1
|
Ali H, McDonald MC, Kettles GJ. ZymoSoups: A High-Throughput Forward Genetics Method for Rapid Identification of Virulence Genes in Zymoseptoria tritici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI08240082TA. [PMID: 39331489 DOI: 10.1094/mpmi-08-24-0082-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Septoria tritici blotch is caused by the fungus Zymoseptoria tritici and poses a major threat to wheat productivity. There are over 20 mapped loci in wheat that confer strong (gene-for-gene) resistance against this pathogen, but the corresponding genes in Z. tritici that confer virulence against distinct R genes remain largely unknown. In this study, we developed a rapid forward genetics methodology to identify genes that enable Z. tritici to gain virulence on previously resistant wheat varieties. We used the known gene-for-gene interaction between Stb6 and AvrStb6 as a proof of concept that this method could quickly recover single candidate virulence genes. We subjected the avirulent Z. tritici strain IPO323, which carries the recognized AvrStb6 allele, to ultraviolet (UV) mutagenesis and generated a library of over 66,000 surviving spores. We screened these survivors on leaves of the resistant wheat variety Cadenza in mixtures (soups) ranging from 100 to 500 survivors per soup. We identified five soups with a gain-of-virulence (GoV) phenotype relative to the IPO323 parental strain and re-sequenced 18 individual isolates, including four control isolates and two isolates lacking virulence, when screened individually. Of the 12 confirmed GoV isolates, one had a single nucleotide polymorphism (SNP) in the AvrStb6 coding region. The other 11 GoV isolates exhibited large (approximately 70 kb) deletions at the end of chromosome 5, including the AvrStb6 locus. Our findings demonstrate the efficiency of this forward genetic approach in elucidating the genetic basis of qualitative resistance to Z. tritici and the potential to rapidly identify other, currently unknown, Avr genes in this pathogen. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Megan C McDonald
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Graeme J Kettles
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
2
|
Mondal S, Bhattacharjee S, Biswas J, Das BB, Mukhopadhyay R. Alterations in the mechanical properties of single dsDNA molecules, bare or cell-encapsulated, upon exposure to UVA-only radiation and sunlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113044. [PMID: 39532014 DOI: 10.1016/j.jphotobiol.2024.113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Exposure to ultraviolet radiation, which leads to the formation of mutagenic and cytotoxic DNA lesions such as cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4 PPs), can be potentially fatal. The way UVA forms DNA lesions and alters DNA topology and mechanics is still unclear, unlike the cases of UVC and UVB. Herein, Atomic Force Microscopy (AFM) and AFM-based Force Spectroscopy (AFS) have been employed to investigate the topological and mechanical properties of single DNA molecules, bare or E. coli cell-encapsulated, with or without UVA (solar or from UV lamp) treatment. It is observed that both the dsDNA transitions, i.e., 'B' to stretched 'S' conformation and melting transition, are lost in UVA dose-dependent manner. Presumably, this is due to formation of the CPDs and 6-4 lesions that form inter-strand cross-links, causing dsDNA strand separation difficult. Gradual reduction in DNA extension length upon prolonged treatment with UVA-only radiation or sunlight (where, 95 % of solar UV is UVA) also indicates formation of the inter-strand cross-links, since such cross-links can reduce DNA flexibility and increase DNA stiffness. Although these observations are common for both bare and cell-encapsulated DNA, the UVA dose at which the distinctive reversible B-S and melting transition faded away varied widely from 240 kJ/m2 (bare DNA) to 900 kJ/m2 (cellular DNA). The UV-induced DNA damage was also evident in observation of increased number of open circular and linearized topologies, as formed due to single-strand and double-strand breaks, respectively, at damage sites, upon combined action of the apurinic/apyrimidinic site-specific endonucleases IV and V. The extent of DNA damage was further quantified by enzyme-linked immunosorbent assay, which is found to be correlated to the single molecule information.
Collapse
Affiliation(s)
- Sourav Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Sangheeta Bhattacharjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Jayita Biswas
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Benu Brata Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Rupa Mukhopadhyay
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
3
|
Sun Z, Wang T, Hou X, Bai W, Li J, Li Y, Zhang J, Zheng Y, Wu Z, Wu P, Yan L, Qian H. Mesenchymal stromal cells-derived small extracellular vesicles protect against UV-induced photoaging via regulating pregnancy zone protein. Stem Cells Transl Med 2024; 13:1129-1143. [PMID: 39425900 PMCID: PMC11555477 DOI: 10.1093/stcltm/szae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/09/2024] [Indexed: 10/21/2024] Open
Abstract
Ultraviolet (UV) radiation is the primary extrinsic factor in skin aging, contributing to skin photoaging, actinic keratosis (AK), and even squamous cell carcinoma (SCC). Currently, the beneficial role of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) in cutaneous wound healing has been widely reported, but the field of photoaging remains to be explored. Our results suggested that human umbilical cord MSC-derived sEVs (hucMSC-sEVs) intervention could effectively alleviate skin photoaging phenotypes in vivo and in vitro, including ameliorating UV-induced histopathological changes in the skin and inhibiting oxidative stress and collagen degradation in dermal fibroblasts (DFs). Mechanistically, pretreatment with hucMSC-sEVs reversed UVA-induced down-regulation of pregnancy zone protein (PZP) in DFs, and achieved photoprotection by inhibiting matrix metalloproteinase-1 (MMP-1) expression and reducing DNA damage. Clinically, a significant decrease in PZP in AK and SCC in situ samples was observed, while a rebound appeared in the invasive SCC samples. Collectively, our findings reveal the effective role of hucMSC-sEVs in regulating PZP to combat photoaging and provide new pre-clinical evidence for the potential development of hucMSC-sEVs as an effective skin photoprotective agent.
Collapse
Affiliation(s)
- Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, People’s Republic of China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Tangrong Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Xiaomei Hou
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou 450000, People’s Republic of China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Jiali Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yuzhou Zheng
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Zhijing Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People’s Republic of China
| | - Lirong Yan
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, People’s Republic of China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
4
|
Wang Z, Wang C, Zhai Y, Bai Y, Wang H, Rong X. Loss of Brcc3 in Zebrafish Embryos Increases Their Susceptibility to DNA Damage Stress. Int J Mol Sci 2024; 25:12108. [PMID: 39596176 PMCID: PMC11594080 DOI: 10.3390/ijms252212108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
DNA double-strand breaks (DSBs) represent one of the most severe forms of genetic damage in organisms, yet vertebrate models capable of monitoring DSBs in real-time remain scarce. BRCA1/BRCA2-containing complex subunit 3 (BRCC3), also known as BRCC36, functions within various multiprotein complexes to mediate diverse biological processes. However, the physiological role of BRCC3 in vertebrates, as well as the underlying mechanisms that govern its activity, are not well understood. To explore these questions, we generated brcc3-knockout zebrafish using CRISPR/Cas9 gene-editing technology. While brcc3 mutant zebrafish appear phenotypically normal and remain fertile, they exhibit significantly increased rates of mortality and deformity following exposure to DNA damage. Furthermore, embryos lacking Brcc3 display heightened p53 signaling, elevated γ-H2AX levels, and increased apoptosis in response to DNA-damaging agents such as ultraviolet (UV) light and Etoposide (ETO). Notably, genetic inactivation of p53 or pharmacological inhibition of Ataxia-telangiectasia mutated (ATM) activity rescues the hypersensitivity to UV and ETO observed in Brcc3-deficient embryos. These findings suggest that Brcc3 plays a critical role in DNA damage response (DDR), promoting cell survival during embryogenesis. Additionally, brcc3-null mutant zebrafish offer a promising vertebrate model for real-time monitoring of DSBs.
Collapse
Affiliation(s)
- Zhengyang Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yanpeng Zhai
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yan Bai
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hongying Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Gieniusz E, Skrzydlewska E, Łuczaj W. Current Insights into the Role of UV Radiation-Induced Oxidative Stress in Melanoma Pathogenesis. Int J Mol Sci 2024; 25:11651. [PMID: 39519202 PMCID: PMC11546485 DOI: 10.3390/ijms252111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cutaneous melanoma accounts for the majority of skin cancer-related deaths, and its incidence increases each year. The growing number of melanoma cases, especially in advanced stages, poses a significant socio-medical challenge throughout the world. Extensive research on melanoma pathogenesis identifies UV radiation as the most important factor in melanocytic transformation. Oxidative effects of UV irradiation exert their influence on melanoma pathogenesis primarily through modification of nucleic acids, proteins, and lipids, further disrupting cellular signaling and cell cycle regulation. Its effects extend beyond melanocytes, leading to immunosuppression in the exposed skin tissue, which consequently creates conditions for immune surveillance evasion and further progression. In this review, we focus on the specific molecular changes observed in the UV-dependent oxidative stress environment and their biological consequences in the course of the disease, which have not been considered in previous reviews on melanoma. Nonetheless, data show that the exact role of oxidative stress in melanoma initiation and progression remains unclear, as it affects cancerous cells differently depending on the specific context. A better understanding of the pathophysiological basis of melanoma development holds promise for identifying potential targets, which could lead to effective melanoma prevention strategies.
