1
|
He X, Wang L, Tsang HY, Liu X, Yang X, Pu S, Guo Z, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. GTPBP8 modulates mitochondrial fission through a Drp1-dependent process. J Cell Sci 2024; 137:jcs261612. [PMID: 38587461 PMCID: PMC11112121 DOI: 10.1242/jcs.261612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Mitochondrial fission is a tightly regulated process involving multiple proteins and cell signaling. Despite extensive studies on mitochondrial fission factors, our understanding of the regulatory mechanisms remains limited. This study shows the critical role of a mitochondrial GTPase, GTPBP8, in orchestrating mitochondrial fission in mammalian cells. Depletion of GTPBP8 resulted in drastic elongation and interconnectedness of mitochondria. Conversely, overexpression of GTPBP8 shifted mitochondrial morphology from tubular to fragmented. Notably, the induced mitochondrial fragmentation from GTPBP8 overexpression was inhibited in cells either depleted of the mitochondrial fission protein Drp1 (also known as DNM1L) or carrying mutated forms of Drp1. Importantly, downregulation of GTPBP8 caused an increase in oxidative stress, modulating cell signaling involved in the increased phosphorylation of Drp1 at Ser637. This phosphorylation hindered the recruitment of Drp1 to mitochondria, leading to mitochondrial fission defects. By contrast, GTPBP8 overexpression triggered enhanced recruitment and assembly of Drp1 at mitochondria. In summary, our study illuminates the cellular function of GTPBP8 as a pivotal modulator of the mitochondrial division apparatus, inherently reliant on its influence on Drp1.
Collapse
Affiliation(s)
- Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hoi Ying Tsang
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice 40752, Poland
| | - Xiaofeng Yang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Pussila M, Laiho A, Törönen P, Björkbacka P, Nykänen S, Pylvänäinen K, Holm L, Mecklin JP, Renkonen-Sinisalo L, Lehtonen T, Lepistö A, Linden J, Mäki-Nevala S, Peltomäki P, Nyström M. Mitotic abnormalities precede microsatellite instability in lynch syndrome-associated colorectal tumourigenesis. EBioMedicine 2024; 103:105111. [PMID: 38583260 PMCID: PMC11002576 DOI: 10.1016/j.ebiom.2024.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Lynch syndrome (LS) is one of the most common hereditary cancer syndromes worldwide. Dominantly inherited mutation in one of four DNA mismatch repair genes combined with somatic events leads to mismatch repair deficiency and microsatellite instability (MSI) in tumours. Due to a high lifetime risk of cancer, regular surveillance plays a key role in cancer prevention; yet the observation of frequent interval cancers points to insufficient cancer prevention by colonoscopy-based methods alone. This study aimed to identify precancerous functional changes in colonic mucosa that could facilitate the monitoring and prevention of cancer development in LS. METHODS The study material comprised colon biopsy specimens (n = 71) collected during colonoscopy examinations from LS carriers (tumour-free, or diagnosed with adenoma, or diagnosed with carcinoma) and a control group, which included sporadic cases without LS or neoplasia. The majority (80%) of LS carriers had an inherited genetic MLH1 mutation. The remaining 20% included MSH2 mutation carriers (13%) and MSH6 mutation carriers (7%). The transcriptomes were first analysed with RNA-sequencing and followed up with Gorilla Ontology analysis and Reactome Knowledgebase and Ingenuity Pathway Analyses to detect functional changes that might be associated with the initiation of the neoplastic process in LS individuals. FINDINGS With pathway and gene ontology analyses combined with measurement of mitotic perimeters from colonic mucosa and tumours, we found an increased tendency to chromosomal instability (CIN), already present in macroscopically normal LS mucosa. Our results suggest that CIN is an earlier aberration than MSI and may be the initial cancer driving aberration, whereas MSI accelerates tumour formation. Furthermore, our results suggest that MLH1 deficiency plays a significant role in the development of CIN. INTERPRETATION The results validate our previous findings from mice and highlight early mitotic abnormalities as an important contributor and precancerous marker of colorectal tumourigenesis in LS. FUNDING This work was supported by grants from the Jane and Aatos Erkko Foundation, the Academy of Finland (330606 and 331284), Cancer Foundation Finland sr, and the Sigrid Jusélius Foundation. Open access is funded by Helsinki University Library.
Collapse
Affiliation(s)
- Marjaana Pussila
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Aleksi Laiho
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Petri Törönen
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pauliina Björkbacka
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sonja Nykänen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kirsi Pylvänäinen
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Liisa Holm
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Well Being Services County of Central Finland, Department of Science, Jyväskylä, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumour Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Taru Lehtonen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumour Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jere Linden
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Finland; HUSLAB Laboratory of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Nyström
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Wang L, Hilander T, Liu X, Tsang HY, Eriksson O, Jackson CB, Varjosalo M, Zhao H. GTPBP8 is required for mitoribosomal biogenesis and mitochondrial translation. Cell Mol Life Sci 2023; 80:361. [PMID: 37971521 PMCID: PMC10654211 DOI: 10.1007/s00018-023-05014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Mitochondrial translation occurs on the mitochondrial ribosome, also known as the mitoribosome. The assembly of mitoribosomes is a highly coordinated process. During mitoribosome biogenesis, various assembly factors transiently associate with the nascent ribosome, facilitating the accurate and efficient construction of the mitoribosome. However, the specific factors involved in the assembly process, the precise mechanisms, and the cellular compartments involved in this vital process are not yet fully understood. In this study, we discovered a crucial role for GTP-binding protein 8 (GTPBP8) in the assembly of the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. GTPBP8 is identified as a novel GTPase located in the matrix and peripherally bound to the inner mitochondrial membrane. Importantly, GTPBP8 is specifically associated with the mt-LSU during its assembly. Depletion of GTPBP8 leads to an abnormal accumulation of mt-LSU, indicating that GTPBP8 is critical for proper mt-LSU assembly. Furthermore, the absence of GTPBP8 results in reduced levels of fully assembled 55S monosomes. This impaired assembly leads to compromised mitochondrial translation and, consequently, impaired mitochondrial function. The identification of GTPBP8 as an important player in these processes provides new insights into the molecular mechanisms underlying mitochondrial protein synthesis and its regulation.
Collapse
Affiliation(s)
- Liang Wang
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, West China, Chengdu, 610041, China
| | - Taru Hilander
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Hoi Ying Tsang
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
4
|
Wei YM, Wang BH, Shao DJ, Yan RY, Wu JW, Zheng GM, Zhao YJ, Zhang XS, Zhao XY. Defective kernel 66 encodes a GTPase essential for kernel development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5694-5708. [PMID: 37490479 PMCID: PMC10540730 DOI: 10.1093/jxb/erad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
The mitochondrion is a semi-autonomous organelle that provides energy for cell activities through oxidative phosphorylation. In this study, we identified a defective kernel 66 (dek66)-mutant maize with defective kernels. We characterized a candidate gene, DEK66, encoding a ribosomal assembly factor located in mitochondria and possessing GTPase activity (which belongs to the ribosome biogenesis GTPase A family). In the dek66 mutant, impairment of mitochondrial structure and function led to the accumulation of reactive oxygen species and promoted programmed cell death in endosperm cells. Furthermore, the transcript levels of most of the key genes associated with nutrient storage, mitochondrial respiratory chain complex, and mitochondrial ribosomes in the dek66 mutant were significantly altered. Collectively, the results suggest that DEK66 is essential for the development of maize kernels by affecting mitochondrial function. This study provides a reference for understanding the impact of a mitochondrial ribosomal assembly factor in maize kernel development.
