1
|
Hao W, Zhao D, Meng Y, Yang M, Ma M, Hu J, Liu J, Qin X. Screening of cancer-specific biomarkers for hepatitis B-related hepatocellular carcinoma based on a proteome microarray. Mol Cell Proteomics 2024:100872. [PMID: 39489219 DOI: 10.1016/j.mcpro.2024.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with one of the highest mortality rates among cancers, rendering its early diagnosis clinically invaluable. Serum biomarkers, specifically alpha-fetoprotein (AFP), represent the most promising and widely used diagnostic biomarkers for HCC. However, its detection rate is low in the early stages of HCC progression, and distinguishing specific false positives for other liver-related diseases, such as cirrhosis and acute hepatitis, remains challenging. Therefore, this study was conducted to identify biomarkers for hepatitis B (HBV)-related liver diseases by screening differentially expressed autoantibodies against tumor-associated antigens (TAAbs). We designed a large-scale multistage investigation, encompassing initial screening, HCC-focused, and ELISA validation cohorts to identify potential TAAbs in HBV-related liver diseases, spanning from healthy control (HC) individuals to patients with chronic hepatitis B (CHB), hepatitis B-related cirrhosis (HBC), and HCC, using protein microarray technology. The differential biological characteristics of TAAbs were analyzed using bioinformatics analysis. Validation of tumor-specific biomarkers for HCC was performed using ELISA. In the screening cohort, 547 candidate TAAbs were identified in the HCC group compared to those in the HC group. In the HCC-focused cohort, 64, 61, and 65 candidate TAAbs were identified in the CHB, HBC, and HCC groups, respectively, compared to those in the HC group. Thirty-four proteins exhibited continuously elevated expression from HCs to patients with CHB, HBC, and HCC. Among these, nine were identified as cancer-specific proteins. In the validation cohort, UBE2Z, CNOT3, and EID3 were correlated with liver function indicators in patients with hepatitis B-related HCC. Overall, UBE2Z, CNOT3, and EID3 emerged as cancer-specific biomarkers for HBV-related liver disease, providing a scientific basis for clinical application.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China; Liaoning Clinical Research Center for Laboratory Medicine, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Danyang Zhao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China; Liaoning Clinical Research Center for Laboratory Medicine, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Yuan Meng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China; Liaoning Clinical Research Center for Laboratory Medicine, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Mei Yang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China; Liaoning Clinical Research Center for Laboratory Medicine, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China; Liaoning Clinical Research Center for Laboratory Medicine, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Jingwen Hu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China; Liaoning Clinical Research Center for Laboratory Medicine, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China; Liaoning Clinical Research Center for Laboratory Medicine, No.36 Sanhao Street, Heping District, Shenyang 110004, China.
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China; Liaoning Clinical Research Center for Laboratory Medicine, No.36 Sanhao Street, Heping District, Shenyang 110004, China.
| |
Collapse
|
2
|
Abdel-Fattah WR, Carlsson M, Hu GZ, Singh A, Vergara A, Aslam R, Ronne H, Björklund S. Growth-regulated co-occupancy of Mediator and Lsm3 at intronic ribosomal protein genes. Nucleic Acids Res 2024; 52:6220-6233. [PMID: 38613396 PMCID: PMC11194063 DOI: 10.1093/nar/gkae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Mediator is a well-known transcriptional co-regulator and serves as an adaptor between gene-specific regulatory proteins and RNA polymerase II. Studies on the chromatin-bound form of Mediator revealed interactions with additional protein complexes involved in various transcription-related processes, such as the Lsm2-8 complex that is part of the spliceosomal U6 small nuclear ribonucleoprotein complex. Here, we employ Chromatin Immunoprecipitation sequencing (ChIP-seq) of chromatin associated with the Lsm3 protein and the Med1 or Med15 Mediator subunits. We identify 86 genes co-occupied by both Lsm3 and Mediator, of which 73 were intron-containing ribosomal protein genes. In logarithmically growing cells, Mediator primarily binds to their promoter regions but also shows a second, less pronounced occupancy at their 3'-exons. During the late exponential phase, we observe a near-complete transition of Mediator from these promoters to a position in their 3'-ends, overlapping the Lsm3 binding sites ∼250 bp downstream of their last intron-exon boundaries. Using an unbiased RNA sequencing approach, we show that transition of Mediator from promoters to the last exon of these genes correlates to reduction of both their messenger RNA levels and splicing ratios, indicating that the Mediator and Lsm complexes cooperate to control growth-regulated expression of intron-containing ribosomal protein genes at the levels of transcription and splicing.