Collapse
Affiliation(s)
| | | | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (E.G.); (E.S.)
| |
Collapse
|
6
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Liu S, Quek SY, Huang K. An Ecofriendly Nature-Inspired Microcarrier for Enhancing Delivery, Stability, and Biocidal Efficacy of Phage-Based Biopesticides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403465. [PMID: 38940376 DOI: 10.1002/smll.202403465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Indexed: 06/29/2024]
Abstract
In pursuit of sustainable agricultural production, the development of environmentally friendly and effective biopesticides is essential to improve food security and environmental sustainability. Bacteriophages, as emerging biocontrol agents, offer an alternative to conventional antibiotics and synthetic chemical pesticides. The primary challenges in applying phage-based biopesticides in agricultural settings are their inherent fragility and low biocidal efficacy, particularly the susceptibility to sunlight exposure. This study addresses the aforementioned challenges by innovatively encapsulating phages in sporopollenin exine capsules (SECs), which are derived from plant pollen grains. The size of the apertures on SECs could be controlled through a non-thermal and rapid process, combining reinflation and vacuum infusion techniques. This unique feature facilitates the high-efficiency encapsulation and controlled release of phages under various conditions. The proposed SECs could encapsulate over 9 log PFU g-1 of phages and significantly enhance the ultraviolet (UV) resistance of phages, thereby ensuring their enhanced survivability and antimicrobial efficacy. The effectiveness of SECs encapsulated phages (T7@SECs) in preventing and treating bacterial contamination on lettuce leaves is further demonstrated, highlighting the practical applicability of this novel biopesticide in field applications. Overall, this study exploits the potential of SECs in the development of phage-based biopesticides, presenting a promising strategy to enhancing agricultural sustainability.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Kang Huang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
8
|
Wang T, Qin Y, Qiao J, Liu Y, Wang L, Zhang X. Overexpression of SIRT6 regulates NRF2/HO-1 and NF-κB signaling pathways to alleviate UVA-induced photoaging in skin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112801. [PMID: 37897855 DOI: 10.1016/j.jphotobiol.2023.112801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Skin photoaging, resulting from prolonged exposure to sunlight, especially UVA rays, has been identified as a key contributor to age-related skin degeneration. However, the mechanism by which UVA radiation induces skin cell senescence has not been fully elucidated. In this investigation, bioinformatics technology was employed to identify SIRT6 as the core hub gene involved in the progression of skin photoaging. The study evinced that prolonged exposure of cutaneous fibroblasts to UVA radiation results in a marked reduction in the expression of SIRT6, both in vivo and in vitro. Knockdown of SIRT6 in skin fibroblasts resulted in the upregulation of genes associated with cellular aging, thereby exacerbating the effects of UVA radiation-induced photoaging. Conversely, overexpression of SIRT6 decreased the expression of cell aging-related genes, indicating that SIRT6 plays a role in the regulation of senescence in skin fibroblasts induced by UVA radiation. We proffer substantiation that overexpression of SIRT6 protects skin fibroblasts from UVA-induced oxidative stress by activating the NRF2/HO-1 signaling cascade. Moreover, SIRT6 overexpression also reduced UVA-induced type I collagen degradation by inhibiting NF-κB signaling cascade. In summary, our findings showed that overexpression of SIRT6 inhibits UVA-induced senescence phenotype and type I collagen degradation in skin fibroblasts by modulating the NRF2/HO-1 and NF-κB signaling pathways. And the regulation of these signaling pathways by SIRT6 may be achieved through its deacetylase activity. Therefore, SIRT6 is a novel and promising therapeutic target for skin aging related to age and UV.
Collapse
Affiliation(s)
- Tao Wang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China
| | - Yonghong Qin
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China
| | - Jianxiong Qiao
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China
| | - Yang Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China
| | - Lerong Wang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China
| | - Xuanfen Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China.
| |
Collapse
|
9
|
Gęgotek A, Jarocka-Karpowicz I, Atalay Ekiner S, Skrzydlewska E. The Anti-Inflammatory Action of Cannabigerol Accompanied by the Antioxidant Effect of 3-O-ethyl Ascorbic Acid in UVA-Irradiated Human Keratinocytes. J Pharmacol Exp Ther 2023; 387:170-179. [PMID: 37652708 DOI: 10.1124/jpet.123.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Excessive daily exposure of human skin to natural UVA radiation leads to impaired redox homeostasis in epidermal keratinocytes, resulting in changes in their proteome. Commonly used antioxidants usually exhibit protection in a narrowed range, which makes it necessary to combine their effects. Therefore, the aim of this study was to analyze the protective effect of cannabigerol (CBG) and 3-O-ethyl ascorbic acid (EAA), used separately and together, on the proteomic profile of UVA irradiated keratinocytes. Proteomic analysis with the use of the Q Exactive HF mass spectrometer, combined with biostatistic tests, performed on UVA-irradiated keratinocytes indicated enhanced and lowered expression of 186 and 160 proteins, respectively. CBG treatment after UVA irradiation reduced these numbers to 110 upregulated and 49 downregulated proteins, while EAA eliminated all these changes. CBG completely eliminated the UV-induced effect on the expression of pro-inflammatory proteins and significantly increased the level of proteins responsible for cellular locomotion. On the other hand, CBG reduced the level of UVA-induced 4-hydroxynonenal protein adducts fivefold, whereas EAA had no effect on this modification. At the same time, CBG and EAA did not modify the expression/structure of proteins in relation to the nonirradiated control keratinocytes in the case of an unaccompanied use or slightly modified the protein profile when used in a mixture. The combined protective effects of CBG on protein structure and EAA on protein expression profile allowed us to obtain a wider protection of cells against UVA radiation, compared with when the compounds were used alone. SIGNIFICANCE STATEMENT: Proteomic analysis of human skin cells allows to conclude that 3-O-ethyl ascorbic acid eliminates UVA-induced changes in the expression of keratinocyte proteins, while cannabigerol significantly reduces 4-hydroxynonenal protein adducts. The combined protective effects of cannabigerol on protein structure and of 3-O-ethyl ascorbic acid on protein expression profile allowed to obtain a wider protection of cells against UVA radiation.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
10
|
Morresi C, Luccarini A, Marcheggiani F, Ferretti G, Damiani E, Bacchetti T. Modulation of paraoxonase-2 in human dermal fibroblasts by UVA-induced oxidative stress: A new potential marker of skin photodamage. Chem Biol Interact 2023; 384:110702. [PMID: 37717644 DOI: 10.1016/j.cbi.2023.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Paraoxonase-2 (PON2) is an intracellular protein, that exerts a protective role against cell oxidative stress and apoptosis. Genetic and environmental factors (i.e. dietary factors, cigarette smoke, drugs) are able to modulate cellular PON2 levels. The effect of ultraviolet A radiation (UVA), the oxidizing component of sunlight, on PON2 in human dermal fibroblasts (HuDe) has not been previously explored. Excessive UVA radiation is known to cause direct and indirect skin damage by influencing intracellular signalling pathways through oxidative stress mediated by reactive oxygen species (ROS) that modulate the expression of downstream genes involved in different processes, e.g. skin photoaging and cancer. The aim of this study was, therefore, to investigate the modulation of PON2 in terms of protein expression and enzyme activity in HuDe exposed to UVA (270 kJ/m2). Our results show that PON2 is up-regulated immediately after UVA exposure and that its levels and activity decrease in the post-exposure phase, in a time-dependent manner (2-24 h). The trend in PON2 levels mirror the time-course study of UVA-induced ROS. To confirm this, experiments were also performed in the presence of a SPF30 sunscreen used as shielding agent to revert modulation of PON2 at 0 and 2 h post-UVA exposure where other markers of photo-oxidative stress were also examined (NF-KB, γH2AX, advanced glycation end products). Overall, our results show that the upregulation of PON2 might be related to the increase in intracellular ROS and may play an important role in mitigation of UVA-mediated damage and in the prevention of the consequences of UV exposure, thus representing a new marker of early-response to UVA-induced damage in skin fibroblasts.
Collapse
Affiliation(s)
- Camilla Morresi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Alessia Luccarini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy.
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy.
| |
Collapse
|
11
|
Flori E, Mosca S, Cardinali G, Briganti S, Ottaviani M, Kovacs D, Manni I, Truglio M, Mastrofrancesco A, Zaccarini M, Cota C, Piaggio G, Picardo M. The Activation of PPARγ by (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic Acid Counteracts the Epithelial–Mesenchymal Transition Process in Skin Carcinogenesis. Cells 2023; 12:cells12071007. [PMID: 37048080 PMCID: PMC10093137 DOI: 10.3390/cells12071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial–mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of the PPARγ activators Octa and the new compound (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic acid (A02) in targeting keratinocyte-derived skin cancer. Like Octa, A02 exerted a protective effect against UVB-induced oxidative stress and DNA damage in NHKs. In the squamous cell carcinoma A431 cells, A02 inhibited cell proliferation and increased differentiation markers’ expression. Moreover, Octa and even more A02 counteracted the TGF-β1-dependent increase in mesenchymal markers, intracellular ROS, the activation of EMT-related signal transduction pathways, and cells’ migratory capacity. Both compounds, especially A02, counterbalanced the TGF-β1-induced cell membrane lipid remodeling and the release of bioactive lipids involved in EMT. In vivo experiments on a murine model useful to study cell proliferation in adult animals showed the reduction of areas characterized by active cell proliferation in response to A02 topical treatment. In conclusion, targeting PPARγ may be useful for the prevention and treatment of keratinocyte-derived skin cancer.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
- Correspondence: (E.F.); (M.P.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Isabella Manni
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Mauro Picardo
- Faculty of Medicine, Unicamillus International Medical University, 00131 Rome, Italy
- Correspondence: (E.F.); (M.P.)
| |
Collapse
|
12
|
Enzyme-Digested Edible Bird’s Nest (EBND) Prevents UV and arid Environment-Induced Cellular Oxidative Stress, Cell Death and DNA Damage in Human Skin Keratinocytes and Three-Dimensional Epithelium Equivalents. Antioxidants (Basel) 2023; 12:antiox12030609. [PMID: 36978856 PMCID: PMC10045731 DOI: 10.3390/antiox12030609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The aim of this study is to investigate the repressive effects of enzyme-digested edible bird’s nest (EBND) on the combination of arid environment and UV-induced intracellular oxidative stress, cell death, DNA double-strand breaks (DSBs) and inflammatory responses in human HaCaT keratinocytes and three-dimensional (3D) epithelium equivalents. An oxygen radical antioxidant capacity assay showed that EBND exhibited excellent peroxyl radical scavenging activity and significantly increased cellular antioxidant capacity in HaCaT cells. When EBND was administered to HaCaT cells and 3D epitheliums, it exhibited significant preventive effects on air-drying and UVA (Dry-UVA)-induced cell death and apoptosis. Dry-UVA markedly induced intracellular reactive oxygen species (ROS) generation in HaCaT cells and 3D epitheliums as quantified by CellROX® Green/Orange reagents. Once HaCaT cells and 3D epitheliums were pretreated with EBND, Dry-UVA-induced intracellular ROS were significantly reduced. The results from anti-γ-H2A.X antibody-based immunostaining showed that EBND significantly inhibited Dry-UVA-induced DSBs in HaCaT keratinocytes. Compared with sialic acid, EBND showed significantly better protection for both keratinocytes and 3D epitheliums against Dry-UVA-induced injuries. ELISA showed that EBND significantly suppressed UVB-induced IL-6 and TNF-α secretion. In conclusion, EBND could decrease arid environments and UV-induced harmful effects and inflammatory responses in human keratinocytes and 3D epithelium equivalents partially through its antioxidant capacity.
