1
|
Xiong W, Xu K, Sun JKL, Liu S, Zhao B, Shi J, Herrup K, Chow HM, Lu L, Li J. The mitochondrial long non-coding RNA lncMtloop regulates mitochondrial transcription and suppresses Alzheimer's disease. EMBO J 2024:10.1038/s44318-024-00270-7. [PMID: 39424953 DOI: 10.1038/s44318-024-00270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Maintaining mitochondrial homeostasis is crucial for cell survival and organismal health, as evidenced by the links between mitochondrial dysfunction and various diseases, including Alzheimer's disease (AD). Here, we report that lncMtDloop, a non-coding RNA of unknown function encoded within the D-loop region of the mitochondrial genome, maintains mitochondrial RNA levels and function with age. lncMtDloop expression is decreased in the brains of both human AD patients and 3xTg AD mouse models. Furthermore, lncMtDloop binds to mitochondrial transcription factor A (TFAM), facilitates TFAM recruitment to mtDNA promoters, and increases mitochondrial transcription. To allow lncMtDloop transport into mitochondria via the PNPASE-dependent trafficking pathway, we fused the 3'UTR localization sequence of mitochondrial ribosomal protein S12 (MRPS12) to its terminal end, generating a specified stem-loop structure. Introducing this allotropic lncMtDloop into AD model mice significantly improved mitochondrial function and morphology, and ameliorated AD-like pathology and behavioral deficits of AD model mice. Taken together, these data provide insights into lncMtDloop as a regulator of mitochondrial transcription and its contribution to Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Wandi Xiong
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- National Institute on Drug Dependence, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Kaiyu Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Siling Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baizhen Zhao
- JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ, USA
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Karl Herrup
- Department of Neurobiology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lin Lu
- Peking-Tsinghua Center for Life Sciences, Beijing, China.
- National Institute on Drug Dependence, Peking University, Beijing, China.
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China.
| | - Jiali Li
- National Institute on Drug Dependence, Peking University, Beijing, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China.
- JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ, USA.
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| |
Collapse
|
2
|
Gutiérrez-Aguilar M, Klutho PJ, Aguayo-Ortiz R, Song L, Baines CP. Endogenous complement 1q binding protein (C1qbp) regulates mitochondrial permeability transition and post-myocardial infarction remodeling and dysfunction. J Mol Cell Cardiol 2024; 196:1-11. [PMID: 39209214 DOI: 10.1016/j.yjmcc.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The mitochondrial permeability transition (MPT) pore regulates necrotic cell death following diverse cardiac insults. While the componentry of the pore itself remains controversial, Cyclophilin D (CypD) has been well-established as a positive regulator of pore opening. We have previously identified Complement 1q-binding protein (C1qbp) as a novel CypD-interacting molecule and a negative regulator of MPT-dependent cell death in vitro. However, its effects on the MPT pore and sensitivity to cell death in the heart remain untested. We therefore hypothesized that C1qbp would inhibit MPT in cardiac mitochondria and protect cardiac myocytes against cell death in vivo. To investigate the effects of C1qbp in the myocardium we generated gain- and loss-of-function mice. Transgenic C1qbp overexpression resulted in decreased complex protein expression and reduced mitochondrial respiration and ATP production but MPT was unaffected. In contrast, while C1qbp+/- mice did not exhibit any changes in mitochondrial protein expression, respiration, or ATP, the MPT pore was markedly sensitized to Ca2+ in these animals. Neither overexpression nor depletion of C1qbp significantly affected baseline heart morphology or function at 3 months of age. When subjected to myocardial infarction, C1qbp transgenic mice exhibited similar infarct sizes and cardiac remodeling to non-transgenic mice, consistent with the lack of an effect on MPT. In contrast, cardiac scar formation and dysfunction were significantly increased in the C1qbp+/- mice compared to C1qbp+/+ controls. Our results suggest that C1qbp is required for normal regulation of the MPT pore and mitochondrial function, and influences cardiac remodeling following MI, the latter more likely being independent of C1qbp effects on the MPT pore.
Collapse
Affiliation(s)
- Manuel Gutiérrez-Aguilar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Paula J Klutho
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Lihui Song
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Christopher P Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
Zhang H, Tsui CK, Garcia G, Joe LK, Wu H, Maruichi A, Fan W, Pandovski S, Yoon PH, Webster BM, Durieux J, Frankino PA, Higuchi-Sanabria R, Dillin A. The extracellular matrix integrates mitochondrial homeostasis. Cell 2024; 187:4289-4304.e26. [PMID: 38942015 DOI: 10.1016/j.cell.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-β response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C Kimberly Tsui
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gilberto Garcia
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry K Joe
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haolun Wu
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayane Maruichi
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wudi Fan
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sentibel Pandovski
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Yoon
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brant M Webster
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip A Frankino
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
5
|
Toshima T, Yagi M, Do Y, Hirai H, Kunisaki Y, Kang D, Uchiumi T. Mitochondrial translation failure represses cholesterol gene expression via Pyk2-Gsk3β-Srebp2 axis. Life Sci Alliance 2024; 7:e202302423. [PMID: 38719751 PMCID: PMC11079605 DOI: 10.26508/lsa.202302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3β was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3β and that GSK3β inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3β axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3β inhibitors is a potential therapeutic strategy for leukoencephalopathy.
Collapse
Affiliation(s)
- Takahiro Toshima
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan
| | - Takeshi Uchiumi
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Miki K, Yagi M, Kang D, Kunisaki Y, Yoshimoto K, Uchiumi T. Glucose starvation causes ferroptosis-mediated lysosomal dysfunction. iScience 2024; 27:109735. [PMID: 38706843 PMCID: PMC11067335 DOI: 10.1016/j.isci.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes. Subsequently, cell death occurred via ferroptosis and iron accumulation due to DMT1 degradation. GPX4, a key factor in ferroptosis inhibition located on the outer membrane of lysosomes, accumulated in lysosomes, especially under glucose starvation, to protect cells from ferroptosis. ALDOA, GAPDH, NAMPT, and PGK1 are also located on the outer membrane of lysosomes and participate in lysosomal function. These enzymes did not function effectively under glucose starvation, leading to lysosomal dysfunction and ferroptosis. These findings may facilitate the treatment of lysosomal-related diseases.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka 813-0002, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka 815-8510, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Ghebrehiwet B, Zaniewski M, Fernandez A, DiGiovanni M, Reyes TN, Ji P, Savitt AG, Williams JL, Seeliger MA, Peerschke EIB. The C1q and gC1qR axis as a novel checkpoint inhibitor in cancer. Front Immunol 2024; 15:1351656. [PMID: 38711524 PMCID: PMC11070495 DOI: 10.3389/fimmu.2024.1351656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Michal Zaniewski
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Audrey Fernandez
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Mathew DiGiovanni
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Tiana N. Reyes
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ping Ji
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Anne G. Savitt
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Jennie L. Williams
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Markus A. Seeliger
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, United States
| | - Ellinor I. B. Peerschke
- Department of Laboratory Medicine, Memorial Sloane Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
8
|
Egusquiza-Alvarez CA, Moreno-Londoño AP, Alvarado-Ortiz E, Ramos-Godínez MDP, Sarabia-Sánchez MA, Castañeda-Patlán MC, Robles-Flores M. Inhibition of Multifunctional Protein p32/C1QBP Promotes Cytostatic Effects in Colon Cancer Cells by Altering Mitogenic Signaling Pathways and Promoting Mitochondrial Damage. Int J Mol Sci 2024; 25:2712. [PMID: 38473963 DOI: 10.3390/ijms25052712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The protein p32 (C1QBP) is a multifunctional and multicompartmental homotrimer that is overexpressed in many cancer types, including colon cancer. High expression levels of C1QBP are negatively correlated with the survival of patients. Previously, we demonstrated that C1QBP is an essential promoter of migration, chemoresistance, clonogenic, and tumorigenic capacity in colon cancer cells. However, the mechanisms underlying these functions and the effects of specific C1QBP protein inhibitors remain unexplored. Here, we show that the specific pharmacological inhibition of C1QBP with the small molecule M36 significantly decreased the viability rate, clonogenic capacity, and proliferation rate of different colon cancer cell lines in a dose-dependent manner. The effects of the inhibitor of C1QBP were cytostatic and non-cytotoxic, inducing a decreased activation rate of critical pro-malignant and mitogenic cellular pathways such as Akt-mTOR and MAPK in RKO colon cancer cells. Additionally, treatment with M36 significantly affected the mitochondrial integrity and dynamics of malignant cells, indicating that p32/C1QBP plays an essential role in maintaining mitochondrial homeostasis. Altogether, our results reinforce that C1QBP is an important oncogene target and that M36 may be a promising therapeutic drug for the treatment of colon cancer.