Collapse
Affiliation(s)
- Wael R Abdel-Fattah
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Mattias Carlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Guo-Zhen Hu
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Ajeet Singh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Alexander Vergara
- Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Rameen Aslam
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Ronne
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
3
|
Agrofoglio YC, Iglesias MJ, Perez-Santángelo S, de Leone MJ, Koester T, Catalá R, Salinas J, Yanovsky MJ, Staiger D, Mateos JL. Arginine methylation of SM-LIKE PROTEIN 4 antagonistically affects alternative splicing during Arabidopsis stress responses. THE PLANT CELL 2024; 36:2219-2237. [PMID: 38518124 PMCID: PMC11132874 DOI: 10.1093/plcell/koae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2024] [Indexed: 03/24/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) post-translationally modifies RNA-binding proteins by arginine (R) methylation. However, the impact of this modification on the regulation of RNA processing is largely unknown. We used the spliceosome component, SM-LIKE PROTEIN 4 (LSM4), as a paradigm to study the role of R-methylation in RNA processing. We found that LSM4 regulates alternative splicing (AS) of a suite of its in vivo targets identified here. The lsm4 and prmt5 mutants show a considerable overlap of genes with altered AS raising the possibility that splicing of those genes could be regulated by PRMT5-dependent LSM4 methylation. Indeed, LSM4 methylation impacts AS, particularly of genes linked with stress response. Wild-type LSM4 and an unmethylable version complement the lsm4-1 mutant, suggesting that methylation is not critical for growth in normal environments. However, LSM4 methylation increases with abscisic acid and is necessary for plants to grow under abiotic stress. Conversely, bacterial infection reduces LSM4 methylation, and plants that express unmethylable-LSM4 are more resistant to Pseudomonas than those expressing wild-type LSM4. This tolerance correlates with decreased intron retention of immune-response genes upon infection. Taken together, this provides direct evidence that R-methylation adjusts LSM4 function on pre-mRNA splicing in an antagonistic manner in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yamila Carla Agrofoglio
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Soledad Perez-Santángelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - María José de Leone
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Tino Koester
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julieta L Mateos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Zuo Z, Roux ME, Dagdas YF, Rodriguez E, Petersen M. PAT mRNA decapping factors are required for proper development in Arabidopsis. FEBS Lett 2024; 598:1008-1021. [PMID: 38605280 DOI: 10.1002/1873-3468.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Berthelier J, Furci L, Asai S, Sadykova M, Shimazaki T, Shirasu K, Saze H. Long-read direct RNA sequencing reveals epigenetic regulation of chimeric gene-transposon transcripts in Arabidopsis thaliana. Nat Commun 2023; 14:3248. [PMID: 37277361 DOI: 10.1038/s41467-023-38954-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023] Open
Abstract
Transposable elements (TEs) are accumulated in both intergenic and intragenic regions in plant genomes. Intragenic TEs often act as regulatory elements of associated genes and are also co-transcribed with genes, generating chimeric TE-gene transcripts. Despite the potential impact on mRNA regulation and gene function, the prevalence and transcriptional regulation of TE-gene transcripts are poorly understood. By long-read direct RNA sequencing and a dedicated bioinformatics pipeline, ParasiTE, we investigated the transcription and RNA processing of TE-gene transcripts in Arabidopsis thaliana. We identified a global production of TE-gene transcripts in thousands of A. thaliana gene loci, with TE sequences often being associated with alternative transcription start sites or transcription termination sites. The epigenetic state of intragenic TEs affects RNAPII elongation and usage of alternative poly(A) signals within TE sequences, regulating alternative TE-gene isoform production. Co-transcription and inclusion of TE-derived sequences into gene transcripts impact regulation of RNA stability and environmental responses of some loci. Our study provides insights into TE-gene interactions that contributes to mRNA regulation, transcriptome diversity, and environmental responses in plants.
Collapse
Grants
- JP20H02995 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00364 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05909 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05913 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Jérémy Berthelier
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Munissa Sadykova
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Tomoe Shimazaki
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
6
|
Han WY, Hou BH, Lee WC, Chan TC, Lin TH, Chen HM. Arabidopsis mRNA decay landscape shaped by XRN 5'-3' exoribonucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:895-913. [PMID: 36987558 DOI: 10.1111/tpj.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
5'-3' exoribonucleases (XRNs) play crucial roles in the control of RNA processing, quality, and quantity in eukaryotes. Although genome-wide profiling of RNA decay fragments is now feasible, how XRNs shape the plant mRNA degradome remains elusive. Here, we profiled and analyzed the RNA degradomes of Arabidopsis wild-type and mutant plants with defects in XRN activity. Deficiency of nuclear XRN3 or cytoplasmic XRN4 activity but not nuclear XRN2 activity greatly altered Arabidopsis mRNA decay profiles. Short excised linear introns and cleaved pre-mRNA fragments downstream of polyadenylation sites were polyadenylated and stabilized in the xrn3 mutant, demonstrating the unique function of XRN3 in the removal of cleavage remnants from pre-mRNA processing. Further analysis of stabilized XRN3 substrates confirmed that pre-mRNA 3' end cleavage frequently occurs after adenosine. The most abundant decay intermediates in wild-type plants include not only the primary substrates of XRN4 but also the products of XRN4-mediated cytoplasmic decay. An increase in decay intermediates with 5' ends upstream of a consensus motif in the xrn4 mutant suggests that there is an endonucleolytic cleavage mechanism targeting the 3' untranslated regions of many Arabidopsis mRNAs. However, analysis of decay fragments in the xrn4 mutant indicated that, except for microRNA-directed slicing, endonucleolytic cleavage events in the coding sequence rarely result in major decay intermediates. Together, these findings reveal the major substrates and products of nuclear and cytoplasmic XRNs along Arabidopsis transcripts and provide a basis for precise interpretation of RNA degradome data.
Collapse
Affiliation(s)
- Wan-Yin Han
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tze-Ching Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Hsiang Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
7
|
Liu Q, Lian Q, Song Y, Yang S, Jia C, Fang J. Identification of LSM family members as potential chemoresistance predictive and therapeutic biomarkers for gastric cancer. Front Oncol 2023; 13:1119945. [PMID: 37007092 PMCID: PMC10064066 DOI: 10.3389/fonc.2023.1119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionThe Like-Smith (LSM) family plays a critical role in the progression of several cancers. However, the function of LSMs in chemoresistance of gastric cancer (GC) is still elusive.MethodsThe Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database and Tumor Immune Estimation Resource Analysis (TIMER) were utilized to analyze the expression, prognostic value and immune infiltration of LSMs in GC patients. Moreover, qPCR and immunohistochemistry (IHC) experiment were conducted with clinical samples.ResultsThe expression of LSMs was upregulated in GC tissues and most of LSMs were negatively correlated with overall survival of GC patients with 5-fluorouracil (5-FU) treatment. We further revealed that LSM5, 7 and 8 were hub genes of GEO (GSE14210). Besides, the qPCR results demonstrated that a higher level of LSM5 and LSM8 was associated with 5-FU chemoresistance in GC. Moreover, both TIMER and IHC revealed that a lower expression of LSM5 and LSM8 was correlated with high infiltration of T cells, regulatory T cells, B cells, macrophages, and neutrophils.DiscussionOur study systematically investigated the expression pattern and biological features of LSM family members in GC, and identified LSM5 and LSM8 as potential biomarkers in GC with 5-FU chemotherapy.