Collapse
|
13
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
14
|
Zhivagui M, Hoda A, Valenzuela N, Yeh YY, Dai J, He Y, Nandi SP, Otlu B, Van Houten B, Alexandrov LB. DNA damage and somatic mutations in mammalian cells after irradiation with a nail polish dryer. Nat Commun 2023; 14:276. [PMID: 36650165 PMCID: PMC9845303 DOI: 10.1038/s41467-023-35876-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Ultraviolet A light is commonly emitted by UV-nail polish dryers with recent reports suggesting that long-term use may increase the risk for developing skin cancer. However, no experimental evaluation has been conducted to reveal the effect of radiation emitted by UV-nail polish dryers on mammalian cells. Here, we show that irradiation by a UV-nail polish dryer causes high levels of reactive oxygen species, consistent with 8-oxo-7,8-dihydroguanine damage and mitochondrial dysfunction. Analysis of somatic mutations reveals a dose-dependent increase of C:G>A:T substitutions in irradiated samples with mutagenic patterns similar to mutational signatures previously attributed to reactive oxygen species. In summary, this study demonstrates that radiation emitted by UV-nail polish dryers can both damage DNA and permanently engrave mutations on the genomes of primary mouse embryonic fibroblasts, human foreskin fibroblasts, and human epidermal keratinocytes.
Collapse
Affiliation(s)
- Maria Zhivagui
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Areebah Hoda
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
| | | | - Yi-Yu Yeh
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Jason Dai
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Burcak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Bennett Van Houten
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA. .,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA. .,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
15
|
DNA Damage Response Differentially Affects BoHV-1 Gene Transcription in Cell Type-Dependent Manners. Biomedicines 2022; 10:biomedicines10092282. [PMID: 36140380 PMCID: PMC9496131 DOI: 10.3390/biomedicines10092282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, is also a promising oncolytic virus. Recent studies have demonstrated that the virus infection induces DNA damage and DNA damage response (DDR), potentially accounting for virus infection-induced cell death and oncolytic effects. However, whether the global DDR network affects BoHV-1 productive infection remains to be elucidated. In this study, we show that global DDR induced by ultraviolet (UV) irradiation prior to BoHV-1 infection differentially affected transcription of immediate early (IE) genes, such as infected cell protein 0 (bICP0) and bICP22, in a cell-type-dependent manner. In addition, UV-induced DDR may affect the stabilization of viral protein levels, such as glycoprotein C (gC) and gD, because the variation in mRNA levels of gC and gD as a consequence of UV treatment were not in line with the variation in individual protein levels. The virus productive infection also affects UV-primed DDR signaling, as demonstrated by the alteration of phosphorylated histone H2AX (γH2AX) protein levels and γH2AX formation following virus infection. Taken together, for the first time, we evidenced the interplay between UV-primed global DDR and BoHV-1 productive infection. UV-primed global DDR differentially modulates the transcription of virus genes and stabilization of virus protein. Vice versa, the virus infection may affect UV-primed DDR signaling.
Collapse
|
16
|
Goyal K, Goel H, Baranwal P, Dixit A, Khan F, Jha NK, Kesari KK, Pandey P, Pandey A, Benjamin M, Maurya A, Yadav V, Sinh RS, Tanwar P, Upadhyay TK, Mittan S. Unravelling the molecular mechanism of mutagenic factors impacting human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61993-62013. [PMID: 34410595 DOI: 10.1007/s11356-021-15442-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Pritika Baranwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Aman Dixit
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | | | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Avanish Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rana Suryauday Sinh
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University, Baroda, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences & Centre of Research for Development, Parul University, Vadodara, Gujarat, India.
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
17
|
Klein B, Kunz M. Current concepts of photosensitivity in cutaneous lupus erythematosus. Front Med (Lausanne) 2022; 9:939594. [PMID: 36091671 PMCID: PMC9452788 DOI: 10.3389/fmed.2022.939594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) represents a complex autoimmune disease with a broad phenotypic spectrum ranging from acute to chronic destructive cutaneous lesions. Patients with CLE exhibit high photosensitivity and ultraviolet (UV) irradiation can lead to systemic flares in systemic lupus erythematosus. However, the exact mechanisms how UV irradiation enhances cutaneous inflammation in lupus are not fully understood. Recently, new molecular mechanisms of UV-driven immune responses in CLE were identified, offering potential therapeutic approaches. Especially the induction of type I interferons, central cytokines in lupus pathogenesis which are released by various skin cells, have become the focus of current research. In this review, we describe current pathogenic concepts of photosensitivity in lupus erythematosus, including UV-driven activation of intracellular nucleic acid sensors, cellular cytokine production and immune cell activation. Furthermore, we discuss activated pathways contributing to enhanced apoptosis as well as intracellular translocation of autoantigens thereby promoting CLE upon UV light exposure.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology, and Allergology, University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
18
|
Construction of Prognostic Risk Model of Patients with Skin Cutaneous Melanoma Based on TCGA-SKCM Methylation Cohort. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4261329. [PMID: 36060650 PMCID: PMC9436567 DOI: 10.1155/2022/4261329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Skin cutaneous melanoma (SKCM) is a common malignant skin cancer. Early diagnosis could effectively reduce SKCM patient's mortality to a large extent. We managed to construct a model to examine the prognosis of SKCM patients. The methylation-related data and clinical data of The Cancer Gene Atlas- (TCGA-) SKCM were downloaded from TCGA database. After preprocessing the methylation data, 21,861 prognosis-related methylated sites potentially associated with prognosis were obtained using the univariate Cox regression analysis and multivariate Cox regression analysis. Afterward, unsupervised clustering was used to divide the patients into 4 clusters, and weighted correlation network analysis (WGCNA) was applied to construct coexpression modules. By overlapping the CpG sites between the clusters and turquoise model, a prognostic model was established by LASSO Cox regression and multivariate Cox regression. It was found that 9 methylated sites included cg01447831, cg14845689, cg20895058, cg06506470, cg09558315, cg06373660, cg17737409, cg21577036, and cg22337438. After constructing the prognostic model, the performance of the model was validated by survival analysis and receiver operating characteristic (ROC) curve, and the independence of the model was verified by univariate and multivariate regression. It was represented that the prognostic model was reliable, and riskscore could be used as an independent prognostic factor in SKCM patients. At last, we combined clinical data and patient's riskscore to establish and testify the nomogram that could determine patient's prognosis. The results found that the reliability of the nomogram was relatively good. All in all, we constructed a prognostic model that could determine the prognosis of SKCM patients and screened 9 key methylated sites through analyzing data in TCGA-SKCM dataset. Finally, a prognostic nomogram was established combined with clinical diagnosed information and riskscore. The results are significant for improving the prognosis of SKCM patients in the future.
Collapse
|
19
|
Liu W, Yan F, Xu Z, Chen Q, Ren J, Wang Q, Chen L, Ying J, Liu Z, Zhao J, Qiu J, Zhang C, Jiang M, Xiang L. Urolithin A protects human dermal fibroblasts from UVA-induced photoaging through NRF2 activation and mitophagy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112462. [PMID: 35567884 DOI: 10.1016/j.jphotobiol.2022.112462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Photoaging, caused by exposure to sunlight and especially UVA, has been identified as one of the culprits for age-related skin deterioration. Here, we initially demonstrated that urolithin A (UroA), a metabolite derived from intestine microflora, possessed sufficient photoprotective capacity and attenuated UVA-induced senescent phenotypes in human fibroblasts, such as growth inhibition, senescence-associated β-galactosidase activity, breakdown of extracellular matrix, synthesis of senescence-associated secretory phenotypes and cell cycle arrest. Furthermore, UroA lessened the accumulation of intracellular reactive oxygen species, which promoted the phosphorylation and afterwards nuclear translocation of NRF2, subsequently driving the activation of downstream antioxidative enzymes. In parallel, we proved that UroA restored mitochondrial function by induction of mitophagy, which was regulated by the SIRT3-FOXO3-PINK1-PARKIN network. Taken together, our results showed that UroA protected dermal fibroblast from UVA damage through NRF2/ARE activation and mitophagy process, thus supporting UroA as a potential therapeutic agent for photoaging.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Fang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhongyi Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Qinyi Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Qianqian Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Li Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jiayi Ying
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Juemin Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Min Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
20
|
Investigation of the HelioVital filter foil revealed protective effects against UVA1 irradiation-induced DNA damage and against UVA1-induced expression of matrixmetalloproteinases (MMP) MMP1, MMP2, MMP3 and MMP15. Photochem Photobiol Sci 2022; 21:361-372. [PMID: 35174452 DOI: 10.1007/s43630-022-00177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
The damaging effects of solar ultraviolet (UV) radiation exposure to human skin are well known and can reach from accelerated skin aging (photoaging) to skin cancer. Much of the damaging effects of solar UVA (320-400 nm) radiation is associated with the induction of reactive oxygen species (ROS), which are capable to cause oxidative damage to DNA like the oxidized guanosine 8-hydroxy-2' -deoxyguanosine (8-OHdG). Therefore, new UV protective strategies, have to be tested for their efficiency to shield against UV induced damage. We investigated the protective effects of HelioVital sun protection filter foil against UVA1 irradiation in skin cells. It could be shown, that HelioVital sun protection filter foil has protective effects against UVA1 irradiation induced changes in matrix metalloproteinase (MMP) expression. Furthermore a UVA1-dependant regulation of MMP15 in human fibroblasts could be shown for the first time in this context. In addition, this study demonstrated the protective effect of the HelioVital filter film against UVA1-induced ROS production and DNA damage. These results could pave the way for clinical studies with HelioVital filter foil shielding against the damaging effects of phototherapy and other forms of irradiation therapy, thereby increasing the safety and treatment opportunities of these forms of therapy.