Collapse
Affiliation(s)
| | - Angela Patricia Moreno-Londoño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Eduardo Alvarado-Ortiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - María Del Pilar Ramos-Godínez
- Departamento de Microscopía Electrónica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City 14080, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | | | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
9
|
Yu CX, Peng ZQ, Wang T, Qu XH, Yang P, Huang SR, Jiang LP, Tou FF, Han XJ. p32/OPA1 axis-mediated mitochondrial dynamics contributes to cisplatin resistance in non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:34-43. [PMID: 38151998 PMCID: PMC10875347 DOI: 10.3724/abbs.2023247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/27/2023] [Indexed: 12/29/2023] Open
Abstract
Cisplatin resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). p32 and OPA1 are the key regulators of mitochondrial morphology and function. This study aims to investigate the role of the p32/OPA1 axis in cisplatin resistance in NSCLC and its underlying mechanism. The levels of p32 protein and mitochondrial fusion protein OPA1 are higher in cisplatin-resistant A549/DDP cells than in cisplatin-sensitive A549 cells, which facilitates mitochondrial fusion in A549/DDP cells. In addition, the expression of p32 and OPA1 protein is also upregulated in A549 cells during the development of cisplatin resistance. Moreover, p32 knockdown effectively downregulates the expression of OPA1, stimulates mitochondrial fission, decreases ATP generation and sensitizes A549/DDP cells to cisplatin-induced apoptosis. Furthermore, metformin significantly downregulates the expressions of p32 and OPA1 and induces mitochondrial fission and a decrease in ATP level in A549/DDP cells. The co-administration of metformin and cisplatin shows a significantly greater decrease in A549/DDP cell viability than cisplatin treatment alone. Moreover, D-erythro-Sphingosine, a potent p32 kinase activator, counteracts the metformin-induced downregulation of OPA1 and mitochondrial fission in A549/DDP cells. Taken together, these findings indicate that p32/OPA1 axis-mediated mitochondrial dynamics contributes to the acquired cisplatin resistance in NSCLC and that metformin resensitizes NSCLC to cisplatin, suggesting that targeting p32 and mitochondrial dynamics is an effective strategy for the prevention of cisplatin resistance.
Collapse
Affiliation(s)
- Chun-Xia Yu
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Zhe-Qing Peng
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Tao Wang
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Xin-Hui Qu
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Ping Yang
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Shao-Rong Huang
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Li-Ping Jiang
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Fang-Fang Tou
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of OncologyJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Xiao-Jian Han
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| |
Collapse
|
10
|
Yagi M, Do Y, Hirai H, Miki K, Toshima T, Fukahori Y, Setoyama D, Abe C, Nabeshima YI, Kang D, Uchiumi T. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci Alliance 2023; 6:e202302116. [PMID: 37793777 PMCID: PMC10551641 DOI: 10.26508/lsa.202302116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Myocardial mitochondria are primary sites of myocardial energy metabolism. Mitochondrial disorders are associated with various cardiac diseases. We previously showed that mice with cardiomyocyte-specific knockout of the mitochondrial translation factor p32 developed heart failure from dilated cardiomyopathy. Mitochondrial translation defects cause not only mitochondrial dysfunction but also decreased nicotinamide adenine dinucleotide (NAD+) levels, leading to impaired lysosomal acidification and autophagy. In this study, we investigated whether nicotinamide mononucleotide (NMN) administration, which compensates for decreased NAD+ levels, improves heart failure because of mitochondrial dysfunction. NMN administration reduced damaged lysosomes and improved autophagy, thereby reducing heart failure and extending the lifespan in p32cKO mice. We found that lysosomal damage due to mitochondrial dysfunction induced ferroptosis, involving the accumulation of iron in lysosomes and lipid peroxide. The ameliorative effects of NMN supplementation were found to strongly affect lysosomal function rather than mitochondrial function, particularly lysosome-mediated ferroptosis. NMN supplementation can improve lysosomal, rather than mitochondrial, function and prevent chronic heart failure.
Collapse
Affiliation(s)
- Mikako Yagi
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Miki
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Toshima
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukina Fukahori
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Abe
- https://ror.org/02kpeqv85 Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Yo-Ichi Nabeshima
- https://ror.org/02kpeqv85 Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Dongchon Kang
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- https://ror.org/00p4k0j84 Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- https://ror.org/00p4k0j84 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Ueda S, Yagi M, Tomoda E, Matsumoto S, Ueyanagi Y, Do Y, Setoyama D, Matsushima Y, Nagao A, Suzuki T, Ide T, Mori Y, Oyama N, Kang D, Uchiumi T. Mitochondrial haplotype mutation alleviates respiratory defect of MELAS by restoring taurine modification in tRNA with 3243A > G mutation. Nucleic Acids Res 2023; 51:7480-7495. [PMID: 37439353 PMCID: PMC10415116 DOI: 10.1093/nar/gkad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.
Collapse
Affiliation(s)
- Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasushi Ueyanagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Mori
- Department of Internal Medicine Kitakyushu City Yahata Hospital, 2-6-2 Ogura, Yahatahigashi-ku, Kitakyushu 805-8534, Japan
| | - Noriko Oyama
- Department of Endocrinology and Metabolism, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Zhang S, Wang C, Wang Y, Zhang H, Xu C, Cheng Y, Yuan Y, Sha J, Guo X, Cui Y. A novel protein encoded by circRsrc1 regulates mitochondrial ribosome assembly and translation during spermatogenesis. BMC Biol 2023; 21:94. [PMID: 37095490 PMCID: PMC10127071 DOI: 10.1186/s12915-023-01597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a large class of mammalian RNAs. Several protein products translated by circRNAs have been reported to be involved in the development of various tissues and systems; however, their physiological functions in male reproduction have yet not been explored. RESULTS Here, we report an endogenous circRNA (circRsrc1) that encodes a novel 161-amino-acid protein which we named Rsrc1-161aa through circRNA sequencing coupled with mass spectrometry analysis on mouse testicular tissues. Deletion of Rsrc1-161aa in mice impaired male fertility with a significant decrease in sperm count and motility due to dysfunctions of mitochondrial energy metabolism. A series of in vitro rescue experiments revealed that circRsrc1 regulates mitochondrial functions via its encoded protein Rsrc1-161aa. Mechanistically, Rsrc1-161aa directly interacts with mitochondrial protein C1qbp and enhances its binding activity to mitochondrial mRNAs, thereby regulating the assembly of mitochondrial ribosomes and affecting the translation of oxidative phosphorylation (OXPHOS) proteins and mitochondrial energy metabolism. CONCLUSIONS Our studies reveal that Rsrc1-161aa protein encoded by circRsrc1 regulates mitochondrial ribosome assembly and translation during spermatogenesis, thereby affecting male fertility.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yiwei Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
13
|
Sun X, Liu S, Cai J, Yang M, Li C, Tan M, He B. Mitochondrial Methionyl-tRNA Formyltransferase Deficiency Alleviates Metaflammation by Modulating Mitochondrial Activity in Mice. Int J Mol Sci 2023; 24:ijms24065999. [PMID: 36983072 PMCID: PMC10051599 DOI: 10.3390/ijms24065999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Various studies have revealed the association of metabolic diseases with inflammation. Mitochondria are key organelles involved in metabolic regulation and important drivers of inflammation. However, it is uncertain whether the inhibition of mitochondrial protein translation results in the development of metabolic diseases, such that the metabolic benefits related to the inhibition of mitochondrial activity remain unclear. Mitochondrial methionyl-tRNA formyltransferase (Mtfmt) functions in the early stages of mitochondrial translation. In this study, we reveal that feeding with a high-fat diet led to the upregulation of Mtfmt in the livers of mice and that a negative correlation existed between hepatic Mtfmt gene expression and fasting blood glucose levels. A knockout mouse model of Mtfmt was generated to explore its possible role in metabolic diseases and its underlying molecular mechanisms. Homozygous knockout mice experienced embryonic lethality, but heterozygous knockout mice showed a global reduction in Mtfmt expression and activity. Moreover, heterozygous mice showed increased glucose tolerance and reduced inflammation, which effects were induced by the high-fat diet. The cellular assays showed that Mtfmt deficiency reduced mitochondrial activity and the production of mitochondrial reactive oxygen species and blunted nuclear factor-κB activation, which, in turn, downregulated inflammation in macrophages. The results of this study indicate that targeting Mtfmt-mediated mitochondrial protein translation to regulate inflammation might provide a potential therapeutic strategy for metabolic diseases.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Suyuan Liu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangxue Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaoxin Yang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxuan Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Tan
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Claus C, Slavin M, Ansseau E, Lancelot C, Bah K, Lassche S, Fiévet M, Greco A, Tomaiuolo S, Tassin A, Dudome V, Kusters B, Declèves AE, Laoudj-Chenivesse D, van Engelen BGM, Nonclercq D, Belayew A, Kalisman N, Coppée F. The double homeodomain protein DUX4c is associated with regenerating muscle fibers and RNA-binding proteins. Skelet Muscle 2023; 13:5. [PMID: 36882853 PMCID: PMC9990282 DOI: 10.1186/s13395-022-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/30/2022] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND We have previously demonstrated that double homeobox 4 centromeric (DUX4C) encoded for a functional DUX4c protein upregulated in dystrophic skeletal muscles. Based on gain- and loss-of-function studies we have proposed DUX4c involvement in muscle regeneration. Here, we provide further evidence for such a role in skeletal muscles from patients affected with facioscapulohumeral muscular dystrophy (FSHD). METHODS DUX4c was studied at RNA and protein levels in FSHD muscle cell cultures and biopsies. Its protein partners were co-purified and identified by mass spectrometry. Endogenous DUX4c was detected in FSHD muscle sections with either its partners or regeneration markers using co-immunofluorescence or in situ proximity ligation assay. RESULTS We identified new alternatively spliced DUX4C transcripts and confirmed DUX4c immunodetection in rare FSHD muscle cells in primary culture. DUX4c was detected in nuclei, cytoplasm or at cell-cell contacts between myocytes and interacted sporadically with specific RNA-binding proteins involved, a.o., in muscle differentiation, repair, and mass maintenance. In FSHD muscle sections, DUX4c was found in fibers with unusual shape or central/delocalized nuclei (a regeneration feature) staining for developmental myosin heavy chain, MYOD or presenting intense desmin labeling. Some couples of myocytes/fibers locally exhibited peripheral DUX4c-positive areas that were very close to each other, but in distinct cells. MYOD or intense desmin staining at these locations suggested an imminent muscle cell fusion. We further demonstrated DUX4c interaction with its major protein partner, C1qBP, inside myocytes/myofibers that presented features of regeneration. On adjacent muscle sections, we could unexpectedly detect DUX4 (the FSHD causal protein) and its interaction with C1qBP in fusing myocytes/fibers. CONCLUSIONS DUX4c upregulation in FSHD muscles suggests it contributes not only to the pathology but also, based on its protein partners and specific markers, to attempts at muscle regeneration. The presence of both DUX4 and DUX4c in regenerating FSHD muscle cells suggests DUX4 could compete with normal DUX4c functions, thus explaining why skeletal muscle is particularly sensitive to DUX4 toxicity. Caution should be exerted with therapeutic agents aiming for DUX4 suppression because they might also repress the highly similar DUX4c and interfere with its physiological role.