Collapse
Affiliation(s)
- Qianhui Liu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qinghai Lian
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingqiu Song
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangbin Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changchang Jia
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jiafeng Fang,
| |
Collapse
|
8
|
Wang L, Xu F, Yu F. Two environmental signal-driven RNA metabolic processes: Alternative splicing and translation. PLANT, CELL & ENVIRONMENT 2023; 46:718-732. [PMID: 36609800 DOI: 10.1111/pce.14537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants live in fixed locations and have evolved adaptation mechanisms that integrate multiple responses to various environmental signals. Among the different components of these response pathways, receptors/sensors represent nodes that recognise environmental signals. Additionally, RNA metabolism plays an essential role in the regulation of gene expression and protein synthesis. With the development of RNA biotechnology, recent advances have been made in determining the roles of RNA metabolism in response to different environmental signals-especially the roles of alternative splicing and translation. In this review, we discuss recent progress in research on how the environmental adaptation mechanisms in plants are affected at the posttranscriptional level. These findings improve our understanding of the mechanism through which plants adapt to environmental changes by regulating the posttranscriptional level and are conducive for breeding stress-tolerant plants to cope with dynamic and rapidly changing environments.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
9
|
Hong Y, Gao Y, Pang J, Shi H, Li T, Meng H, Kong D, Chen Y, Zhu JK, Wang Z. The Sm core protein SmEb regulates salt stress responses through maintaining proper splicing of RCD1 pre-mRNA in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36661041 DOI: 10.1111/jipb.13457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Salt stress adversely impacts crop production. Several spliceosome components have been implicated in regulating salt stress responses in plants, however, the underlying molecular basis is still unclear. Here we report that the spliceosomal core protein SmEb is essential to salt tolerance in Arabidopsis. Transcriptome analysis showed that SmEb modulates alternative splicing of hundreds of pre-mRNAs in plant response to salt stress. Further study revealed that SmEb is crucial in maintaining proper ratio of two RCD1 splicing variants (RCD1.1/RCD1.2) important for salt stress response. In addition, RCD1.1 but not RCD1.2 is able to interact with the stress regulators and attenuates salt-sensitivity by decreasing salt-induced cell death in smeb-1 mutant. Together, our findings uncovered the essential role of SmEb in the regulation of alternative pre-mRNA splicing in salt stress response.
Collapse
Affiliation(s)
- Yechun Hong
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jia Pang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Tingting Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Huiying Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yunjuan Chen
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
10
|
Careno DA, Perez Santangelo S, Macknight RC, Yanovsky MJ. The 5'-3' mRNA Decay Pathway Modulates the Plant Circadian Network in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:1709-1719. [PMID: 36066193 DOI: 10.1093/pcp/pcac126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Circadian rhythms enable organisms to anticipate and adjust their physiology to periodic environmental changes. These rhythms are controlled by biological clocks that consist of a set of clock genes that regulate each other's expression. Circadian oscillations in messenger RNA (mRNA) levels require the regulation of mRNA production and degradation. While transcription factors controlling clock function have been well characterized from cyanobacteria to humans, the role of factors controlling mRNA decay is largely unknown. Here, we show that mutations in SM-LIKE PROTEIN 1 (LSM1) and exoribonucleases 4 (XRN4), components of the 5'-3' mRNA decay pathway, alter clock function in Arabidopsis. We found that lsm1 and xrn4 mutants display long-period phenotypes for clock gene expression. In xrn4, these circadian defects were associated with changes in circadian phases of expression, but not overall mRNA levels, of several core-clock genes. We then used noninvasive transcriptome-wide mRNA stability analysis to identify genes and pathways regulated by XRN4. Among genes affected in the xrn4 mutant at the transcriptional and posttranscriptional level, we found an enrichment in genes involved in auxin, ethylene and drought recovery. Large effects were not observed for canonical core-clock genes, although the mRNAs of several auxiliary clock genes that control the pace of the clock were stabilized in xrn4 mutants. Our results establish that the 5'-3' mRNA decay pathway constitutes a novel posttranscriptional regulatory layer of the circadian gene network, which probably acts through a combination of small effects on mRNA stability of several auxiliary and some core-clock genes.
Collapse
Affiliation(s)
- Daniel A Careno
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
| | | | | | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
| |
Collapse
|
11
|
Wang Z, Hong Y, Yao J, Huang H, Qian B, Liu X, Chen Y, Pang J, Zhan X, Zhu JK, Zhu J. Modulation of plant development and chilling stress responses by alternative splicing events under control of the spliceosome protein SmEb in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:2762-2779. [PMID: 35770732 DOI: 10.1111/pce.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Cold stress resulting from chilling and freezing temperatures substantially inhibits plant growth and reduces crop production worldwide. Tremendous research efforts have been focused on elucidating the molecular mechanisms of freezing tolerance in plants. However, little is known about the molecular nature of chilling stress responses in plants. Here we found that two allelic mutants in a spliceosome component gene SmEb (smeb-1 and smeb-2) are defective in development and responses to chilling stress. RNA-seq analysis revealed that SmEb controls the splicing of many pre-messenger RNAs (mRNAs) under chilling stress. Our results suggest that SmEb is important to maintain proper ratio of the two COP1 splicing variants (COP1a/COP1b) to fine tune the level of HY5. In addition, the transcription factor BES1 shows a dramatic defect in pre-mRNA splicing in the smeb mutants. Ectopic expression of the two BES1 splicing variants enhances the chilling sensitivity of the smeb-1 mutant. Furthermore, biochemical and genetic analysis showed that CBFs act as negative upstream regulators of SmEb by directly suppressing its transcription. Together, our results demonstrate that proper alternative splicing of pre-mRNAs controlled by the spliceosome component SmEb is critical for plant development and chilling stress responses.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Juanjuan Yao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Huang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bilian Qian
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Xue Liu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunjuan Chen
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Pang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
12
|
Grech‐Baran M, Witek K, Poznański JT, Grupa‐Urbańska A, Malinowski T, Lichocka M, Jones JDG, Hennig J. The Ry sto immune receptor recognises a broadly conserved feature of potyviral coat proteins. THE NEW PHYTOLOGIST 2022; 235:1179-1195. [PMID: 35491734 PMCID: PMC9322412 DOI: 10.1111/nph.18183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Knowledge of the immune mechanisms responsible for viral recognition is critical for understanding durable disease resistance and successful crop protection. We determined how potato virus Y (PVY) coat protein (CP) is recognised by Rysto , a TNL immune receptor. We applied structural modelling, site-directed mutagenesis, transient overexpression, co-immunoprecipitation, infection assays and physiological cell death marker measurements to investigate the mechanism of Rysto -CP interaction. Rysto associates directly with PVY CP in planta that is conditioned by the presence of a CP central 149 amino acids domain. Each deletion that affects the CP core region impairs the ability of Rysto to trigger defence. Point mutations in the amino acid residues Ser125 , Arg157 , and Asp201 of the conserved RNA-binding pocket of potyviral CP reduce or abolish Rysto binding and Rysto -dependent responses, demonstrating that appropriate folding of the CP core is crucial for Rysto -mediated recognition. Rysto recognises the CPs of at least 10 crop-damaging viruses that share a similar core region. It confers immunity to plum pox virus and turnip mosaic virus in both Solanaceae and Brassicaceae systems, demonstrating potential utility in engineering virus resistance in various crops. Our findings shed new light on how R proteins detect different viruses by sensing conserved structural patterns.