Collapse
Affiliation(s)
- Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Bo Hui Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Dong Jie Shao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Ru Yu Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
5
|
Khawaja A, Cipullo M, Krüger A, Rorbach J. Insights into mitoribosomal biogenesis from recent structural studies. Trends Biochem Sci 2023; 48:629-641. [PMID: 37169615 DOI: 10.1016/j.tibs.2023.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
The mitochondrial ribosome (mitoribosome) is a multicomponent machine that has unique structural features. Biogenesis of the human mitoribosome includes correct maturation and folding of the mitochondria-encoded RNA components (12S and 16S mt-rRNAs, and mt-tRNAVal) and their assembly together with 82 nucleus-encoded mitoribosomal proteins. This complex process requires the coordinated action of multiple assembly factors. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided detailed insights into the specific functions of several mitoribosome assembly factors and have defined their timing. In this review we summarize mitoribosomal small (mtSSU) and large subunit (mtLSU) biogenesis based on structural findings, and we discuss potential crosstalk between mtSSU and mtLSU assembly pathways as well as coordination between mitoribosome biogenesis and other processes involved in mitochondrial gene expression.
Collapse
Affiliation(s)
- Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Ganaie IA, Malik MZ, Mangangcha IR, Jain SK, Wajid S. Identification of a survival associated gene trio in chemical induced breast cancer. Biochimie 2023; 208:170-179. [PMID: 36621662 DOI: 10.1016/j.biochi.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Sporadic cases of breast cancer being more prevalent than the hereditary cases, can be largely attributed to environmental pollutants like polycyclic aromatic hydrocarbons (PAHs). The aim of the present study was to identify gene dysregulations and the associations in DMBA (a PAH) induced breast cancer. A breast cancer model was developed in Wistar rats (n = 40), using DMBA. Serum proteomics (2D electrophoresis and MALDI-TOF MS) followed by relative gene expression analysis in mammary glands were conducted to reach to the differential gene signatures. The candidate genes were subjected to survival analysis (by GEPIA2 and KM plotter) and infiltration analysis (by ImmuCellAI) for correlating gene expression with patient survival and immune cell infiltration respectively. Further, the regulatory network investigation (by Cytoscape) was performed to find out the transcription factors (TFs) and miRNAs of the concerned genes. A gene trio (ANXA5, MTG1, PPP2R5B), expressing differentially in early mammary carcinogenesis at 4 months (precancerous stage) till full-fledged cancerous stage (post 6 months) was identified. The altered gene expression was associated with less survival among breast cancer patients (n = 4019). The dysregulated expression also has a correlation with enhanced mammary infiltration of immune cells. Moreover, a regulatory network (comprising of 77 transcription factors and 50 miRNAs) involved in the regulation of candidate genes was also deciphered. The deregulated target genes can therefore be explored for reregulation via identified TFs and miRNAs, and survival thereby improved.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ganaie
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Swatantra Kumar Jain
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
7
|
Mechanisms and players of mitoribosomal biogenesis revealed in trypanosomatids. Trends Parasitol 2022; 38:1053-1067. [PMID: 36075844 DOI: 10.1016/j.pt.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Translation in mitochondria is mediated by mitochondrial ribosomes, or mitoribosomes, complex ribonucleoprotein machines with dual genetic origin. Mitoribosomes in trypanosomatid parasites diverged markedly from their bacterial ancestors and other eukaryotic lineages in terms of protein composition, rRNA content, and overall architecture, yet their core functional elements remained conserved. Recent cryo-electron microscopy studies provided atomic models of trypanosomatid large and small mitoribosomal subunits and their precursors, making these parasites the organisms with the best-understood biogenesis of mitoribosomes. The structures revealed molecular mechanisms and players involved in the assembly of mitoribosomes not only in the parasites, but also in eukaryotes in general.
Collapse
|
8
|
Del Giudice L, Alifano P, Calcagnile M, Di Schiavi E, Bertapelle C, Aletta M, Pontieri P. Mitochondrial ribosomal protein genes connected with Alzheimer's and tellurite toxicity. Mitochondrion 2022; 64:45-58. [PMID: 35218961 DOI: 10.1016/j.mito.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial diseases are a group of genetic disorders characterized by dysfunctional mitochondria. Within eukaryotic cells, mitochondria contain their own ribosomes, which synthesize small amounts of proteins, all of which are essential for the biogenesis of the oxidative phosphorylation system. The ribosome is an evolutionarily conserved macromolecular machine in nature both from a structural and functional point of view, universally responsible for the synthesis of proteins. Among the diseases afflicting humans, those of ribosomal origin - either cytoplasmic ribosomes (80S) or mitochondrial ribosomes (70S) - are relevant. These are inherited or acquired diseases most commonly caused by either ribosomal protein haploinsufficiency or defects in ribosome biogenesis. Here we review the scientific literature about the recent advances on changes in mitochondrial ribosomal structural and assembly proteins that are implicated in primary mitochondrial diseases and neurodegenerative disorders, and their possible connection with metalloid pollution and toxicity, with a focus on MRPL44, NAM9 (MNA6) and GEP3 (MTG3), whose lack or defect was associated with resistance to tellurite. Finally, we illustrate the suitability of yeast Saccharomyces cerevisiae (S.cerevisiae) and the nematode Caenorhabditis elegans (C.elegans) as model organisms for studying mitochondrial ribosome dysfunctions including those involved in human diseases.
Collapse
Affiliation(s)
- Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy.
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | | | | | | | - Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| |
Collapse
|
9
|
Chandrasekaran V, Desai N, Burton NO, Yang H, Price J, Miska EA, Ramakrishnan V. Visualizing formation of the active site in the mitochondrial ribosome. eLife 2021; 10:e68806. [PMID: 34609277 PMCID: PMC8492066 DOI: 10.7554/elife.68806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome assembly is an essential and conserved process that is regulated at each step by specific factors. Using cryo-electron microscopy (cryo-EM), we visualize the formation of the conserved peptidyl transferase center (PTC) of the human mitochondrial ribosome. The conserved GTPase GTPBP7 regulates the correct folding of 16S ribosomal RNA (rRNA) helices and ensures 2'-O-methylation of the PTC base U3039. GTPBP7 binds the RNA methyltransferase NSUN4 and MTERF4, which sequester H68-71 of the 16S rRNA and allow biogenesis factors to access the maturing PTC. Mutations that disrupt binding of their Caenorhabditis elegans orthologs to the large subunit potently activate mitochondrial stress and cause viability, development, and sterility defects. Next-generation RNA sequencing reveals widespread gene expression changes in these mutant animals that are indicative of mitochondrial stress response activation. We also answer the long-standing question of why NSUN4, but not its enzymatic activity, is indispensable for mitochondrial protein synthesis.
Collapse
Affiliation(s)
| | - Nirupa Desai
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Hanting Yang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Jon Price
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Eric A Miska
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - V Ramakrishnan
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
10
|
Hilander T, Jackson CB, Robciuc M, Bashir T, Zhao H. The roles of assembly factors in mammalian mitoribosome biogenesis. Mitochondrion 2021; 60:70-84. [PMID: 34339868 DOI: 10.1016/j.mito.2021.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
As ancient bacterial endosymbionts of eukaryotic cells, mitochondria have retained their own circular DNA as well as protein translation system including mitochondrial ribosomes (mitoribosomes). In recent years, methodological advancements in cryoelectron microscopy and mass spectrometry have revealed the extent of the evolutionary divergence of mitoribosomes from their bacterial ancestors and their adaptation to the synthesis of 13 mitochondrial DNA encoded oxidative phosphorylation complex subunits. In addition to the structural data, the first assembly pathway maps of mitoribosomes have started to emerge and concomitantly also the assembly factors involved in this process to achieve fully translational competent particles. These transiently associated factors assist in the intricate assembly process of mitoribosomes by enhancing protein incorporation, ribosomal RNA folding and modification, and by blocking premature or non-native protein binding, for example. This review focuses on summarizing the current understanding of the known mammalian mitoribosome assembly factors and discussing their possible roles in the assembly of small or large mitoribosomal subunits.
Collapse
Affiliation(s)
- Taru Hilander
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland.
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Finland.