Collapse
Affiliation(s)
- Clothilde Claus
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Moriya Slavin
- Department of Biological Chemistry, the Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eugénie Ansseau
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Céline Lancelot
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Karimatou Bah
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Manon Fiévet
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Sara Tomaiuolo
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium.,Laboratory of Respiratory Physiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Virginie Dudome
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Benno Kusters
- Department of Pathology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | | | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Denis Nonclercq
- Laboratory of Histology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Alexandra Belayew
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Nir Kalisman
- Department of Biological Chemistry, the Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium.
| |
Collapse
|
15
|
Tian H, Chai D, Wang G, Wang Q, Sun N, Jiang G, Li H, Song J, Fang L, Wang M, Guo Z, Zheng J. Mitochondrial C1QBP is essential for T cell antitumor function by maintaining mitochondrial plasticity and metabolic fitness. Cancer Immunol Immunother 2023:10.1007/s00262-023-03407-5. [PMID: 36828964 DOI: 10.1007/s00262-023-03407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/11/2023] [Indexed: 02/26/2023]
Abstract
The metabolic stress present in the tumor microenvironment of many cancers can attenuate T cell antitumor activity, which is intrinsically controlled by the mitochondrial plasticity, dynamics, metabolism, and biogenesis within these T cells. Previous studies have reported that the complement C1q binding protein (C1QBP), a mitochondrial protein, is responsible for maintenance of mitochondrial fitness in tumor cells; however, its role in T cell mitochondrial function, particularly in the context of an antitumor response, remains unclear. Here, we show that C1QBP is indispensable for T cell antitumor immunity by maintaining mitochondrial integrity and homeostasis. This effect holds even when only one allele of C1qbp is functional. Further analysis of C1QBP in the context of chimeric antigen receptor (CAR) T cell therapy against the murine B16 melanoma model confirmed the cell-intrinsic role of C1QBP in regulating the antitumor functions of CAR T cells. Mechanistically, we found that C1qbp knocking down impacted mitochondrial biogenesis via the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha signaling pathway, as well as mitochondrial morphology via the phosphorylation of mitochondrial dynamics protein dynamin-related protein 1. In summary, our study provides a novel mitochondrial target to potentiate the plasticity and metabolic fitness of mitochondria within T cells, thus improving the immunotherapeutic potential of these T cells against tumors.
Collapse
Affiliation(s)
- Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Qiping Wang
- Jiangyin Clinical Medical College, Jiangsu University, Jiangyin City, 214400, Jiangsu, People's Republic of China
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jingyuan Song
- School of Nursing, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Zengli Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Conor Moran J, Del'Olio S, Choi A, Zhong H, Barrientos A. Mitoribosome Biogenesis. Methods Mol Biol 2023; 2661:23-51. [PMID: 37166630 PMCID: PMC10639111 DOI: 10.1007/978-1-0716-3171-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitoribosome biogenesis is a complex and energetically costly process that involves RNA elements encoded in the mitochondrial genome and mitoribosomal proteins most frequently encoded in the nuclear genome. The process is catalyzed by extra-ribosomal proteins, nucleus-encoded assembly factors that act in all stages of the assembly process to coordinate the processing and maturation of ribosomal RNAs with the hierarchical association of ribosomal proteins. Biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided hints regarding their assembly. In this general concept chapter, we will briefly describe the current knowledge, mainly regarding the mammalian mitoribosome biogenesis pathway and factors involved, and will emphasize the biological sources and approaches that have been applied to advance the field.
Collapse
Affiliation(s)
- J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Austin Choi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
17
|
Lei Y, Li X, Qin D, Zhang Y, Wang Y. gC1qR: A New Target for Cancer Immunotherapy. Front Immunol 2023; 14:1095943. [PMID: 36776869 PMCID: PMC9909189 DOI: 10.3389/fimmu.2023.1095943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Although breakthroughs in cancer treatment have been achieved, immunotherapy yields only modest benefits in most patients. There is still a gap in clarifying the immune evasiveness and immune-resistance mechanisms. Identifying other candidate targets for cancer immunotherapy is therefore a clear unmet clinical need. The complement system, a pillar of innate immunity, has recently entered the limelight due to its immunoregulatory functions in the tumor microenvironment (TME). In particular, gC1qR, a receptor for globular heads of C1q, serves as a promising new target and has attracted more attention. gC1qR, also named P32/C1qBP/HABP1, is a multifunctional protein that is overexpressed in various cancers and holds prognostic value. It regulates the tumorigenic, progression and metastatic properties of tumor cells through several downstream signaling pathways, including the Wnt/β-catenin, PKC-NF-κB and Akt/PKB pathways. A few preclinical experiments conducted through gC1qR interventions, such as monoclonal antibody, chimeric antigen receptor T-cell (CAR-T) therapy, and tumor vaccination, have shown encouraging results in anticancer activity. The efficacy may rely on the regulatory role on the TME, induction of tumor cells apoptosis and antiangiogenic activity. Nevertheless, the current understanding of the relationship between cancer immunotherapy and gC1qR remains elusive and often contradictory, posing both opportunities and challenges for therapeutic translation in the clinic. In this review, we focus on the current understanding of gC1qR function in cancer immunology and highlight the vital roles in regulating the TME. We also examines the rationale behind targeting gC1qR and discusses the potential for translating into clinical practice.
Collapse
Affiliation(s)
- Yanna Lei
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Diyuan Qin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
King BC, Blom AM. Intracellular complement: Evidence, definitions, controversies, and solutions. Immunol Rev 2023; 313:104-119. [PMID: 36100972 PMCID: PMC10086947 DOI: 10.1111/imr.13135] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The term "intracellular complement" has been introduced recently as an umbrella term to distinguish functions of complement proteins that take place intracellularly, rather than in the extracellular environment. However, this rather undefined term leaves some confusion as to the classification of what intracellular complement really is, and as to which intracellular compartment(s) it should refer to. In this review, we will describe the evidence for both canonical and non-canonical functions of intracellular complement proteins, as well as the current controversies and unanswered questions as to the nature of the intracellular complement. We also suggest new terms to facilitate the accurate description and discussion of specific forms of intracellular complement and call for future experiments that will be required to provide more definitive evidence and a better understanding of the mechanisms of intracellular complement activity.
Collapse
Affiliation(s)
- Ben C King
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
19
|
Butterworth S, Torelli F, Lockyer EJ, Wagener J, Song OR, Broncel M, Russell MRG, Moreira-Souza ACA, Young JC, Treeck M. Toxoplasma gondii virulence factor ROP1 reduces parasite susceptibility to murine and human innate immune restriction. PLoS Pathog 2022; 18:e1011021. [PMID: 36476844 PMCID: PMC9762571 DOI: 10.1371/journal.ppat.1011021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that can infect many host species and is a cause of significant human morbidity worldwide. T. gondii secretes a diverse array of effector proteins into the host cell which are critical for infection. The vast majority of these secreted proteins have no predicted functional domains and remain uncharacterised. Here, we carried out a pooled CRISPR knockout screen in the T. gondii Prugniaud strain in vivo to identify secreted proteins that contribute to parasite immune evasion in the host. We demonstrate that ROP1, the first-identified rhoptry protein of T. gondii, is essential for virulence and has a previously unrecognised role in parasite resistance to interferon gamma-mediated innate immune restriction. This function is conserved in the highly virulent RH strain of T. gondii and contributes to parasite growth in both murine and human macrophages. While ROP1 affects the morphology of rhoptries, from where the protein is secreted, it does not affect rhoptry secretion. Finally, we show that ROP1 co-immunoprecipitates with the host cell protein C1QBP, an emerging regulator of innate immune signaling. In summary, we identify putative in vivo virulence factors in the T. gondii Prugniaud strain and show that ROP1 is an important and previously overlooked effector protein that counteracts both murine and human innate immunity.