Collapse
|
21
|
Ansari B, Aschner M, Hussain Y, Efferth T, Khan H. Suppression of colorectal carcinogenesis by naringin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153897. [PMID: 35026507 DOI: 10.1016/j.phymed.2021.153897] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorectal cancer is the third most malignant cancer worldwide. Despite novel treatment options, the incidence and mortality rates of colon cancer continue to increase in most countries, especially in US, European and Asian countries. Colorectal carcinogenesis is multifactorial, including dietary and genetic factors, as well as lacking physical activity. Vegetables and fruits contain high amounts of secondary metabolites, which might reduce the risk for colorectal carcinogenesis. Flavonoids are important bioactive polyphenolic compounds. There are more than 4,000 different flavonoids, including flavanones, flavonoids, isoflavonoids, flavones, and catechins in a large variety of plant. HYPOTHESIS Among various other flavonoids, naringin in Citrus fruits has been a subject of intense scrutiny for its activity against many types of cancer, including colorectal cancer. We hypothesize that naringin is capable to inhibit the growth of transformed colonocytes and to induce programmed cell death in colon cancer cells. RESULTS We comprehensively review the inhibitory effects of naringin on colorectal cancers and address the underlying mechanistic pathways such as NF-κB/IL-6/STAT3, PI3K/AKT/mTOR, apoptosis, NF-κB-COX-2-iNOS, and β-catenin pathways. CONCLUSION Naringin suppresses colorectal inflammation and carcinogenesis by various signaling pathways. Randomized clinical trials are needed to determine their effectiveness in combating colorectal cancer.
Collapse
Affiliation(s)
- Bushra Ansari
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Jiangsu, 221400, P R China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Staudinger Weg 5, 55128 Mainz, Germany
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| |
Collapse
|
22
|
Plitta-Michalak BP, Ramos AA, Pupel P, Michalak M. Oxidative damage and DNA repair in desiccated recalcitrant embryonic axes of Acer pseudoplatanus L. BMC PLANT BIOLOGY 2022; 22:40. [PMID: 35045819 PMCID: PMC8767751 DOI: 10.1186/s12870-021-03419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Most plants encounter water stress at one or more different stages of their life cycle. The maintenance of genetic stability is the integral component of desiccation tolerance that defines the storage ability and long-term survival of seeds. Embryonic axes of desiccation-sensitive recalcitrant seeds of Acer pseudoplatnus L. were used to investigate the genotoxic effect of desiccation. Alkaline single-cell gel electrophoresis (comet assay) methodology was optimized and used to provide unique insights into the onset and repair of DNA strand breaks and 8-oxo-7,8-dihydroguanine (8-oxoG) formation during progressive steps of desiccation and rehydration. RESULTS The loss of DNA integrity and impairment of damage repair were significant predictors of the viability of embryonic axes. In contrast to the comet assay, automated electrophoresis failed to detect changes in DNA integrity resulting from desiccation. Notably, no significant correlation was observed between hydroxyl radical (٠OH) production and 8-oxoG formation, although the former is regarded to play a major role in guanine oxidation. CONCLUSIONS The high-throughput comet assay represents a sensitive tool for monitoring discrete changes in DNA integrity and assessing the viability status in plant germplasm processed for long-term storage.
Collapse
Affiliation(s)
- Beata P. Plitta-Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Alice A. Ramos
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U. Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| |
Collapse
|
23
|
Increased Chlormethine-Induced DNA Double-Stranded Breaks in Malignant T Cells from Mycosis Fungoides Skin Lesions. JID INNOVATIONS 2022; 2:100069. [PMID: 34977846 PMCID: PMC8683611 DOI: 10.1016/j.xjidi.2021.100069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mycosis fungoides (MF) is a type of cutaneous T-cell lymphoma. Chlormethine (CL) is recommended as first-line therapy for MF, with a major purpose to kill tumor cells through DNA alkylation. To study the extent of treatment susceptibility and tumor specificity, we investigated the gene expression of different DNA repair pathways, DNA double-stranded breaks, and tumor cell proliferation of clonal TCR Vβ+ tumor cell populations in cutaneous T-cell lymphoma skin cells on direct exposure to CL. Healthy human T cells were less susceptible to CL exposure than two T-lymphoma cell lines, resulting in higher proportions of viable cells. Interestingly, in T cells from MF lesions, we observed a downregulation of several important DNA repair pathways, even complete silencing of RAD51AP1, FANC1, and BRCA2 involved in homologous recombination repair. In the presence of CL, the double-stranded DNA breaks in malignant MF skin T cells increased significantly as well as the expression of the apoptotic gene CASP3. These data point toward an important effect of targeting CL on MF skin tumor T cells, which support CL use as an early cutaneous lymphoma treatment and can be of synergistic use, especially beneficial in the setting of combination skin-directed therapies for cutaneous T-cell lymphoma.
Collapse
|
24
|
Kwanten B, Neggers JE, Daelemans D. Target Identification of Small Molecules Using Large-Scale CRISPR-Cas Mutagenesis Scanning of Essential Genes. Methods Mol Biol 2022; 2377:43-67. [PMID: 34709610 DOI: 10.1007/978-1-0716-1720-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Target deconvolution of new bioactive agents identified from phenotypic screens remains a challenging task. The discovery of mutations that confer resistance to such agents is regarded as the gold standard proof of target identification. Here, we describe a method that exploits the error-prone repair of CRISPR-induced DNA double-strand breaks to enhance mutagenesis and increase the incidence of drug resistance mutations in essential genes. As each DNA double-strand break is introduced at a targeted genomic site predefined by the presence of a protospacer adjacent motif (PAM) and a particular CRISPR single guide RNA (sgRNA), the genetic location of drug resistance mutations can be easily uncovered through targeted sequencing of CRISPR sgRNAs. Moreover, the method allows for the identification of not only the drug target gene, but also the drug-binding domain within the target gene.
Collapse
Affiliation(s)
- Bert Kwanten
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Jasper Edgar Neggers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
- Promakhos Therapeutics, Pagliuca Harvard Life Lab, Allston, Massachusetts, USA
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium.
| |
Collapse
|
25
|
Naumenko NV, Petruseva IO, Lomzov AA, Lavrik OI. Recognition and removal of clustered DNA lesions via nucleotide excision repair. DNA Repair (Amst) 2021; 108:103225. [PMID: 34562718 DOI: 10.1016/j.dnarep.2021.103225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/25/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Clustered damage of DNA consists of two or more lesions located within one or two turns of the DNA helix. Clusters consisting of lesions of various structures can arise under the influence of strong damaging factors, especially if the cells have a compromised repair status. In this work, we analyzed how the presence of an analog of the apurinic/apyrimidinic site - a non-nucleoside residue consisting of diethylene glycol phosphodiester (DEG) - affects the recognition and removal of a bulky lesion (a non-nucleoside site of the modified DNA strand containing a fluorescein residue, nFlu) from DNA by a mammalian nucleotide excision repair system. Here we demonstrated that the efficiency of nFlu removal decreases in the presence of DEG in the complementary strand and is completely suppressed when the DEG is located opposite the nFlu. By contrast, protein factor XPC-RAD23B, which initiates global genomic nucleotide excision repair, has higher affinity for DNA containing clustered damage as compared to DNA containing a single bulky lesion; the affinity of XPC strengthens as the positions of DEG and nFlu become closer. The changes in the double-stranded DNA's geometry caused by the presence of clustered damage were also assessed. The obtained experimental data together with the results of molecular dynamics simulations make it possible to get insight into the structural features of DNA containing clustered lesions that determine the efficiency of repair. Speaking more broadly, this study should help to understand the probable fate of bulky adduct-containing clusters of various topologies in the mammalian cell.