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Tanzeela Bashir
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Key Laboratory of Stem Cell and Biopharmaceutical Technology, School of Life Sciences, Guangxi Normal University, Guangxi, China.
| |
Collapse
|
11
|
Cheng J, Berninghausen O, Beckmann R. A distinct assembly pathway of the human 39S late pre-mitoribosome. Nat Commun 2021; 12:4544. [PMID: 34315873 PMCID: PMC8316566 DOI: 10.1038/s41467-021-24818-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023] Open
Abstract
Assembly of the mitoribosome is largely enigmatic and involves numerous assembly factors. Little is known about their function and the architectural transitions of the pre-ribosomal intermediates. Here, we solve cryo-EM structures of the human 39S large subunit pre-ribosomes, representing five distinct late states. Besides the MALSU1 complex used as bait for affinity purification, we identify several assembly factors, including the DDX28 helicase, MRM3, GTPBP10 and the NSUN4-mTERF4 complex, all of which keep the 16S rRNA in immature conformations. The late transitions mainly involve rRNA domains IV and V, which form the central protuberance, the intersubunit side and the peptidyltransferase center of the 39S subunit. Unexpectedly, we find deacylated tRNA in the ribosomal E-site, suggesting a role in 39S assembly. Taken together, our study provides an architectural inventory of the distinct late assembly phase of the human 39S mitoribosome.
Collapse
Affiliation(s)
- Jingdong Cheng
- Gene Center and Department for Biochemistry, LMU Munich, München, Germany.
| | - Otto Berninghausen
- Gene Center and Department for Biochemistry, LMU Munich, München, Germany
| | - Roland Beckmann
- Gene Center and Department for Biochemistry, LMU Munich, München, Germany.
| |
Collapse
|
12
|
Dumont AA, Dumont L, Zhou D, Giguère H, Pileggi C, Harper ME, Blondin DP, Scott MS, Auger-Messier M. Cardiomyocyte-specific Srsf3 deletion reveals a mitochondrial regulatory role. FASEB J 2021; 35:e21544. [PMID: 33819356 DOI: 10.1096/fj.202002293rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/11/2022]
Abstract
Serine-rich splicing factor 3 (SRSF3) was recently reported as being necessary to preserve RNA stability via an mTOR mechanism in a cardiac mouse model in adulthood. Here, we demonstrate the link between Srsf3 and mitochondrial integrity in an embryonic cardiomyocyte-specific Srsf3 conditional knockout (cKO) mouse model. Fifteen-day-old Srsf3 cKO mice showed dramatically reduced (below 50%) survival and reduced the left ventricular systolic performance, and histological analysis of these hearts revealed a significant increase in cardiomyocyte size, confirming the severe remodeling induced by Srsf3 deletion. RNA-seq analysis of the hearts of 5-day-old Srsf3 cKO mice revealed early changes in expression levels and alternative splicing of several transcripts related to mitochondrial integrity and oxidative phosphorylation. Likewise, the levels of several protein complexes of the electron transport chain decreased, and mitochondrial complex I-driven respiration of permeabilized cardiac muscle fibers from the left ventricle was impaired. Furthermore, transmission electron microscopy analysis showed disordered mitochondrial length and cristae structure. Together with its indispensable role in the physiological maintenance of mouse hearts, these results highlight the previously unrecognized function of Srsf3 in regulating the mitochondrial integrity.
Collapse
Affiliation(s)
- Audrey-Ann Dumont
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Delong Zhou
- Département de microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Denis P Blondin
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
D’Souza AR, Van Haute L, Powell CA, Mutti CD, Páleníková P, Rebelo-Guiomar P, Rorbach J, Minczuk M. YbeY is required for ribosome small subunit assembly and tRNA processing in human mitochondria. Nucleic Acids Res 2021; 49:5798-5812. [PMID: 34037799 PMCID: PMC8191802 DOI: 10.1093/nar/gkab404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.
Collapse
Affiliation(s)
- Aaron R D’Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christian D Mutti
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Petra Páleníková
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Joanna Rorbach
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Michal Minczuk
- To whom correspondence should be addressed. Tel: +44 122 325 2750;
| |
Collapse
|
14
|
Lenarčič T, Jaskolowski M, Leibundgut M, Scaiola A, Schönhut T, Saurer M, Lee RG, Rackham O, Filipovska A, Ban N. Stepwise maturation of the peptidyl transferase region of human mitoribosomes. Nat Commun 2021; 12:3671. [PMID: 34135320 PMCID: PMC8208988 DOI: 10.1038/s41467-021-23811-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial ribosomes are specialized for the synthesis of membrane proteins responsible for oxidative phosphorylation. Mammalian mitoribosomes have diverged considerably from the ancestral bacterial ribosomes and feature dramatically reduced ribosomal RNAs. The structural basis of the mammalian mitochondrial ribosome assembly is currently not well understood. Here we present eight distinct assembly intermediates of the human large mitoribosomal subunit involving seven assembly factors. We discover that the NSUN4-MTERF4 dimer plays a critical role in the process by stabilizing the 16S rRNA in a conformation that exposes the functionally important regions of rRNA for modification by the MRM2 methyltransferase and quality control interactions with the conserved mitochondrial GTPase MTG2 that contacts the sarcin-ricin loop and the immature active site. The successive action of these factors leads to the formation of the peptidyl transferase active site of the mitoribosome and the folding of the surrounding rRNA regions responsible for interactions with tRNAs and the small ribosomal subunit.
Collapse
Affiliation(s)
- Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Richard G Lee
- Harry Perkins Institute of Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Bentley, WA, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Human Mitoribosome Biogenesis and Its Emerging Links to Disease. Int J Mol Sci 2021; 22:ijms22083827. [PMID: 33917098 PMCID: PMC8067846 DOI: 10.3390/ijms22083827] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize a small subset of proteins, which are essential components of the oxidative phosphorylation machinery. Therefore, their function is of fundamental importance to cellular metabolism. The assembly of mitoribosomes is a complex process that progresses through numerous maturation and protein-binding events coordinated by the actions of several assembly factors. Dysregulation of mitoribosome production is increasingly recognized as a contributor to metabolic and neurodegenerative diseases. In recent years, mutations in multiple components of the mitoribosome assembly machinery have been associated with a range of human pathologies, highlighting their importance to cell function and health. Here, we provide a review of our current understanding of mitoribosome biogenesis, highlighting the key factors involved in this process and the growing number of mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors that lead to human disease.
Collapse
|
16
|
Cipullo M, Pearce SF, Lopez Sanchez IG, Gopalakrishna S, Krüger A, Schober F, Busch JD, Li X, Wredenberg A, Atanassov I, Rorbach J. Human GTPBP5 is involved in the late stage of mitoribosome large subunit assembly. Nucleic Acids Res 2021; 49:354-370. [PMID: 33283228 PMCID: PMC7797037 DOI: 10.1093/nar/gkaa1131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human mitoribosomes are macromolecular complexes essential for translation of 11 mitochondrial mRNAs. The large and the small mitoribosomal subunits undergo a multistep maturation process that requires the involvement of several factors. Among these factors, GTP-binding proteins (GTPBPs) play an important role as GTP hydrolysis can provide energy throughout the assembly stages. In bacteria, many GTPBPs are needed for the maturation of ribosome subunits and, of particular interest for this study, ObgE has been shown to assist in the 50S subunit assembly. Here, we characterize the role of a related human Obg-family member, GTPBP5. We show that GTPBP5 interacts specifically with the large mitoribosomal subunit (mt-LSU) proteins and several late-stage mitoribosome assembly factors, including MTERF4:NSUN4 complex, MRM2 methyltransferase, MALSU1 and MTG1. Interestingly, we find that interaction of GTPBP5 with the mt-LSU is compromised in the presence of a non-hydrolysable analogue of GTP, implying a different mechanism of action of this protein in contrast to that of other Obg-family GTPBPs. GTPBP5 ablation leads to severe impairment in the oxidative phosphorylation system, concurrent with a decrease in mitochondrial translation and reduced monosome formation. Overall, our data indicate an important role of GTPBP5 in mitochondrial function and suggest its involvement in the late-stage of mt-LSU maturation.