Collapse
Affiliation(s)
- Marta Grech‐Baran
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Kamil Witek
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNorwichNR4 7UHUK
- The 2Blades FoundationEvanstonIL60201USA
| | - Jarosław T. Poznański
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Anna Grupa‐Urbańska
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
- Plant Breeding and Acclimatization Institute‐National Research InstitutePlatanowa 19Młochów05‐831Poland
| | - Tadeusz Malinowski
- The National Institute of Horticultural ResearchKonstytucji 3. Maja 1/3Skierniewice96‐100Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNorwichNR4 7UHUK
| | - Jacek Hennig
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| |
Collapse
|
13
|
Hoffmann G, Mahboubi A, Bente H, Garcia D, Hanson J, Hafrén A. Arabidopsis RNA processing body components LSM1 and DCP5 aid in the evasion of translational repression during Cauliflower mosaic virus infection. THE PLANT CELL 2022; 34:3128-3147. [PMID: 35511183 PMCID: PMC9338796 DOI: 10.1093/plcell/koac132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Viral infections impose extraordinary RNA stress, triggering cellular RNA surveillance pathways such as RNA decapping, nonsense-mediated decay, and RNA silencing. Viruses need to maneuver among these pathways to establish infection and succeed in producing high amounts of viral proteins. Processing bodies (PBs) are integral to RNA triage in eukaryotic cells, with several distinct RNA quality control pathways converging for selective RNA regulation. In this study, we investigated the role of Arabidopsis thaliana PBs during Cauliflower mosaic virus (CaMV) infection. We found that several PB components are co-opted into viral factories that support virus multiplication. This pro-viral role was not associated with RNA decay pathways but instead, we established that PB components are helpers in viral RNA translation. While CaMV is normally resilient to RNA silencing, dysfunctions in PB components expose the virus to this pathway, which is similar to previous observations for transgenes. Transgenes, however, undergo RNA quality control-dependent RNA degradation and transcriptional silencing, whereas CaMV RNA remains stable but becomes translationally repressed through decreased ribosome association, revealing a unique dependence among PBs, RNA silencing, and translational repression. Together, our study shows that PB components are co-opted by the virus to maintain efficient translation, a mechanism not associated with canonical PB functions.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Heinrich Bente
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
14
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
15
|
Krzyszton M, Kufel J. Analysis of mRNA-derived siRNAs in mutants of mRNA maturation and surveillance pathways in Arabidopsis thaliana. Sci Rep 2022; 12:1474. [PMID: 35087200 PMCID: PMC8795450 DOI: 10.1038/s41598-022-05574-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Defects in RNA maturation and RNA decay factors may generate substrates for the RNA interference machinery. This phenomenon was observed in plants where mutations in some RNA-related factors lead to the production of RNA-quality control small interfering RNAs and several mutants show enhanced silencing of reporter transgenes. To assess the potential of RNAi activation on endogenous transcripts, we sequenced small RNAs from a set of Arabidopsis thaliana mutants with defects in various RNA metabolism pathways. We observed a global production of siRNAs caused by inefficient pre-mRNA cleavage and polyadenylation leading to read-through transcription into downstream antisense genes. In addition, in the lsm1a lsm1b double mutant, we identified NIA1, SMXL5, and several miRNA-targeted mRNAs as producing siRNAs, a group of transcripts suggested being especially sensitive to deficiencies in RNA metabolism. However, in most cases, RNA metabolism perturbations do not lead to the widespread production of siRNA derived from mRNA molecules. This observation is contrary to multiple studies based on reporter transgenes and suggests that only a very high accumulation of defective mRNA species caused by specific mutations or substantial RNA processing defects trigger RNAi pathways.