Collapse
Affiliation(s)
- N V Naumenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - I O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
26
|
Klein B, Günther C. Type I Interferon Induction in Cutaneous DNA Damage Syndromes. Front Immunol 2021; 12:715723. [PMID: 34381458 PMCID: PMC8351592 DOI: 10.3389/fimmu.2021.715723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Type I interferons (IFNs) as part of the innate immune system have an outstanding importance as antiviral defense cytokines that stimulate innate and adaptive immune responses. Upon sensing of pattern recognition particles (PRPs) such as nucleic acids, IFN secretion is activated and induces the expression of interferon stimulated genes (ISGs). Uncontrolled constitutive activation of the type I IFN system can lead to autoinflammation and autoimmunity, which is observed in autoimmune disorders such as systemic lupus erythematodes and in monogenic interferonopathies. They are caused by mutations in genes which are involved in sensing or metabolism of intracellular nucleic acids and DNA repair. Many authors described mechanisms of type I IFN secretion upon increased DNA damage, including the formation of micronuclei, cytosolic chromatin fragments and destabilization of DNA binding proteins. Hereditary cutaneous DNA damage syndromes, which are caused by mutations in proteins of the DNA repair, share laboratory and clinical features also seen in autoimmune disorders and interferonopathies; hence a potential role of DNA-damage-induced type I IFN secretion seems likely. Here, we aim to summarize possible mechanisms of IFN induction in cutaneous DNA damage syndromes with defects in the DNA double-strand repair and nucleotide excision repair. We review recent publications referring to Ataxia teleangiectasia, Bloom syndrome, Rothmund–Thomson syndrome, Werner syndrome, Huriez syndrome, and Xeroderma pigmentosum. Furthermore, we aim to discuss the role of type I IFN in cancer and these syndromes.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology and Allergology, University Medicine Leipzig, Leipzig, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital and Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Szpiech ZA, Novak TE, Bailey NP, Stevison LS. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol Lett 2021; 5:408-421. [PMID: 34367665 PMCID: PMC8327953 DOI: 10.1002/evl3.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology Pennsylvania State University University Park Pennsylvania 16801.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16801.,Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| |
Collapse
|
28
|
Ibuki Y, Komaki Y, Yang G, Toyooka T. Long-wavelength UVA enhances UVB-induced cell death in cultured keratinocytes: DSB formation and suppressed survival pathway. Photochem Photobiol Sci 2021; 20:639-652. [PMID: 33978941 DOI: 10.1007/s43630-021-00050-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Solar UV radiation consists of both UVA and UVB. The wavelength-specific molecular responses to UV radiation have been studied, but the interaction between UVA and UVB has not been well understood. In this study, we found that long-wavelength UVA, UVA1, augmented UVB-induced cell death, and examined the underlying mechanisms. Human keratinocytes HaCaT were exposed to UVA1, followed by UVB irradiation. Irradiation by UVA1 alone showed no effect on cell survival, whereas the UVA1 pre-irradiation remarkably enhanced UVB-induced cell death. UVA1 delayed the repair of pyrimidine dimers formed by UVB and the accumulation of nucleotide excision repair (NER) proteins to damaged sites. Gap synthesis during NER was also decreased, suggesting that UVA1 delayed NER, and unrepaired pyrimidine dimers and single-strand breaks generated in the process of NER were left behind. Accumulation of this unrepaired DNA damage might have led to the formation of DNA double-strand breaks (DSBs), as was detected using gel electrophoresis analysis and phosphorylated histone H2AX assay. Combined exposure enhanced the ATM-Chk2 signaling pathway, but not the ATR-Chk1 pathway, confirming the enhanced formation of DSBs. Moreover, UVA1 suppressed the UVB-induced phosphorylation of Akt, a survival signal pathway. These results indicated that UVA1 influenced the repair of UVB-induced DNA damage, which resulted in the formation of DSBs and enhanced cell death, suggesting the risk of simultaneous exposure to high doses of UVA1 and UVB.
Collapse
Affiliation(s)
- Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan.
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Tatsushi Toyooka
- National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
29
|
Kim JH, Kang DJ, Bae JS, Lee JH, Jeon S, Choi HD, Kim N, Kim HG, Kim HR. Activation of matrix metalloproteinases and FoxO3a in HaCaT keratinocytes by radiofrequency electromagnetic field exposure. Sci Rep 2021; 11:7680. [PMID: 33828192 PMCID: PMC8027011 DOI: 10.1038/s41598-021-87263-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
As the skin is the largest body organ and critically serves as a barrier, it is frequently exposed and could be physiologically affected by radiofrequency electromagnetic field (RF-EMF) exposure. In this study, we found that 1760 MHz RF-EMF (4.0 W/kg specific absorption rate for 2 h/day during 4 days) exposure could induce intracellular reactive oxygen species (ROS) production in HaCaT human keratinocytes using 2′,7′-dichlorofluorescin diacetate fluorescent probe analysis. However, cell growth and viability were unaffected by RF-EMF exposure. Since oxidative stress in the skin greatly influences the skin-aging process, we analyzed the skin senescence-related factors activated by ROS generation. Matrix metalloproteinases 1, 3, and 7 (MMP1, MMP3, and MMP7), the main skin wrinkle-related proteins, were significantly increased in HaCaT cells after RF-EMF exposure. Additionally, the gelatinolytic activities of secreted MMP2 and MMP9 were also increased by RF-EMF exposure. FoxO3a (Ser318/321) and ERK1/2 (Thr 202/Tyr 204) phosphorylation levels were significantly increased by RF-EMF exposure. However, Bcl2 and Bax expression levels were not significantly changed, indicating that the apoptotic pathway was not activated in keratinocytes following RF-EMF exposure. In summary, our findings show that exposure to 1760 MHz RF-EMF induces ROS generation, leading to MMP activation and FoxO3a and ERK1/2 phosphorylation. These data suggest that RF-EMF exposure induces cellular senescence of skin cells through ROS induction in HaCaT human keratinocytes.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, 119 Dandaero, Cheonan, Chungnam, 31116, Republic of Korea
| | - Dong-Jun Kang
- Department of Pharmacology, College of Medicine, Dankook University, 119 Dandaero, Cheonan, Chungnam, 31116, Republic of Korea
| | - Jun-Sang Bae
- Medical Laser Research Center, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jai Hyuen Lee
- Department of Nuclear Medicine, College of Medicine, Dankook University, Chungnam, Republic of Korea
| | - Sangbong Jeon
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon, 34129, Republic of Korea
| | - Hyung-Do Choi
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon, 34129, Republic of Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, 119 Dandaero, Cheonan, Chungnam, 31116, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, 119 Dandaero, Cheonan, Chungnam, 31116, Republic of Korea.
| |
Collapse
|
30
|
Yuan Z, Yu F, Zhang D, Wang H. Profiling of the assembly of RecA nucleofilaments implies a potential target for environmental factors to disturb DNA repair. J Environ Sci (China) 2021; 102:283-290. [PMID: 33637254 DOI: 10.1016/j.jes.2020.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Double-strand breaks (DSBs), one class of the most harmful DNA damage forms that bring elevated health risks, need to be repaired timely and effectively. However, an increasing number of environmental pollutants have been identified to impair DSB repair from various mechanisms. Our previous work indicated that the formation of unsaturated RecA nucleofilaments plays an essential role in homology recombination (HR) pathway which can accurately repair DSBs. In this study, by developing a benzonase cutting protection assay and combining it with traditional electrophoretic mobility shift assay (EMSA) analysis, we further investigated the assembly patterns of four RecA mutants that display differential DSB repair ability and ATPase activity. We observed that the mutants (G204S and S69G) possessing both ATP hydrolysis and DSB repair activities form unsaturated nucleofilaments similar to that formed by the wild type RecA, whereas the other two ATP hydrolysis-deficient mutants (K72R and E96D) that fail to mediate HR form more compacted nucleofilaments in the presence of ATP. These results establish a coupling of ATPase activity and effective DSB repair ability via the assembly status of RecA nucleofilaments. This linkage provides a potential target for environmental factors to disturb the essential HR pathway for DSB repair by suppressing the ATPase activity and altering the assembly pattern of nucleofilaments.
Collapse
Affiliation(s)
- Zheng Yuan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 430056, China.
| |
Collapse
|
31
|
RNF8 ubiquitinates RecQL4 and promotes its dissociation from DNA double strand breaks. Oncogenesis 2021; 10:24. [PMID: 33674555 PMCID: PMC7935965 DOI: 10.1038/s41389-021-00315-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/08/2022] Open
Abstract
Ubiquitination-dependent DNA damage response (DDR) signals play a critical role in the cellular choice of DNA damage repair pathways. Human DNA helicase RecQL4 participates in DNA replication and repair, and loss of RecQL4 is associated with autosomal recessive genetic disorders characterized by genomic instability features. In an earlier study, RecQL4 was isolated as a stable complex that contained two ubiquitin ligases of the N-end rule (UBR1 and UBR2). However, it is unknown whether or not RecQL4 ubiquitination status is critical for its DNA repair function. Here, we report that RecQL4 directly interacts with RNF8 (a RING finger ubiquitin E3 ligase), and both co-localize at DNA double-strand break (DSB) sites. Our findings indicate that RNF8 ubiquitinates RecQL4 protein mainly at the lysine sites of 876, 1048, and 1101, thereby facilitating the dissociation of RecQL4 from DSB sites. RecQL4 mutant at ubiquitination sites had a significantly prolonged retention at DSBs, which hinders the recruitment of its direct downstream DSB repair proteins (CtIP & Ku80). Interestingly, reduced DSB repair capacity observed in RecQL4 depleted cells was restored only by the reconstitution of wild-type RecQL4, but not the ubiquitination mutant. Additionally, RecQL4 directly interacts with WRAP53β that is known to recruit RNF8 to DSBs and WRAP53β enhances the association of RecQL4 with RNF8. WRAP53β silencing resulted in a nearly diminished recruitment of RNF8 to DSBs and in a greatly attenuated dissociation of RecQL4 from the DSB sites. Collectively, our study demonstrates that the ubiquitination event mediated by RNF8 constitutes an essential component for RecQL4's function in DSB repair.
Collapse
|
32
|
4-Hydroxynonenal Contributes to Fibroblast Senescence in Skin Photoaging Evoked by UV-A Radiation. Antioxidants (Basel) 2021; 10:antiox10030365. [PMID: 33670907 PMCID: PMC7997366 DOI: 10.3390/antiox10030365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022] Open
Abstract
Solar ultraviolet A (UV-A) radiation promotes a huge variety of damages on connective tissues and dermal fibroblasts, including cellular senescence, a major contributor of skin photoaging. The mechanisms of skin photoaging evoked by UV-A partly involve the generation of reactive oxygen species and lipid peroxidation. We previously reported that 4-hydroxynonenal (HNE), a lipid peroxidation-derived aldehyde, forms adducts on elastin in the skins of UV-A irradiated hairless mice, possibly contributing to actinic elastosis. In the present study, we investigated whether and how HNE promotes fibroblast senescence in skin photoaging. Dermal fibroblasts of skins from UV-A-exposed hairless mice exhibited an increased number of γH2AX foci characteristic of cell senescence, together with an accumulation of HNE adducts partly colocalizing with the cytoskeletal protein vimentin. Murine fibroblasts exposed to UV-A radiation (two cycles of 15 J/cm2), or HNE (30 µM, 4 h), exhibited senescence patterns characterized by an increased γH2AX foci expression, an accumulation of acetylated proteins, and a decreased expression of the sirtuin SIRT1. HNE adducts were detected on vimentin in cultured fibroblasts irradiated by UV-A or incubated with HNE. The HNE scavenger carnosine prevented both vimentin modification and fibroblast senescence evoked by HNE in vitro and in the skins of UV-A-exposed mice. Altogether, these data emphasize the role of HNE and lipid peroxidation-derived aldehydes in fibroblast senescence, and confirm the protective effect of carnosine in skin photoaging.