Collapse
Affiliation(s)
- Simon Butterworth
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Francesca Torelli
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eloise J. Lockyer
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jeanette Wagener
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ok-Ryul Song
- High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Malgorzata Broncel
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Matt R. G. Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | | | - Joanna C. Young
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Moritz Treeck
- Signalling In Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
20
|
Wang Q, Chai D, Sobhani N, Sun N, Neeli P, Zheng J, Tian H. C1QBP regulates mitochondrial plasticity to impact tumor progression and antitumor immune response. Front Physiol 2022; 13:1012112. [DOI: 10.3389/fphys.2022.1012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial plasticity including mitochondrial dynamics, metabolic flexibility, and mitochondrial quality control, impact tumor cells’ progression and determine immune cells’ fate. Complement C1q binding protein (C1QBP) plays an indispensable role through regulating mitochondrial morphology, metabolism, and autophagy. C1QBP promotes mitochondrial plasticity to impact tumor metastasis and their therapeutic response. At the same time, C1QBP is involved in regulating immune cells’ maturation, differentiation, and effector function through the enhancement of mitochondrial function. In this regard, manipulation of C1QBP has been shown to adjust the competitive balance between tumor cells and immune cells. In the course of evolution, mitochondrial plasticity has endowed numerous advantages against the relentless microenvironment of tumors. In this current review, we summarize the current knowledge of the mechanism of C1QBP regulation of cancer and immunity. We explain this process in vision of potentially new anticancer therapies.
Collapse
|
21
|
Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 2022; 18:621-640. [PMID: 36175664 DOI: 10.1038/s41584-022-00834-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.
Collapse
Affiliation(s)
- Yann L C Becker
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Paul R Fortin
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Eric Boilard
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada.
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
22
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
23
|
Zhang Y, Vontz AJ, Kallenberger EM, Xu X, Ploscariu NT, Ramyar KX, Garcia BL, Ghebrehiwet B, Geisbrecht BV. gC1qR/C1qBP/HABP-1: Structural Analysis of the Trimeric Core Region, Interactions With a Novel Panel of Monoclonal Antibodies, and Their Influence on Binding to FXII. Front Immunol 2022; 13:887742. [PMID: 35865516 PMCID: PMC9294231 DOI: 10.3389/fimmu.2022.887742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
The protein gC1qR/C1qBP/HABP-1 plays an essential role in mitochondrial biogenesis, but becomes localized at the cellular surface in numerous pathophysiological states. When this occurs on endothelial cells, surface-exposed gC1qR activates the classical pathway of complement. It also promotes assembly of a multi-protein complex comprised of coagulation factor XII (FXII), pre-kallikrein (PK), and high-molecular weight kininogen (HMWK) that activates the contact system and the kinin-generating system. Since surface-exposed gC1qR triggers intravascular inflammatory pathways, there is interest in identifying molecules that block gC1qR function. Here we further that objective by reporting the outcome of a structure/function investigation of gC1qR, its interactions with FXII, and the impact of a panel of monoclonal anti-gC1qR antibodies on FXII binding to gC1qR. Although deletion mutants have been used extensively to assess gC1qR function, none of these proteins have been characterized structurally. To that end, we determined a 2.2 Å resolution crystal structure of a gC1qR mutant lacking both of its acidic loops, but which retained nanomolar-affinity binding to FXII and FXIIa. This structure revealed that the trimeric gC1qR assembly was maintained despite loss of roughly thirty residues. Characterization of a novel panel of anti-gC1qR monoclonal antibodies identified several with biochemical properties distinct from previously described antibodies, as well as one which bound to the first acidic loop of gC1qR. Intriguingly, we found that each of these antibodies could partly inhibit binding of FXII and FXIIa to gC1qR. Based on these results and previously published studies, we offer new perspectives for developing gC1qR inhibitors.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Alexander J. Vontz
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Ethan M. Kallenberger
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Xin Xu
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Nicoleta T. Ploscariu
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Kasra X. Ramyar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Brandon L. Garcia
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States,*Correspondence: Berhane Ghebrehiwet, ; Brian V. Geisbrecht,
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States,*Correspondence: Berhane Ghebrehiwet, ; Brian V. Geisbrecht,
| |
Collapse
|
24
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
25
|
Adachi Y, Sato N, Oba T, Amaike T, Kudo Y, Kohi S, Nakayama T, Hirata K. Prognostic and functional role of hyaluronan‑binding protein 1 in pancreatic ductal adenocarcinoma. Oncol Lett 2022; 24:222. [PMID: 35720501 PMCID: PMC9178692 DOI: 10.3892/ol.2022.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan-binding protein 1 (HABP1) is among the molecules known to bind to hyaluronan and is involved in a variety of cellular processes, including cell proliferation and migration. HABP1 has been implicated in the progression of various cancers; however, there have been (to the best of our knowledge) few studies on the expression and function of HABP1 in pancreatic ductal adenocarcinoma (PDAC), a topic that is examined in the present study. Immunohistochemical analysis of HABP1 protein was conducted in archival tissues from 105 patients with PDAC. Furthermore, the functional effect of HABP1 on proliferation, colony formation, and migration in PDAC cells was examined by knockdown of HABP1. It was revealed that HABP1 was overexpressed in 49 (46.2%) out of 105 patients with PDAC. Overall survival was significantly shorter in patients with high HABP1 expression than in those with low HABP1 expression (median survival time of 12.8 months vs. 28.5 months; log-rank test, P=0.004). Knockdown of HABP1 expression in PDAC cells resulted in decreased cell proliferation, colony formation, and cell migration activity. Thus, HABP1 may serve as a prognostic factor in PDAC and may be of use as a novel therapeutic target.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Norihiro Sato
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takuya Oba
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takao Amaike
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yuzan Kudo
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Shiro Kohi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Keiji Hirata
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
26
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
27
|
Pan Z, Feng Y, Wang Z, Lei Z, Han Q, Zhang J. MERS-CoV nsp1 impairs the cellular metabolic processes by selectively downregulating mRNAs in a novel granules. Virulence 2022; 13:355-369. [PMID: 35129074 PMCID: PMC8824216 DOI: 10.1080/21505594.2022.2032928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MERS-CoV infection can damage the cellular metabolic processes, but the underlying mechanisms are largely unknown. Through screening, we found non-structural protein 1 (nsp1) of MERS-CoV could inhibit cell viability, cell cycle, and cell migration through its endonuclease activity. Transcriptome sequencing revealed that MERS-CoV nsp1 specifically downregulated the mRNAs of ribosomal protein genes, oxidative phosphorylation protein genes, and antigen presentation genes, but upregulated the mRNAs of transcriptional regulatory genes. Further analysis shown nsp1 existed in a novel ribonucleosome complex formed via liquid-liquid phase separation, which did not co-localize with mitochondria, lysosomes, P-bodies, or stress granules. Interestingly, the nsp1-located granules specifically contained mRNAs of ribosomal protein genes and oxidative phosphorylation genes, which may explain why MERS-CoV nsp1 selectively degraded these mRNAs in cells. Finally, MERS-CoV nsp1 transgenic mice showed significant loss of body weight and an increased sensitivity to poly(I:C)-induced inflammatory death. These findings demonstrate a new mechanism by which MERS-CoV impairs cell viability, which serves as a potential novel target for preventing MERS-CoV infection-induced pathological damage. Abbreviations: (Middle East respiratory syndrome coronavirus (MERS-CoV), Actinomycin D (Act D), liquid-liquid phase separation (LLPS), stress granules (SGs), Mass spectrometry (IP-MS), RNA Binding Protein Immunoprecipitation (RIP))
Collapse
Affiliation(s)
- Zhaoyi Pan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yujie Feng
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhihui Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhengyang Lei
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
28
|
Becker YL, Gagné JP, Julien AS, Lévesque T, Allaeys I, Gougeard N, Rubio V, Boisvert FM, Jean D, Wagner E, Poirier GG, Fortin PR, Boilard É. Identification of mitofusin 1 and complement component 1q subcomponent-binding protein as mitochondrial targets in systemic lupus erythematosus. Arthritis Rheumatol 2022; 74:1193-1203. [PMID: 35128841 DOI: 10.1002/art.42082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Mitochondria are organelles that possess several bacterial features such as a double-stranded genome with hypomethylated CpG islets, formylated proteins, and cardiolipin-containing membranes. In systemic lupus erythematosus (SLE), mitochondria and their inner components are released into the extracellular space, potentially eliciting a pro-inflammatory response by the immune system. While cardiolipin and mitochondrial DNA and RNA are confirmed targets of autoantibodies, other antigenic mitochondrial proteins in SLE remain to be identified. Herein, we aim to characterize the protein repertoire recognized by anti-mitochondrial antibodies (AMA) in SLE patients. METHODS Using shotgun proteomic profiling, we identified 1345 proteins, 431 of which were associated with the mitochondrial proteome. Immunoreactivities to several of these candidates were assessed by direct ELISA in serum samples from a local cohort (healthy: n=30, SLE: n=87) and associated with demographic and disease characteristics. RESULTS We determined that IgGs to the C1q-binding protein (C1qBP) are significantly elevated in SLE patients included in our cohort (p=0.049) and are associated with positivity for lupus anticoagulant (p=0.049). IgG against the mitochondrial protein mitofusin 1 (Mfn1) displayed promising performances in the prediction of SLE diagnoses (aOR: 2.99, 95%CI: 1.39-6.43, p=0.0044) in our cohort. Moreover, anti-Mfn1 were associated with positivity to anti-phospholipids (p=0.011) and anti-dsDNA (p=0.0005). CONCLUSION This study presents the mitochondrial repertoire targeted in SLE, indicating that autoantibodies can recognize secreted and/or surface proteins of mitochondrial origin. Profiling of the AMA repertoire in large prospective cohorts may improve our knowledge on mitochondrial biomarkers and their usefulness for patient stratification.