Collapse
Affiliation(s)
- Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
16
|
Liang Y, Zhu W, Chen S, Qian J, Li L. Genome-Wide Identification and Characterization of Small Peptides in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:695439. [PMID: 34220917 PMCID: PMC8244733 DOI: 10.3389/fpls.2021.695439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 05/06/2023]
Abstract
Small peptides (sPeptides), <100 amino acids (aa) long, are encoded by small open reading frames (sORFs) often found in the 5' and 3' untranslated regions (or other parts) of mRNAs, in long non-coding RNAs, or transcripts from introns and intergenic regions; various sPeptides play important roles in multiple biological processes. In this study, we conducted a comprehensive study of maize (Zea mays) sPeptides using mRNA sequencing, ribosome profiling (Ribo-seq), and mass spectrometry (MS) on six tissues (each with at least two replicates). To identify maize sORFs and sPeptides from these data, we set up a robust bioinformatics pipeline and performed a genome-wide scan. This scan uncovered 9,388 sORFs encoding peptides of 2-100 aa. These sORFs showed distinct genomic features, such as different Kozak region sequences, higher specificity of translation, and high translational efficiency, compared with the canonical protein-coding genes. Furthermore, the MS data verified 2,695 sPeptides. These sPeptides perfectly discriminated all the tissues and were highly associated with their parental genes. Interestingly, the parental genes of sPeptides were significantly enriched in multiple functional gene ontology terms related to abiotic stress and development, suggesting the potential roles of sPeptides in the regulation of their parental genes. Overall, this study lays out the guidelines for genome-wide scans of sORFs and sPeptides in plants by integrating Ribo-seq and MS data and provides a more comprehensive resource of functional sPeptides in maize and gives a new perspective on the complex biological systems of plants.
Collapse
Affiliation(s)
| | | | | | | | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Agostini RB, Rius SP, Vargas WA, Campos-Bermudez VA. Proteome impact on maize silks under the priming state induced by Trichoderma root colonization. PLANTA 2021; 253:115. [PMID: 33934226 DOI: 10.1007/s00425-021-03633-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Trichoderma activates plant proteins to counteract Fusarium infection. Comparison between proteomic and transcriptomic data suggests differential response regulation. Proteins from the phenylpropanoid pathway are activated to quickly respond to pathogen attack. Trichoderma species can stimulate local and distant immune responses in colonized plant tissues to prevent future pathogenic attacks. Priming of plant defenses is characterized by changes in transcriptional, metabolic, and epigenetic states after stimulus perception. We have previously investigated transcriptional reprogramming in silk tissues from maize plants inoculated with Trichoderma atroviride and challenged with Fusarium verticillioides (Agostini et al., Mol Plant-Microbe In 32:95-106, 2019). To better understand the molecular changes induced by T. atroviride in maize, a proteomic approach was conducted in this instance. Several proteins belonging to different metabolic categories were detected as priming-involved proteins. However, we detected a very low correlation with those priming-modulated transcripts suggesting the importance of regulatory events a posteriori of the transcriptional process to accomplish the final goal of blocking pathogen entry. Specifically, we focused on the phenylpropanoid pathway, since we detected several proteins that are upregulated in the priming state and might explain cell wall reinforcement as well as the increase in flavonoid and lignin content in maize silks after activation of induced systemic resistance.
Collapse
Affiliation(s)
- Romina B Agostini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Sebastián P Rius
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Walter A Vargas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
- YPF-Tecnología, Av. del Petróleo Arg. S/N, 1923, Berisso, Argentina
| | - Valeria A Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina.
| |
Collapse
|
18
|
Xie X, Yan Y, Liu T, Chen J, Huang M, Wang L, Chen M, Li X. Data-independent acquisition proteomic analysis of biochemical factors in rice seedlings following treatment with chitosan oligosaccharides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104681. [PMID: 32980063 DOI: 10.1016/j.pestbp.2020.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Chitosan oligosaccharides (COS) can elicit plant immunity and defence responses in rice plants, but exactly how this promotes plant growth remains largely unknown. Herein, we explored the effects of 0.5 mg/L COS on plant growth promotion in rice seedlings by measuring root and stem length, investigating biochemical factors in whole plants via proteomic analysis, and confirming upregulated and downregulated genes by real-time quantitative PCR. Pathway enrichment results showed that COS promoted root and stem growth, and stimulated metabolic (biosynthetic and catabolic processes) and photosynthesis in rice plants during the seedling stage. Expression levels of genes related to chlorophyll a-b binding, RNA binding, catabolic processes and calcium ion binding were upregulated following COS treatment. Furthermore, comparative analysis indicated that numerous proteins involved in the biosynthesis, metabolic (catabolic) processes and photosynthesis pathways were upregulated. The findings indicate that COS may upregulate calcium ion binding, photosynthesis, RNA binding, and catabolism proteins associated with plant growth during the rice seedling stage.
Collapse
Affiliation(s)
- Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yunlong Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jun Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Li Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Meiqing Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
19
|
Esteve-Bruna D, Carrasco-López C, Blanco-Touriñán N, Iserte J, Calleja-Cabrera J, Perea-Resa C, Úrbez C, Carrasco P, Yanovsky MJ, Blázquez MA, Salinas J, Alabadí D. Prefoldins contribute to maintaining the levels of the spliceosome LSM2-8 complex through Hsp90 in Arabidopsis. Nucleic Acids Res 2020; 48:6280-6293. [PMID: 32396196 PMCID: PMC7293050 DOI: 10.1093/nar/gkaa354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Although originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana. Results revealed co-expression between PFD and the Sm-like (LSM) genes, which encode the LSM2–8 spliceosome core complex, in this model organism. Here, we show that PFDs interact with and are required to maintain adequate levels of the LSM2–8 complex. Our data indicate that levels of the LSM8 protein, which defines and confers the functional specificity of the complex, are reduced in pfd mutants and in response to the Hsp90 inhibitor geldanamycin. We provide biochemical evidence showing that LSM8 is a client of Hsp90 and that PFD4 mediates the interaction between both proteins. Consistent with our results and with the role of the LSM2–8 complex in splicing through the stabilization of the U6 snRNA, pfd mutants showed reduced levels of this snRNA and altered pre-mRNA splicing patterns.
