifer Wischhusen
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | | | - Marc Zapatka
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Peter Lichter
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
- National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Andreas Schneeweiss
- Division of Gynecologic OncologyNational Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Andreas Trumpp
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | - Martin R. Sprick
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| |
Collapse
|
4
|
Zheng Y, Cui XC, Guo F, Dou ML, Xie ZX, Yuan YJ. Design and structure of overlapping regions in PCA via deep learning. Synth Syst Biotechnol 2025; 10:442-451. [PMID: 39917768 PMCID: PMC11799973 DOI: 10.1016/j.synbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 02/09/2025] Open
Abstract
Polymerase cycling assembly (PCA) stands out as the predominant method in the synthesis of kilobase-length DNA fragments. The design of overlapping regions is the core factor affecting the success rate of synthesis. However, there still exists DNA sequences that are challenging to design and construct in the genome synthesis. Here we proposed a deep learning model based on extensive synthesis data to discern latent sequence representations in overlapping regions with an AUPR of 0.805. Utilizing the model, we developed the SmartCut algorithm aimed at designing oligonucleotides and enhancing the success rate of PCA experiments. This algorithm was successfully applied to sequences with diverse synthesis constraints, 80.4 % of which were synthesized in a single round. We further discovered structure differences represented by major groove width, stagger, slide, and centroid distance between overlapping and non-overlapping regions, which elucidated the model's reasonableness through the lens of physical chemistry. This comprehensive approach facilitates streamlined and efficient investigations into the genome synthesis.
Collapse
Affiliation(s)
- Yan Zheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Xi-Chen Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Fei Guo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
- School of Computer Science and Engineering, Central South University, Changsha, 410083, PR China
| | - Ming-Liang Dou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
5
|
Xie X, Sun K, Liu A, Miao R, Yin F. Analysis of gill and skin microbiota in Larimichthys crocea reveals bacteria associated with cryptocaryoniasis resistance potential. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110228. [PMID: 40020952 DOI: 10.1016/j.fsi.2025.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Cryptocaryoniasis, caused by the ciliate parasite Cryptocaryon irritans, poses a significant threat to the large yellow croaker (Larimichthys crocea) in intensive marine aquaculture. This study explores the interaction between skin and gill microbiota and C. irritans infection, focusing on the role of commensal microbes in disease resistance. Fish were challenged with 100 theronts per gram of body weight, leading to substantial microbial dysbiosis, characterized by decreased alpha diversity and disrupted co-occurrence networks, particularly on the skin. Post-infection, Vibrio abundance significantly increased in both gills and skin, suggesting potential for secondary infections. Conversely, lower Vibrio levels correlated with higher populations of Bdellovibrio-like organisms (BALOs), which may play a beneficial role in microbial balance. Fish showed varying susceptibility, with mildly infected individuals exhibiting less histopathological damage and a stronger immune response, indicated by elevated interleukin-1β (IL-1β) and interleukin-8 (IL-8) levels. Correlation analyses revealed significant relationships between relative infection intensity (RII) and microbial composition, with certain bacteria known for anti-eukaryotic microbial properties showing negative correlations with RII. Additionally, the abundance of nitrogen-metabolizing bacteria also correlated negatively with RII. Functional predictions indicated increased bacterial genes related to denitrification and vitamin biosynthesis post-infection. Notably, Candidatus Midichloria was identified as a potential biomarker for C. irritans infection and is thought to be an endosymbiont of C. irritans, with its presence validated through PCR analysis. These findings illuminate microbial dynamics during C. irritans infection and suggest probiotic candidates for managing cryptocaryoniasis.
Collapse
Affiliation(s)
- Xiao Xie
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China.
| | - Kangshuai Sun
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China
| | - Aowei Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China
| | - Rujiang Miao
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China
| | - Fei Yin
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China.
| |
Collapse
|
6
|
Baker A, Buckley M. Quantifying Bone Collagen Fingerprint Variation Between Species. Mol Ecol Resour 2025; 25:e14072. [PMID: 39877940 PMCID: PMC11969642 DOI: 10.1111/1755-0998.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
Collagen is the most ubiquitous protein in the animal kingdom and one of the most abundant proteins on Earth. Despite having a relatively repetitive amino acid sequence motif that enables its triple helical structure, in type 1 collagen, that dominates skin and bone, there is enough variation for its increasing use for the biomolecular species identification of animal tissues processed or degraded beyond the amenability of DNA-based analyses. In recent years, this has been most commonly achieved through the technique of collagen peptide mass fingerprinting (PMF) known as ZooMS (Zooarchaeology by Mass Spectrometry), applied to the analysis of tens of thousands of samples across over one hundred studies in the past decade alone. However, a robust means to quantify variation between these fingerprints remains elusive, despite being increasingly required due to the shift towards a wider range of wild fauna and those that are more distantly related from currently known sequences. This is particularly problematic in fish due to their greater sequence variation. Here we evaluate the quantification of the relative closeness of collagen fingerprints between families using ANOSIM and a modified SIMPER analysis, incorporating relative peak intensity. Our results show a clear correlation between sequence differentiation and statistical distance of PMFs, indicating that the additional complexity of type 1 collagen in fish could directly affect the efficacy of biomolecular techniques such as ZooMS. Furthermore, this multivariate statistical analysis demonstrates that PMFs in fish are substantively more distinct than those of mammalian or amphibian taxa.
Collapse
Affiliation(s)
- Andrew Baker
- Manchester Institute of Biotechnology, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Michael Buckley
- Manchester Institute of Biotechnology, School of Natural SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
7
|
Tromas N, Simon DF, Fortin N, Hernández-Zamora M, Pereira A, Mazza A, Pacheco SM, Levesque MJ, Martínez-Jerónimo L, Antuna-González P, Munoz G, Shapiro BJ, Sauvé S, Martínez-Jerónimo F. Metagenomic insights into cyanotoxin dynamics in a Mexican subtropical lake. CHEMOSPHERE 2025; 376:144285. [PMID: 40058228 DOI: 10.1016/j.chemosphere.2025.144285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/17/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025]
Abstract
Valle de Bravo is a vital water supply for part of the metropolitan area of the Valle de Mexico megacity, providing 30% of Mexico City's water demand. This water body has experienced an acceleration in its trophic status, going from oligotrophic to eutrophic in just a few years. This temperate lake (at a tropical latitude) is in a persistent bloom dominated by a variety of co-occurring cyanobacteria, many of which have toxigenic potential based on microscopic identification, that makes it difficult or even impractical to identify the cyanotoxin producers. To unravel this complexity and directly identify the toxigenic genera, we showed that integrating classical approaches with metagenomic is required. We first characterized, from genes to metagenomes assembled genomes, the toxigenic Cyanobacteria. We found that Microcystis was the most dominant cyanobacterial genus and the sole carrier of the mcy operon, making it the only microcystin producer. We then quantified twenty-one different cyanopeptides, including twelve microcystin congeners using a high-performance liquid chromatography-high-resolution. Nine microcystins (MCs) and the emerging cyanotoxin anabaenopeptin-A and -B were found at varying concentrations throughout the year, with MC-LA being the most common and abundant. Our findings, constrained by our sampling strategy, indicate that conventional cyanotoxin biomarkers (e.g., toxin mcy genes) were not consistently reliable indicators of cyanotoxin concentrations in this freshwater system. In this study, we followed the dynamics of the cyanobacterial community and the associated cyanopeptides with unprecedented resolution. Our results have implications for better management of toxic blooms in this freshwater system, which supplies drinking water to more than 7 million people in the megalopolis of Valle de México.
Collapse
Affiliation(s)
- Nicolas Tromas
- UMR CARRTEL - INRAE, 75bis Av. de Corzent, 74200, Thonon les Bains, France; Department of Microbiology and Immunology, McGill, Montreal, Canada.
| | - Dana F Simon
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - Nathalie Fortin
- Energy, Mines and Environment Research Centre, National Research Council Canada, Montreal, Canada
| | - Miriam Hernández-Zamora
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, México City, Mexico
| | - Autumn Pereira
- Department of Microbiology and Immunology, McGill, Montreal, Canada
| | - Alberto Mazza
- Energy, Mines and Environment Research Centre, National Research Council Canada, Montreal, Canada
| | | | - Marie-Josée Levesque
- Energy, Mines and Environment Research Centre, National Research Council Canada, Montreal, Canada
| | - Laura Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, México City, Mexico
| | - Paloma Antuna-González
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, México City, Mexico
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill, Montreal, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, México City, Mexico.
| |
Collapse
|
8
|
Campeanu IJ, Jiang Y, Afisllari H, Dzinic S, Polin L, Yang ZQ. Multi-omics analysis reveals CMTR1 upregulation in cancer and roles in ribosomal protein gene expression and tumor growth. Cell Commun Signal 2025; 23:197. [PMID: 40275371 DOI: 10.1186/s12964-025-02147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/09/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND CMTR1 (cap methyltransferase 1), a key nuclear mRNA cap methyltransferase, catalyzes 2'-O-methylation of the first transcribed nucleotide, a critical step in mRNA cap formation. Previous studies have implicated CMTR1 in embryonic stem cell differentiation and immune responses during viral infection; however, its role in cancer biology remains largely unexplored. This study aims to elucidate CMTR1's function in cancer progression and evaluate its potential as a novel therapeutic target in certain cancer types. METHODS We conducted a comprehensive multi-omics analysis of CMTR1 across various human cancers using TCGA and CPTAC datasets. Functional studies were performed using CRISPR-mediated knockout and siRNA knockdown in human and mouse basal-like breast cancer models. Transcriptomic and pathway enrichment analyses were carried out in CMTR1 knockout/knockdown models to identify CMTR1-regulated genes. In silico screening and biochemical assays were employed to identify novel CMTR1 inhibitors. RESULTS Multi-omics analysis revealed that CMTR1 is significantly upregulated at the mRNA, protein, and phosphoprotein levels across multiple cancer types in the TCGA and CPTAC datasets. Functional studies demonstrated that CMTR1 depletion significantly inhibits tumor growth both in vitro and in vivo. Transcriptomic analysis of CMTR1 knockout cells revealed that CMTR1 primarily regulates ribosomal protein genes and other transcripts containing 5' Terminal Oligopyrimidine (TOP) motifs. Additionally, CMTR1 affects the expression of snoRNA host genes and snoRNAs, suggesting a broader role in RNA metabolism. Mechanistic studies indicated that CMTR1's target specificity is partly determined by mRNA structure, particularly the presence of 5'TOP motifs. Finally, through in silico screening and biochemical assays, we identified several novel CMTR1 inhibitors, including N97911, which demonstrated in vitro growth inhibition activity in breast cancer cells. CONCLUSIONS Our findings establish CMTR1 as an important player in cancer biology, regulating critical aspects of RNA metabolism and ribosome biogenesis. The study highlights CMTR1's potential as a therapeutic target in certain cancer types and provides a foundation for developing novel cancer treatments targeting mRNA cap methylation.
Collapse
Affiliation(s)
- Ion John Campeanu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hilda Afisllari
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
9
|
Kumar P, Yadav S, Rani M, Narang D, Singla D, Dhall RK, Chhuneja P, Sharma P. Genomics assisted mapping of earliness in pea (Pisum sativum L.). Mol Biol Rep 2025; 52:406. [PMID: 40257507 DOI: 10.1007/s11033-025-10506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Garden pea (Pisum sativum L.), is a temperate crop belonging to the Leguminosae family. Early maturing pea varieties complete their growth cycle in ∼80-90 days and fits very well within the crop rotation of rice, wheat, and maize, thereby providing an extra source of income to the farmers. Identification of genes associated with the earliness is very important for developing early maturing pea varieties. METHODS AND RESULTS In the present study we investigated the genetics of earliness and identified the putative genomic regions associated with the earliness in F2 population derived from a cross between early-maturing (Matar Ageta-10) and late-maturing (Punjab-89) pea varieties using BSA-Seq approach. Genetic analysis revealed that earliness follows a monogenic recessive inheritance pattern. Two extreme phenotypic pools were constructed by identifying ten extreme early and ten extreme late plants from the F2 population, and QTL-seq analysis was performed to obtain major genomic region of 6.5 Mb located at 418.46 Mb to 424.97 Mb on chromosome 7 and has been designated as PsE7. Further, a total of 907 SNPs were identified within this 6.5 Mb genomic region of which seven SNPs were validated through KASP markers. Among these, one marker namely PS423028253 showed association with the earliness trait at distance of 1.7 cM. CONCLUSION This novel genomic region along with KASP marker (PS423028253) identified in this study could be used for marker-assisted selection in pea breeding programs and will aid in the identification of the candidate genes in future studies.