Collapse
Affiliation(s)
- Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sarah F Pearce
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Isabel G Lopez Sanchez
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, 3002 Victoria, Australia
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Florian Schober
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna (L1:00), 171 76 Stockholm, Sweden
| | - Jakob D Busch
- Department of Mitochondrial Biology, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Xinping Li
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Lavdovskaia E, Denks K, Nadler F, Steube E, Linden A, Urlaub H, Rodnina MV, Richter-Dennerlein R. Dual function of GTPBP6 in biogenesis and recycling of human mitochondrial ribosomes. Nucleic Acids Res 2021; 48:12929-12942. [PMID: 33264405 PMCID: PMC7736812 DOI: 10.1093/nar/gkaa1132] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria.
Collapse
Affiliation(s)
- Elena Lavdovskaia
- Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany
| | - Kärt Denks
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany.,Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Emely Steube
- Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Marina V Rodnina
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany.,Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany
| |
Collapse
|
18
|
Role of GTPases in Driving Mitoribosome Assembly. Trends Cell Biol 2021; 31:284-297. [PMID: 33419649 DOI: 10.1016/j.tcb.2020.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023]
Abstract
Mitoribosomes catalyze essential protein synthesis within mitochondria. Mitoribosome biogenesis is assisted by an increasing number of assembly factors, among which guanosine triphosphate hydrolases (GTPases) are the most abundant class. Here, we review recent progress in our understanding of mitoribosome assembly GTPases. We describe their shared and specific features and mechanisms of action, compare them with their bacterial counterparts, and discuss their possible roles in the assembly of small or large mitoribosomal subunits and the formation of the monosome by establishing quality-control checkpoints during these processes. Furthermore, following the recent unification of the nomenclature for the mitoribosomal proteins, we also propose a unified nomenclature for mitoribosome assembly GTPases.
Collapse
|
19
|
Maiti P, Antonicka H, Gingras AC, Shoubridge EA, Barrientos A. Human GTPBP5 (MTG2) fuels mitoribosome large subunit maturation by facilitating 16S rRNA methylation. Nucleic Acids Res 2020; 48:7924-7943. [PMID: 32652011 PMCID: PMC7430652 DOI: 10.1093/nar/gkaa592] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/30/2022] Open
Abstract
Biogenesis of mammalian mitochondrial ribosomes (mitoribosomes) involves several conserved small GTPases. Here, we report that the Obg family protein GTPBP5 or MTG2 is a mitochondrial protein whose absence in a TALEN-induced HEK293T knockout (KO) cell line leads to severely decreased levels of the 55S monosome and attenuated mitochondrial protein synthesis. We show that a fraction of GTPBP5 co-sediments with the large mitoribosome subunit (mtLSU), and crosslinks specifically with the 16S rRNA, and several mtLSU proteins and assembly factors. Notably, the latter group includes MTERF4, involved in monosome assembly, and MRM2, the methyltransferase that catalyzes the modification of the 16S mt-rRNA A-loop U1369 residue. The GTPBP5 interaction with MRM2 was also detected using the proximity-dependent biotinylation (BioID) assay. In GTPBP5-KO mitochondria, the mtLSU lacks bL36m, accumulates an excess of the assembly factors MTG1, GTPBP10, MALSU1 and MTERF4, and contains hypomethylated 16S rRNA. We propose that GTPBP5 primarily fuels proper mtLSU maturation by securing efficient methylation of two 16S rRNA residues, and ultimately serves to coordinate subunit joining through the release of late-stage mtLSU assembly factors. In this way, GTPBP5 provides an ultimate quality control checkpoint function during mtLSU assembly that minimizes premature subunit joining to ensure the assembly of the mature 55S monosome.
Collapse
MESH Headings
- Cell Line
- GTP Phosphohydrolases/metabolism
- HEK293 Cells
- Humans
- Methylation
- Methyltransferases/metabolism
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/physiology
- Mitochondrial Ribosomes/enzymology
- Mitochondrial Ribosomes/metabolism
- Monomeric GTP-Binding Proteins/metabolism
- Monomeric GTP-Binding Proteins/physiology
- Oxidative Phosphorylation
- Protein Biosynthesis
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/enzymology
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Priyanka Maiti
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hana Antonicka
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric A Shoubridge
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
20
|
Jaskolowski M, Ramrath DJF, Bieri P, Niemann M, Mattei S, Calderaro S, Leibundgut M, Horn EK, Boehringer D, Schneider A, Ban N. Structural Insights into the Mechanism of Mitoribosomal Large Subunit Biogenesis. Mol Cell 2020; 79:629-644.e4. [PMID: 32679035 DOI: 10.1016/j.molcel.2020.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
In contrast to the bacterial translation machinery, mitoribosomes and mitochondrial translation factors are highly divergent in terms of composition and architecture. There is increasing evidence that the biogenesis of mitoribosomes is an intricate pathway, involving many assembly factors. To better understand this process, we investigated native assembly intermediates of the mitoribosomal large subunit from the human parasite Trypanosoma brucei using cryo-electron microscopy. We identify 28 assembly factors, 6 of which are homologous to bacterial and eukaryotic ribosome assembly factors. They interact with the partially folded rRNA by specifically recognizing functionally important regions such as the peptidyltransferase center. The architectural and compositional comparison of the assembly intermediates indicates a stepwise modular assembly process, during which the rRNA folds toward its mature state. During the process, several conserved GTPases and a helicase form highly intertwined interaction networks that stabilize distinct assembly intermediates. The presented structures provide general insights into mitoribosomal maturation.
Collapse
Affiliation(s)
| | | | - Philipp Bieri
- Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland
| | - Simone Mattei
- Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Salvatore Calderaro
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland
| | | | - Elke K Horn
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland
| | | | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland.
| | - Nenad Ban
- Department of Biology, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
21
|
Reyes A, Favia P, Vidoni S, Petruzzella V, Zeviani M. RCC1L (WBSCR16) isoforms coordinate mitochondrial ribosome assembly through their interaction with GTPases. PLoS Genet 2020; 16:e1008923. [PMID: 32735630 PMCID: PMC7423155 DOI: 10.1371/journal.pgen.1008923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/12/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial translation defects can be due to mutations affecting mitochondrial- or nuclear-encoded components. The number of known nuclear genes involved in mitochondrial translation has significantly increased in the past years. RCC1L (WBSCR16), a putative GDP/GTP exchange factor, has recently been described to interact with the mitochondrial large ribosomal subunit. In humans, three different RCC1L isoforms have been identified that originate from alternative splicing but share the same N-terminus, RCC1LV1, RCC1LV2 and RCC1LV3. All three isoforms were exclusively localized to mitochondria, interacted with its inner membrane and could associate with homopolymeric oligos to different extent. Mitochondrial immunoprecipitation experiments showed that RCC1LV1 and RCC1LV3 associated with the mitochondrial large and small ribosomal subunit, respectively, while no significant association was observed for RCC1LV2. Overexpression and silencing of RCC1LV1 or RCC1LV3 led to mitoribosome biogenesis defects that resulted in decreased translation. Indeed, significant changes in steady-state levels and distribution on isokinetic sucrose gradients were detected not only for mitoribosome proteins but also for GTPases, (GTPBP10, ERAL1 and C4orf14), and pseudouridylation proteins, (TRUB2, RPUSD3 and RPUSD4). All in all, our data suggest that RCC1L is essential for mitochondrial function and that the coordination of at least two isoforms is essential for proper ribosomal assembly.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Paola Favia
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso - Università degli Studi Aldo Moro, Piazza G. Cesare, Bari, Italy
| | - Sara Vidoni
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Vittoria Petruzzella
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso - Università degli Studi Aldo Moro, Piazza G. Cesare, Bari, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Faraj Shaglouf LH, Ranjpour M, Wajid S, Jain SK. Elevated expression of cellular SYNE1, MMP10, and GTPase1 and their regulatory role in hepatocellular carcinoma progression. PROTOPLASMA 2020; 257:157-167. [PMID: 31428857 DOI: 10.1007/s00709-019-01423-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy resulting in high mortality. HCC progression is associated with abnormal signal transduction that changes cell signaling pathways and ultimately leads to dysregulation of cell functions and uncontrolled cell proliferation. Present study was undertaken with the objective to identify differentially expressed proteins and quantify their transcript expression in the liver of HCC-bearing rats vis-à-vis controls and to decipher the network involving interaction of genes coding for the characterized proteins to an insight into mechanism of HCC tumorigenesis. 2D-Electrophoresis and MALDI-TOF-MS/MS were used to characterize differentially expressed proteins in DEN (diethylnitrosamine)-induced HCC tissue using the protocol reported by us earlier. Real-time PCR was performed to quantify the expression of transcripts for the identified proteins. GENEMANIA, an interacting network of genes coding for selected proteins, was deciphered that provided the functional role of these proteins in HCC progression. Upregulation of proteins SYNE1, MMP10, and MTG1 was observed. The mRNA quantification revealed elevated expression of their transcripts at HCC initiation, progression, and tumor stages. Network analysis showed the involvement of the genes coding for these proteins in dysregulation of signaling pathways during HCC development. The elevated expression of SYNE1, MMP10, and MTG1 suggests the role of these proteins as potential players in HCC progression and tumorigenesis.