Collapse
Affiliation(s)
- Yann Lc Becker
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada
| | - Jean-Philippe Gagné
- Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Laboratoire d'Immunologie et Histocompatibilité, CHU de Québec-Université Laval, Département de Médecine de Laboratoire, Québec, Qc, Canada
| | - Anne-Sophie Julien
- Département de mathématiques et statistique, Université Laval, Québec, Qc, Canada
| | - Tania Lévesque
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada
| | - Isabelle Allaeys
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada
| | - Nadine Gougeard
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Vicente Rubio
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | | | - Dominique Jean
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Wagner
- Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada.,Laboratoire d'Immunologie et Histocompatibilité, CHU de Québec-Université Laval, Département de Médecine de Laboratoire, Québec, Qc, Canada
| | - Guy G Poirier
- Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de Médecine, Université Laval, Québec, Qc, Canada
| | - Paul R Fortin
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Division de Rhumatologie, Département de Médecine, CHU de Québec - Université Laval, Québec, Qc, Canada
| | - Éric Boilard
- Centre de Recherche ARThrite - Arthrite, Recherche et Traitements, Université Laval, Québec, Qc, Canada.,Axe Maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Qc, Canada.,Département de microbiologie et immunologie, Université Laval, Québec, Qc, Canada
| |
Collapse
|
29
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
30
|
Tian H, Wang G, Wang Q, Zhang B, Jiang G, Li H, Chai D, Fang L, Wang M, Zheng J. C1QBP regulates T cells mitochondrial fitness to affect their survival, proliferation and anti-tumor immune function. Cancer Sci 2022; 113:875-890. [PMID: 34978120 PMCID: PMC8898709 DOI: 10.1111/cas.15261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
T cells survival, proliferation, and anti–tumor response are closely linked to their mitochondrial health. Complement C1q binding protein (C1QBP) promotes mitochondrial fitness through regulation of mitochondrial metabolism and morphology. However, whether C1QBP regulates T cell survival, proliferation, and anti–tumor immune function remains unclear. Our data demonstrated that C1QBP knockdown induced the accumulation of reactive oxygen species (ROS) and the loss of mitochondrial membrane potential to impair T cell mitochondrial fitness. At the same time, C1QBP insufficiency reduced the recruitment of the anti–apoptotic proteins, including Bcl‐2 and Bcl‐XL, and repressed caspase‐3 activation and poly (ADP‐ribose) polymerase cleavage, which consequently accelerated the T cell apoptotic process. In contrast, C1QBP knockdown rendered T cells with relatively weaker proliferation due to the inhibition of AKT/mTOR signaling pathway. To investigate the exact role of C1QBP in anti–tumor response, C1QBP+/− and C1QBP+/+ mice were given a subcutaneous injection of murine MC38 cells. We found that C1QBP deficiency attenuated T cell tumor infiltration and aggravated tumor‐infiltrating T lymphocytes (TIL) exhaustion. Moreover, we further clarified the potential function of C1QBP in chimeric antigen receptor (CAR) T cell immunotherapy. Our data showed that C1QBP+/− CAR T cells exhibited relatively weaker anti–tumor response than the corresponding C1QBP+/+ CAR T cells. Given that C1QBP knockdown impairs T cells’ anti–apoptotic capacity, proliferation as well as anti–tumor immune function, development of the strategy for potentiation of T cells’ mitochondrial fitness through C1QBP could potentially optimize the efficacy of the related immunotherapy.
Collapse
Affiliation(s)
- Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Qiping Wang
- Jiangyin Clinical Medical College, Jiangsu University, Jiangyin city, Jiangsu, 221002, P.R. China
| | - Baofu Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P.R. China
| |
Collapse
|
31
|
Waltz F, Salinas-Giegé T, Englmeier R, Meichel H, Soufari H, Kuhn L, Pfeffer S, Förster F, Engel BD, Giegé P, Drouard L, Hashem Y. How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nat Commun 2021; 12:7176. [PMID: 34887394 PMCID: PMC8660880 DOI: 10.1038/s41467-021-27200-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components. Single particle cryo-electron microscopy resolves how the Chlamydomonas mitoribosome is assembled from 13 rRNA fragments encoded by separate non-contiguous gene pieces. Additional proteins, mainly OPR, PPR and mTERF helical repeat proteins, are found in Chlamydomonas mitoribosome, revealing the structure of an OPR protein in complex with its RNA binding partner. Targeted amiRNA silencing indicates that these ribosomal proteins are required for mitoribosome integrity. Finally, we use cryo-electron tomography to show that Chlamydomonas mitoribosomes are attached to the inner mitochondrial membrane via two contact points mediated by Chlamydomonas-specific proteins. Our study expands our understanding of mitoribosome diversity and the various strategies these specialized molecular machines adopt for membrane tethering.
Collapse
Affiliation(s)
- Florent Waltz
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, 33600, Pessac, France
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France
| | - Robert Englmeier
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Herrade Meichel
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France
| | - Heddy Soufari
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, 33600, Pessac, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Benjamin D Engel
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France.
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France.
| | - Yaser Hashem
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, 33600, Pessac, France.
| |
Collapse
|
32
|
Zhai X, Liu K, Fang H, Zhang Q, Gao X, Liu F, Zhou S, Wang X, Niu Y, Hong Y, Lin SH, Liu WH, Xiao C, Li Q, Xiao N. Mitochondrial C1qbp promotes differentiation of effector CD8 + T cells via metabolic-epigenetic reprogramming. SCIENCE ADVANCES 2021; 7:eabk0490. [PMID: 34860557 PMCID: PMC8641941 DOI: 10.1126/sciadv.abk0490] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/15/2021] [Indexed: 05/27/2023]
Abstract
Early-activated CD8+ T cells increase both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). However, whether and how the augmentation of OXPHOS regulates differentiation of effector CD8+ T cell remains unclear. Here, we found that C1qbp was intrinsically required for such differentiation in antiviral and antitumor immune responses. Activated C1qbp-deficient CD8+ T cells failed to increase mitochondrial respiratory capacities, resulting in diminished acetyl–coenzyme A as well as elevated fumarate and 2-hydroxyglutarate. Consequently, hypoacetylation of H3K27 and hypermethylation of H3K27 and CpG sites were associated with transcriptional down-regulation of effector signature genes. The effector differentiation of C1qbp-sufficient or C1qbp-deficient CD8+ T cells was reversed by fumarate or a combination of histone deacetylase inhibitor and acetate. Therefore, these findings identify C1qbp as a pivotal positive regulator in the differentiation of effector CD8+ T cells and highlight a metabolic-epigenetic axis in this process.
Collapse
Affiliation(s)
- Xingyuan Zhai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kai Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongkun Fang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Quan Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianjun Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shangshang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xinming Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yujia Niu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiyuan Li
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
33
|
Anderson JM, Box JM, Stuart RA. The mitospecific domain of Mrp7 (bL27) supports mitochondrial translation during fermentation and is required for effective adaptation to respiration. Mol Biol Cell 2021; 33:ar7. [PMID: 34731012 PMCID: PMC8886811 DOI: 10.1091/mbc.e21-07-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We demonstrate here that mitoribosomal protein synthesis, responsible for the synthesis of oxidative phosphorylation (OXPHOS) subunits encoded by mitochondrial genome, occurs at high levels during glycolysis fermentation and in a manner uncoupled from OXPHOS complex assembly regulation. Furthermore, we provide evidence that the mitospecific domain of Mrp7 (bL27), a mitoribosomal component, is required to maintain mitochondrial protein synthesis during fermentation, but is not required under respiration growth conditions. Maintaining mitotranslation under high glucose fermentation conditions also involves Mam33 (p32/gC1qR homolog), a binding partner of Mrp7's mitospecific domain, and together they confer a competitive advantage for a cell's ability to adapt to respiration-based metabolism when glucose becomes limiting. Furthermore, our findings support that the mitoribosome, and specifically the central protuberance (CP) region, may be differentially regulated and/or assembled, under the different metabolic conditions of fermentation and respiration. Based on our findings, we propose the purpose of mitotranslation is not limited to the assembly of OXPHOS complexes, but also plays a role in mitochondrial signaling critical for switching cellular metabolism from a glycolysis- to a respiratory-based state.