Collapse
Affiliation(s)
- Parteek Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Saurabh Yadav
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | - Manisha Rani
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Deepika Narang
- Gurdev Singh Khush Institute of Genetics, Plant Breeding, and Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Rajinder Kumar Dhall
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India.
| | - Parveen Chhuneja
- Gurdev Singh Khush Institute of Genetics, Plant Breeding, and Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Priti Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| |
Collapse
|
10
|
Ghalavand MA, Asghari A, Jahanbakhshi A, Falavarjani KG, Eftekharian A, Farhadi M, Emamdjomeh H, Garshasbi M, Falah M. High de novo mutation rate in Iranian NF2-related schwannomatosis patients with a report of a novel NF2 mutation. Mol Biol Rep 2025; 52:402. [PMID: 40249415 DOI: 10.1007/s11033-025-10431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND NF2-related schwannomatosis (NF2) is a rare genetic disease that significantly impacts patients' quality of life due to the occurrence of multiple tumors within the nervous system. The high clinical heterogeneity in tumor number, location, and size makes predicting each patient's clinical outcome impossible. Genetic investigation can be crucial in diagnosis, prognosis, and management. This study aims to explore the genetic basis of eight Iranian patients with NF2. METHODS AND RESULTS To investigate potential genetic causes, we conducted comprehensive medical evaluations, whole-exome sequencing (WES), and multiplex ligation-dependent probe amplification (MLPA) on the probands of each family. The identified variants in the family members were confirmed using Sanger sequencing and MLPA. The variants were classified according to the American College of Medical Genetics and Genomics guidelines. Seven distinct variants linked to the NF2 gene were identified as causes of NF2-related schwannomatosis in these patients, among which the c.862_863del frameshift was a novel variant not previously reported. Seventy-five percent of these mutations were de novo. The mean diagnostic age was lower among patients with truncating mutations compared to other patients. CONCLUSIONS This study identified a novel mutation in the NF2 gene and showed a high rate of de novo mutations in Iranian NF2 patients. Moreover, patients with truncating mutations experienced earlier symptoms than others. Comparing the manifestations of each patient with similar mutations to previous reports expands our understanding of the phenotype of NF2. These results can provide more comprehensive insights into prognosis and early interventions.
Collapse
Affiliation(s)
- Mohammad Amin Ghalavand
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alimohamad Asghari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Jahanbakhshi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khalil Ghasemi Falavarjani
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Eftekharian
- Department of Otolaryngology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hessamaldin Emamdjomeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Oliver JAC, Stanbury K, Schofield E, McLaughlin B, Mellersh CS. A TTPA deletion is associated with retinopathy with vitamin E deficiency in the English Cocker Spaniel dog. G3 (BETHESDA, MD.) 2025; 15:jkaf016. [PMID: 39874248 PMCID: PMC12005162 DOI: 10.1093/g3journal/jkaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Retinopathy with vitamin E deficiency is a familial disease in the English Cocker Spaniel dog breed. Ophthalmic abnormalities observed in retinopathy with vitamin E deficiency-affected English Cocker Spaniel include lipofuscin granule deposition within the tapetal fundus and subsequent retinal degeneration resulting in visual deficits. Affected dogs may also exhibit neurological signs that include ataxia and hindlimb proprioceptive deficits. In all cases, circulating plasma concentrations of α-tocopherol are low. This study sought to investigate the genetic basis of retinopathy with vitamin E deficiency in the English Cocker Spaniel breed. We undertook a genome-wide association study comprising 30 English Cocker Spaniels with normal fundic examinations aged 6 years or older (controls) and 20 diagnosed with retinopathy with vitamin E deficiency (cases) and identified a statistically associated signal on chromosome 29 (Praw = 1.909 × 10-17). Whole genome sequencing of 2 cases identified a 102 bp deletion in exon 1 of the alpha-tocopherol transfer protein gene (TTPA), truncating the protein by 34 amino acids. The c.23_124del variant segregated with retinopathy with vitamin E deficiency in a total of 30 cases and 43 controls. Variants in TTPA are causal for ataxia with vitamin E deficiency in humans which is a phenotypically similar disease to retinopathy with vitamin E deficiency. The identification of the canine variant is extremely significant as the availability of a DNA test will allow for identification of presymptomatic dogs and early therapeutic intervention which may prevent development of retinopathy and improve neurological signs. Breeders can also use the DNA test to efficiently eradicate the disease from this breed.
Collapse
Affiliation(s)
- James A C Oliver
- Ophthalmology Department, DWR Veterinary Specialists, Cambridgeshire CB8 0UH, UK
| | - Katherine Stanbury
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridgeshire CB3 0ES, UK
| | - Ellen Schofield
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridgeshire CB3 0ES, UK
| | - Bryan McLaughlin
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridgeshire CB3 0ES, UK
| | - Cathryn S Mellersh
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridgeshire CB3 0ES, UK
| |
Collapse
|
12
|
Luo Y, Funayama M, Hatano T, Li Y, Yoshino H, Yamashita S, Mori A, Nakamura R, Hashizume Y, Yoshida M, Riku Y, Kanzato N, Hattori N. Identification of DAGLB variants in Japanese early-onset Parkinson's disease. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02926-y. [PMID: 40244389 DOI: 10.1007/s00702-025-02926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Hereditary factors play a significant role in the development of Parkinson's disease and the identification of causative genes is ongoing. Biallelic variants in Diacylglycerol lipase β (DAGLB) are related to early-onset Parkinson's disease (EOPD) in the Chinese population, and have also been identified in an Algerian case. To date, no EOPD cases with DAGLB variants have been reported among Japanese patients. This study was conducted to clarify the occurrence of DAGLB variants among Japanese EOPD patients. We screened 270 patients with sporadic EOPD (male: female ratio, 1.37:1; mean age at onset ± standard deviation, 37.32 ± 7.91 years), and 276 patients with suspected autosomal recessive Parkinson's disease (ARPD, male: female ratio, 0.75:1; mean age at onset ± standard deviation, 58.86 ± 14.67 years). Genetic screening of all coding exons and flanking splicing regions was performed by Sanger sequencing. We identified two rare biallelic variants in two patients, both from consanguineous families. One variant was a homozygous frameshift variant (c.1770_1771del, p.Tyr591ProfsTer26), which was predicted to be pathogenic. The other was a missense variant (c.1444T > C, p.Tyr482His) and was predicted to be benign, with co-segregation ruled out for this variant. We identified a pathogenic variant in the DAGLB gene. Together with previous reports, these findings provide further evidence that loss-of-function variants in DAGLB are involved in EOPD in the Japanese population.
Collapse
Affiliation(s)
- Yue Luo
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- International Collaborative Research Administration, Juntendo University, Tokyo, Japan.
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Neurology, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
| | - Akira Mori
- Department of Neurology, Kumamoto Southern Regional Hospital, Kumamoto, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, Toyohashi, Aichi, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Naomi Kanzato
- Department of Neurology, Okinawa Prefectural Southern Medical Center & Children's Medical Center, Haebaru-cho, Okinawa, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- International Collaborative Research Administration, Juntendo University, Tokyo, Japan.
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
13
|
McAllester CS, Pool JE. The potential of inversions to accumulate balanced sexual antagonism is supported by simulations and Drosophila experiments. eLife 2025; 12:RP93338. [PMID: 40237307 PMCID: PMC12002796 DOI: 10.7554/elife.93338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with In(3 R)K favoring survival and In(3 L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, In(3 L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas In(3 R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.
Collapse
Affiliation(s)
| | - John E Pool
- Laboratory of Genetics, University of WisconsinMadisonUnited States
| |
Collapse
|
14
|
Walsh ES, Yang K, Tollison TS, Seenu S, Adams N, Zeitoun G, Sideri I, Folch G, Brochu HN, Chou H, Kossida S, York IA, Peng X. Development of ferret immune repertoire reference resources and single-cell-based high-throughput profiling assays. J Virol 2025; 99:e0018125. [PMID: 40116504 PMCID: PMC11998538 DOI: 10.1128/jvi.00181-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Domestic ferrets (Mustela putorius furo) are important for modeling human respiratory diseases. However, ferret B and T cell receptors have not been completely identified or annotated, limiting immune repertoire studies. Here, we performed long-read transcriptome sequencing of ferret splenocyte and lymph node samples to obtain over 120,000 high-quality full-length immunoglobin (Ig) and T cell receptor (TCR) transcripts. We constructed a complete reference set of the constant regions of ferret Ig and TCR isotypes and chain types. We also systematically annotated germline Ig and TCR variable (V), diversity (D), joining (J), and constant (C) genes on a recent ferret reference genome assembly. We designed new ferret-specific immune repertoire profiling assays by targeting positions in constant regions without allelic diversity across 11 ferret genome assemblies and experimentally validated them using a commercially compatible single-cell-based platform. These improved resources and assays will enable future studies to fully capture ferret immune repertoire diversity.IMPORTANCEDomestic ferrets (Mustela putorius furo) are an increasingly common model organism to study human respiratory diseases such as influenza infections. However, researchers lack ferret-specific reagents and resources to study the immune system and immune response in ferrets. In this study, we developed comprehensive ferret immune repertoire reference resources and assays, which will enable more accurate analyses of the ferret immune system in the future.
Collapse
Affiliation(s)
- Evan S. Walsh
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Kui Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tammy S. Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Sujatha Seenu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicole Adams
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Guilhem Zeitoun
- IMGT, The International ImMunoGeneTics Information System, Institute of Human Genetics, National Center for Scientific Research (CNRS), University of Montpellier (UM), Montpellier, France
| | - Ifigeneia Sideri
- IMGT, The International ImMunoGeneTics Information System, Institute of Human Genetics, National Center for Scientific Research (CNRS), University of Montpellier (UM), Montpellier, France
| | - Geraldine Folch
- IMGT, The International ImMunoGeneTics Information System, Institute of Human Genetics, National Center for Scientific Research (CNRS), University of Montpellier (UM), Montpellier, France
| | - Hayden N. Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Hsuan Chou
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Sofia Kossida
- IMGT, The International ImMunoGeneTics Information System, Institute of Human Genetics, National Center for Scientific Research (CNRS), University of Montpellier (UM), Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Ian A. York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Caron T, Crequer E, Le Piver M, Le Prieur S, Brunel S, Snirc A, Cueff G, Roueyre D, Place M, Chassard C, Simon A, Rodríguez de la Vega RC, Coton M, Coton E, Foulongne-Oriol M, Branca A, Giraud T. Identification of quantitative trait loci (QTLs) for key cheese making phenotypes in the blue-cheese mold Penicillium roqueforti. PLoS Genet 2025; 21:e1011669. [PMID: 40233118 DOI: 10.1371/journal.pgen.1011669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Elucidating the genomic architecture of quantitative traits is essential for our understanding of adaptation and for breeding in domesticated organisms. Penicillium roqueforti is the mold used worldwide for the blue cheese maturation, contributing to flavors through proteolytic and lipolytic activities. The two domesticated cheese populations display very little genetic diversity, but are differentiated and carry opposite mating types. We produced haploid F1 progenies from five crosses, using parents belonging to cheese and non-cheese populations. Analyses of high-quality genome assemblies of the parental strains revealed five large translocations, two having occurred via a circular intermediate, one with footprints of Starship giant mobile elements. Offspring genotyping with genotype-by-sequencing (GBS) revealed several genomic regions with segregation distortion, possibly linked to degeneration in cheese lineages. We found transgressions for several traits relevant for cheese making, with offspring having more extreme trait values than parental strains. We identified quantitative trait loci (QTLs) for colony color, lipolysis, proteolysis, extrolite production, including mycotoxins, but not for growth rates. Some genomic regions appeared rich in QTLs for both lipid and protein metabolism, and other regions for the production of multiple extrolites, indicating that QTLs have pleiotropic effects. Some QTLs corresponded to known biosynthetic gene clusters, e.g., for the production of melanin or extrolites. F1 hybrids constitute valuable strains for cheese producers, with new traits and new allelic combinations, and allowed identifying target genomic regions for traits important in cheese making, paving the way for strain improvement. The findings further contribute to our understanding of the genetic mechanisms underlying rapid adaptation, revealing convergent adaptation targeting major gene regulators.
Collapse
Affiliation(s)
- Thibault Caron
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Laboratoire Interprofessionnel de Production-SAS L.I.P., Aurillac, France
| | - Ewen Crequer
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production-SAS L.I.P., Aurillac, France
| | | | - Sammy Brunel
- Laboratoire Interprofessionnel de Production-SAS L.I.P., Aurillac, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
| | - Gwennina Cueff
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production-SAS L.I.P., Aurillac, France
| | - Michel Place
- Laboratoire Interprofessionnel de Production-SAS L.I.P., Aurillac, France
| | | | | | | | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | | | - Antoine Branca
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Bartusel M, Kim SX, Rehimi R, Darnell AM, Nikolić M, Heggemann J, Kolovos P, van Ijcken WFJ, Varineau J, Crispatzu G, Mangold E, Brugmann SA, Vander Heiden MG, Laugsch M, Ludwig KU, Rada-Iglesias A, Calo E. A non-syndromic orofacial cleft risk locus links tRNA splicing defects to neural crest cell pathologies. Am J Hum Genet 2025:S0002-9297(25)00138-7. [PMID: 40250422 DOI: 10.1016/j.ajhg.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025] Open
Abstract
Orofacial clefts are the most common form of congenital craniofacial malformation worldwide. The etiology of these birth defects is multifactorial, involving genetic and environmental factors. However, in most cases, the underlying causes remain unexplained, precluding a molecular understanding of disease mechanisms. Here, we integrated genome-wide association data, targeted resequencing of case and control cohorts, tissue- and cell-type-specific epigenomic profiling, and genome architecture analyses to molecularly dissect a genomic locus associated with an increased risk of non-syndromic orofacial cleft. We found that common and rare risk variants associated with orofacial cleft intersect with an enhancer (e2p24.2) that is active in human embryonic craniofacial tissue. We mapped e2p24.2 long-range interactions to a topologically associated domain harboring MYCN, DDX1, and CYRIA. We found that MYCN and DDX1, but not CYRIA, are required during craniofacial development in chicken embryos. We investigated the role of DDX1, a key component of the tRNA splicing complex, in cranial neural crest cells (cNCCs). The loss of DDX1 in cNCCs resulted in the accumulation of unspliced tRNA fragments, depletion of mature intron-containing tRNAs, and ribosome stalling at codons decoded by these tRNAs. This was accompanied by defects in both global protein synthesis and cNCC migration. We further showed that the induction of tRNA fragments is sufficient to disrupt craniofacial development. Together, these results uncovered a molecular mechanism in which impaired tRNA splicing affects cNCCs and craniofacial development and positioned MYCN, DDX1, and tRNA processing defects as risk factors in the pathogenesis of orofacial clefts.