Collapse
Affiliation(s)
- Laila H Faraj Shaglouf
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, 110062, India
| | - Maryam Ranjpour
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, 110062, India
| | - Swatantra Kumar Jain
- Department of Biochemistry, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
23
|
Lavdovskaia E, Kolander E, Steube E, Mai MMQ, Urlaub H, Richter-Dennerlein R. The human Obg protein GTPBP10 is involved in mitoribosomal biogenesis. Nucleic Acids Res 2019; 46:8471-8482. [PMID: 30085210 PMCID: PMC6144781 DOI: 10.1093/nar/gky701] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022] Open
Abstract
The human mitochondrial translation apparatus, which synthesizes the core subunits of the oxidative phosphorylation system, is of central interest as mutations in several genes encoding for mitoribosomal proteins or translation factors cause severe human diseases. Little is known, how this complex machinery assembles from nuclear-encoded protein components and mitochondrial-encoded RNAs, and which ancillary factors are required to form a functional mitoribosome. We have characterized the human Obg protein GTPBP10, which associates specifically with the mitoribosomal large subunit at a late maturation state. Defining its interactome, we have shown that GTPBP10 is in a complex with other mtLSU biogenesis factors including mitochondrial RNA granule components, the 16S rRNA module and late mtLSU assembly factors such as MALSU1, SMCR7L, MTERF4 and NSUN4. GTPBP10 deficiency leads to a drastic reduction in 55S monosome formation resulting in defective mtDNA-expression and in a decrease in cell growth. Our results suggest that GTPBP10 is a ribosome biogenesis factor of the mtLSU required for late stages of maturation.
Collapse
Affiliation(s)
- Elena Lavdovskaia
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Elisa Kolander
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Emely Steube
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Mandy Mong-Quyen Mai
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | | |
Collapse
|
24
|
Fleck D, Phu L, Verschueren E, Hinkle T, Reichelt M, Bhangale T, Haley B, Wang Y, Graham R, Kirkpatrick DS, Sheng M, Bingol B. PTCD1 Is Required for Mitochondrial Oxidative-Phosphorylation: Possible Genetic Association with Alzheimer's Disease. J Neurosci 2019; 39:4636-4656. [PMID: 30948477 PMCID: PMC6561697 DOI: 10.1523/jneurosci.0116-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022] Open
Abstract
In addition to amyloid-β plaques and tau tangles, mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD). Neurons heavily rely on mitochondrial function, and deficits in brain energy metabolism are detected early in AD; however, direct human genetic evidence for mitochondrial involvement in AD pathogenesis is limited. We analyzed whole-exome sequencing data of 4549 AD cases and 3332 age-matched controls and discovered that rare protein altering variants in the gene pentatricopeptide repeat-containing protein 1 (PTCD1) show a trend for enrichment in cases compared with controls. We show here that PTCD1 is required for normal mitochondrial rRNA levels, proper assembly of the mitochondrial ribosome and hence for mitochondrial translation and assembly of the electron transport chain. Loss of PTCD1 function impairs oxidative phosphorylation and forces cells to rely on glycolysis for energy production. Cells expressing the AD-linked variant of PTCD1 fail to sustain energy production under increased metabolic stress. In neurons, reduced PTCD1 expression leads to lower ATP levels and impacts spontaneous synaptic activity. Thus, our study uncovers a possible link between a protein required for mitochondrial function and energy metabolism and AD risk.SIGNIFICANCE STATEMENT Mitochondria are the main source of cellular energy and mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD) and other neurodegenerative disorders. Here, we identify a variant in the gene PTCD1 that is enriched in AD patients and demonstrate that PTCD1 is required for ATP generation through oxidative phosphorylation. PTCD1 regulates the level of 16S rRNA, the backbone of the mitoribosome, and is essential for mitochondrial translation and assembly of the electron transport chain. Cells expressing the AD-associated variant fail to maintain adequate ATP production during metabolic stress, and reduced PTCD1 activity disrupts neuronal energy homeostasis and dampens spontaneous transmission. Our work provides a mechanistic link between a protein required for mitochondrial function and genetic AD risk.
Collapse
Affiliation(s)
| | - Lilian Phu
- Microchemistry, Proteomics, and Lipidomics
| | | | | | | | | | - Benjamin Haley
- Molecular Biology, Genentech Inc., South San Francisco, California 94080
| | | | | | | | | | | |
Collapse
|
25
|
Xu D, Zhao Y, Weng X, Lu Y, Li W, Tang K, Chen W, Liu Z, Qi X, Zheng J, Fassett J, Zhang Y, Xu Y. Novel role of mitochondrial GTPases 1 in pathological cardiac hypertrophy. J Mol Cell Cardiol 2019; 128:105-116. [PMID: 30707992 DOI: 10.1016/j.yjmcc.2019.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
While most mitochondrial proteins are encoded in the nucleus and translated on cytosolic/endoplasmic reticulum ribosomes, proteins encoded by mitochondrial DNA are translated on mitochondrial ribosomes. Mitochondrial GTPases 1 (MTG1) regulates mitochondrial ribosome assembly and translation, but its impact on cardiac adaptation to stress is unknown. Here, we found that MTG1 is dramatically elevated in hearts of dilated cardiomyopathy patients and in mice exposed to left ventricular pressure overload (AB). To examine the role of MTG1 in cardiac hypertrophy and heart failure, MTG1 loss/gain of function studies were performed in cultured cardiomyocytes and mice exposed to hypertrophic stress. MTG1 shRNA and adenoviral overexpression studies indicated that MTG1 expression attenuates angiotensin II-induced hypertrophy in cultured cardiomyocytes, while MTG1 KO mice exhibited no observable cardiac phenotype under basal conditions. MTG1 deficiency significantly exacerbated AB-induced cardiac hypertrophy, expression of hypertrophic stress markers, fibrosis, and LV dysfunction in comparison to WT mice. Conversely, transgenic cardiac MTG1 expression attenuated AB-induced hypertrophy and LV dysfunction. Mechanistically, MTG1 preserved mitochondrial respiratory chain complex activity during pressure overload, which further attenuated ROS generation. Moreover, we demonstrated that TAK1, P38 and JNK1/2 activity is downregulated in the MTG1 overexpression group. Importantly, dampening oxidative stress with N-acetylcysteine (NAC) lowered hypertrophy in MTG1 KO to WT levels. Collectively, our data indicate that MTG1 protects against pressure overload-induced cardiac hypertrophy and dysfunction by preserving mitochondrial function and reducing oxidative stress and downstream TAK1 stress signaling.