Collapse
|
33
|
Banaś AK, Zgłobicki P, Kowalska E, Bażant A, Dziga D, Strzałka W. All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. Genes (Basel) 2020; 11:E1304. [PMID: 33158066 PMCID: PMC7694213 DOI: 10.3390/genes11111304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Although solar light is indispensable for the functioning of plants, this environmental factor may also cause damage to living cells. Apart from the visible range, including wavelengths used in photosynthesis, the ultraviolet (UV) light present in solar irradiation reaches the Earth's surface. The high energy of UV causes damage to many cellular components, with DNA as one of the targets. Putting together the puzzle-like elements responsible for the repair of UV-induced DNA damage is of special importance in understanding how plants ensure the stability of their genomes between generations. In this review, we have presented the information on DNA damage produced under UV with a special focus on the pyrimidine dimers formed between the neighboring pyrimidines in a DNA strand. These dimers are highly mutagenic and cytotoxic, thus their repair is essential for the maintenance of suitable genetic information. In prokaryotic and eukaryotic cells, with the exception of placental mammals, this is achieved by means of highly efficient photorepair, dependent on blue/UVA light, which is performed by specialized enzymes known as photolyases. Photolyase properties, as well as their structure, specificity and action mechanism, have been briefly discussed in this paper. Additionally, the main gaps in our knowledge on the functioning of light repair in plant organelles, its regulation and its interaction between different DNA repair systems in plants have been highlighted.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| | - Dariusz Dziga
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| |
Collapse
|
34
|
Paiva JP, Diniz RR, Leitão AC, Cabral LM, Fortunato RS, Santos BAMC, de Pádula M. Insights and controversies on sunscreen safety. Crit Rev Toxicol 2020; 50:707-723. [PMID: 33064037 DOI: 10.1080/10408444.2020.1826899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although sunlight provides several benefits, ultraviolet (UV) radiation plays an important role in the development of various skin damages such as erythema, photoaging, and photocarcinogenesis. Despite cells having endogenous defense systems, damaged DNA may not be efficiently repaired at chronic exposure. In this sense, it is necessary to use artificial defense strategies such as sunscreen formulations. UV filters should scatter, reflect, or absorb solar UV radiation in order to prevent direct or indirect DNA lesions. However, the safety of UV filters is a matter of concern due to several controversies reported in literature, such as endocrine alterations, allergies, increased oxidative stress, phototoxic events, among others. Despite these controversies, the way in which sunscreens are tested is essential to ensure safety. Sunscreen regulation includes mandatory test for phototoxicity, but photogenotoxicity testing is not recommended as a part of the standard photosafety testing program. Although available photobiological tests are still the first approach to assess photosafety, they are limited. Some existing tests do not always provide reliable results, mainly due to limitations regarding the nature of the assessed phototoxic effect, cell UV sensitivity, and the irradiation protocols. These aspects bring queries regarding the safety of sunscreen wide use and suggest the demand for the development of robust and efficient in vitro screening tests to overcome the existing limitations. In this way, Saccharomyces cerevisiae has stood out as a promising model to fill the gaps in photobiology and to complete the mandatory tests enabling a more extensive and robust photosafety assessment.
Collapse
Affiliation(s)
- Juliana P Paiva
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raiane R Diniz
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular (Radmol), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca A M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Kciuk M, Marciniak B, Mojzych M, Kontek R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int J Mol Sci 2020; 21:ijms21197264. [PMID: 33019598 PMCID: PMC7582305 DOI: 10.3390/ijms21197264] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The protective ozone layer is continually depleting due to the release of deteriorating environmental pollutants. The diminished ozone layer contributes to excessive exposure of cells to ultraviolet (UV) radiation. This leads to various cellular responses utilized to restore the homeostasis of exposed cells. DNA is the primary chromophore of the cells that absorbs sunlight energy. Exposure of genomic DNA to UV light leads to the formation of multitude of types of damage (depending on wavelength and exposure time) that are removed by effectively working repair pathways. The aim of this review is to summarize current knowledge considering cellular response to UV radiation with special focus on DNA damage and repair and to give a comprehensive insight for new researchers in this field. We also highlight most important future prospects considering application of the progressing knowledge of UV response for the clinical control of diverse pathologies.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
- Correspondence:
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| |
Collapse
|
36
|
Chintala SM, Throgmorton JC, Maness PF, McCulla RD. Visible light‐induced photodeoxygenation of polycyclic selenophene
Se
‐oxides. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Peter F. Maness
- Department of Chemistry Saint Louis University St. Louis MO USA
| | - Ryan D. McCulla
- Department of Chemistry Saint Louis University St. Louis MO USA
| |
Collapse
|
37
|
Hu C, Bugbee T, Gamez M, Wallace NA. Beta Human Papillomavirus 8E6 Attenuates Non-Homologous End Joining by Hindering DNA-PKcs Activity. Cancers (Basel) 2020; 12:cancers12092356. [PMID: 32825402 PMCID: PMC7564021 DOI: 10.3390/cancers12092356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Cutaneous viral infections occur in a background of near continual exposure to environmental genotoxins, like UV radiation in sunlight. Failure to repair damaged DNA is an established driver of tumorigenesis and substantial cellular resources are devoted to repairing DNA lesions. Beta-human papillomaviruses (β-HPVs) attenuate DNA repair signaling. However, their role in human disease is unclear. Some have proposed that β-HPV promotes tumorigenesis, while others suggest that β-HPV protects against skin cancer. Most of the molecular evidence that β-HPV impairs DNA repair has been gained via characterization of the E6 protein from β-HPV 8 (β-HPV 8E6). Moreover, β-HPV 8E6 hinders DNA repair by binding and destabilizing p300, a transcription factor for multiple DNA repair genes. By reducing p300 availability, β-HPV 8E6 attenuates a major double strand DNA break (DSB) repair pathway, homologous recombination. Here, β-HPV 8E6 impairs another DSB repair pathway, non-homologous end joining (NHEJ). Specifically, β-HPV 8E6 acts by attenuating DNA-dependent protein kinase (DNA-PK) activity, a critical NHEJ kinase. This includes DNA-PK activation and the downstream of steps in the pathway associated with DNA-PK activity. Notably, β-HPV 8E6 inhibits NHEJ through p300 dependent and independent means. Together, these data expand the known genome destabilizing capabilities of β-HPV 8E6.
Collapse
Affiliation(s)
- Changkun Hu
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (T.B.)
| | - Taylor Bugbee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (T.B.)
| | - Monica Gamez
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK;
| | - Nicholas A. Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (T.B.)
- Correspondence:
| |
Collapse
|
38
|
A high-resolution map of bacteriophage ϕX174 transcription. Virology 2020; 547:47-56. [DOI: 10.1016/j.virol.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
|
39
|
Rather RA, Bhagat M, Singh SK. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108321. [PMID: 32800272 DOI: 10.1016/j.mrrev.2020.108321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BRAF is a member of the RAF family of serine/threonine-specific protein kinases. Oncogenic BRAF, in particular, BRAF V600E, can disturb the normal protein folding machinery in the endoplasmic reticulum (ER) leading to accumulation of unfolded/misfolded proteins in the ER lumen, a condition known as endoplasmic reticulum (ER) stress. To alleviate such conditions, ER-stressed cells have developed a highly robust and adaptable signaling network known as unfolded protein response (UPR). UPR is ordinarily a cytoprotective response and usually operates through the induction of autophagy, an intracellular lysosomal degradation pathway that directs damaged proteins, protein aggregates, and damaged organelles for bulk degradation and recycling. Both ER stress and autophagy are involved in the progression and chemoresistance of melanoma. Melanoma, which arises as a result of malignant transformation of melanocytes, exhibits exceptionally high therapeutic resistance. Many mechanisms of therapeutic resistance have been identified in individual melanoma patients and in preclinical BRAF-driven melanoma models. Recently, it has been recognized that oncogenic BRAF interacts with GRP78 and removes its inhibitory influence on the three fundamental ER stress sensors of UPR, PERK, IRE1α, and ATF6. Dissociation of GRP78 from these ER stress sensors prompts UPR that subsequently activates cytoprotective autophagy. Thus, pharmacological inhibition of BRAF-induced ER stress-mediated autophagy can potentially resensitize BRAF mutant melanoma tumors to apoptosis. However, the underlying molecular mechanism of how oncogenic BRAF elevates the basal level of ER stress-mediated autophagy in melanoma tumors is not well characterized. A better understanding of the crosstalk between oncogenic BRAF, ER stress and autophagy may provide a rationale for improving existing cancer therapies and identify novel targets for therapeutic intervention of melanoma.
Collapse
Affiliation(s)
- Rafiq A Rather
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India.
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Shashank K Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
40
|
Szilágyi Z, Németh Z, Bakos J, Necz PP, Sáfár A, Kubinyi G, Selmaoui B, Thuróczy G. Evaluation of Inflammation by Cytokine Production Following Combined Exposure to Ultraviolet and Radiofrequency Radiation of Mobile Phones on 3D Reconstructed Human Skin In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124401. [PMID: 32575398 PMCID: PMC7344923 DOI: 10.3390/ijerph17124401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
The absorption of exposure to radiofrequency (RF) emitted by wireless devices leads to a high specific absorption rate in the skin. Ultraviolet (UV) radiation can induce several damages to the skin. The aim of this study was to examine whether combined, consecutive exposure to solar UV radiation and 1950 MHz RF exposure of third generation (3G) mobile system have any effect on inflammation processes in the skin. Under in vitro experiments, the inflammation process was examined by cytokines (IL-1α, IL-6, and IL-8) and MMP-1 enzyme secretion on 3D full thickness human skin model. The RF exposure was applied before or after UV irradiation, in order to study either the possible cooperative or protective effects of exposure to RF and UV. We did not find changes in cytokines due to exposure to RF alone. The RF exposure did not enhance the effects of UV radiation. There was a statistically not-significant decrease in cytokines when the skin tissues were pre-exposed to RF before being exposed to 4 standard erythemal dose (SED) UV compared to UV exposure alone. We found that RF exposure reduced the previously UV-treated MMP-1 enzyme concentration. This study might support the evaluation of the effects on the skin exposed to microwave radiation of 5G mobile technology.