Collapse
Affiliation(s)
| | - Jodie M Box
- Dept. of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Rosemary A Stuart
- Dept. of Biological Sciences, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
34
|
Song K, Wu Y, Fu B, Wang L, Hao W, Hua F, Sun Y, Dorf ME, Li S. Leaked Mitochondrial C1QBP Inhibits Activation of the DNA Sensor cGAS. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2155-2166. [PMID: 34526378 PMCID: PMC8492507 DOI: 10.4049/jimmunol.2100392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023]
Abstract
Cytosolic DNA from pathogens activates the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) that produces the second messenger, cGAMP. cGAMP triggers a signal cascade leading to type I IFN expression. Host DNA is normally restricted in the cellular compartments of the nucleus and mitochondria. Recent studies have shown that DNA virus infection triggers mitochondrial stress, leading to the release of mitochondrial DNA to the cytosol and activation of cGAS; however, the regulatory mechanism of mitochondrial DNA-mediated cGAS activation is not well elucidated. In this study, we analyzed cGAS protein interactome in mouse RAW264.7 macrophages and found that cGAS interacted with C1QBP. C1QBP predominantly localized in the mitochondria and leaked into the cytosol during DNA virus infection. The leaked C1QBP bound the NTase domain of cGAS and inhibited cGAS enzymatic activity in cells and in vitro. Overexpression of the cytosolic form of C1QBP inhibited cytosolic DNA-elicited innate immune responses and promoted HSV-1 infection. By contrast, deficiency of C1QBP led to the elevated innate immune responses and impaired HSV-1 infection. Taken together, our study suggests that C1QBP is a novel cGAS inhibitor hidden in the mitochondria.
Collapse
Affiliation(s)
- Kun Song
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Yakun Wu
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Bishi Fu
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Lingyan Wang
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Wenzhuo Hao
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Fang Hua
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Yiwen Sun
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| | - Martin E Dorf
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA; and
| |
Collapse
|
35
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
36
|
Mizuguchi S, Gotoh K, Nakashima Y, Setoyama D, Takata Y, Ohga S, Kang D. Mitochondrial Reactive Oxygen Species Are Essential for the Development of Psoriatic Inflammation. Front Immunol 2021; 12:714897. [PMID: 34421919 PMCID: PMC8378889 DOI: 10.3389/fimmu.2021.714897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a common immune-mediated, chronic, inflammatory skin disease that affects approximately 2-3% of the population worldwide. Although there is increasing evidence regarding the essential roles of the interleukin (IL)-23/IL-17 axis and dendritic cell (DC)-T cell crosstalk in the development of skin inflammation, the contributions of mitochondrial function to psoriasis are unclear. In a mouse model of imiquimod (IMQ)-induced psoriasiform skin inflammation, we found that hematopoietic cell-specific genetic deletion of p32/C1qbp, a regulator of mitochondrial protein synthesis and metabolism, protects mice from IMQ-induced psoriatic inflammation. Additionally, we demonstrate that p32/C1qbp is an important regulator of IMQ-induced DC activation, both in vivo and in vitro. We also found that p32/C1qbp-deficient DCs exhibited impaired production of IL-1β, IL-23, and mitochondrial reactive oxygen species (mtROS) after IMQ stimulation. Because the inhibition of mtROS suppressed IMQ-induced DC activation and psoriatic inflammation, we presume that p32/C1qbp and mtROS can serve as therapeutic targets in psoriasis.
Collapse
Affiliation(s)
- Soichi Mizuguchi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Nakashima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yurie Takata
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
D’Souza AR, Van Haute L, Powell CA, Mutti CD, Páleníková P, Rebelo-Guiomar P, Rorbach J, Minczuk M. YbeY is required for ribosome small subunit assembly and tRNA processing in human mitochondria. Nucleic Acids Res 2021; 49:5798-5812. [PMID: 34037799 PMCID: PMC8191802 DOI: 10.1093/nar/gkab404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.
Collapse
Affiliation(s)
- Aaron R D’Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christian D Mutti
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Petra Páleníková
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Joanna Rorbach
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Michal Minczuk
- To whom correspondence should be addressed. Tel: +44 122 325 2750;
| |
Collapse
|
38
|
Rousso-Noori L, Mastandrea I, Talmor S, Waks T, Globerson Levin A, Haugas M, Teesalu T, Alvarez-Vallina L, Eshhar Z, Friedmann-Morvinski D. P32-specific CAR T cells with dual antitumor and antiangiogenic therapeutic potential in gliomas. Nat Commun 2021; 12:3615. [PMID: 34127674 PMCID: PMC8203650 DOI: 10.1038/s41467-021-23817-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma is considered one of the most aggressive malignancies in adult and pediatric patients. Despite decades of research no curative treatment is available and it thus remains associated with a very dismal prognosis. Although recent pre-clinical and clinical studies have demonstrated the feasibility of chimeric antigen receptors (CAR) T cell immunotherapeutic approach in glioblastoma, tumor heterogeneity and antigen loss remain among one of the most important challenges to be addressed. In this study, we identify p32/gC1qR/HABP/C1qBP to be specifically expressed on the surface of glioma cells, making it a suitable tumor associated antigen for redirected CAR T cell therapy. We generate p32 CAR T cells and find them to recognize and specifically eliminate p32 expressing glioma cells and tumor derived endothelial cells in vitro and to control tumor growth in orthotopic syngeneic and xenograft mouse models. Thus, p32 CAR T cells may serve as a therapeutic option for glioblastoma patients. Chimeric antigen receptor (CAR) T cell therapy has been proposed as a promising approach for treating glioblastoma. Here the authors show that p32 is expressed in murine and human glioma and that p32-directed CAR-T cells promote anti-tumor responses in preclinical models by targeting glioma cells and tumor derived endothelial cells.
Collapse
Affiliation(s)
- Liat Rousso-Noori
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ignacio Mastandrea
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shauli Talmor
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tova Waks
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Maarja Haugas
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia.,Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Zelig Eshhar
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dinorah Friedmann-Morvinski
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
39
|
Webster G, Reynolds M, Arva NC, Dellefave-Castillo LM, McElligott HS, Kofman A, Laboski A, Magnetta D, George AL, McNally EM, Puckelwartz MJ. Mitochondrial cardiomyopathy and ventricular arrhythmias associated with biallelic variants in C1QBP. Am J Med Genet A 2021; 185:2496-2501. [PMID: 34003581 DOI: 10.1002/ajmg.a.62262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 04/24/2021] [Indexed: 11/06/2022]
Abstract
Patients with biallelic mutations in the nuclear-encoded mitochondrial gene C1QBP/p32 have been described with syndromic features and autosomal recessive cardiomyopathy. We describe the clinical course in two siblings who developed cardiomyopathy and ventricular fibrillation in infancy. We provide genomic analysis and clinical-pathologic correlation. Both siblings had profound cardiac failure with ventricular arrhythmia. One child died suddenly. The second sibling survived resuscitation but required extracorporeal cardiopulmonary support and died shortly afterward. On cardiac autopsy, the left ventricle was hypertrophied in both children. Histological examination revealed prominent cardiomyocyte cytoplasmic clearing, and electron microscopy confirmed abnormal mitochondrial structure within cardiomyocytes. DNA sequencing revealed compound heterozygous variants in C1QBP (p.Thr40Asnfs*45 and p.Phe204Leu) in both children. Family segregation analysis demonstrated each variant was inherited from an unaffected, heterozygous parent. Inherited loss of C1QBP/p32 is associated with recessive cardiomyopathy, ventricular fibrillation, and sudden death in early life. Ultrastructural mitochondrial evaluation in the second child was similar to findings in engineered C1qbp-deficient mice. Rapid trio analysis can define rare biallelic variants in genes that may be implicated in sudden death and facilitate medical management and family planning. (184/200).
Collapse
Affiliation(s)
- Gregory Webster
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Meredith Reynolds
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicoleta C Arva
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Amber Kofman
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aleksandra Laboski
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Defne Magnetta
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Koo BH, Won MH, Kim YM, Ryoo S. Arginase II protein regulates Parkin-dependent p32 degradation that contributes to Ca2+-dependent eNOS activation in endothelial cells. Cardiovasc Res 2021; 118:1344-1358. [PMID: 33964139 PMCID: PMC8953445 DOI: 10.1093/cvr/cvab163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Aims Arginase II (ArgII) plays a key role in the regulation of Ca2+ between the cytosol and mitochondria in a p32-dependent manner. p32 contributes to endothelial nitric oxide synthase (eNOS) activation through the Ca2+/CaMKII/AMPK/p38MAPK/Akt signalling cascade. Therefore, we investigated a novel function of ArgII in the regulation of p32 stability. Methods and results mRNA levels were measured by quantitative reverse transcription-PCR, and protein levels and activation were confirmed by western blot analysis. Ca2+ concentrations were measured by FACS analysis and a vascular tension assay was performed. ArgII bound to p32, and ArgII protein knockdown using siArgII facilitated the ubiquitin-dependent proteasomal degradation of p32. β-lactone, a proteasome inhibitor, inhibited the p32 degradation associated with endothelial dysfunction in a Ca2+-dependent manner. The amino acids Lys154, Lys 180, and Lys220 of the p32 protein were identified as putative ubiquitination sites. When these sites were mutated, p32 was resistant to degradation in the presence of siArgII, and endothelial function was impaired. Knockdown of Pink/Parkin as an E3-ubiquitin ligase with siRNAs resulted in increased p32, decreased [Ca2+]c, and attenuated CaMKII-dependent eNOS activation by siArgII. siArgII-dependent Parkin activation was attenuated by KN93, a CaMKII inhibitor. Knockdown of ArgII mRNA and its gene, but not inhibition of its activity, accelerated the interaction between p32 and Parkin and reduced p32 levels. In aortas of ArgII−/− mice, p32 levels were reduced by activated Parkin and inhibition of CaMKII attenuated Parkin-dependent p32 lysis. siParkin blunted the phosphorylation of the activated CaMKII/AMPK/p38MAPK/Akt/eNOS signalling cascade. However, ApoE−/− mice fed a high-cholesterol diet had greater ArgII activity, significantly attenuated phosphorylation of Parkin, and increased p32 levels. Incubation with siArgII augmented p32 ubiquitination through Parkin activation, and induced signalling cascade activation. Conclusion The results suggest a novel function for ArgII protein in Parkin-dependent ubiquitination of p32 that is associated with Ca2+-mediated eNOS activation in endothelial cells.