Collapse
Affiliation(s)
- Michaela Bartusel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Skylar X Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Institute for Pharmacology and Toxicology (IPT), University Hospital Bonn, Venusberg-Campus 1, Biomedical Center 1 (Building 13), 53127 Bonn, Germany
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miloš Nikolić
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Julia Heggemann
- Institute of Human Genetics, University of Bonn, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Jade Varineau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Matthew G Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
17
|
Wang Q, Luo S, Yang Y, Bai Y, Wei J, Xu KW, Yang Y, Li M, Yang X, Duan Y, Guo Z. WP-MOD: A multi-omics and taxonomy database for woody plants. PLANT COMMUNICATIONS 2025; 6:101290. [PMID: 39987466 PMCID: PMC12010388 DOI: 10.1016/j.xplc.2025.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/30/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Woody plants, including trees, shrubs, and woody vines, are vital components of terrestrial ecosystems and are critical for maintaining biodiversity, regulating climate, and supporting human livelihoods. Over the past decade, the accumulation of high-throughput sequencing data, multi-omics data, and taxonomic information on woody plants has increased significantly, highlighting the need for an integrative database. Here, we present the Woody Plant Multi-Omics Database (WP-MOD, https://www.woodyplant.com), a comprehensive and user-friendly platform designed to meet the growing need for specialized resources in woody plant research. The WP-MOD integrates extensive taxonomic information and multi-omics data from 373 species across 35 orders and provides a centralized resource for the analysis and exploration of woody plant biology. The database includes high-quality reference genomes and reanalyzed data from RNA sequencing, small RNA sequencing, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and bisulfite sequencing, along with 17 tools for sequence and omics analysis. The WP-MOD supports both genetic and molecular research and contributes to the conservation and sustainable management of woody plants. We believe that the WP-MOD will be an essential tool for plant science researchers.
Collapse
Affiliation(s)
- Qi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoxuan Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yixiang Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yawen Bai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Junrong Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaozeng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
18
|
Mattioli F, Friðriksdóttir R, Hebert A, Bassani S, Ibrahim N, Naz S, Chrast J, Pailler-Pradeau C, Oddsson Á, Sulem P, Halldorsson GH, Melsted P, Guðbjartsson DF, Palombo F, Pippucci T, Nouri N, Seri M, Farrow EG, Saunders CJ, Guex N, Ansar M, Stefansson K, Reymond A. Bi-allelic variants in BRF2 are associated with perinatal death and craniofacial anomalies. Genome Med 2025; 17:38. [PMID: 40229899 PMCID: PMC11995667 DOI: 10.1186/s13073-025-01463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Variants in genes encoding multiple subunits of the RNA Polymerase III complex which synthesizes rRNAs, tRNAs, and other small RNAs were previously associated with neurological disorders, such as syndromic hypomyelination leukodystrophies, pontocerebellar hypoplasia, and cerebellofaciodental syndrome. One new such candidate is BRF2, which encodes a TFIIB-like factor that recruits the RNA polymerase III complex to type 3 promoters to initiate transcription of U6, RnaseP, and 7SK RNAs. METHODS We combined sequencing with functional analyses to investigate the effects of BRF2 variants. RESULTS We observe that a previously reported significant underrepresentation of double transmission of a splice variant results in recessive lethality in three large Icelandic families with multiple perinatal losses. Using data aggregation, we identified an additional seven individuals worldwide from three unrelated families carrying biallelic variants in BRF2. Affected individuals present a variable phenotype ranging from severe craniofacial anomalies with early death to intellectual disability with motor and speech development. In silico 3D modelling and functional analyses showed functional impairment of the identified variants, e.g., differences in target loci occupancy. Zebrafish knocked down for the orthologous brf2 presented with abnormal escape response, reduced swimming velocity and head size, and craniofacial malformations. These defects were complemented by the human wild-type but not mutated BRF2 mRNA further demonstrating their deleteriousness. CONCLUSIONS Overall, our results support the association of biallelic BRF2 variants with a novel neurodevelopmental disease and provide an additional link between RNA polymerase III, its targets and craniofacial anomalies.
Collapse
Affiliation(s)
- Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | - Anne Hebert
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Nazia Ibrahim
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
- Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Lahore College for Women University, Lahore, Pakistan
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Clara Pailler-Pradeau
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | | | - Gisli H Halldorsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Páll Melsted
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Daníel F Guðbjartsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche, Programma Di Neurogenetica, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Nayereh Nouri
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marco Seri
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Emily G Farrow
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Carol J Saunders
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland.
- Health2030 Genome Center, Foundation Campus Biotech Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Karakulak T, Zajac N, Bolck HA, Bratus-Neuenschwander A, Zhang Q, Qi W, Basu D, Oltra TC, Rehrauer H, von Mering C, Moch H, Kahraman A. Heterogeneous and novel transcript expression in single cells of patient-derived clear cell renal cell carcinoma organoids. Genome Res 2025; 35:698-711. [PMID: 40107723 DOI: 10.1101/gr.279345.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Splicing is often dysregulated in cancer, leading to alterations in the expression of canonical and alternatively spliced isoforms. We used the multiplexed arrays sequencing (MAS-seq) protocol of PacBio to sequence full-length transcripts in patient-derived organoid (PDO) cells of clear cell renal cell carcinoma (ccRCC). The sequencing revealed a heterogeneous dysregulation of splicing across 2599 single ccRCC cells. The majority of novel transcripts could be removed with stringent filtering criteria. The remaining 31,531 transcripts (36.6% of the 86,182 detected transcripts on average) were previously uncharacterized. In contrast to known transcripts, many of the novel transcripts have cell-specific expression. Novel transcripts common to ccRCC cells belong to genes involved in ccRCC-related pathways, such as hypoxia and oxidative phosphorylation. A novel transcript of the ccRCC-related gene nicotinamide N-methyltransferase is validated using PCR. Moreover, >50% of novel transcripts possess a predicted complete protein-coding open reading frame. An analysis of the most dominant transcript-switching events between ccRCC and non-ccRCC cells shows many switching events that are cell- and sample-specific, underscoring the heterogeneity of alternative splicing events in ccRCC. Overall, our study elucidates the intricate transcriptomic architecture of ccRCC, underlying its aggressive phenotype and providing insights into its molecular complexity.
Collapse
Affiliation(s)
- Tülay Karakulak
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Natalia Zajac
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Functional Genomics Center Zurich, ETH, 8057 Zurich, Switzerland
| | - Hella Anna Bolck
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
- Centre for AI, School of Engineering, Zurich University of Applied Sciences (ZHAW), 8400 Winterthur, Switzerland
| | | | - Qin Zhang
- Functional Genomics Center Zurich, ETH, 8057 Zurich, Switzerland
| | - Weihong Qi
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Functional Genomics Center Zurich, ETH, 8057 Zurich, Switzerland
| | - Debleena Basu
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Hubert Rehrauer
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Functional Genomics Center Zurich, ETH, 8057 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Abdullah Kahraman
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
- School for Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, 4132 Muttenz, Switzerland
| |
Collapse
|
20
|
Landi M, Carluccio AV, Shah T, Niazi A, Stavolone L, Falquet L, Gisel A, Bongcam-Rudloff E. Genome-wide comparison reveals large structural variants in cassava landraces. BMC Genomics 2025; 26:362. [PMID: 40211122 PMCID: PMC11987339 DOI: 10.1186/s12864-025-11523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Structural variants (SVs) are critical for plant genomic diversity and phenotypic variation. This study investigates a large, 9.7 Mbp highly repetitive segment on chromosome 12 of TMEB117, a region not previously characterized in cassava (Manihot esculenta Crantz). We aim to explore its presence and variability across multiple cassava landraces, providing insights into its genomic significance and potential implications. RESULTS We validated the presence of the 9.7 Mbp segment in the TMEB117 genome, distinguishing it from other published cassava genome assemblies. By mapping short-read sequencing data from 16 cassava landraces to TMEB117 chromosome 12, we observed variability in read mapping, suggesting that while all genotypes contain the insertion region, some exhibit missing segments or sequence differences. Further analysis revealed two unique genes associated with deacetylase activity, HDA14 and SRT2, within the insertion. Additionally, the MUDR-Mutator transposable element was significantly overrepresented in this region. CONCLUSIONS This study uncovers a large structural variant in the TMEB117 cassava genome, highlighting its variability among different genotypes. The enrichment of HDA14 and SRT2 genes and the MUDR-Mutator elements within the insertion suggests potential functional significance, though further research is needed to explore this. These findings provide important insights into the role of structural variations in shaping cassava genomic diversity.
Collapse
Affiliation(s)
- Michael Landi
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- International Institute of Tropical Agriculture, Nairobi, Kenya.
| | | | - Trushar Shah
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Adnan Niazi
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Livia Stavolone
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- Institute of Sustainable Plant Protection, CNR, Bari, Italy
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Gisel
- International Institute of Tropical Agriculture, Ibadan, Nigeria.
- Institute of Biomedical Technologies, CNR, Bari, Italy.
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
21
|
Mizrachi A, Sadeh M, Ben-Dor S, Dym O, Ku C, Feldmesser E, Zarfin A, Brunson JK, Allen AE, Jinkerson RE, Schatz D, Vardi A. Cathepsin X is a conserved cell death protein involved in algal response to environmental stress. Curr Biol 2025:S0960-9822(25)00361-6. [PMID: 40233752 DOI: 10.1016/j.cub.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Phytoplankton are responsible for half of the global photosynthesis and form vast blooms in aquatic ecosystems. Bloom demise fuels marine microbial life and is suggested to be mediated by programmed cell death (PCD) induced by diverse environmental stressors. Despite its importance, the molecular basis for algal PCD remains elusive. Here, we reveal novel PCD genes conserved across distant algal lineages using cell-to-cell heterogeneity in the response of the diatom Phaeodactylum tricornutum to oxidative stress. Comparative transcriptomics of sorted sensitive and resilient subpopulations following oxidative stress revealed genes directly linked to their contrasting fates of cell death and survival. Comparing these genes with those found in a large-scale mutant screen in the green alga Chlamydomonas reinhardtii identified functionally relevant conserved PCD gene candidates, including the cysteine protease cathepsin X/Z (CPX). CPX mutants in P. tricornutum CPX1 and C. reinhardtii CYSTEINE ENDOPEPTIDASE 12 (CEP12) exhibited resilience to oxidative stress and infochemicals that induce PCD, supporting a conserved function of these genes in algal PCD. Phylogenetic and predictive structural analyses show that CPX is highly conserved in eukaryotes, and algae exhibit strong structural similarity to human Cathepsin X/Z (CTSZ), a protein linked to various diseases. CPX is expressed by diverse algae across the oceans and correlates with upcoming demise events during toxic Pseudo-nitzschia blooms, providing support for its ecological significance. Elucidating PCD components in algae sheds light on the evolutionary origin of PCD in unicellular organisms and on the cellular strategies employed by the population to cope with stressful conditions.
Collapse
Affiliation(s)
- Avia Mizrachi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mai Sadeh
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chuan Ku
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amichai Zarfin
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - John K Brunson
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, San Diego, CA 92037, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, San Diego, CA 92037, USA
| | - Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
22
|
Perez ES, Ribeiro RA, Zanella BT, Almeida FLA, Blasco J, Garcia de la Serrana D, Dal-Pai-Silva M, Duran BO. Proteome of amino acids or IGF1-stimulated pacu muscle cells offers molecular insights and suggests FN1B and EIF3C as candidate markers of fish muscle growth. Biochem Biophys Res Commun 2025; 757:151648. [PMID: 40107112 DOI: 10.1016/j.bbrc.2025.151648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Study of fish skeletal muscle is essential to understand physiological or metabolic processes, and to develop programs searching for increased muscle mass and meat production. Amino acids (AA) and IGF1 stimulate processes that lead to muscle growth, but their signaling pathways and molecular regulation need further clarification in fish. We obtained the proteome of pacu (Piaractus mesopotamicus) cultured muscle cells treated with AA or IGF1, which induced the differential abundance of 67 and 53 proteins, respectively. Enrichment analyses showed that AA modulated histone methylation, cell differentiation, and metabolism, while IGF1 modulated ATP production and protein synthesis. In addition, we identified molecular networks with candidate markers that commonly regulate fish muscle cells: FN1B and EIF3C, respectively up- and down-regulated by both treatments. FN1B was related to cell proliferation, protein synthesis, and muscle repair, while EIF3C connected with negative regulators of muscle growth. Their gene expression was evaluated in pacu and Nile tilapia (Oreochromis niloticus) after nutrient manipulation, with fn1b increased during refeeding and eif3c increased during fasting in both species. Our work helps clarify the molecular regulation by AA or IGF1 and suggests that FN1B and EIF3C could be potential stimulatory and inhibitory biomarkers of fish muscle growth.