Collapse
Affiliation(s)
- David Esteve-Bruna
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Cristian Carrasco-López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Javier Iserte
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWAE Buenos Aires, Argentina
| | - Julián Calleja-Cabrera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Pedro Carrasco
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWAE Buenos Aires, Argentina
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| |
Collapse
|
20
|
Thieffry A, Vigh ML, Bornholdt J, Ivanov M, Brodersen P, Sandelin A. Characterization of Arabidopsis thaliana Promoter Bidirectionality and Antisense RNAs by Inactivation of Nuclear RNA Decay Pathways. THE PLANT CELL 2020; 32:1845-1867. [PMID: 32213639 PMCID: PMC7268790 DOI: 10.1105/tpc.19.00815] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 05/20/2023]
Abstract
In animals, RNA polymerase II initiates transcription bidirectionally from gene promoters to produce pre-mRNAs on the forward strand and promoter upstream transcripts (PROMPTs) on the reverse strand. PROMPTs are degraded by the nuclear exosome. Previous studies based on nascent RNA approaches concluded that Arabidopsis (Arabidopsis thaliana) does not produce PROMPTs. Here, we used steady-state RNA sequencing in mutants defective in nuclear RNA decay including the exosome to reassess the existence of Arabidopsis PROMPTs. While they are rare, we identified ∼100 cases of exosome-sensitive PROMPTs in Arabidopsis. Such PROMPTs are sources of small interfering RNAs in exosome-deficient mutants, perhaps explaining why plants have evolved mechanisms to suppress PROMPTs. In addition, we found ∼200 long, unspliced and exosome-sensitive antisense RNAs that arise from transcription start sites within parts of the genome encoding 3'-untranslated regions on the sense strand. The previously characterized noncoding RNA that regulates expression of the key seed dormancy regulator, DELAY OF GERMINATION1, is a typical representative of this class of RNAs. Transcription factor genes are overrepresented among loci with exosome-sensitive antisense RNAs, suggesting a potential for widespread control of gene expression via this class of noncoding RNAs. Lastly, we assess the use of alternative promoters in Arabidopsis and compare the accuracy of existing TSS annotations.
Collapse
Affiliation(s)
- Axel Thieffry
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Maria Louisa Vigh
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
21
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
22
|
Mattout A, Gaidatzis D, Kalck V, Gasser SM. A Nuclear RNA Degradation Pathway Helps Silence Polycomb/H3K27me3-Marked Loci in Caenorhabditis elegans. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:141-153. [PMID: 32350050 DOI: 10.1101/sqb.2019.84.040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In fission yeast and plants, RNA-processing pathways contribute to heterochromatin silencing, complementing well-characterized pathways of transcriptional repression. However, it was unclear whether this additional level of regulation occurs in metazoans. In a genetic screen, we uncovered a pathway of silencing in Caenorhabditis elegans somatic cells, whereby the highly conserved, RNA-binding complex LSM2-8 contributes to the repression of heterochromatic reporters and endogenous genes bearing the Polycomb mark H3K27me3. Importantly, the LSM2-8 complex works cooperatively with a 5'-3' exoribonuclease, XRN-2, and disruption of the pathway leads to selective mRNA stabilization. LSM2-8 complex-mediated RNA degradation does not target nor depend on H3K9me2/me3, unlike previously described pathways of heterochromatic RNA degradation. Up-regulation of lsm-8-sensitive loci coincides with a localized drop in H3K27me3 levels in the lsm-8 mutant. Put into the context of epigenetic control of gene expression, it appears that targeted RNA degradation helps repress a subset of H3K27me3-marked genes, revealing an unappreciated layer of regulation for facultative heterochromatin in animals.
Collapse
Affiliation(s)
- Anna Mattout
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Véronique Kalck
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,University of Basel, Faculty of Science, CH-4056 Basel, Switzerland
| |
Collapse
|
23
|
Wang L, Yang T, Wang B, Lin Q, Zhu S, Li C, Ma Y, Tang J, Xing J, Li X, Liao H, Staiger D, Hu Z, Yu F. RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. SCIENCE ADVANCES 2020; 6:eaaz1622. [PMID: 32671204 PMCID: PMC7314565 DOI: 10.1126/sciadv.aaz1622] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 03/06/2020] [Indexed: 05/21/2023]
Abstract
The environmentally responsive signaling pathways that link global transcriptomic changes through alternative splicing (AS) to plant fitness remain unclear. Here, we found that the interaction of the extracellular rapid alkalinization FACTOR 1 (RALF1) peptide with its receptor FERONIA (FER) triggered a rapid and massive RNA AS response by interacting with and phosphorylating glycine-rich RNA binding protein7 (GRP7) to elevate GRP7 nuclear accumulation in Arabidopsis thaliana. FER-dependent GRP7 phosphorylation enhanced its mRNA binding ability and its association with the spliceosome component U1-70K to enable splice site selection, modulating dynamic AS. Genetic reversal of a RALF1-FER-dependent splicing target partly rescued mutants deficient in GRP7. AS of GRP7 itself induced nonsense-mediated decay feedback to the RALF1-FER-GRP7 module, fine-tuning stress responses, and cell growth. The RALF1-FER-GRP7 module provides a paradigm for regulatory mechanisms of RNA splicing in response to external stimuli.
Collapse
Affiliation(s)
- Long Wang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P.R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Tao Yang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P.R. China
| | - Bingqian Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P.R. China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Chiyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Youchu Ma
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P.R. China
| | - Jing Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Xiushan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Hongdong Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, D-33615 Bielefeld, Germany
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| |
Collapse
|
24
|
LSM2-8 and XRN-2 contribute to the silencing of H3K27me3-marked genes through targeted RNA decay. Nat Cell Biol 2020; 22:579-590. [PMID: 32251399 PMCID: PMC7212045 DOI: 10.1038/s41556-020-0504-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/05/2020] [Indexed: 12/20/2022]
Abstract
In fission yeast and plants, RNA-processing and degradation contribute to
heterochromatin silencing, alongside conserved pathways of transcriptional
repression. It was unknown if similar pathways exist in metazoans. Here we
describe a pathway of silencing in C. elegans somatic cells, in
which the highly conserved RNA binding complex LSM2-8 contributes selectively to
the repression of heterochromatic reporters and endogenous genes bearing the
Polycomb mark, histone H3K27me3. It acts by degrading selected transcripts
through the XRN-2 exoribonuclease. Disruption of the LSM2-8 pathway leads to
mRNA stabilization. Unlike previously described pathways of heterochromatic RNA
degradation, LSM2-8-mediated RNA degradation does not require nor deposit H3K9
methylation. Rather, loss of this pathway coincides with a localized reduction
in H3K27me3 at lsm-8-sensitive loci. Thus, we have uncovered a
mechanism of RNA degradation that selectively contributes to the silencing of a
subset of H3K27me3-marked genes, revealing a previously unrecognized layer of
post-transcriptional control in metazoan heterochromatin.