Collapse
Affiliation(s)
| | | | - Young-Myeong Kim
- Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, 24341, Korea
| | | |
Collapse
|
41
|
Alstrup M, Vogel I, Sandager P, Blechingberg J, Becher N, Østergaard E. A novel homozygous variant in C1QBP causes severe IUGR, edema, and cardiomyopathy in two fetuses. JIMD Rep 2021; 59:20-25. [PMID: 33977026 PMCID: PMC8100402 DOI: 10.1002/jmd2.12209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
The C1QBP protein (complement component 1 Q subcomponent-binding protein), encoded by the C1QBP gene, is a multifunctional protein predominantly localized in the mitochondrial matrix. Biallelic variants have previously been shown to give rise to combined respiratory-chain deficiencies with variable phenotypic presentation, severity, and age at onset, from intrauterine with a mostly lethal course, to a late-onset mild myopathy. We present two fetuses, one male and one female, of first-cousin parents, with severe intrauterine growth retardation, oligo/anhydramnios, edema, and cardiomyopathy as the most prominent prenatal symptoms. Both fetuses showed no copy number variants by chromosome microarray analysis. Analysis of a fibroblast culture from one of the fetuses showed deficiency of respiratory chain complex IV, and using exome sequencing, we identified homozygosity for a novel variant in C1QBP in both fetuses. To our knowledge, only six patients with pathogenic variants in C1QBP have been reported previously and with this report, we add a novel pathogenic variant in C1QBP found in two related fetuses.
Collapse
Affiliation(s)
- Morten Alstrup
- Department of Clinical GeneticsCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Ida Vogel
- Center for Fetal Diagnostics, Department of Clinical MedicineAarhus University HospitalAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | - Puk Sandager
- Center for Fetal Diagnostics, Department of Clinical MedicineAarhus University HospitalAarhusDenmark
- Department of Obstetrics and GynecologyAarhus University HospitalAarhusDenmark
| | | | - Naja Becher
- Center for Fetal Diagnostics, Department of Clinical MedicineAarhus University HospitalAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | - Elsebet Østergaard
- Department of Clinical GeneticsCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| |
Collapse
|
42
|
YbeY, éminence grise of ribosome biogenesis. Biochem Soc Trans 2021; 49:727-745. [PMID: 33929506 DOI: 10.1042/bst20200669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
YbeY is an ultraconserved small protein belonging to the unique heritage shared by most existing bacteria and eukaryotic organelles of bacterial origin, mitochondria and chloroplasts. Studied in more than a dozen of evolutionarily distant species, YbeY is invariably critical for cellular physiology. However, the exact mechanisms by which it exerts such penetrating influence are not completely understood. In this review, we attempt a transversal analysis of the current knowledge about YbeY, based on genetic, structural, and biochemical data from a wide variety of models. We propose that YbeY, in association with the ribosomal protein uS11 and the assembly GTPase Era, plays a critical role in the biogenesis of the small ribosomal subunit, and more specifically its platform region, in diverse genetic systems of bacterial type.
Collapse
|
43
|
Mitochondrial translation inhibition triggers ATF4 activation, leading to integrated stress response but not to mitochondrial unfolded protein response. Biosci Rep 2021; 40:226915. [PMID: 33165592 PMCID: PMC7685009 DOI: 10.1042/bsr20201289] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial–nuclear communication, known as retrograde signaling, is important for regulating nuclear gene expression in response to mitochondrial dysfunction. Previously, we have found that p32/C1qbp-deficient mice, which have a mitochondrial translation defect, show endoplasmic reticulum (ER) stress response and integrated stress response (ISR) gene expression in the heart and brain. However, the mechanism by which mitochondrial translation inhibition elicits these responses is not clear. Among the transcription factors that respond to mitochondrial stress, activating transcription factor 4 (ATF4) is a key transcription factor in the ISR. Herein, chloramphenicol (CAP), which inhibits mitochondrial DNA (mtDNA)-encoded protein expression, induced eukaryotic initiation factor 2 α subunit (eIF2α) phosphorylation and ATF4 induction, leading to ISR gene expression. However, the expression of the mitochondrial unfolded protein response (mtUPR) genes, which has been shown in Caenorhabditis elegans, was not induced. Short hairpin RNA-based knockdown of ATF4 markedly inhibited the CAP-induced ISR gene expression. We also observed by ChIP analysis that induced ATF4 bound to the promoter region of several ISR genes, suggesting that mitochondrial translation inhibition induces ISR gene expression through ATF4 activation. In the present study, we showed that mitochondrial translation inhibition induced the ISR through ATF4 activation rather than the mtUPR.
Collapse
|
44
|
Mashreghi M, Faal Maleki M, Karimi M, Kalalinia F, Badiee A, Jaafari MR. Improving anti-tumour efficacy of PEGylated liposomal doxorubicin by dual targeting of tumour cells and tumour endothelial cells using anti-p32 CGKRK peptide. J Drug Target 2021; 29:617-630. [PMID: 33393376 DOI: 10.1080/1061186x.2020.1870230] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to surface-functionalize PEGylated liposomal doxorubicin (PLD) using anti-p32 CGKRK peptide to evaluate its anti-angiogenic and anti-tumour activities. CGKRK was conjugated to DSPE-mPEG2000-maleimide and post-inserted into PLD at 25, 50, 100, 200 and 400 peptides per each liposome and characterised for their size, zeta potential, drug loading, release properties; and cell binding, cell uptake and cytotoxicity on three C26, 4T1 and human umbilical vein endothelial cell (HUVEC) cell lines. The in vitro results indicated the better efficiency of the PLD-100 (PLD with 100 CGKRK) formulation on 4T1 and HUVEC cell lines. The results of anti-tube formation and spheroid assay indicated the efficiencies of the PLD-100 formulation compared with Caelyx® in vitro. The in vivo studies indicated the higher tumour accumulation of PLD-100 formulation in comparison with Caelyx® which also implied the higher survival rates in mice treated with PLD-100 formulation. Histological evaluations demonstrated that PLD-100 had no side-effects on major organs. In conclusion, the results of this study indicated that PLD-CGKRK- could efficiently target endothelial and tumour parenchymal cells which enhance the therapeutic efficacy of PLD and merits further investigation.
Collapse
Affiliation(s)
- Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Karimi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc Trans 2021; 48:595-612. [PMID: 32267487 PMCID: PMC7200637 DOI: 10.1042/bst20190854] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Ribosome biogenesis is the fine-tuned, essential process that generates mature ribosomal subunits and ultimately enables all protein synthesis within a cell. Novel regulators of ribosome biogenesis continue to be discovered in higher eukaryotes. While many known regulatory factors are proteins or small nucleolar ribonucleoproteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) are emerging as a novel modulatory layer controlling ribosome production. Here, we summarize work uncovering non-coding RNAs (ncRNAs) as novel regulators of ribosome biogenesis and highlight their links to diseases of defective ribosome biogenesis. It is still unclear how many miRNAs or lncRNAs are involved in phenotypic or pathological disease outcomes caused by impaired ribosome production, as in the ribosomopathies, or by increased ribosome production, as in cancer. In time, we hypothesize that many more ncRNA regulators of ribosome biogenesis will be discovered, which will be followed by an effort to establish connections between disease pathologies and the molecular mechanisms of this additional layer of ribosome biogenesis control.