Collapse
Affiliation(s)
- Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafaela A Ribeiro
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Bruna Tt Zanella
- Department of Morphophysiology, Institute of Biosciences, Federal University of Jataí (UFJ), Jataí, Goiás, Brazil
| | - Fernanda LA Almeida
- Department of Morphological Sciences, Center of Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Os Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| |
Collapse
|
23
|
Palmer JTT, Vink JNA, Castro LM, Craig OJS, Davison EE, Gerth ML. Improved isolation and PCR detection of Phytophthora agathidicida oospores from soils. Microbiol Spectr 2025:e0013525. [PMID: 40197128 DOI: 10.1128/spectrum.00135-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/10/2025] [Indexed: 04/09/2025] Open
Abstract
Phytophthora species are eukaryotic microorganisms responsible for severe dieback and root rot in plants worldwide, impacting crops, forests, and other important ecosystems. In New Zealand, P. agathidicida leads to fatal dieback in kauri (Agathis australis), long-lived endemic trees of significant cultural and ecological importance. A critical aspect of the P. agathidicida lifecycle is the production of oospores-thick-walled spores essential for long-term survival in soil, dispersal, and disease inoculation. However, their heterogeneous distribution in soils, robust structure, and dormant state make them challenging to detect using soil baiting or DNA-based methods. Soil baiting is the basis of most current testing for P. agathidicida, but baiting-based methods have low sensitivity, are slow, and require specialised facilities. To address these challenges, we developed and validated a PCR-based method for detecting P. agathidicida oospores directly from soil. Our approach includes a technique for separating oospores from soil, improved oospore lysis and DNA extraction, and a primer pair that targets a repeat region of the P. agathidicida genome with high sensitivity and specificity. The primers amplified the target product in all tested P. agathidicida isolates without cross-reactivity against eight non-target Phytophthora species. The detection limit was 1 femtogram of P. agathidicida DNA via endpoint PCR. Performance assessment against 65 soil samples from kauri forests revealed P. agathidicida in 69% of samples compared to only 11% detected by existing methods. By eliminating the need for baiting, our assay enhances the speed, accuracy, and accessibility of testing, thereby facilitating more comprehensive monitoring and improved disease management. IMPORTANCE Phytophthora species are notorious plant pathogens responsible for severe dieback and root rot diseases, significantly impacting crops, forests, and irreplaceable natural ecosystems. Rapid and accurate detection of these pathogens is essential for effective disease management. In New Zealand, P. agathidicida threatens the country's endemic kauri forests. In this study, we developed and validated a PCR-based method for detecting P. agathidicida oospores in soil. Oospores are long-lived, thick-walled spores that serve as key propagules for survival in soil and the spread of disease. Their robust structure and dormant state make them particularly challenging to detect using traditional soil baiting techniques or DNA-based methods. Our method is fast, accurate, and requires minimal equipment, enabling local testing and thereby empowering communities and enhancing surveillance efforts. Although developed for P. agathidicida, this method could be adapted for other plant pathogens, potentially improving disease management across various agricultural and ecological contexts.
Collapse
Affiliation(s)
- Jade T T Palmer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jochem N A Vink
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Leticia M Castro
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Oliver J S Craig
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Emily E Davison
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Monica L Gerth
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
24
|
Lormand JD, Savelle CH, Teschler JK, López E, Little RH, Malone JG, Yildiz FH, García-García MJ, Sondermann H. Secreted retropepsin-like enzymes are essential for stress tolerance and biofilm formation in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643919. [PMID: 40166241 PMCID: PMC11957051 DOI: 10.1101/2025.03.18.643919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proteases regulate important biological functions. Here we present the structural and functional characterization of three previously uncharacterized aspartic proteases in Pseudomonas aeruginosa. We show that these proteases have structural hallmarks of retropepsin peptidases and play redundant roles for cell survival under hypoosmotic stress conditions. Consequently, we named them retropepsin-like osmotic stress tolerance peptidases (Rlo). Our research shows that while Rlo proteases are homologous to RimB, an aspartic peptidase involved in rhizosphere colonization and plant infection, they contain N-terminal signal peptides and perform distinct biological functions. Mutants lacking all three secreted Rlo peptidases show defects in antibiotic resistance, biofilm formation, and cell morphology. These defects are rescued by mutations in the inactive transglutaminase transmembrane protein RloB and the cytoplasmic ATP-grasp protein RloC, two previously uncharacterized genes in the same operon as one of the Rlo proteases. These studies identify Rlo proteases and rlo operon products as critical factors in clinically relevant processes, making them appealing targets for therapeutic strategies against Pseudomonas infections.
Collapse
Affiliation(s)
- Justin D. Lormand
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Charles H. Savelle
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Eva López
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Richard H. Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - María J. García-García
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
25
|
Torres-Díaz C, Ortíz-Sepúlveda A, Valladares MA, Farias-Cantillana D, Molina-Montenegro MA, Ballesteros GI. Development and Application of Novel SSR Markers to Assess the Genetic Diversity and Population Structure of Phacelia secunda Along an Altitudinal Gradient in the Central Chile Andes. PLANTS (BASEL, SWITZERLAND) 2025; 14:1135. [PMID: 40219202 PMCID: PMC11991144 DOI: 10.3390/plants14071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Phacelia secunda J.F. Gmel. (Boraginaceae) is a widely distributed insect-pollinated perennial herb. In central Chile (33° S), it occurs from the sea level up to 3600 m in the Andes, exhibiting broad morphological variation. In this study, we developed and characterized novel polymorphic microsatellites for this species, using an Illimina MiSeq sequencing platform. Nineteen polymorphic loci were obtained, with alleles numbers ranging from 3 to 13 per locus (mean = 5.84). Observed (HO) and expected heterozygosities (HE) ranged from 0.050 to 0.900 and from 0.049 to 0.825, respectively. These markers were applied to assess the genetic diversity and population structure along an altitudinal spanning from 1600 to 3600 m. The highest elevation population exhibited significantly lower within-population genetic diversity compared to lower-elevation populations. Significant population differentiation was observed along the gradient. Gene flow estimates support a stepping-stone like mode of migration, with greater exchange between adjacent elevations. These new microsatellites provide a valuable tool for elucidating the influence of altitude on genetic diversity and structure, and for evaluating the roles of local adaptation and phenotypic plasticity in shaping population variation.
Collapse
Affiliation(s)
- Cristian Torres-Díaz
- Grupo de Investigación en Biodiversidad & Cambio Global (GIBCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillan 3800708, Chile
| | - Ana Ortíz-Sepúlveda
- Grupo de Investigación en Biodiversidad & Cambio Global (GIBCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillan 3800708, Chile
| | - Moisés A. Valladares
- Laboratorio de Biología Evolutiva, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Darío Farias-Cantillana
- Grupo de Investigación en Biodiversidad & Cambio Global (GIBCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillan 3800708, Chile
| | - Marco A. Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3460000, Chile
| | - Gabriel I. Ballesteros
- Laboratorio de Biología Evolutiva, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
26
|
Pitsch JW, Wirth SA, Costantino NT, Mejia J, Doss RM, Yang X, Breuss MW. CREPE (CREate Primers and Evaluate): a computational tool for large-scale primer design and specificity analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646040. [PMID: 40236009 PMCID: PMC11996297 DOI: 10.1101/2025.03.28.646040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Polymerase chain reaction (PCR) is ubiquitous in biological research labs, as it is a fast, flexible, and cost-effective technique to amplify a DNA region of interest. Novel applications often leverage this ease of implementation and parallelize reactions for multiplexed approaches, such as next-generation sequencing. However, manual primer design can be an error-prone and time-consuming process depending on the number and composition of target sites. While Primer3 has emerged as an accessible tool to solve some of these issues and increase reproducibility, additional computational pipelines are required for appropriate scaling. Moreover, this does not replace the manual confirmation of primer specificity (i.e., the assessment of off-targets). To overcome the challenges associated with large-scale primer design, we fused the functionality of Primer3 and In-Silico PCR (ISPCR); this integrated pipeline, which we call CREPE ( CRE ate P rimers and E valuate), performs primer design and specificity analysis through a custom evaluation script for any given number of target sites at scale. Its final output summarizes the lead forward and reverse primer pair for each target site, a measure of the likelihood of binding to off-targets, and additional information to aid a user's decision-making. We provide this through a customized workflow for targeted amplicon sequencing (TAS) on a 150bp paired-end Illumina platform. Experimental testing of this application on clinically relevant loci showed successful amplification for more than 90% of primers deemed acceptable by CREPE. Together, we believe that CREPE represents a useful bioinformatic tool that supports the important scaling of PCR-based applications.
Collapse
|
27
|
Wang H, Wang D, Shao B, Li J, Li Z, Chase MW, Li J, Feng Y, Wen Y, Qin S, Chen B, Wu Z, Jin X. Unequally Abundant Chromosomes and Unusual Collections of Transferred Sequences Characterize Mitochondrial Genomes of Gastrodia (Orchidaceae), One of the Largest Mycoheterotrophic Plant Genera. Mol Biol Evol 2025; 42:msaf082. [PMID: 40189939 DOI: 10.1093/molbev/msaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
The mystery of genomic alternations in heterotrophic plants is among the most intriguing in evolutionary biology. Compared to plastid genomes (plastomes) with parallel size reduction and gene loss, mitochondrial genome (mitogenome) variation in heterotrophic plants remains underexplored in many aspects. To further unravel the evolutionary outcomes of heterotrophy, we present a comparative mitogenomic study with 13 de novo assemblies of Gastrodia (Orchidaceae), one of the largest fully mycoheterotrophic plant genera, and its relatives. Analyzed Gastrodia mitogenomes range from 0.56 to 2.1 Mb, each consisting of numerous, unequally abundant chromosomes or contigs. Size variation might have evolved through chromosome rearrangements followed by stochastic loss of "dispensable" chromosomes, with deletion-biased mutations. The discovery of a hyper-abundant (∼15 times intragenomic average) chromosome in two assemblies represents the hitherto most extreme copy number variation in any mitogenomes, with similar architectures discovered in two metazoan lineages. Transferred sequence contents highlight asymmetric evolutionary consequences of heterotrophy: despite drastically reduced intracellular plastome transfers convergent across heterotrophic plants, their rarity of horizontally acquired sequences sharply contrasts parasitic plants, where massive transfers from their hosts prevail. Rates of sequence evolution are markedly elevated but not explained by copy number variation, extending prior findings of accelerated molecular evolution from parasitic to heterotrophic plants. Putative evolutionary scenarios for these mitogenomic convergence and divergence fit well with the common (e.g. plastome contraction) and specific (e.g. host identity) aspects of the two heterotrophic types. These idiosyncratic mycoheterotrophs expand known architectural variability of plant mitogenomes and provide mechanistic insights into their content and size variation.
Collapse
Affiliation(s)
- Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Deyi Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Bingyi Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingrui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhanghai Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Bentley, Australia
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Yunnan, China
| | - Yanlei Feng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yingying Wen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Binghua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Zöhrer J, Ascher‐Jenull J, Wagner AO. Tracking Different States of Spiked Environmental DNA Using Multiplex Digital PCR Assays. Environ Microbiol 2025; 27:e70086. [PMID: 40151898 PMCID: PMC11950903 DOI: 10.1111/1462-2920.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
The study of microbial communities based on the total environmental DNA (eDNA) is influenced by the presence of different eDNA states, i.e., intracellular (iDNA) and extracellular DNA (exDNA), and the choice of the DNA extraction method. Although the use of spike-and-recovery controls facilitates the diagnosis of such issues, appropriate experimental setups simultaneously accounting for the different eDNA states and their bacterial origins are missing. Here, we used two single-gene deletion mutants of both Escherichia coli and Bacillus subtilis to trace exDNA and iDNA spike-ins of each selected model organism within environmental samples. Unique primer/probe sets were developed for each strain, allowing their absolute quantification using multiplex digital PCR assays. The proposed spike-and-recovery controls were successfully applied to various environments including soil, sediment, sludge and compost. While the percent recovery of spiked iDNA differed significantly between E. coli and B. subtilis, results were similar for both model organisms in the case of spiked exDNA, emphasising that the fate of DNA molecules in the environment is similar irrespective of their bacterial origin. Hence, future studies may benefit from the proposed approach to better understand methodological ambiguities related to the eDNA extraction in general as well as the separation of the different eDNA states.