Collapse
|
25
|
Sulkowska A, Auber A, Sikorski PJ, Silhavy DN, Auth M, Sitkiewicz E, Jean V, Merret RM, Bousquet-Antonelli CC, Kufel J. RNA Helicases from the DEA(D/H)-Box Family Contribute to Plant NMD Efficiency. PLANT & CELL PHYSIOLOGY 2020; 61:144-157. [PMID: 31560399 DOI: 10.1093/pcp/pcz186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.
Collapse
Affiliation(s)
- Aleksandra Sulkowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Pawel J Sikorski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dï Niel Silhavy
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Mariann Auth
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Ewa Sitkiewicz
- Proteomics Laboratory, Biophysics Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Viviane Jean
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Rï My Merret
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Cï Cile Bousquet-Antonelli
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
26
|
Tian L, Wu C, Wen G, Li C. Transcriptional responses of LSm14A after infection of blue eggshell layers with Newcastle disease viruses. J Vet Med Sci 2019; 81:1468-1474. [PMID: 31534060 PMCID: PMC6863722 DOI: 10.1292/jvms.19-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
LSm14A is a key innate immunity component of processing body (P-body) that mediates
interferon-β (IFN-β) signaling by viral RNA. This is the first study to report chicken
LSm14A (cLSm14A) cloning from blue eggshell layer, high
tibia and frizzle chickens. The cLSm14A gene, encoding 461
amino acids, is highly homologous in the three types of chickens. The cLSm14A was
extensively expressed in several tissues. The transcriptional level of cLSm14A was
significantly increased in various stages of Newcastle disease virus (NDV) infection. In
HEK293 cells, full length cLSm14A from blue eggshell layer was localized
in the cytoplasm as dots. The results of this study indicated that cLSm14A is an important
sensor that mediates innate immunity in chicken against NDV infections.
Collapse
Affiliation(s)
- Lang Tian
- College of Animal Sciences, Preventive Veterinary Laboratory, Guizhou University, Guiyang 550025 China
| | - Changhua Wu
- Agricultural and Rural Bureau of Anshun City, Guizhou Province, Anshun 561000 China
| | - Guilan Wen
- College of Animal Sciences, Preventive Veterinary Laboratory, Guizhou University, Guiyang 550025 China
| | - Changhong Li
- College of Animal Sciences, Preventive Veterinary Laboratory, Guizhou University, Guiyang 550025 China
| |
Collapse
|
27
|
A Bacterial Effector Mimics a Host HSP90 Client to Undermine Immunity. Cell 2019; 179:205-218.e21. [PMID: 31522888 DOI: 10.1016/j.cell.2019.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/21/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.
Collapse
|
28
|
Matsui A, Nakaminami K, Seki M. Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress. PLANT & CELL PHYSIOLOGY 2019; 60:1897-1905. [PMID: 31093678 DOI: 10.1093/pcp/pcz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved various sophisticated mechanisms for adaptation to nonoptimal environments. Recent studies using RNA metabolism-related mutants have revealed that RNA processing, RNA decay and RNA stability play an important role in regulating gene expression at a post-transcriptional level in response to abiotic stresses. Studies indicate that RNA metabolism is a unified network, and modification of stress adaptation-related transcripts at multiple steps of RNA metabolism is necessary to control abiotic stress-related gene expression. Recent studies have also demonstrated the important role of noncoding RNAs (ncRNAs) in regulating abiotic stress-related gene expression and revealed their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications and RNA-RNA interactions. ncRNAs regulate mRNA transcription and their synthesis is affected by mRNA processing and degradation. In the present review, recent findings pertaining to the role of the metabolic regulation of mRNAs and ncRNAs in abiotic stress adaptation are summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
29
|
Ding Z, Kihara D. Computational identification of protein-protein interactions in model plant proteomes. Sci Rep 2019; 9:8740. [PMID: 31217453 PMCID: PMC6584649 DOI: 10.1038/s41598-019-45072-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) play essential roles in many biological processes. A PPI network provides crucial information on how biological pathways are structured and coordinated from individual protein functions. In the past two decades, large-scale PPI networks of a handful of organisms were determined by experimental techniques. However, these experimental methods are time-consuming, expensive, and are not easy to perform on new target organisms. Large-scale PPI data is particularly sparse in plant organisms. Here, we developed a computational approach for detecting PPIs trained and tested on known PPIs of Arabidopsis thaliana and applied to three plants, Arabidopsis thaliana, Glycine max (soybean), and Zea mays (maize) to discover new PPIs on a genome-scale. Our method considers a variety of features including protein sequences, gene co-expression, functional association, and phylogenetic profiles. This is the first work where a PPI prediction method was developed for is the first PPI prediction method applied on benchmark datasets of Arabidopsis. The method showed a high prediction accuracy of over 90% and very high precision of close to 1.0. We predicted 50,220 PPIs in Arabidopsis thaliana, 13,175,414 PPIs in corn, and 13,527,834 PPIs in soybean. Newly predicted PPIs were classified into three confidence levels according to the availability of existing supporting evidence and discussed. Predicted PPIs in the three plant genomes are made available for future reference.