Collapse
|
46
|
Raschdorf A, Sünderhauf A, Skibbe K, Ghebrehiwet B, Peerschke EI, Sina C, Derer S. Heterozygous P32/ C1QBP/ HABP1 Polymorphism rs56014026 Reduces Mitochondrial Oxidative Phosphorylation and Is Expressed in Low-grade Colorectal Carcinomas. Front Oncol 2021; 10:631592. [PMID: 33628739 PMCID: PMC7897657 DOI: 10.3389/fonc.2020.631592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rapid proliferation of cancer cells is enabled by favoring aerobic glycolysis over mitochondrial oxidative phosphorylation (OXPHOS). P32 (C1QBP/gC1qR) is essential for mitochondrial protein translation and thus indispensable for OXPHOS activity. It is ubiquitously expressed and directed to the mitochondrial matrix in almost all cell types with an excessive up-regulation of p32 expression reported for tumor tissues. We recently demonstrated high levels of non-mitochondrial p32 to be associated with high-grade colorectal carcinoma. Mutations in human p32 are likely to disrupt proper mitochondrial function giving rise to various diseases including cancer. Hence, we aimed to investigate the impact of the most common single nucleotide polymorphism (SNP) rs56014026 in the coding sequence of p32 on tumor cell metabolism. In silico homology modeling of the resulting p.Thr130Met mutated p32 revealed that the single amino acid substitution potentially induces a strong conformational change in the protein, mainly affecting the mitochondrial targeting sequence (MTS). In vitro experiments confirmed an impaired mitochondrial import of mutated p32-T130M, resulting in reduced OXPHOS activity and a shift towards a low metabolic phenotype. Overexpression of p32-T130M maintained terminal differentiation of a goblet cell-like colorectal cancer cell line compared to p32-wt without affecting cell proliferation. Sanger sequencing of tumor samples from 128 CRC patients identified the heterozygous SNP rs56014026 in two well-differentiated, low proliferating adenocarcinomas, supporting our in vitro data. Together, the SNP rs56014026 reduces metabolic activity and proliferation while promoting differentiation in tumor cells.
Collapse
Affiliation(s)
- Annika Raschdorf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kerstin Skibbe
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
47
|
Yagi M, Toshima T, Amamoto R, Do Y, Hirai H, Setoyama D, Kang D, Uchiumi T. Mitochondrial translation deficiency impairs NAD + -mediated lysosomal acidification. EMBO J 2021; 40:e105268. [PMID: 33528041 PMCID: PMC8047443 DOI: 10.15252/embj.2020105268] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/21/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial translation dysfunction is associated with neurodegenerative and cardiovascular diseases. Cells eliminate defective mitochondria by the lysosomal machinery via autophagy. The relationship between mitochondrial translation and lysosomal function is unknown. In this study, mitochondrial translation‐deficient hearts from p32‐knockout mice were found to exhibit enlarged lysosomes containing lipofuscin, suggesting impaired lysosome and autolysosome function. These mice also displayed autophagic abnormalities, such as p62 accumulation and LC3 localization around broken mitochondria. The expression of genes encoding for nicotinamide adenine dinucleotide (NAD+) biosynthetic enzymes—Nmnat3 and Nampt—and NAD+ levels were decreased, suggesting that NAD+ is essential for maintaining lysosomal acidification. Conversely, nicotinamide mononucleotide (NMN) administration or Nmnat3 overexpression rescued lysosomal acidification. Nmnat3 gene expression is suppressed by HIF1α, a transcription factor that is stabilized by mitochondrial translation dysfunction, suggesting that HIF1α‐Nmnat3‐mediated NAD+ production is important for lysosomal function. The glycolytic enzymes GAPDH and PGK1 were found associated with lysosomal vesicles, and NAD+ was required for ATP production around lysosomal vesicles. Thus, we conclude that NAD+ content affected by mitochondrial dysfunction is essential for lysosomal maintenance.
Collapse
Affiliation(s)
- Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Rie Amamoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Nutritional Sciences, Faculty of Health and Welfare, Seinan Jo Gakuin University, Kitakyushu, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Sünderhauf A, Hicken M, Schlichting H, Skibbe K, Ragab M, Raschdorf A, Hirose M, Schäffler H, Bokemeyer A, Bettenworth D, Savitt AG, Perner S, Ibrahim S, Peerschke EI, Ghebrehiwet B, Derer S, Sina C. Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:229-250. [PMID: 33515804 PMCID: PMC8135049 DOI: 10.1016/j.jcmgh.2021.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Cell differentiation in the colonic crypt is driven by a metabolic switch from glycolysis to mitochondrial oxidation. Mitochondrial and goblet cell dysfunction have been attributed to the pathology of ulcerative colitis (UC). We hypothesized that p32/gC1qR/HABP1, which critically maintains oxidative phosphorylation, is involved in goblet cell differentiation and hence in the pathogenesis of UC. METHODS Ex vivo, goblet cell differentiation in relation to p32 expression and mitochondrial function was studied in tissue biopsies from UC patients versus controls. Functional studies were performed in goblet cell-like HT29-MTX cells in vitro. Mitochondrial respiratory chain complex V-deficient, ATP8 mutant mice were utilized as a confirmatory model. Nutritional intervention studies were performed in C57BL/6 mice. RESULTS In UC patients in remission, colonic goblet cell differentiation was significantly decreased compared to controls in a p32-dependent manner. Plasma/serum L-lactate and colonic pAMPK level were increased, pointing at high glycolytic activity and energy deficiency. Consistently, p32 silencing in mucus-secreting HT29-MTX cells abolished butyrate-induced differentiation and induced a shift towards glycolysis. In ATP8 mutant mice, colonic p32 expression correlated with loss of differentiated goblet cells, resulting in a thinner mucus layer. Conversely, feeding mice an isocaloric glucose-free, high-protein diet increased mucosal energy supply that promoted colonic p32 level, goblet cell differentiation and mucus production. CONCLUSION We here describe a new molecular mechanism linking mucosal energy deficiency in UC to impaired, p32-dependent goblet cell differentiation that may be therapeutically prevented by nutritional intervention.
Collapse
Affiliation(s)
- Annika Sünderhauf
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Maren Hicken
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Heidi Schlichting
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kerstin Skibbe
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mohab Ragab
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Annika Raschdorf
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Holger Schäffler
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Arne Bokemeyer
- Gastroenterology and Hepatology, Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Dominik Bettenworth
- Gastroenterology and Hepatology, Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Anne G Savitt
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Lübeck, Germany; Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Stefanie Derer
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Christian Sina
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; Division of Nutritional Medicine, 1st Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| |
Collapse
|
49
|
Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2020; 595:1025-1061. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria control life and death in eukaryotic cells. Harboring a unique circular genome, a by-product of an ancient endosymbiotic event, mitochondria maintains a specialized and evolutionary divergent protein synthesis machinery, the mitoribosome. Mitoribosome biogenesis depends on elements encoded in both the mitochondrial genome (the RNA components) and the nuclear genome (all ribosomal proteins and assembly factors). Recent cryo-EM structures of mammalian mitoribosomes have illuminated their composition and provided hints regarding their assembly and elusive mitochondrial translation mechanisms. A growing body of literature involves the mitoribosome in inherited primary mitochondrial disorders. Mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors impede mitoribosome biogenesis, causing protein synthesis defects that lead to respiratory chain failure and mitochondrial disorders such as encephalo- and cardiomyopathy, deafness, neuropathy, and developmental delays. In this article, we review the current fundamental understanding of mitoribosome assembly and function, and the clinical landscape of mitochondrial disorders driven by mutations in mitoribosome components and assembly factors, to portray how basic and clinical studies combined help us better understand both mitochondrial biology and medicine.
Collapse
Affiliation(s)
- Alberto Ferrari
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| | - Samuel Del'Olio
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
50
|
Summer S, Smirnova A, Gabriele A, Toth U, Fasemore AM, Förstner KU, Kuhn L, Chicher J, Hammann P, Mitulović G, Entelis N, Tarassov I, Rossmanith W, Smirnov A. YBEY is an essential biogenesis factor for mitochondrial ribosomes. Nucleic Acids Res 2020; 48:9762-9786. [PMID: 32182356 PMCID: PMC7515705 DOI: 10.1093/nar/gkaa148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome biogenesis requires numerous trans-acting factors, some of which are deeply conserved. In Bacteria, the endoribonuclease YbeY is believed to be involved in 16S rRNA 3′-end processing and its loss was associated with ribosomal abnormalities. In Eukarya, YBEY appears to generally localize to mitochondria (or chloroplasts). Here we show that the deletion of human YBEY results in a severe respiratory deficiency and morphologically abnormal mitochondria as an apparent consequence of impaired mitochondrial translation. Reduced stability of 12S rRNA and the deficiency of several proteins of the small ribosomal subunit in YBEY knockout cells pointed towards a defect in mitochondrial ribosome biogenesis. The specific interaction of mitoribosomal protein uS11m with YBEY suggests that the latter helps to properly incorporate uS11m into the nascent small subunit in its late assembly stage. This scenario shows similarities with final stages of cytosolic ribosome biogenesis, and may represent a late checkpoint before the mitoribosome engages in translation.
Collapse
Affiliation(s)
- Sabrina Summer
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | - Anna Smirnova
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Alessandro Gabriele
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | | | - Konrad U Förstner
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany.,TH Köln - University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne D-50678, Germany.,ZB MED - Information Centre for Life Sciences, Cologne D-50931, Germany
| | - Lauriane Kuhn
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Johana Chicher
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Philippe Hammann
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Goran Mitulović
- Proteomics Core Facility, Clinical Department for Laboratory Medicine, Medical University of Vienna, Vienna A-1090, Austria
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | - Alexandre Smirnov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| |
Collapse
|