Collapse
Affiliation(s)
- Julia Zöhrer
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Judith Ascher‐Jenull
- Department of Experimental Architecture, Integrative Design ExtremesUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
29
|
Mou A, Li X, Li Z, Qu L, Dong Y, Wang Z, Zhang X, Xu Q. Comparative analysis of esophageal gland microbes between two body sizes of Gigantopelta aegis, a hydrothermal snail from the Southwest Indian Ridge. Microbiol Spectr 2025; 13:e0295924. [PMID: 39992146 PMCID: PMC11960433 DOI: 10.1128/spectrum.02959-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 02/25/2025] Open
Abstract
Microbial communities within animals provide nutritional foundation and energy supply for the hydrothermal ecosystem. The peltospirid snail Gigantopelta aegis forms large aggregation in the Longqi vent field on the Southwest Indian Ridge. This endemic species is characterized by a changeable diet and morphology, especially reflected in internal organs such as remarkably enlarged esophageal glands. Here, 16S full-length rRNA gene analysis was performed to compare the variations in esophageal gland microbiota between two body size groups (small and large) of G. aegis. Phyla Proteobacteria and Bacteroidetes were the dominant featured bacteria contributing to the microbial community. No significant differences between the small and large groups were revealed by the diversity index and principal component analysis (PCA) clustering. The differences were in the relative abundance of bacteria. Compared with small-sized snails, the larger ones housed more Thiogranum (9.94% to 34.86%) and fewer Sediminibacterium (29.38% to 4.54%). Functional prediction for all of the microbiota showed that the pathways related to metabolism appeared highly abundant in smaller G. aegis. However, for the larger ones, the most distinctive pathways were those of environmental information processing. Facultative symbiotic Sulfurovum was marked as a core node in the co-occurrence network and suggested an influence on habitat selection of G. aegis in hydrothermal fields. In summary, variations in bacteria composition and potential functions possibly reflected changes in the anatomical structure and dietary habits of G. aegis. These dominant bacteria shared capabilities in nutritional supplementation and ecological niche expansion in the host, potentially a key adaptation for hydrothermal survival.IMPORTANCEDominant in the Longqi hydrothermal vent Southwest Indian Ridge, Gigantopelta aegis was observed to undergo unique and significant morphological changes and diet shifts known as cryptometamorphosis. During this process, G. aegis developed a specialized bacteria-housing organ, the esophageal gland, in the later life stages. Our research discovered variations in esophageal gland microbes between different body size groups of snails. These bacteria were closely related to the development and health of G. aegis. Full-length 16S rRNA gene analysis revealed more Thiogranum and fewer Sediminibacterium, suggesting a potential association with environmental adaptation. In the small-sized group, the potential functions were enriched in metabolism, while in larger G. aegis individuals, predictions indicated adaptive functions such as environmental information processing. Also, symbiotic Sulfurovum could be one of the factors influencing the habitat selection of G. aegis. Understanding the complex relationship between benthic macrofauna and microbes helps us describe the mechanisms of survival in extreme environments.
Collapse
Affiliation(s)
- Anning Mou
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xinlong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingyun Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yue Dong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi'an, China
- Qingdao Marine Engineering Survey, Design and Research Institute Co., Ltd., Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Qingdao Marine Engineering Survey, Design and Research Institute Co., Ltd., Qingdao, China
| |
Collapse
|
30
|
Savva L, Bryan A, Vinopal D, Gonzalez-Navarro OE, Kosgey Z, Ndung'u KC, Horo JT, Danu KG, Molla M, Alemayehu Y, Hodson DP, Saunders DGO. A portable, nanopore-based genotyping platform for near real-time detection of Puccinia graminis f. sp. tritici lineages and fungicide sensitivity. BMC Genomics 2025; 26:327. [PMID: 40169941 PMCID: PMC11959956 DOI: 10.1186/s12864-025-11428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Fungal plant disease outbreaks are increasing in both scale and frequency, posing severe threats to agroecosystem stability, native biodiversity and food security. Among these, the notorious wheat stem rust fungus, Puccinia graminis f.sp. tritici (Pgt), has threatened wheat production since the earliest days of agriculture. New Pgt strains continue to emerge and quickly spread over vast distances through the airborne dispersal of asexual urediniospores, triggering extensive disease outbreaks as these exotic Pgt strains often overcome resistance in dominant crop varieties of newly affected regions. This highlights the urgent need for a point-of-care, real-time Pgt genotyping platform to facilitate early detection of emerging Pgt strains. RESULTS In this study, we developed a simple amplicon-based re-sequencing platform for rapid genotyping of Pgt isolates. This system is built around a core set of 276 Pgt genes that we found are highly polymorphic between Pgt isolates and showed that the sequence of these genes alone could be used to accurately type Pgt strains to particular lineages. We also developed a simplistic DNA preparation method and an automated bioinformatic pipeline, to enable these Pgt gene markers to be sequenced and analysed rapidly using the MinION nanopore sequencing device. This approach successfully enabled the typing of Pgt strains within approximately 48 h of collecting Pgt-infected wheat samples, even in resource-limited locations in Kenya and Ethiopia. In addition, we incorporated monitoring capabilities for sequence variations in Pgt genes that encode targets of the azole and succinate dehydrogenase inhibitor fungicides, enabling real-time tracking of potential shifts in fungicide sensitivity. CONCLUSION The newly developed Pgt Mobile And Real-time, PLant disEase (MARPLE) diagnostics platform we established, now allows precise typing of individual Pgt strains while simultaneously tracking changes in fungicide sensitivity, providing an early warning system for potential indicators of changes in the Pgt population and emerging fungicide resistance. Further integration of this Pgt MARPLE diagnostics platform into national surveillance programmes will support more informed management decisions and timely responses to Pgt disease outbreaks, helping reduce the devastating crop losses currently caused by this 'cereal killer'.
Collapse
Affiliation(s)
- Loizos Savva
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Anthony Bryan
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Zennah Kosgey
- Kenya Agricultural and Livestock Research Organization (KALRO), Food Crops Research Centre, Njoro, Kenya
| | - Kimani Cyrus Ndung'u
- Kenya Agricultural and Livestock Research Organization (KALRO), Food Crops Research Centre, Njoro, Kenya
| | - Jemal Tola Horo
- Ambo Research Center, Ethiopian Institute of Agricultural Research (EIAR), Ambo, Ethiopia
| | - Kitessa Gutu Danu
- Ambo Research Center, Ethiopian Institute of Agricultural Research (EIAR), Ambo, Ethiopia
| | - Messele Molla
- EIAR, National Agricultural Biotechnology Research Center, Holeta, Ethiopia
| | - Yoseph Alemayehu
- International Maize and Wheat Improvement Center (CIMMYT), Addis Ababa, Ethiopia
| | | | | |
Collapse
|
31
|
Wu P, Xue N, Yang J, Zhang Q, Sun Y, Zhang W. OGU: A Toolbox for Better Utilising Organelle Genomic Data. Mol Ecol Resour 2025; 25:e14044. [PMID: 39523951 PMCID: PMC11887606 DOI: 10.1111/1755-0998.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Organelle genomes serve as crucial datasets for investigating the genetics and evolution of plants and animals, genome diversity, and species identification. To enhance the collection, analysis, and visualisation of such data, we have developed a novel open-source software tool named Organelle Genome Utilities (OGU). The software encompasses three modules designed to streamline the handling of organelle genome data. The data collection module is dedicated to retrieving, validating and organising sequence information. The evaluation module assesses sequence variance using a range of methods, including novel metrics termed stem and terminal phylogenetic diversity. The primer module designs universal primers for downstream applications. Finally, a visualisation pipeline has been developed to present comprehensive insights into organelle genomes across different lineages rather than focusing solely on individual species. The performance, compatibility and stability of OGU have been rigorously evaluated through benchmarking with four datasets, including one million mixed GenBank records, plastid genomic data from the Lamiaceae family, mitochondrial data from rodents, and 308 plastid genomes sourced from various angiosperm families. Based on software capabilities, we identified 30 plastid intergenic spacers. These spacers exhibit a moderate evolutionary rate and offer practical utility comparable to coding regions, highlighting the potential applications of intergenic spacers in organelle genomes. We anticipate that OGU will substantially enhance the efficient utilisation of organelle genomic data and broaden the prospects for related research endeavours.
Collapse
Affiliation(s)
- Ping Wu
- College of Life SciencesSichuan Normal UniversityChengduSichuanChina
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Ningning Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qiang Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- Institute of Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Yuzhe Sun
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Wen Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National GeneBank, BGI‐ShenzhenShenzhenChina
| |
Collapse
|
32
|
Durmaz CD, Gümrük F, Celkan T, Unal S, Çetinkaya A. Alu-Mediated Deletion of FANCA in Turkish Families With Fanconi Anemia: Evidence of a Founder Effect. Am J Med Genet A 2025; 197:e63945. [PMID: 39624858 DOI: 10.1002/ajmg.a.63945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/07/2024] [Accepted: 11/10/2024] [Indexed: 03/08/2025]
Abstract
Fanconi anemia (FA) is a rare inherited bone marrow failure syndrome characterized by pancytopenia, increased susceptibility to malignancies, and a spectrum of congenital anomalies. Here, we report on eight affected individuals from six unrelated families with a large Alu-mediated intragenic deletion encompassing exons 6-31 in the FANCA gene, identified as a founder mutation in the Turkish population through haplotype analysis. This deletion, mediated by Alu repeat sequences, underscores the role of repetitive elements in FA pathogenesis. Clinical data revealed variable phenotypic presentations among affected individuals, highlighting the challenge of establishing genotype-phenotype correlations even in the presence of identical FANCA pathogenic variants. We carried out an easy and effective PCR-based diagnostic test for detecting this mutation, enabling precise diagnosis and genetic counseling for affected individuals and their families. This study provides valuable insights into the molecular mechanisms underlying FA pathogenesis and offers a practical approach for genetic diagnosis in affected individuals, particularly those of Turkish descent.
Collapse
Affiliation(s)
- Ceren Damla Durmaz
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fatma Gümrük
- Department of Pediatric Hematology, Research Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Hacettepe University, Ankara, Turkey
| | - Tiraje Celkan
- Department of Pediatric Hematology Oncology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sule Unal
- Department of Pediatric Hematology, Research Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Hacettepe University, Ankara, Turkey
| | - Arda Çetinkaya
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
33
|
Waheed‐Ullah Q, Wilsdon A, Abbad A, Rochette S, Bu'Lock F, Saed AA, Hitz M, Brook JD, Loughna S. Cyclin-dependent kinase 13 is indispensable for normal mouse heart development. J Anat 2025; 246:616-630. [PMID: 39556044 PMCID: PMC11911135 DOI: 10.1111/joa.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Congenital heart disease (CHD) has an incidence of approximately 1%. Over the last decade, sequencing studies including large cohorts of individuals with CHD have begun to unravel the genetic mechanisms underpinning CHD. This includes the identification of variants in cyclin-dependent kinase 13 (CDK13), in individuals with syndromic CHD. CDK13 encodes a serine/threonine protein kinase. The cyclin partner of CDK13 is cyclin K; this complex is thought to be important in transcription and RNA processing. Pathogenic variants in CDK13 cause CDK13-related disorder in humans, characterised by intellectual disability and developmental delay, recognisable facial features, feeding difficulties and structural brain defects, with 35% of individuals having CHD. To obtain a greater understanding for the role that this essential protein kinase plays in embryonic heart development, we have analysed a presumed loss of function Cdk13 transgenic mouse model (Cdk13tm1b). The homozygous mutants were embryonically lethal in most cases by E15.5. X-gal staining showed Cdk13 expression localised to developing facial regions, heart and surrounding areas at E10.5, whereas at E12.5, it was more widely present. In the E15.5 heart, staining was seen throughout. RT-qPCR showed significant reduction in Cdk13 transcript expression in homozygous compared with WT and heterozygous hearts at E10.5 and E12.5. Detailed morphological 3D analysis of embryonic and postnatal hearts was performed using high-resolution episcopic microscopy, which affords a more detailed analysis of structures such as cardiac valve leaflets and endocardial cushions, compared with more traditional histological techniques. We show that both the homozygous and heterozygous Cdk13tm1b mutants exhibit a range of CHD, including ventricular septal defects, bicuspid aortic valve, double outlet right ventricle and atrioventricular septal defects. 100% (n = 4) of homozygous hearts displayed CHD. Differential expression was seen in Cdk13tm1b homozygous mutants for two genes known to be necessary for normal heart development. The types of defects, and the presence of CHD in heterozygous mice (17.02%, n = 8/47), are consistent with the CDK13-related disorder phenotype in humans. This study provides important insights into the effects of reduced function of CDK13 in the mouse heart and contributes to our understanding of the mechanism behind this disorder as a cause of CHD.