Collapse
Affiliation(s)
- Zsófia Szilágyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Zsuzsanna Németh
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - József Bakos
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
- Correspondence: ; Tel.: +36-1-482-2019
| | - Péter Pál Necz
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Anna Sáfár
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Györgyi Kubinyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Brahim Selmaoui
- Department of Experimental Toxicology, National Institute of Industrial Environment and Risks (INERIS), 60550 Verneuilen Halate, France;
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025 Amiens, France
| | - György Thuróczy
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| |
Collapse
|
41
|
Martins Longaretti L, Luciano JA, Strapazzon G, Pereira M, Damiani AP, Rohr P, Rigo FK, de Oliveira CA, Steiner BT, Vilela TC, Trevisan G, de Andrade VM. Anti-genotoxic and anti-mutagenic effects of melatonin supplementation in a mouse model of melanoma. Drug Chem Toxicol 2020; 45:515-522. [PMID: 32063063 DOI: 10.1080/01480545.2020.1726380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Melanoma, an aggressive skin cancer originating from melanocytes, can metastasize to the lungs, liver, cortex, femur, and spinal cord, ultimately resulting in DNA mutagenic effects. Melatonin is an endogenous hormone and free radical scavenger that possesses the ability to protect the DNA and to exert anti-proliferative effects in melanoma cells. The aim of this study was to evaluate the effects of B16F10 melanoma cells and the effects of melatonin supplementation on genotoxic parameters in murine melanoma models. Thirty-two male C57Bl/6 mice were divided in the following four groups: PBS + vehicle (n = 6), melanoma + vehicle (n = 10), PBS + melatonin (n = 6), and melanoma + melatonin (n = 10). The melanoma groups received a B16F10 cell injection, and melatonin was administered during 60 days. After treatment, tumor sizes were evaluated. DNA damage within the peripheral blood, lungs, liver, cortex, and spinal cord was determined using comet assay, and the mutagenicity within the bone marrow was determined using the micronucleus test. B16F10 cells effectively induced DNA damage in all tissues, and melatonin supplementation decreased DNA damage in the blood, liver, cortex, and spinal cord. This hormone exerts anti-tumor activity via its anti-proliferative, antioxidative, and pro-apoptotic effects. As this result was not observed within the lungs, we hypothesized that melatonin can induce apoptosis in cancer cells, and this was not evaluated by comet assay. This study provides evidence that melatonin can reduce the genotoxicity and mutagenicity caused by B16F10 cells.
Collapse
Affiliation(s)
- Luiza Martins Longaretti
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Jéssica Aparecida Luciano
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Giulia Strapazzon
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Maiara Pereira
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Adriani Paganini Damiani
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Paula Rohr
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Flávia Karine Rigo
- Laboratório de Fisiopatologia Exprimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Camila Alves de Oliveira
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Bethina Trevisol Steiner
- Laboratório de Fisiopatologia Exprimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Thais Ceresér Vilela
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Gabriela Trevisan
- Laboratory of Neuropsychopharmacology and Neurotoxicity, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Vanessa Moraes de Andrade
- Laboratório de Biomedicina Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| |
Collapse
|
42
|
Amente S, Di Palo G, Scala G, Castrignanò T, Gorini F, Cocozza S, Moresano A, Pucci P, Ma B, Stepanov I, Lania L, Pelicci PG, Dellino GI, Majello B. Genome-wide mapping of 8-oxo-7,8-dihydro-2'-deoxyguanosine reveals accumulation of oxidatively-generated damage at DNA replication origins within transcribed long genes of mammalian cells. Nucleic Acids Res 2019; 47:221-236. [PMID: 30462294 PMCID: PMC6326803 DOI: 10.1093/nar/gky1152] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023] Open
Abstract
8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) is one of the major DNA modifications and a potent pre-mutagenic lesion prone to mispair with 2′-deoxyadenosine (dA). Several thousand residues of 8-oxodG are constitutively generated in the genome of mammalian cells, but their genomic distribution has not yet been fully characterized. Here, by using OxiDIP-Seq, a highly sensitive methodology that uses immuno-precipitation with efficient anti–8-oxodG antibodies combined with high-throughput sequencing, we report the genome-wide distribution of 8-oxodG in human non-tumorigenic epithelial breast cells (MCF10A), and mouse embryonic fibroblasts (MEFs). OxiDIP-Seq revealed sites of 8-oxodG accumulation overlapping with γH2AX ChIP-Seq signals within the gene body of transcribed long genes, particularly at the DNA replication origins contained therein. We propose that the presence of persistent single-stranded DNA, as a consequence of transcription-replication clashes at these sites, determines local vulnerability to DNA oxidation and/or its slow repair. This oxidatively-generated damage, likely in combination with other kinds of lesion, might contribute to the formation of DNA double strand breaks and activation of DNA damage response.
Collapse
Affiliation(s)
- Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giacomo Di Palo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | | | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Angela Moresano
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milano, Milan, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milano, Milan, Italy
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
43
|
Pizzuti VJ, Misra R, Lee J, Torregrosa-Allen SE, Currie MP, Clark SR, Patel AP, Schorr CR, Jones-Hall Y, Childress MO, Plantenga JM, Rancilio NJ, Elzey BD, Won YY. Folic Acid-Conjugated Radioluminescent Calcium Tungstate Nanoparticles as Radio-Sensitizers for Cancer Radiotherapy. ACS Biomater Sci Eng 2019; 5:4776-4789. [PMID: 33448820 DOI: 10.1021/acsbiomaterials.9b00773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Radiation therapy is a primary treatment modality for many forms of cancer. Normally, the highest tolerable dose of ionizing radiation is used to treat tumors, but limitations imposed by normal tissue complications present challenges for local tumor control. In light of this, a class of compounds called radio-sensitizers have been developed to enhance the effectiveness of radiation. Many of these are small molecule drugs found to interact favorably with radiation therapy, but recent advances have been made using nanoparticles as radio-sensitizers. Herein, we report the utilization of radio-luminescent calcium tungstate nanoparticles that emit photoelectrons, UV-A, and visible light during X-ray irradiation, acting as effective radio-sensitizers ("Radio Luminescence Therapy"). In addition, a folic acid-functionalized form of these nanoparticles was shown to enhance radio-sensitization in vitro and in murine models of head and neck cancer. Folic acid-functionalized particles were found to decrease UV-A-induced clonogenic cell survival relative to nonfunctionalized particles. Several possible mechanisms were explored, and the folic acid-functionalized particles were found to mediate this increase in efficacy likely by activating pro-proliferative signaling through folate's innate mitogenic activity, leading to decreased repair of UV-A-induced DNA lesions. Finally, a clinical case study of a canine sarcoma patient demonstrated the initial safety and feasibility of translating these folic acid-functionalized particles into the clinic as radio-sensitizers in the treatment of spontaneous tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nicholas J Rancilio
- Department of Veterinary Clinical Sciences, Auburn University, 1010 Wire Road, Auburn, Alabama 36849, United States
| | | | | |
Collapse
|
44
|
Diniz RR, Paiva JP, Aquino RM, Gonçalves TCW, Leitão AC, Santos BAMC, Pinto AV, Leandro KC, de Pádula M. Saccharomyces cerevisiae strains as bioindicators for titanium dioxide sunscreen photoprotective and photomutagenic assessment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111584. [PMID: 31434036 DOI: 10.1016/j.jphotobiol.2019.111584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 11/15/2022]
Abstract
Although several short-term assays are available for cosmetic photosafety assessment, cell models are usually highly sensitive to UV radiation, tending to overestimate both phototoxic and photomutagenic risks. In addition, these assays are performed with UV doses/fluences that do not correspond to actual environmental conditions. In this sense, Saccharomyces cerevisiae has already proved to be an interesting tool to predict photomutagenic potential of several compounds, including sunscreens. Yeast can support environmental UVB doses compatible with human daily sunlight exposure, allowing the use of irradiation sources to faithfully mimic the external conditions of ambient sunlight. Herein, we used a set of S. cerevisiae mutant strains sensitive to UVA, UVB and Solar Simulated Light sources in order to evaluate their potential as bioindicators for sunscreen development. The bioindicator potential of the strains was tested with the widely-used titanium dioxide inorganic sunscreen. The AWP001 (yno1) and LPW002 (ogg1yno1) strains obtained in this study stood out as promising experimental tools for the validation of this assay. Overall, our results evidenced a set of S. cerevisiae strains particularly useful for evaluating both photoprotective (efficacy) and photo/antiphotomutagenic (safety) potential of UV filters, meeting the industries and regulatory agencies demand for robust and efficient in vitro screening tests.
Collapse
Affiliation(s)
- Raiane R Diniz
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Juliana P Paiva
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Renan M Aquino
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Tula C W Gonçalves
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alvaro C Leitão
- Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Bianca Aloise M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alicia V Pinto
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Katia C Leandro
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil.
| |
Collapse
|
45
|
Biofilms: The Microbial "Protective Clothing" in Extreme Environments. Int J Mol Sci 2019; 20:ijms20143423. [PMID: 31336824 PMCID: PMC6679078 DOI: 10.3390/ijms20143423] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial biofilms are communities of aggregated microbial cells embedded in a self-produced matrix of extracellular polymeric substances (EPS). Biofilms are recalcitrant to extreme environments, and can protect microorganisms from ultraviolet (UV) radiation, extreme temperature, extreme pH, high salinity, high pressure, poor nutrients, antibiotics, etc., by acting as "protective clothing". In recent years, research works on biofilms have been mainly focused on biofilm-associated infections and strategies for combating microbial biofilms. In this review, we focus instead on the contemporary perspectives of biofilm formation in extreme environments, and describe the fundamental roles of biofilm in protecting microbial exposure to extreme environmental stresses and the regulatory factors involved in biofilm formation. Understanding the mechanisms of biofilm formation in extreme environments is essential for the employment of beneficial microorganisms and prevention of harmful microorganisms.