Collapse
Affiliation(s)
- Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiming Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, USA
| | - Xinrui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated with Tongji University School of Medicine, China
| | - Jialing Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated with Tongji University School of Medicine, China
| | - John Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8020, Austria
| | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Maiti P, Kim HJ, Tu YT, Barrientos A. Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res 2018; 46:11423-11437. [PMID: 30321378 PMCID: PMC6265488 DOI: 10.1093/nar/gky938] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/18/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
Most steps on the biogenesis of the mitochondrial ribosome (mitoribosome) occur near the mitochondrial DNA nucleoid, in RNA granules, which contain dedicated RNA metabolism and mitoribosome assembly factors. Here, analysis of the RNA granule proteome identified the presence of a set of small GTPases that belong to conserved families of ribosome assembly factors. We show that GTPBP10, a member of the conserved Obg family of P-loop small G proteins, is a mitochondrial protein and have used gene-editing technologies to create a HEK293T cell line KO for GTPBP10. The absence of GTPBP10 leads to attenuated mtLSU and mtSSU levels and the virtual absence of the 55S monosome, which entirely prevents mitochondrial protein synthesis. We show that a fraction of GTPBP10 cosediments with the large mitoribosome subunit and the monosome. GTPBP10 physically interacts with the 16S rRNA, but not with the 12S rRNA, and crosslinks with several mtLSU proteins. Additionally, GTPBP10 is indirectly required for efficient processing of the 12S-16S rRNA precursor transcript, which could explain the mtSSU accumulation defect. We propose that GTPBP10 primarily ensures proper mtLSU maturation and ultimately serves to coordinate mtSSU and mtLSU accumulation then providing a quality control check-point function during mtLSU assembly that minimizes premature subunit joining.
Collapse
Affiliation(s)
- Priyanka Maiti
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hyun-Jung Kim
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ya-Ting Tu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
27
|
Kim HJ, Barrientos A. MTG1 couples mitoribosome large subunit assembly with intersubunit bridge formation. Nucleic Acids Res 2018; 46:8435-8453. [PMID: 30085276 PMCID: PMC6144824 DOI: 10.1093/nar/gky672] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize 13 proteins, essential components of the oxidative phosphorylation system. They are linked to mitochondrial disorders, often involving cardiomyopathy. Mitoribosome biogenesis is assisted by multiple cofactors whose specific functions remain largely uncharacterized. Here, we examined the role of human MTG1, a conserved ribosome assembly guanosine triphosphatase. MTG1-silencing in human cardiomyocytes and developing zebrafish revealed early cardiovascular lesions. A combination of gene-editing and biochemical approaches using HEK293T cells demonstrated that MTG1 binds to the large subunit (mtLSU) 16S ribosomal RNA to facilitate incorporation of late-assembly proteins. Furthermore, MTG1 interacts with mtLSU uL19 protein and mtSSU mS27, a putative guanosine triphosphate-exchange factor (GEF), to enable MTG1 release and the formation of the mB6 intersubunit bridge. In this way, MTG1 establishes a quality control checkpoint in mitoribosome assembly. In conclusion, MTG1 controls mitochondrial translation by coupling mtLSU assembly with intersubunit bridge formation using the intrinsic GEF activity acquired by the mtSSU through mS27, a unique occurrence in translational systems.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
28
|
Kühl I, Miranda M, Atanassov I, Kuznetsova I, Hinze Y, Mourier A, Filipovska A, Larsson NG. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 2017; 6:30952. [PMID: 29132502 PMCID: PMC5703644 DOI: 10.7554/elife.30952] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five knockout mouse strains deficient in essential factors required for mitochondrial DNA gene expression, leading to OXPHOS dysfunction. Moreover, we describe sequential protein changes during post-natal development and progressive OXPHOS dysfunction in time course analyses in control mice and a middle lifespan knockout, respectively. Very unexpectedly, we identify a new response pathway to OXPHOS dysfunction in which the intra-mitochondrial synthesis of coenzyme Q (ubiquinone, Q) and Q levels are profoundly decreased, pointing towards novel possibilities for therapy. Our extensive omics analyses provide a high-quality resource of altered gene expression patterns under severe OXPHOS deficiency comparing several mouse models, that will deepen our understanding, open avenues for research and provide an important reference for diagnosis and treatment.
Collapse
Affiliation(s)
- Inge Kühl
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC) UMR9198, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Yvonne Hinze
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Arnaud Mourier
- The Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, Bordeaux, France
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Abstract
Mitochondria play fundamental roles in the regulation of life and death of eukaryotic cells. They mediate aerobic energy conversion through the oxidative phosphorylation (OXPHOS) system, and harbor and control the intrinsic pathway of apoptosis. As a descendant of a bacterial endosymbiont, mitochondria retain a vestige of their original genome (mtDNA), and its corresponding full gene expression machinery. Proteins encoded in the mtDNA, all components of the multimeric OXPHOS enzymes, are synthesized in specialized mitochondrial ribosomes (mitoribosomes). Mitoribosomes are therefore essential in the regulation of cellular respiration. Additionally, an increasing body of literature has been reporting an alternative role for several mitochondrial ribosomal proteins as apoptosis-inducing factors. No surprisingly, the expression of genes encoding for mitoribosomal proteins, mitoribosome assembly factors and mitochondrial translation factors is modified in numerous cancers, a trait that has been linked to tumorigenesis and metastasis. In this article, we will review the current knowledge regarding the dual function of mitoribosome components in protein synthesis and apoptosis and their association with cancer susceptibility and development. We will also highlight recent developments in targeting mitochondrial ribosomes for the treatment of cancer.
Collapse
|
30
|
Gkekas S, Singh RK, Shkumatov AV, Messens J, Fauvart M, Verstraeten N, Michiels J, Versées W. Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. J Biol Chem 2017; 292:5871-5883. [PMID: 28223358 DOI: 10.1074/jbc.m116.761809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The Obg protein family belongs to the TRAFAC (translation factor) class of P-loop GTPases and is conserved from bacteria to eukaryotes. Essential roles in many different cellular processes have been suggested for the Obg protein from Escherichia coli (ObgE), and we recently showed that it is a central regulator of bacterial persistence. Here, we report the first crystal structure of ObgE at 1.85-Å resolution in the GDP-bound state, showing the characteristic N-terminal domain and a central G domain that are common to all Obg proteins. ObgE also contains an intrinsically disordered C-terminal domain, and we show here that this domain specifically contributed to GTP binding, whereas it did not influence GDP binding or GTP hydrolysis. Biophysical analysis, using small angle X-ray scattering and multi-angle light scattering experiments, revealed that ObgE is a monomer in solution, regardless of the bound nucleotide. In contrast to recent suggestions, our biochemical analyses further indicate that ObgE is neither activated by K+ ions nor by homodimerization. However, the ObgE GTPase activity was stimulated upon binding to the ribosome, confirming the ribosome-dependent GTPase activity of the Obg family. Combined, our data represent an important step toward further unraveling the detailed molecular mechanism of ObgE, which might pave the way to further studies into how this GTPase regulates bacterial physiology, including persistence.
Collapse
Affiliation(s)
- Sotirios Gkekas
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Ranjan Kumar Singh
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Alexander V Shkumatov
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Joris Messens
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Maarten Fauvart
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and.,the Department of Life Science Technologies, Smart Systems and Emerging Technologies Unit, IMEC, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Jan Michiels
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Wim Versées
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, .,the VIB-VUB Center for Structural Biology, 1050 Brussels
| |
Collapse
|
31
|
Mier P, Pérez-Pulido AJ, Reynaud EG, Andrade-Navarro MA. Reading the Evolution of Compartmentalization in the Ribosome Assembly Toolbox: The YRG Protein Family. PLoS One 2017; 12:e0169750. [PMID: 28072865 PMCID: PMC5224878 DOI: 10.1371/journal.pone.0169750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023] Open
Abstract
Reconstructing the transition from a single compartment bacterium to a highly compartmentalized eukaryotic cell is one of the most studied problems of evolutionary cell biology. However, timing and details of the establishment of compartmentalization are unclear and difficult to assess. Here, we propose the use of molecular markers specific to cellular compartments to set up a framework to advance the understanding of this complex intracellular process. Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related GTPases), whose evolution is linked to the establishment of cellular compartments, leveraging the current genomic data. We analyzed orthologous proteins of the YRG family in a set of 171 proteomes for a total of 370 proteins. We identified ten YRG protein subfamilies that can be associated to six subcellular compartments (nuclear bodies, nucleolus, nucleus, cytosol, mitochondria, and chloroplast), and which were found in archaeal, bacterial and eukaryotic proteomes. Our analysis reveals organism streamlining related events in specific taxonomic groups such as Fungi. We conclude that the YRG family could be used as a compartmentalization marker, which could help to trace the evolutionary path relating cellular compartments with ribosome biogenesis.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Molecular Biology (IMB), Faculty of Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
- * E-mail:
| | - Antonio J. Pérez-Pulido
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA). Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, Sevilla, Spain
| | - Emmanuel G. Reynaud
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Miguel A. Andrade-Navarro
- Institute of Molecular Biology (IMB), Faculty of Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
32
|
Abstract
Oxidative phosphorylation (OXPHOS) is the mechanism whereby ATP, the major energy source for the cell, is produced by harnessing cellular respiration in the mitochondrion. This is facilitated by five multi-subunit complexes housed within the inner mitochondrial membrane. These complexes, with the exception of complex II, are of a dual genetic origin, requiring expression from nuclear and mitochondrial genes. Mitochondrially encoded mRNA is translated on the mitochondrial ribosome (mitoribosome) and the recent release of the near atomic resolution structure of the mammalian mitoribosome has highlighted its peculiar features. However, whereas some aspects of mitochondrial translation are understood, much is to be learnt about the presentation of mitochondrial mRNA to the mitoribosome, the biogenesis of the machinery, the exact role of the membrane, the constitution of the translocon/insertion machinery and the regulation of translation in the mitochondrion. This review addresses our current knowledge of mammalian mitochondrial gene expression, highlights key questions and indicates how defects in this process can result in profound mitochondrial disease.