Collapse
Affiliation(s)
- Qazi Waheed‐Ullah
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Anna Wilsdon
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Aseel Abbad
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Sophie Rochette
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Frances Bu'Lock
- East Midlands Congenital Heart CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Asma Ali Saed
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Marc‐Phillip Hitz
- Institute of Medical GeneticsCarl von Ossietzky University OldenburgOldenburgGermany
- Department of Congenital Heart Disease and Paediatric CardiologyUniversity Hospital of Schleswig‐HolsteinKielGermany
- German Centre for Cardiovascular Research (DZHK)KielGermany
| | - J. David Brook
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
34
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
35
|
Gjessing MC, Tengs T, Nilsen H, Mohammad S, Weli SC. The First Report of Cod Gill Poxvirus in Gills of Atlantic Cod (Gadus morhua L.) Suffering From Cardiorespiratory Disease. JOURNAL OF FISH DISEASES 2025; 48:e14078. [PMID: 39727049 PMCID: PMC11907688 DOI: 10.1111/jfd.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Atlantic cod farming experiences renewed growth in Norway, and increased awareness is essential to address emerging diseases in this species. There are few reports on gill diseases in cod, and to date, no viral gill infections of cod have been documented. In this study, we collected samples from three sequential time points in summer 2023 from farmed cod suffering from cardiorespiratory disease. We document severe heart and gill pathology, and a novel double-strand DNA virus was discovered in the gills. Through comprehensive genetic characterisation and comparative sequence analysis, this virus was classified as a new species in the genus Poxvirus, designated cod gill poxvirus (CGPV). We demonstrate disease causality with severe gill lesions as shown by histopathology and RNA scope in situ hybridisation, and poxvirus particles were identified in gill epithelial cells by transmission electron microscopy. Further, another gill pathogen not previously described in cod, Candidatus. Branchiomonas cysticola, was identified by pcr and in situ hybridisation. Our findings provide strong evidence for poxvirus in Atlantic cod and underscore the imminent threat posed to Atlantic cod farm industry.
Collapse
Affiliation(s)
- Mona C. Gjessing
- Department of Fish Health and BiosecurityNorwegian Veterinary InstituteOsloNorway
| | | | - Hanne Nilsen
- Department of Fish Health and BiosecurityNorwegian Veterinary InstituteOsloNorway
| | - Saima Mohammad
- Department of Fish Health and BiosecurityNorwegian Veterinary InstituteOsloNorway
| | - Simon C. Weli
- Department of Fish Health and BiosecurityNorwegian Veterinary InstituteOsloNorway
| |
Collapse
|
36
|
Bach KQ, Duong CQ, Vu HTB, Nguyen BTN, Nguyen TT, Nguyen MT, Li R, Hutchison W, Esaq FS, Tran H, Nguyen TH. Identification of Novel F9 Gene Variants in 143 Vietnamese Patients with Hemophilia B. J Blood Med 2025; 16:163-176. [PMID: 40191713 PMCID: PMC11971968 DOI: 10.2147/jbm.s514338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose Vietnam is estimated to have approximately 30,000 hemophilia B (HB) carriers, with hundreds of new cases registered annually. However, comprehensive molecular studies on HB remain limited. Therefore, this study aimed to characterize genetic variants and assess their clinical significance in unrelated Vietnamese patients with HB. Patients and Methods This study included a cohort of 143 unrelated HB patients with diagnosed FIX levels. Genetic analysis of the F9 gene was performed using DNA sequencing and other molecular techniques. Variant pathogenicity was classified following ACMG/AMP guidelines, supplemented by computational predictions and clinical data. Results A 100% variant detection rate was achieved, identifying 83 unique variants from 143 patients. Single nucleotide variants were predominant, with missense variants accounting for 71.08%. Of the 83 unique variants, 20 novel variants were identified, including six missenses, four nonsenses, four frameshifts, two large deletions, two in-frame deletions, and two splice-site variants. The serine protease domain contained the highest proportion of variants (49.4%). Pathogenicity analysis revealed a predominance of severe phenotypes (72.03%). Among the novel variants, twelve were classified as pathogenic, one as likely pathogenic, and seven as variants of uncertain significance. A noteworthy case was the NM_000133.4:c.-21C>T promoter variant associated with HB Leyden, which demonstrated age-dependent improvements in factor IX levels. Conclusion This study expands the mutational spectrum of HB in the Vietnamese population and provide critical insights into genotype-phenotype correlations. The identification of novel variants enhances diagnostic precision and underscores the importance of comprehensive genomic analyses in understanding disease mechanisms.
Collapse
Affiliation(s)
- Khanh Quoc Bach
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| | - Chinh Quoc Duong
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Huong Thi Bich Vu
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
| | | | - Trang Thuy Nguyen
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
| | - Mai Thi Nguyen
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
| | - Ruoxin Li
- Thalassemia and Haemophilia Molecular Reference Laboratory, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Wendy Hutchison
- Thalassemia and Haemophilia Molecular Reference Laboratory, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Farisha Shabnam Esaq
- Thalassemia and Haemophilia Molecular Reference Laboratory, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Huyen Tran
- Haemophilia Treatment Centre, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Thanh Ha Nguyen
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
37
|
Ferraresso M, Bailey S, Alonso‐Crisostomo L, Ward D, Panayi C, Scurlock ZGL, Saini HK, Smith SP, Nicholson JC, Enright AJ, Scarpini CG, Coleman N, Murray MJ. Replenishing co-downregulated miR-100-5p and miR-125b-5p in malignant germ cell tumors causes growth inhibition through cell cycle disruption. Mol Oncol 2025; 19:1203-1228. [PMID: 39522951 PMCID: PMC11977657 DOI: 10.1002/1878-0261.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs (miRNAs) are short, nonprotein-coding RNAs, and their expression is dysregulated in malignant germ cell tumors (GCTs). Here, we investigated the causes and consequences of downregulated miR-99a-5p/miR-100-5p (functionally identical) and miR-125b-5p levels in malignant GCTs regardless of age, site, or subtype. Quantitative RT-PCR was used to assess miR-99a-5p/miR-100-5p, miR-125b-5p, and associated gene expression in malignant GCT tissues/cell lines [seminoma (Sem), yolk sac tumor (YST), embryonal carcinoma (EC)]. Cells were treated with demethylating 5-azacytidine and pyrosequencing was performed. Combination miR-100-5p/miR-125b-5p mimic replenishment was used to treat malignant GCT cells. Global messenger RNA (mRNA) targets of the replenished miRNAs were identified and Metascape used to study pathway effects. We found that expression levels of miR-99a-5p/miR-100-5p and miR-125b-5p, their respective pri-miRNAs, and associated genes from chromosomes 11 and 21 (chr11/chr21) were downregulated and highly correlated in malignant GCT cells. Treatment with 5-azacytidine caused upregulation of these miRNAs, with pyrosequencing revealing hypermethylation of their chr11/chr21 loci, likely contributing to miR-100-5p/miR-125b-5p downregulation. Combination miR-100-5p/miR-125b-5p mimic replenishment resulted in growth inhibition in Sem/YST cells, with miR-100-5p/miR-125b-5p mRNA targets enriched in downregulated genes, which were involved in cell cycle (confirmed by flow cytometry) and signaling pathways. Knockdown of the miR-100-5p/miR-125b-5p target tripartite motif containing 71 (TRIM71kd) recapitulated miR-100-5p/miR-125b-5p replenishment, with growth inhibition and cell cycle disruption of Sem/YST/EC cells. Further, replenishment led to reduced lin-28 homolog A (LIN28A) levels and concomitant increases in let-7 (MIRLET7B) tumor suppressor miRNAs, creating a sustained reversion of cell phenotype. In summary, combination miR-100-5p/miR-125b-5p mimic replenishment or TRIM71kd caused growth inhibition in malignant GCT cells via cell cycle disruption. Further studies are now warranted, including mimic treatment alongside conventional platinum-based chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Dawn Ward
- Department of PathologyUniversity of CambridgeUK
| | | | | | | | | | - James C. Nicholson
- Department of PaediatricsUniversity of Cambridge, Cambridge University Hospitals NHS Foundation TrustUK
- Department of Paediatric Haematology and OncologyCambridge University Hospitals NHS Foundation TrustUK
| | | | | | - Nicholas Coleman
- Department of PathologyUniversity of CambridgeUK
- Department of HistopathologyCambridge University Hospitals NHS Foundation TrustUK
| | - Matthew J. Murray
- Department of PathologyUniversity of CambridgeUK
- Department of Paediatric Haematology and OncologyCambridge University Hospitals NHS Foundation TrustUK
| |
Collapse
|
38
|
Augello FR, Lombardi F, Ciafarone A, Altamura S, Marazzato M, Artone S, Cinque B, Palumbo P. Streptococcus thermophilus CNCM I-5570 lysate counteracts the aging process in human dermal fibroblast cells by neutralizing harmful free radicals and impacting antioxidant and anti-inflammatory pathways, thus restoring their physiological functions. Biomed Pharmacother 2025; 185:117975. [PMID: 40081000 DOI: 10.1016/j.biopha.2025.117975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
Previous studies have highlighted the in vitro and in vivo anti-aging potential of Streptococcus thermophilus prompting us to investigate the biomolecular mechanisms underlying its effects. We evaluated the reparative ability of S. thermophilus lysate in a hydrogen peroxide (H2O2)-induced senescence model of human dermal fibroblasts (HDFs). Cell proliferation, cell number, and senescence level were evaluated by IncuCyte® Live Cell Imager system, trypan blue dye exclusion test and β-galactosidase activity, respectively. We analyzed p21, prolyl 4-hydroxylase A1, intracellular collagen I, nuclear factor E2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB) and heme oxygenase-1 expression through western blot. Extracellular levels of collagen I, interleukin-1β, and IL-6 were assessed by ELISA. The oxidative stress markers were assayed using standard methods. The direct antioxidant activity of probiotic was quantified using multiple techniques. The presence of antioxidant genes in probiotic was detected via PCR assay. Probiotic lysate exposure increased the proliferation rate, counteracted the aging by reducing β-galactosidase activity and p21 levels, promoted collagen I synthesis and neutralized oxidative stress by activating Nrf2. The probiotic lysate inhibited the NF-κB pathway with pro-inflammatory marker downregulation. Notably, we revealed that probiotic exhibited strong free radical scavenging ability, iron-chelating properties, and significant ferric reducing power in a concentration-dependent manner. We identified seven genes with antioxidant function in its genome. Our results show that S. thermophilus lysate is efficacious in suppressing the biomolecular events associated with H2O2-induced cellular aging, thus supporting the reparative action of S. thermophilus, helpful in treating skin aging.
Collapse
Affiliation(s)
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessia Ciafarone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy; PhD School in Health & Environmental Sciences, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy; PhD School in Medicine and Public Health, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome 00185, Italy
| | - Serena Artone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy; PhD School in Medicine and Public Health, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
39
|
Wu SR, Sharpe J, Tolliver J, Groth AJ, Chen R, Guerra García ME, Valentine V, Williams NT, Jacob S, Reitman ZJ. Combining the RCAS/tv-a retrovirus and CRISPR/Cas9 gene editing systems to generate primary mouse models of diffuse midline glioma. Neoplasia 2025; 62:101139. [PMID: 40056601 PMCID: PMC11930108 DOI: 10.1016/j.neo.2025.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025]
Abstract
Diffuse midline gliomas (DMGs) are lethal brain tumors that arise in children and young adults, resulting in a median survival of less than two years. Genetically engineered mouse models (GEMMs) are critical to studying tumorigenesis and tumor-immune interactions, which may inform new treatment approaches. However, current midline glioma GEMM approaches are limited in their ability to multiplex perturbations and/or target specific cell lineages in the brain for genetic manipulation. Here, we combined the RCAS/tv-a avian retrovirus system and CRISPR/Cas9 genetic engineering to drive midline glioma formation in mice. CRISPR/Cas9-based disruption of Trp53, a tumor suppressor that is frequently disrupted in midline gliomas, along with the oncogene PDGF-B resulted in high grade tumor formation with moderate latency (median time to tumor formation of 12 weeks). We confirmed CRISPR-mediated Trp53 disruption using next-generation sequencing (NGS) and immunohistochemistry (IHC). Next, we disrupted multiple midline glioma tumor suppressor genes (Trp53, Pten, Atm, Cdkn2a) in individual mouse brains. These mini-pooled in vivo experiments generated primary midline gliomas with decreased tumor latency (median time to tumor formation of 3.6 weeks, P < 0.0001, log-rank test compared to single-plex gRNA). Quantification of gRNA barcodes and CRISPR editing events revealed that all tumors contained cells with various disruptions of all target genes and suggested a multiclonal origin for the tumors as well as stronger selection for Trp53 disruption compared to disruption of the other genes. This mouse modeling approach will streamline midline glioma research and enable complex experiments to understand tumor evolution and therapeutics.