Collapse
|
46
|
Kopa P, Macieja A, Galita G, Witczak ZJ, Poplawski T. DNA Double Strand Breaks Repair Inhibitors: Relevance as Potential New Anticancer Therapeutics. Curr Med Chem 2019; 26:1483-1493. [PMID: 29446719 DOI: 10.2174/0929867325666180214113154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
DNA double-strand breaks are considered one of the most lethal forms of DNA damage. Many effective anticancer therapeutic approaches used chemical and physical methods to generate DNA double-strand breaks in the cancer cells. They include: IR and drugs which mimetic its action, topoisomerase poisons, some alkylating agents or drugs which affected DNA replication process. On the other hand, cancer cells are mostly characterized by highly effective systems of DNA damage repair. There are two main DNA repair pathways used to fix double-strand breaks: NHEJ and HRR. Their activity leads to a decreased effect of chemotherapy. Targeting directly or indirectly the DNA double-strand breaks response by inhibitors seems to be an exciting option for anticancer therapy and is a part of novel trends that arise after the clinical success of PARP inhibitors. These trends will provide great opportunities for the development of DNA repair inhibitors as new potential anticancer drugs. The main objective of this article is to address these new promising advances.
Collapse
Affiliation(s)
- Paulina Kopa
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz 90-752, Poland
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Grzegorz Galita
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Zbigniew J Witczak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, United States
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| |
Collapse
|
47
|
Raetz AG, David SS. When you're strange: Unusual features of the MUTYH glycosylase and implications in cancer. DNA Repair (Amst) 2019; 80:16-25. [PMID: 31203172 DOI: 10.1016/j.dnarep.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
MUTYH is a base-excision repair glycosylase that removes adenine opposite 8-oxoguanine (OG). Variants of MUTYH defective in functional activity lead to MUTYH-associated polyposis (MAP), which progresses to cancer with very high penetrance. Whole genome and whole exome sequencing studies have found MUTYH deficiencies in an increasing number of cancer types. While the canonical OG:A repair activity of MUTYH is well characterized and similar to bacterial MutY, here we review more recent evidence that MUTYH has activities independent of OG:A repair and appear centered on the interdomain connector (IDC) region of MUTYH. We summarize evidence that MUTYH is involved in rapid DNA damage response (DDR) signaling, including PARP activation, 9-1-1 and ATR signaling, and SIRT6 activity. MUTYH alters survival and DDR to a wide variety of DNA damaging agents in a time course that is not consistent with the formation of OG:A mispairs. Studies that suggest MUTYH inhibits the repair of alkyl-DNA damage and cyclopyrimidine dimers (CPDs) is reviewed, and evidence of a synthetic lethal interaction with mismatch repair (MMR) is summarized. Based on these studies we suggest that MUTYH has evolved from an OG:A mispair glycosylase to a multifunctional scaffold for DNA damage response signaling.
Collapse
Affiliation(s)
- Alan G Raetz
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
48
|
Szydlowski NA, Go JS, Hu YS. Chromatin imaging and new technologies for imaging the nucleome. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1442. [PMID: 30456928 DOI: 10.1002/wsbm.1442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
Abstract
Synergistic developments in advanced fluorescent imaging and labeling techniques enable direct visualization of the chromatin structure and dynamics at the nanoscale level and in live cells. Super-resolution imaging encompasses a class of constantly evolving techniques that break the diffraction limit of fluorescence microscopy. Structured illumination microscopy provides a twofold resolution improvement and can readily achieve live multicolor imaging using conventional fluorophores. Single-molecule localization microscopy increases the spatial resolution by approximately 10-fold at the expense of slower acquisition speed. Stimulated emission-depletion microscopy generates a roughly fivefold resolution improvement with an imaging speed proportional to the scanning area. In parallel, advanced labeling strategies have been developed to "light up" global and sequence-specific DNA regions. DNA binding dyes have been exploited to achieve high labeling densities in single-molecule localization microscopy and enhance contrast in correlated light and electron microscopy. New-generation Oligopaint utilizes bioinformatics analyses to optimize the design of fluorescence in situ hybridization probes. Through sequential and combinatorial labeling, direct characterization of the DNA domain volume and length as well as the spatial organization of distinct topologically associated domains has been reported. In live cells, locus-specific labeling has been achieved by either inserting artificial loci next to the gene of interest, such as the repressor-operator array systems, or utilizing genome editing tools, including zinc finer proteins, transcription activator-like effectors, and the clustered regularly interspaced short palindromic repeats systems. Combined with single-molecule tracking, these labeling techniques enable direct visualization of intra- and inter-chromatin interactions. This article is categorized under: Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- Nicole A Szydlowski
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Jane S Go
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Kim JM, Choo JE, Kim KN, Kim YS. Potential protective effects of rhEGF against ultraviolet A irradiation-induced damages on human fibroblasts. Clin Cosmet Investig Dermatol 2018; 11:505-513. [PMID: 30410380 PMCID: PMC6199234 DOI: 10.2147/ccid.s170697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Ultraviolet A (UVA) rays reach the dermal skin layer and generate oxidative stress, DNA damage, and cell inflammation, which in turn lead to photo-aging and photo-carcinogenesis. While there have been many studies about the beneficial effects of topical epidermal growth factor (EGF) treatment in the healing of wounds, the effect of EGF on UVA-induced skin irritation remains unknown. To clarify the effects of EGF on UVA-induced skin damage, it was investigated whether EGF signaling can affect intracellular reactive oxygen species (ROS) and DNA damages in UVA-irradiated human dermal fibroblasts. Materials and methods Fibroblasts cultured with or without rhEGF were UVA-irradiated at 40 mJ/cm2 twice per day for 5 days. After the irradiation, the intracellular ROS levels and expression of catalase and superoxide dismutase-1 (SOD-1) in the fibroblasts were ascertained. Further investigation to determine the effects of EGF on UVA-induced DNA damage, including a single cell gel electrophoresis assay and an enzyme-linked immunosorbent assay (ELISA), was carried out. Moreover, the NF-κB activity was ascertained in order to investigate the effects of EGF on UVA-irradiated fibroblasts. Results As a result, it was revealed that recombinant human EGF (rhEGF) inhibited UVA- increased intracellular ROS in the fibroblasts and increased the expression of catalase and SOD-1. Moreover, in UVA-irradiated fibroblasts, the longest DNA-damaged tails were observed, but this phenomenon was not detected in cells cotreated with both UVA and rhEGF. Also, it was observed that DNA damage induction, including that of cyclobutene pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts, and 8-hydroxy-2-deoxyguanosine, was caused by UVA irradiation. Similar to previous results, it was downregulated by rhEGF. Furthermore, rhEGF also inhibited NF-κB gene expression and the NF-κB p65 protein level in the nucleus induced by UVA irradiation. Conclusion These results suggest that EGF might be a useful material for preventing or improving photo-aging.
Collapse
Affiliation(s)
- Ji Min Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co.,Ltd., Yongin, Korea
| | - Jung Eun Choo
- Life Science Research Institute, Daewoong Pharmaceutical Co.,Ltd., Yongin, Korea
| | - Ki Nam Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co.,Ltd., Yongin, Korea
| | - Yang Seok Kim
- Department of Science in Korean Medicine, Kyng Hee University, Seoul, Korea,
| |
Collapse
|
50
|
Son HY, Koo BI, Lee JB, Kim KR, Kim W, Jang J, Yoon MS, Cho JW, Nam YS. Tannin-Titanium Oxide Multilayer as a Photochemically Suppressed Ultraviolet Filter. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27344-27354. [PMID: 30039969 DOI: 10.1021/acsami.8b09200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
UV filters can initiate redox reactions of oxygen and water when exposed to sunlight, generating reactive oxygen species (ROS) that deteriorate the products containing them and cause biological damages. This photochemical reactivity originates from the high chemical potential of UV filters, which also determines the optical properties desirable for sunscreen applications. We hypothesize that this dilemma can be alleviated if the photochemical pathway of UV filters is altered to coupling with redox active molecules. Here, we employ tannic acid (TA) as a key molecule for controlling the photochemical properties of titanium dioxide nanoparticles (TiO2 NPs). TA provides an unusual way for layer-by-layer assembly of TiO2 NPs by the formation of a ligand-to-metal charge transfer complex that alters the nature of UV absorption of TiO2 NPs. The galloyl moieties of TA efficiently scavenge ROS due to the stabilization of ROS by intramolecular hydrogen bonding while facilitating UV screening through direct charge injection from TA to the conduction band of TiO2. The TiO2-TA multilayers assembled in open porous polymer microspheres substantially increased sun protection while dramatically reducing ROS under UV exposure. The assembled structure exhibits excellent in vivo anti-UV skin protection against epidermal hyperplasia, inflammation, and keratinocyte apoptosis without long-term toxicity.
Collapse
Affiliation(s)
| | | | - Jun Bae Lee
- Innovation Lab , Cosmax Research & Innovation Center , 662 Sampyong-dong , Bundang-gu, Seongnam 13486 , Gyeonggi-do , Republic of Korea
| | | | - Woojin Kim
- Pathology Research Center, Department of Jeonbuk Inhalation Research , Korea Institute of Toxicology , 30 Baekhak-1-gil , Jeongup 56212 , Jeonbuk , Republic of Korea
| | - Jihui Jang
- Innovation Lab , Cosmax Research & Innovation Center , 662 Sampyong-dong , Bundang-gu, Seongnam 13486 , Gyeonggi-do , Republic of Korea
| | - Moung Seok Yoon
- Innovation Lab , Cosmax Research & Innovation Center , 662 Sampyong-dong , Bundang-gu, Seongnam 13486 , Gyeonggi-do , Republic of Korea
| | - Jae-Woo Cho
- Pathology Research Center, Department of Jeonbuk Inhalation Research , Korea Institute of Toxicology , 30 Baekhak-1-gil , Jeongup 56212 , Jeonbuk , Republic of Korea
| | | |
Collapse
|