Collapse
|
33
|
Karniely S, Weekes MP, Antrobus R, Rorbach J, van Haute L, Umrania Y, Smith DL, Stanton RJ, Minczuk M, Lehner PJ, Sinclair JH. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. mBio 2016; 7:e00029. [PMID: 27025248 PMCID: PMC4807356 DOI: 10.1128/mbio.00029-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Collapse
Affiliation(s)
- S Karniely
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J Rorbach
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - L van Haute
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Y Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - D L Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - R J Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M Minczuk
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - P J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J H Sinclair
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
34
|
Yeo JHC, Skinner JPJ, Bird MJ, Formosa LE, Zhang JG, Kluck RM, Belz GT, Chong MMW. A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity. PLoS One 2015. [PMID: 26221731 PMCID: PMC4519308 DOI: 10.1371/journal.pone.0134326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified Mrpl44 in a search for mammalian proteins that contain RNase III domains. This protein was previously found in association with the mitochondrial ribosome of bovine liver extracts. However, the precise Mrpl44 localization had been unclear. Here, we show by immunofluorescence microscopy and subcellular fractionation that Mrpl44 is localized to the matrix of the mitochondria. We found that it can form multimers, and confirm that it is part of the large subunit of the mitochondrial ribosome. By manipulating its expression, we show that Mrpl44 may be important for regulating the expression of mtDNA-encoded genes. This was at the level of RNA expression and protein translation. This ultimately impacted ATP synthesis capability and respiratory capacity of cells. These findings indicate that Mrpl44 plays an important role in the regulation of the mitochondrial OXPHOS capacity.
Collapse
Affiliation(s)
- Janet H C Yeo
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Matthew J Bird
- Murdoch Childrens Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville VIC, Australia
| | - Luke E Formosa
- Department of Biochemistry, La Trobe University, Bundoora, VIC, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ruth M Kluck
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mark M W Chong
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Parkville VIC, Australia
| |
Collapse
|
35
|
De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 2015; 14:2226-50. [PMID: 26030272 DOI: 10.1080/15384101.2015.1053672] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- a Department of Biochemistry and Molecular Biology ; University of Miami Miller School of Medicine ; Miami , FL USA
| | | | | | | | | |
Collapse
|
36
|
Tu YT, Barrientos A. The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly. Cell Rep 2015; 10:854-864. [PMID: 25683708 DOI: 10.1016/j.celrep.2015.01.033] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/10/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022] Open
Abstract
Human mitochondrial ribosomes are specialized in the synthesis of 13 proteins, which are fundamental components of the oxidative phosphorylation system. The pathway of mitoribosome biogenesis, the compartmentalization of the process, and factors involved remain largely unknown. Here, we have identified the DEAD-box protein DDX28 as an RNA granule component essential for the biogenesis of the mitoribosome large subunit (mt-LSU). DDX28 interacts with the 16S rRNA and the mt-LSU. RNAi-mediated DDX28 silencing in HEK293T cells does not affect mitochondrial mRNA stability or 16S rRNA processing or modification. However, it leads to reduced levels of 16S rRNA and mt-LSU proteins, impaired mt-LSU assembly, deeply attenuated mitochondrial protein synthesis, and consequent failure to assemble oxidative phosphorylation complexes. Our findings identify DDX28 as essential during the early stages of mitoribosome mt-LSU biogenesis, a process that takes place mainly near the mitochondrial nucleoids, in the compartment defined by the RNA granules.
Collapse
Affiliation(s)
- Ya-Ting Tu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
37
|
Gulati M, Jain N, Davis JH, Williamson JR, Britton RA. Functional interaction between ribosomal protein L6 and RbgA during ribosome assembly. PLoS Genet 2014; 10:e1004694. [PMID: 25330043 PMCID: PMC4199504 DOI: 10.1371/journal.pgen.1004694] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/21/2014] [Indexed: 01/06/2023] Open
Abstract
RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (RbgA-F6A) that caused a severe growth defect. Analysis of these suppressors identified mutations in rplF, encoding ribosomal protein L6. The suppressor strains all accumulated a novel ribosome intermediate that migrates at 44S in sucrose gradients. All of the mutations cluster in a region of L6 that is in close contact with helix 97 of the 23S rRNA. In vitro maturation assays indicate that the L6 substitutions allow the defective RbgA-F6A protein to function more effectively in ribosome maturation. Our results suggest that RbgA functions to properly position L6 on the ribosome, prior to the incorporation of L16 and other late assembly proteins. Ribosomes are complex macromolecular machines that carry out the essential function of protein synthesis in the cell. The assembly of ribosomal subunits is a multistep process that involves the accurate and timely assembly of 3 rRNA molecules and>50 ribosomal-proteins. In recent years many ribosome assembly factors have been identified in bacterial and eukaryotic cells; however, their precise functions in ribosome biogenesis are poorly understood. We have previously shown that the GTPase RbgA, a protein conserved from bacteria to humans, is essential for ribosome assembly in Bacillus subtilis. Here, we show that growth defect caused by a mutation in RbgA is partially suppressed by mutations in ribosomal protein L6. The suppressor strains accumulate novel ribosomal intermediates that appear to suppress the RbgA defect by weakening the interaction of L6 for the ribosome and facilitating RbgA dependent assembly. Our work provides evidence for a functional interaction between ribosome assembly factor RbgA and ribosomal protein L6 during assembly, a function that is likely important for mitochondrial, chloroplast, and eukaryotic ribosome assembly as well.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Nikhil Jain
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Joseph H. Davis
- Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Robert A. Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: .
| |
Collapse
|
38
|
Rorbach J, Boesch P, Gammage PA, Nicholls TJJ, Pearce SF, Patel D, Hauser A, Perocchi F, Minczuk M. MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Mol Biol Cell 2014; 25:2542-55. [PMID: 25009282 PMCID: PMC4148245 DOI: 10.1091/mbc.e14-01-0014] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Defects of the translation apparatus in human mitochondria are known to cause disease, yet details of how protein synthesis is regulated in this organelle remain to be unveiled. Ribosome production in all organisms studied thus far entails a complex, multistep pathway involving a number of auxiliary factors. This includes several RNA processing and modification steps required for correct rRNA maturation. Little is known about the maturation of human mitochondrial 16S rRNA and its role in biogenesis of the mitoribosome. Here we investigate two methyltransferases, MRM2 (also known as RRMJ2, encoded by FTSJ2) and MRM3 (also known as RMTL1, encoded by RNMTL1), that are responsible for modification of nucleotides of the 16S rRNA A-loop, an essential component of the peptidyl transferase center. Our studies show that inactivation of MRM2 or MRM3 in human cells by RNA interference results in respiratory incompetence as a consequence of diminished mitochondrial translation. Ineffective translation in MRM2- and MRM3-depleted cells results from aberrant assembly of the large subunit of the mitochondrial ribosome (mt-LSU). Our findings show that MRM2 and MRM3 are human mitochondrial methyltransferases involved in the modification of 16S rRNA and are important factors for the biogenesis and function of the large subunit of the mitochondrial ribosome.