Collapse
Affiliation(s)
- Sophie R Wu
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - Julianne Sharpe
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506, United States
| | - Joshua Tolliver
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - Abigail J Groth
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - Reid Chen
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - María E Guerra García
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Vennesa Valentine
- Department of Pharmacology, Duke University, Durham, NC 27710, United States
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - Sheeba Jacob
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Bengl D, Koparir A, Prastyo WE, Remmele C, Dittrich M, Flandin S, Shehata-Dieler W, Grimm C, Haaf T, Hofrichter MAH. Whole-genome sequencing, as a powerful diagnostic tool in hearing loss, reveals novel variants in PTPRQ missed by whole-exome sequencing. BMC Med Genomics 2025; 18:59. [PMID: 40165225 PMCID: PMC11956499 DOI: 10.1186/s12920-025-02122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES Hearing loss (HL) is one of the most common congenital disorders, affecting 1-2 in 1,000 newborns. Modern genetic diagnostics using large gene panels and/or whole exome analysis (WES) can identify disease-causing mutations in 25-50 % of patients, with higher solve rates in individuals with earlier onset. RESULTS Here, we used whole-genome sequencing (WGS) to reanalyze 14 index patients/families who remained without genetic diagnosis by WES. We were able to identify the genetic cause of HL in 6 families ( ∼ 43 %). Two families were diagnosed with DFNB84A caused by compound heterozygous recessive mutations in PTPRQ. Three of the four underlying variants, including a structural variant, a deep intronic variant, and a splice variant, escaped detection by WES. Minigene assays confirmed the pathogenicity of the intronic and the splice variants. In addition, we used protein 3D structure prediction and rigid ligand docking to study the pathogenicity of variants that escape nonsense-mediated decay. CONCLUSION In our study, we present four novel variants in PTPRQ, three of which were detected only by WGS. To our knowledge, we report here the first pathogenic deep intronic PTPRQ variant causing HL. Our results suggest that the mutational spectrum of PTPRQ is not well covered by standard WES and that PTPRQ-associated hearing loss may be more frequent than previously thought. WGS provides an additional layer of information in the diagnostics of HL.
Collapse
Affiliation(s)
- Daniel Bengl
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Asuman Koparir
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany.
| | - Wahyu Eka Prastyo
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Christian Remmele
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
- Center for Rare Diseases, University Clinics, Josef-Schneider-Straße 2, Würzburg, 97080, Bavaria, Germany
- Bavarian Genomes Network for Rare Diseases, Technical University of Munich, Trogerstraße 32, Munich, 81675, Bavaria, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
- Department of Bioinformatics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Sophie Flandin
- Department of Otorhinolaryngology, Comprehensive Hearing Center, Würzburg University Hospital, Josef-Schneider-Straße 11, Würzburg, 97080, Bavaria, Germany
| | - Waafa Shehata-Dieler
- Department of Otorhinolaryngology, Comprehensive Hearing Center, Würzburg University Hospital, Josef-Schneider-Straße 11, Würzburg, 97080, Bavaria, Germany
| | - Clemens Grimm
- Chair of Biochemistry, Theodor-Boveri-Institute at the Biocentre University of Würzburg, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Michaela A H Hofrichter
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| |
Collapse
|
41
|
Samorì E, Rodríguez I, Paullada-Salmerón JA, Muñoz-Cueto JA, González-Nunez V, Sánchez-Vázquez FJ, López-Olmeda JF. Feeding time modulates the daily rhythms of expression of digestive and metabolic enzymes in the liver, and food intake regulation and reward systems in the hypothalamus of the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2025; 305:111853. [PMID: 40164284 DOI: 10.1016/j.cbpa.2025.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Fish exhibit daily rhythms at the molecular level across different tissues, synchronized by zeitgebers, such as food availability. To optimize feeding, organisms align internal timekeeping systems to environmental cues. Previous studies on intermediary metabolism and the hypothalamic control of food intake in fish have underscored the significance of feeding time and daily rhythms. This study examined how feeding times-mid-light (ML) versus mid-dark (MD)-influence the rhythmic transcription of digestive and metabolic enzymes in the liver, and regulatory factors of food intake in the hypothalamus of European sea bass (Dicentrarchus labrax). It also explored the connection between food intake control and the reward system. When fish were fed at ML, genes involved in protein digestion (tryp2, tryp3, ctrl, and cpa5) exhibited daily rhythms with peaks early in the dark phase (ZT 11:17-13:36). These peaks were delayed in MD-fed fish (ZT 16:57-18:27). Pla2, a gene related to lipid metabolism, and transamination genes (c-alt, m-alt) showed rhythms only in ML-fed fish, with acrophases in the light phase (ZT 5:01-13:58), such as pyruvate kinase (pk) that peaked at ZT 6:16. Orexigenic genes (npy, orexin) had rhythms only in the MD group, with nocturnal peaks (ZT 13:09, 16:06). Conversely, reward system genes (th, bdnf) were rhythmic in ML-fed fish (ZT 17:35, 11:46), with only th retaining its rhythm in MD-fed fish (ZT 15:30). These findings suggest feeding time significantly affects rhythms in digestive and metabolic processes. They also highlight the intricate nature of food intake regulation systems, which present diverse synchronization patterns in relation to feeding time.
Collapse
Affiliation(s)
- Elisa Samorì
- Department of Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | - Inmaculada Rodríguez
- Department of Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | - José Antonio Paullada-Salmerón
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain; Instituto Universitario de Investigación Marina (INMAR) and Campus de Excelencia Internacional del Mar (CEIMAR), 11510 Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| | - José Antonio Muñoz-Cueto
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain; Instituto Universitario de Investigación Marina (INMAR) and Campus de Excelencia Internacional del Mar (CEIMAR), 11510 Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| | - Verónica González-Nunez
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain.
| | | | | |
Collapse
|
42
|
Pienaar RD, Herrero S, Cerqueira de Araujo A, Krupa F, Abd-Alla AMM, Herniou EA. High-throughput screening reveals high diversity and widespread distribution of viruses in black soldier flies (Hermetia illucens). J Invertebr Pathol 2025; 211:108322. [PMID: 40157532 DOI: 10.1016/j.jip.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Virus discovery in mass-reared insects is a growing topic of interest due to outbreak risks and for insect welfare concerns. In the case of black soldier flies (Hermetia illucens, BSF), pioneering bioinformatic studies have uncovered exogenous viruses from the orders Ghabrivirales and Bunyavirales, as well as endogenous viral elements from five virus families. This prompted further virome investigation of BSF metagenomes and metatranscriptomes, including from BSF individuals displaying signs and symptoms of disease. A high-throughput pipeline allowed the simultaneous investigation of 203 next generation sequencing datasets. This revealed the presence of seven viruses belonging to the families Dicistroviridae, Iflaviridae, Rhabdoviridae, Solinviviridae, Inseviridae, Lebotiviridae, and an unclassified Bunyavirales. Here we describe five viruses, which were detected in BSF from multiple origins, outlining the diversity of naturally occurring viruses associated with BSF colonies. As this viral community may also include BSF pathogens, we developed molecular detection tools which could be used for viral surveillance, both in mass-reared and wild populations of BSF.
Collapse
Affiliation(s)
- Robert D Pienaar
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours 37200 Tours, France; Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Burjassot (Valencia), Spain.
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Alexandra Cerqueira de Araujo
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Franciszek Krupa
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours 37200 Tours, France
| |
Collapse
|
43
|
Kaniganti S, Palakolanu SR, Thiombiano B, Damarasingh J, Bommineni PR, Che P, Sharma KK, Jones T, Bouwmeester H, Bhatnagar-Mathur P. Developing Striga resistance in sorghum by modulating host cues through CRISPR/Cas9 gene editing. PLANT CELL REPORTS 2025; 44:90. [PMID: 40146284 DOI: 10.1007/s00299-025-03474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
KEY MESSAGE High transformation and gene editing efficiencies in sorghum-produced, transgene-free SDN1-edited plants exhibit precise mutations, reduced germination stimulants, and enhanced resistance to Striga infection. Sorghum (Sorghum bicolor L.) is a primary food staple grain for millions in Sub-Saharan Africa (SSA). It is mainly constrained by the parasitic weed Striga, which causes up to 100% yield losses and affects over 60% of cultivable farmlands and livelihoods. In this study, CRISPR/Cas9 technology is utilized to induce mutations in core strigolactone (SL) biosynthetic genes, i.e., CCD7, CCD8, MAX1, in addition to an uncharacterized gene (DUF) in the fine-mapped 400 kb lgs1 region in sorghum to develop durable Striga resistance. Two sorghum cultivars were delivered with the expression cassettes through immature embryo-based Agrobacterium-mediated transformation. Our study demonstrated transformation and gene editing efficiencies of ~ 70 and up to 17.5% (calculated based on the numuber of established plants), respectively, in two sorghum genotypes. Subsequent analysis of homozygous E0 lines in the E1 generation confirmed stable integration of mutations for all targeted genes. Loss-of-function mutations in the CCD7, CCD8, MAX1, and DUF genes led to a significant downregulation of the expression of associated genes in the SL biosynthetic pathway. The phenotypic analysis of edited lines revealed changes in phenotypic patterns compared to wild-type plants. Analysis of root exudates showed significant reductions in SL production in edited lines compared to wild-type plants. Striga infection experiments demonstrated delayed or reduced emergence rates of Striga in edited lines with lower SL production, highlighting the potential for genetically altering SL production to control Striga infestations. This study provides insights into the functional roles of CCD7, CCD8, MAX1, and DUF genes in sorghum towards reduced and/or altered SL production and improved resistance to Striga infestations.
Collapse
Affiliation(s)
- Sirisha Kaniganti
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Benjamin Thiombiano
- Swammerdam Institute for Life Sciences, University of Amsterdam, 100 BE, Amsterdam, The Netherlands
| | - Jagadeesh Damarasingh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Pradeep Reddy Bommineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Ping Che
- Department of Applied Science and Technology, Corteva Agriscience, Johnston, IA, USA
| | - Kiran Kumar Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Todd Jones
- Department of Applied Science and Technology, Corteva Agriscience, Johnston, IA, USA
| | - Harro Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, 100 BE, Amsterdam, The Netherlands
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
- Plant Breeding & Genetics Laboratory, Joint FAO/ IAEA Centre, International Atomic Energy Agency, 1400, Vienna, Austria.
| |
Collapse
|
44
|
Gaikwad AB, Yadav S, Kumari R, Maurya W, Rangan P, Singh R, Singh GP. Chromosome-scale genome assembly of Trigonella corniculata (L.)L. (Nagauri pan /Kasuri methi), an important spice. Sci Data 2025; 12:509. [PMID: 40140648 PMCID: PMC11947087 DOI: 10.1038/s41597-025-04858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Trigonella corniculata (L) L. or Nagauri pan /Kasuri methi, is an important spice crop with high nutraceutical potential. We report the de novo chromosome-scale assembly of T. corniculata genome using high coverage PacBio, Illumina and Hi-C reads. The assembly spans 798 Mb (Megabases) in 282 scaffolds with a scaffold N50 of 99.6 Mb. More than 98% of the sequence length is captured in eight different pseudomolecules with an average length of 98 Mb. A BUSCO score of over 97% is suggestive of the high degree of completeness and contiguity of the genome. A total of 64,801 protein-coding genes are predicted. Genome-wide Simple Sequence Repeats (99,149) have been identified and wet lab validated at forty-eight loci. The chromosome-scale genome assembly of T. corniculata and the SSR markers identified in this study will provide a strong foundation for future structural and functional genomics studies in T. corniculata and other fenugreek species.
Collapse
Affiliation(s)
| | - Sheel Yadav
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Ratna Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Wanchha Maurya
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | | |
Collapse
|
45
|
Chevallier L, Green M, Vo J, Vernau K, Marcellin-Little DJ, Jagannathan V, Leeb T, Bannasch D. The RSPO2 gene is associated with bilateral anterior amelia in Chihuahuas. Mamm Genome 2025:10.1007/s00335-025-10123-1. [PMID: 40131457 DOI: 10.1007/s00335-025-10123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Bilateral anterior amelia (BAA) is the congenital absence of thoracic limbs and has been reported in the Chihuahua as an autosomal recessive disorder. In some cases, the digits of the pelvic limbs can be variably affected, but otherwise, the pelvic limbs are generally spared. A GWAS performed with nine BAA affected Chihuahuas identified a significant association on chromosome 13, and homozygosity mapping delineated a 2.1 Mb chromosomal region containing the RSPO2 gene. Loss of function variants of RSPO2 in humans and cattle has been associated with the absence of all limbs. Six affected Chihuahuas were whole genome sequenced (WGS) and aligned to the CanFam4 assembly. SNVs, small indels, and structural variants within the critical interval that fitted a recessive model were investigated. Three SNVs (NC_049234.1:g.8891861C > T; NC_049234.1:g.8974204C > T and NC_049234.1:g.9789424G > A) were homozygous in five cases and absent from 3,418 genetically diverse control genome sequences, except for one Small Poodle that was heterozygous. One SNV resided in RSPO2's second intron, while the two others were intergenic. The three candidate variants were genotyped in 7 additional cases and 100 control Chihuahuas. Twelve of 13 cases were homozygous for the mutant allele, and one case was heterozygous. Controls were either homozygous for the reference allele (97%) or heterozygous (3%). Our data should facilitate genetic testing of Chihuahuas to prevent the unintentional production of BAA affected dogs. Moreover, the identification of these variants enhances understanding of RSPO2 gene function in limb development.