Collapse
Affiliation(s)
- Joanna Rorbach
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| | - Pierre Boesch
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| | - Payam A Gammage
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| | | | - Sarah F Pearce
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| | - Dipali Patel
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| | - Andreas Hauser
- Gene Center Munich, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Fabiana Perocchi
- Gene Center Munich, Ludwig-Maximilians University, 81377 Munich, Germany Institute of Human Genetics, Helmholtz Zentrum Munich, 85764 Munich, Germany
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
39
|
Dalla Rosa I, Durigon R, Pearce SF, Rorbach J, Hirst EMA, Vidoni S, Reyes A, Brea-Calvo G, Minczuk M, Woellhaf MW, Herrmann JM, Huynen MA, Holt IJ, Spinazzola A. MPV17L2 is required for ribosome assembly in mitochondria. Nucleic Acids Res 2014; 42:8500-15. [PMID: 24948607 PMCID: PMC4117752 DOI: 10.1093/nar/gku513] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MPV17 is a mitochondrial protein of unknown function, and mutations in MPV17 are associated with mitochondrial deoxyribonucleic acid (DNA) maintenance disorders. Here we investigated its most similar relative, MPV17L2, which is also annotated as a mitochondrial protein. Mitochondrial fractionation analyses demonstrate MPV17L2 is an integral inner membrane protein, like MPV17. However, unlike MPV17, MPV17L2 is dependent on mitochondrial DNA, as it is absent from ρ(0) cells, and co-sediments on sucrose gradients with the large subunit of the mitochondrial ribosome and the monosome. Gene silencing of MPV17L2 results in marked decreases in the monosome and both subunits of the mitochondrial ribosome, leading to impaired protein synthesis in the mitochondria. Depletion of MPV17L2 also induces mitochondrial DNA aggregation. The DNA and ribosome phenotypes are linked, as in the absence of MPV17L2 proteins of the small subunit of the mitochondrial ribosome are trapped in the enlarged nucleoids, in contrast to a component of the large subunit. These findings suggest MPV17L2 contributes to the biogenesis of the mitochondrial ribosome, uniting the two subunits to create the translationally competent monosome, and provide evidence that assembly of the small subunit of the mitochondrial ribosome occurs at the nucleoid.
Collapse
Affiliation(s)
- Ilaria Dalla Rosa
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Romina Durigon
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Sarah F Pearce
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Joanna Rorbach
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sara Vidoni
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Gloria Brea-Calvo
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael W Woellhaf
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, Netherlands
| | - Ian J Holt
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
40
|
Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM. Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. FEBS Lett 2014; 588:2496-503. [PMID: 24911204 PMCID: PMC4099522 DOI: 10.1016/j.febslet.2014.05.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022]
Abstract
Mitochondrial protein synthesis is essential for all mammals, being responsible for providing key components of the oxidative phosphorylation complexes. Although only thirteen different polypeptides are made, the molecular details of this deceptively simple process remain incomplete. Central to this process is a non-canonical ribosome, the mitoribosome, which has evolved to address its unique mandate. In this review, we integrate the current understanding of the molecular aspects of mitochondrial translation with recent advances in structural biology. We identify numerous key questions that we will need to answer if we are to increase our knowledge of the molecular mechanisms underlying mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Agata Rozanska
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
41
|
Emery FD, Parvathareddy J, Pandey AK, Cui Y, Williams RW, Miller MA. Genetic control of weight loss during pneumonic Burkholderia pseudomallei infection. Pathog Dis 2014; 71:249-64. [PMID: 24687986 DOI: 10.1111/2049-632x.12172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/18/2022] Open
Abstract
Burkholderia pseudomallei (Bp) is the causal agent of a high-morbidity/mortality disease syndrome known as melioidosis. This syndrome can range from acute fulminate disease to chronic, local, and disseminated infections that are often difficult to treat because Bp exhibits resistance to many antibiotics. Bp is a prime candidate for use in biologic warfare/terrorism and is classified as a Tier-1 select agent by HHS and APHIS. It is known that inbred mouse strains display a range of susceptibility to Bp and that the murine infection model is ideal for studying acute melioidosis. Here, we exploit a powerful mouse genetics resource that consists of a large family of BXD-type recombinant inbred strains, to perform genome-wide linkage analysis of the weight loss phenotype following pneumonic infection with Bp. We infected parental mice and 32 BXD strains with 50-100 CFU of Bp (strain 1026b) and monitored weight retention each day over an eleven-day time course. Using the computational tools in GeneNetwork, we performed genome-wide linkage analysis to identify an interval on chromosome 12 that appears to control the weight retention trait. We then analyzed and ranked positional candidate genes in this interval, several of which have intriguing connections with innate immunity, calcium homeostasis, lipid transport, host cell growth and development, and autophagy.
Collapse
Affiliation(s)
- Felicia D Emery
- Department of Microbiology, Immunology & Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
42
|
Wolf AR, Mootha VK. Functional genomic analysis of human mitochondrial RNA processing. Cell Rep 2014; 7:918-31. [PMID: 24746820 DOI: 10.1016/j.celrep.2014.03.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/14/2014] [Accepted: 03/11/2014] [Indexed: 11/16/2022] Open
Abstract
Both strands of human mtDNA are transcribed in continuous, multigenic units that are cleaved into the mature rRNAs, tRNAs, and mRNAs required for respiratory chain biogenesis. We sought to systematically identify nuclear-encoded proteins that contribute to processing of mtRNAs within the organelle. First, we devised and validated a multiplex MitoString assay that quantitates 27 mature and precursor mtDNA transcripts. Second, we applied MitoString profiling to evaluate the impact of silencing each of 107 mitochondrial-localized, predicted RNA-binding proteins. With the resulting data set, we rediscovered the roles of recently identified RNA-processing enzymes, detected unanticipated roles of known disease genes in RNA processing, and identified new regulatory factors. We demonstrate that one such factor, FASTKD4, modulates the half-lives of a subset of mt-mRNAs and associates with mtRNAs in vivo. MitoString profiling may be useful for diagnosing and deciphering the pathogenesis of mtDNA disorders.
Collapse
Affiliation(s)
- Ashley R Wolf
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02141, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02141, USA.
| |
Collapse
|
43
|
De Silva D, Fontanesi F, Barrientos A. The DEAD box protein Mrh4 functions in the assembly of the mitochondrial large ribosomal subunit. Cell Metab 2013; 18:712-25. [PMID: 24206665 PMCID: PMC3857544 DOI: 10.1016/j.cmet.2013.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/04/2013] [Accepted: 10/08/2013] [Indexed: 12/24/2022]
Abstract
Proteins in a cell are universally synthesized by ribosomes. Mitochondria contain their own ribosomes, which specialize in the synthesis of a handful of proteins required for oxidative phosphorylation. The pathway of mitoribosomal biogenesis and factors involved are poorly characterized. An example is the DEAD box proteins, widely known to participate in the biogenesis of bacterial and cytoplasmic eukaryotic ribosomes as either RNA helicases or RNA chaperones, whose mitochondrial counterparts remain completely unknown. Here, we have identified the Saccharomyces cerevisiae mitochondrial DEAD box protein Mrh4 as essential for large mitoribosome subunit biogenesis. Mrh4 interacts with the 21S rRNA, mitoribosome subassemblies, and fully assembled mitoribosomes. In the absence of Mrh4, the 21S rRNA is matured and forms part of a large on-pathway assembly intermediate missing proteins Mrpl16 and Mrpl39. We conclude that Mrh4 plays an essential role during the late stages of mitoribosome assembly by promoting remodeling of the 21S rRNA-protein interactions.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL-33136 (USA)
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL-33136 (USA)
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL-33136 (USA)
- Department of Neurology University of Miami Miller School of Medicine, Miami, FL-33136 (USA)
| |
Collapse
|