Collapse
Affiliation(s)
- Lucie Chevallier
- INSERM, UPEC, Ecole Nationale Vétérinaire d'Alfort, U955 - IMRB, Team 10 - Biology of the Neuromuscular System, Maisons-Alfort, France
| | - Marin Green
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Julia Vo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Karen Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Denis J Marcellin-Little
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Danika Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
46
|
Ignatz EH, Allen MS, Hall JR, Sandrelli RM, Fast MD, Perry GML, Rise ML, Gamperl AK. Application of genomic tools to study and potentially improve the upper thermal tolerance of farmed Atlantic salmon (Salmo salar). BMC Genomics 2025; 26:294. [PMID: 40128646 PMCID: PMC11934803 DOI: 10.1186/s12864-025-11482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The Atlantic salmon (Salmo salar) aquaculture industry must mitigate the impacts of rising ocean temperatures and the increased prevalence/severity of marine heat waves. Therefore, we investigated the genetic architecture and gene expression (transcriptomics) responsible for determining a salmon's upper thermal tolerance. RESULTS A genome-wide association study (GWAS) was conducted using fin clips of salmon from a previous incremental thermal maximum (ITMax) challenge (n = 251) and the North American 50 K SNP chip. ITMax was a highly polygenic trait with low/moderate heritability (mean SNP-based h2 = 0.20 and pedigree-based h2 = 0.25). Using data from the same fish, a separate GWAS assessed thermal-unit growth coefficient (TGC). Five significant SNPs were detected on chromosomes three and five, and high heritability estimates were calculated for TGC measured as fish grew from 12 to 20 °C (mean SNP-based h2 = 0.62 and pedigree-based h2 = 0.64). RNA-seq analyses of liver samples (n = 5-6 family-1 temperature-1) collected from the four most and four least tolerant families at 10 and 20 °C were also used to provide insights into potential mechanisms modulating this species' thermal tolerance. Between the top and bottom families, 347 and 175 differentially expressed transcripts (FDR-adjusted p < 0.01; fold-change ≥|2.0|) were identified at 10 and 20 °C, respectively. GO term enrichment analysis revealed unique responses to elevated temperature between family rankings (e.g., 'blood coagulation', 'sterol metabolic process' and 'synaptic growth at neuromuscular junction'). qPCR analyses further confirmed differences pertaining to cholesterol metabolism (lpl), inflammation (epx, elf3, ccl20), apoptosis (htra1b, htra2, anxa5b), angiogenesis (angl4, pdgfa), nervous system processes (insyn2a, kcnj11l) and heat stress (serpinh1b-1, serpinh1b-2). Three differentially expressed transcripts (i.e., ppp1r9a, gal3st1a, f5) were located in close proximity (± 120 kbp) to near-significant SNPs from the GWAS. Interestingly, ppp1r9a and gal3st1a have putative neurological functions, while f5 regulates blood coagulation. CONCLUSIONS These analyses provide several putative biomarkers of upper thermal tolerance in salmon that could prove valuable in helping the industry develop more temperature-tolerant fish. Further, our study supports previous reports that ITMax has low/moderate heritability in this species, and suggests that TGC at elevated temperatures is highly heritable.
Collapse
Affiliation(s)
- Eric H Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada.
- Marine Affairs Program, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| | - Melissa S Allen
- Center for Aquaculture Technologies, San Diego, CA, 92121, USA
| | - Jennifer R Hall
- Aquatic Research Cluster, Ocean Sciences Centre, CREAIT Network, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Mark D Fast
- Atlantic Veterinary College, University of Prince Edward Island, CIA 4P3, Charlottetown, PE, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
47
|
Satheesan L, Dang AK, Alex R. Cytokine interactions and chemokine dysregulations in mastitis immunopathogenesis: insights from transcriptomic profiling of milk somatic cells in tropical Sahiwal ( Bos indicus) cows. Front Immunol 2025; 16:1554341. [PMID: 40196120 PMCID: PMC11973270 DOI: 10.3389/fimmu.2025.1554341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Bovine mastitis causes a significant loss to the dairy industry by affecting the quantity and quality of milk. Addressing this challenge, the present study will leverage advanced omics techniques for early mastitis detection in early lactating Sahiwal cows (Bos indicus). This was the first differential transcriptomic study investigating the alterations in gene expression in milk somatic cells during the progression of naturally occurring mastitis in indigenous Sahiwal cows. Methods Cows were grouped into healthy (H), subclinical mastitis (SCM) and clinical mastitis (CM) groups by thoroughly screening them using the California Mastitis Test (CMT) and milk somatic cell counts (SCC). This was followed by detailed milk composition analysis, differential leukocyte counts (DLC), and microbiological culture. Results The differential gene expression of milk SCs through transcriptome profiling identified 83 and 76, up-regulated and 157 and 192 down-regulated genes in CM vs H and SCM vs H groups (log2 fold change ≥1 and ≤-1, p < 0.05) respectively. Pathway analysis revealed that upregulated genes were enriched in pathways such as phagosome activity, IL-17 signalling, Th1 and Th2 cell differentiation, while downregulated genes were linked to RIG-I-like receptor signalling, NK cell cytotoxicity, and Toll-like receptor signalling and Cytokine-cytokine receptor interactions. Notably, the study underscores the roles of chemokines CCL8, CCL2, and CXCL10 in immune cell recruitment during mastitis, where their downregulation suggests impaired mammary immune defense that governs Chemokine signalling pathways. Further, the comparative analysis with the previously available milk SCs proteome data identified the downregulation of chemokines signalling pathways during mastitis. Discussion Overall, this research enhances our understanding of mastitis pathogenesis and emphasizes that these targeted chemokines may boost mammary resilience through immunomodulation, genetic selection and genome editing or by utilising adjuvants in vaccine development that restore chemokine signalling offers a potential strategy to improve mastitis resistance in dairy cattle.
Collapse
Affiliation(s)
- Lija Satheesan
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Rani Alex
- Division of Animal Genetics and Breeding, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
48
|
Milani C, Longhi G, Alessandri G, Fontana F, Viglioli M, Tarracchini C, Mancabelli L, Lugli GA, Petraro S, Argentini C, Anzalone R, Viappiani A, Carli E, Vacondio F, van Sinderen D, Turroni F, Mor M, Ventura M. Functional modulation of the human gut microbiome by bacteria vehicled by cheese. Appl Environ Microbiol 2025; 91:e0018025. [PMID: 40019271 PMCID: PMC11921328 DOI: 10.1128/aem.00180-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025] Open
Abstract
Since cheese is one of the most commonly and globally consumed fermented foods, scientific investigations in recent decades have focused on determining the impact of this dairy product on human health and well-being. However, the modulatory effect exerted by the autochthonous cheese microbial community on the taxonomic composition and associated functional potential of the gut microbiota of human is still far from being fully dissected or understood. Here, through the use of an in vitro human gut-simulating cultivation model in combination with multi-omics approaches, we have shown that minor rather than dominant bacterial players of the cheese microbiota are responsible for gut microbiota modulation of cheese consumers. These include taxa from the genera Enterococcus, Bacillus, Clostridium, and Hafnia. Indeed, they contribute to expand the functional potential of the intestinal microbial ecosystem by introducing genes responsible for the production of metabolites with relevant biological activity, including genes involved in the synthesis of vitamins, short-chain fatty acids, and amino acids. Furthermore, tracing of cheese microbiota-associated bacterial strains in fecal samples from cheese consumers provided evidence of horizontal transmission events, enabling the detection of particular bacterial strains transferred from cheese to humans. Moreover, transcriptomic and metabolomic analyses of a horizontally transmitted (cheese-to-consumer) bacterial strain, i.e., Hafnia paralvei T10, cultivated in a human gut environment-simulating medium, confirmed the concept that cheese-derived bacteria may expand the functional arsenal of the consumer's gut microbiota. This highlights the functional and biologically relevant contributions of food microbes acquired through cheese consumption on the human health.IMPORTANCEDiet is universally recognized as the primary factor influencing and modulating the human intestinal microbiota both taxonomically and functionally. In this context, cheese, being a fermented food with its own microbiota, serves not only as a source of nourishment for humans, but also as a source of nutrients for the consumer's gut microbiota. Additionally, it may act as a vehicle for autochthonous food-associated microorganisms which undergo transfer from cheese to the consumer, potentially influencing host gut health. The current study highlights not only that cheese microbiota-associated bacteria can be traced in the human gut microbiota, but also that they may expand the functional repertoire of the human gut microbiota, with potentially significant implications for human health.
Collapse
Affiliation(s)
- Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio Srl, Parma, Italy
| | | | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Petraro
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Mor
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
49
|
Litz B, Forth LF, Pfaff F, Beer M, Eschbaumer M. Distinct mutations emerge in the genome of serotype O foot-and-mouth disease virus during persistence in cattle. J Virol 2025; 99:e0142224. [PMID: 39918330 PMCID: PMC11915810 DOI: 10.1128/jvi.01422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/21/2024] [Indexed: 03/19/2025] Open
Abstract
Like other RNA viruses, foot-and-mouth disease virus (FMDV) has a high mutation rate. After the acute phase of infection, about half of infected cattle develop a persistent FMDV infection that can last for weeks or months. During this persistent phase, the virus continues to replicate, resulting in the emergence of genomic heterogeneity. We have documented the pattern of mutations in the persistent phase by obtaining consensus-level sequences directly from oropharyngeal fluid (OPF) without prior virus isolation in culture. OPF samples were repeatedly collected from 22 experimentally infected cattle, 20 of which were virus positive in the OPF on day 21 after infection or later. We observed that during the persistent phase, the amount of non-synonymous mutations causing an amino acid change increased over time. Two amino acid changes that showed a striking increase during the persistent phase, VP3 A75T and VP2 Y79H, were present neither in the inoculum nor during the acute phase. Another amino acid change in VP3, R56C, which was previously implicated in FMDV pathogenicity, was already present in the inoculum and dominated toward the end of the trial in most samples. Several other amino acid changes occurred, particularly on the surface of VP2 around residue VP2 79. By functional analysis, we show that the persistent isolates evolve distinctly compared with cell culture adaptation but do not show signs of antigenic escape from neutralizing antibodies. In agreement with previous observations, we conclude that these amino acid changes are indeed associated with persistent infection of cattle with FMDV serotype O. IMPORTANCE Our research article describes the genetic changes that occur during the acute and persistent foot-and-mouth disease (FMDV) infection. This is of particular interest to understand viral dynamics within an infected population from which new viral strains could emerge. Especially FMDV, with its high antigenic diversity and very limited cross-reactivity between strains and serotypes, has already demonstrated in the past that new variants can quickly emerge and evade vaccine responses. In our study, we have observed that this dynamic evolution continues during the persistent phase. Persistently infected animals, which are clinically indistinguishable from healthy animals, also pose a reservoir for recombination. A better understanding of viral dynamics is essential for improved vaccines to prevent the emergence of antigenic variants.
Collapse
Affiliation(s)
- Benedikt Litz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Leonie F. Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
50
|
Hu W, Deng C, Qin L, Liu P, Wang L, Wang X, Shi W, Aziz A, Li F, Cheng X, Wang A, Dai Z, Xiang X, Cui H. A conserved lysine/arginine-rich motif is essential for the autophagic degradation of potyviral 6K1 protein and virus infection. J Virol 2025; 99:e0218324. [PMID: 39927775 PMCID: PMC11915830 DOI: 10.1128/jvi.02183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Potyviruses possess one positive-sense single-stranded RNA genome, mainly dependent on polyprotein processing as the expression strategy. The resulting polyproteins are proteolytically processed by three virus-encoded proteases into 11 or 12 mature proteins. One such factor, 6 kDa peptide 1 (6K1), is an understudied viral factor. Its function in viral infection remains largely mysterious. This study is to reveal part of its roles by using pepper veinal mottle virus (PVMV) as the model. Alanine substitution screening analysis revealed that 15 of 17 conserved residues across potyviral 6K1 sequences are essential for PVMV infection. However, 6K1 protein is less accumulated in virus-infected cells, although P3-6K1 and 6K1-CI junctions are efficiently processed by NIa-Pro for its release, indicating that 6K1 undergoes a self-degradation event. Mutating the cleavage site to prevent NIa-Pro processing abolishes viral infection, suggesting that the generation of 6K1 along with its degradation might be important for viral multiplication. We corroborated that cellular autophagy is engaged in 6K1's degradation. Individual engineering of the 15 6K1 variants into PVMV allows their expression along with viral infection. Five of such variants, D30A, V32A, K34A, L36A, and L39A, significantly interfere with viral infection. The five residues are enclosed in a conserved lysine/arginine-rich motif; four of them appear crucial in engaging autophagy-mediated self-degradation. Based on these data, we envisaged a scenario which potyviral 6K1s interact with an unknown anti-viral component to be co-degraded by autophagy to promote viral infection.IMPORTANCEPotyvirus is the largest genus of plant-infecting RNA viruses, which encompasses socio-economically important virus species, such as Potato virus Y, Plum pox virus, and Soybean mosaic virus. Like all picorna-like viruses, potyviruses express their factors mainly via polyprotein processing. Theoretically, viral factors P3 through CP, including 6K1, should share an equivalent number of molecules. The 6K1 is small in size (~6 kDa) and conserved across potyviruses but less accumulated in virus-infected cells. This study demonstrates that cellular autophagy is engaged in the degradation of 6K1 to promote viral infection. In particular, we found a conserved lysine/arginine-rich motif in 6K1s across potyviruses that is engaged in this degradation event. This finding reveals one facet of a small protein that helps understand the pro-viral role of cellular autophagy in viral infection.
Collapse
Affiliation(s)
- Weiyao Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Changhui Deng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Linxi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xaioqing Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wei Shi
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Asma Aziz
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xiaohua Xiang
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|