Collapse
Affiliation(s)
- Ziyun Ding
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.
| |
Collapse
|
30
|
RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends Microbiol 2019; 27:792-805. [PMID: 31213342 DOI: 10.1016/j.tim.2019.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
Abstract
RNA silencing is a fundamental, evolutionarily conserved mechanism that regulates gene expression in eukaryotes. It also functions as a primary immune defense in microbes, such as viruses in plants. In addition to RNA silencing, RNA decay and RNA quality-control pathways are also two ancestral forms of intrinsic antiviral immunity, and the three RNA-targeted pathways may operate cooperatively for their antiviral function. Plant viruses encode viral suppressors of RNA silencing (VSRs) to suppress RNA silencing and facilitate virus infection. In response, plants may activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression. In this review, we summarize current knowledge of RNA silencing, RNA decay, and RNA quality control in antiviral defense, and highlight the mechanisms by which viruses compromise RNA-targeted immunity for their infection and survival in plants.
Collapse
|
31
|
Giska F, Martin GB. PP2C phosphatase Pic1 negatively regulates the phosphorylation status of Pti1b kinase, a regulator of flagellin-triggered immunity in tomato. Biochem J 2019; 476:1621-1635. [PMID: 31097490 DOI: 10.1042/bcj20190299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2023]
Abstract
Plant immune responses, including the production of reactive oxygen species (ROS), are triggered when pattern recognition receptors (PRRs) become activated upon detection of microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases are key components of PRR-dependent signaling pathways. In tomato, two such kinases, Pti1a and Pti1b, are important positive regulators of the plant immune response. However, it is unknown how these kinases control plant immunity at the molecular level and how their activity is regulated. To investigate these issues, we used mass spectrometry to search for interactors of Pti1b in Nicotiana benthamiana leaves and identified a PP2C protein phosphatase, referred to as Pic1. An in vitro pull-down assay and in vivo split-luciferase complementation assay verified this interaction. Pti1b was found to autophosphorylate on threonine-233, and this phosphorylation was abolished in the presence of Pic1. An arginine-to-cysteine substitution at position 240 in the Arabidopsis MARIS kinase was previously reported to convert it into a constitutive-active form. The analogous substitution in Pti1b made it resistant to Pic1 phosphatase activity, although it still interacted with Pic1. Treatment of N. benthamiana leaves with the MAMP flg22 induced threonine phosphorylation of Pti1b. The expression of Pic1, but not a phosphatase-inactive variant of this protein, in N. benthamiana leaves greatly reduced ROS production in response to treatment with MAMPs flg22 or csp22. The results indicate that Pic1 acts as a negative regulator by dephosphorylating the Pti1b kinase, thereby interfering with its ability to activate plant immune responses.
Collapse
Affiliation(s)
- Fabian Giska
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
32
|
Abstract
The mechanisms underlying rapid adaptation to changing environments in species with reduced genetic variation, referred to as the “genetic paradox of invasion,” are unknown. We report that transposable elements (TEs) are highly enriched in the gene promoter regions of Capsella rubella compared with its outcrossing sister species Capsella grandiflora. We also show that a number of polymorphic TEs in C. rubella are associated with changes in gene expression. Frequent TE insertions at FLOWERING LOCUS C of C. rubella affect flowering-time variation, an important life history trait correlated with fitness. These results indicate that TE insertions drive rapid phenotypic variation, which could potentially help adapting to novel environments in species with limited genetic variation. Rapid phenotypic changes in traits of adaptive significance are crucial for organisms to thrive in changing environments. How such phenotypic variation is achieved rapidly, despite limited genetic variation in species that experience a genetic bottleneck is unknown. Capsella rubella, an annual and inbreeding forb (Brassicaceae), is a great system for studying this basic question. Its distribution is wider than those of its congeneric species, despite an extreme genetic bottleneck event that severely diminished its genetic variation. Here, we demonstrate that transposable elements (TEs) are an important source of genetic variation that could account for its high phenotypic diversity. TEs are (i) highly enriched in C. rubella compared with its outcrossing sister species Capsella grandiflora, and (ii) 4.2% of polymorphic TEs in C. rubella are associated with variation in the expression levels of their adjacent genes. Furthermore, we show that frequent TE insertions at FLOWERING LOCUS C (FLC) in natural populations of C. rubella could explain 12.5% of the natural variation in flowering time, a key life history trait correlated with fitness and adaptation. In particular, we show that a recent TE insertion at the 3′ UTR of FLC affects mRNA stability, which results in reducing its steady-state expression levels, to promote the onset of flowering. Our results highlight that TE insertions can drive rapid phenotypic variation, which could potentially help with adaptation to changing environments in a species with limited standing genetic variation.
Collapse
|
33
|
Catalá R, Carrasco-López C, Perea-Resa C, Hernández-Verdeja T, Salinas J. Emerging Roles of LSM Complexes in Posttranscriptional Regulation of Plant Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:167. [PMID: 30873189 PMCID: PMC6401655 DOI: 10.3389/fpls.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 05/04/2023]
Abstract
It has long been assumed that the wide reprogramming of gene expression that modulates plant response to unfavorable environmental conditions is mainly controlled at the transcriptional level. A growing body of evidence, however, indicates that posttranscriptional regulatory mechanisms also play a relevant role in this control. Thus, the LSMs, a family of proteins involved in mRNA metabolism highly conserved in eukaryotes, have emerged as prominent regulators of plant tolerance to abiotic stress. Arabidopsis contains two main LSM ring-shaped heteroheptameric complexes, LSM1-7 and LSM2-8, with different subcellular localization and function. The LSM1-7 ring is part of the cytoplasmic decapping complex that regulates mRNA stability. On the other hand, the LSM2-8 complex accumulates in the nucleus to ensure appropriate levels of U6 snRNA and, therefore, correct pre-mRNA splicing. Recent studies reported unexpected results that led to a fundamental change in the assumed consideration that LSM complexes are mere components of the mRNA decapping and splicing cellular machineries. Indeed, these data have demonstrated that LSM1-7 and LSM2-8 rings operate in Arabidopsis by selecting specific RNA targets, depending on the environmental conditions. This specificity allows them to actively imposing particular gene expression patterns that fine-tune plant responses to abiotic stresses. In this review, we will summarize current and past knowledge on the role of LSM rings in modulating plant physiology, with special focus on their function in abiotic stress responses.
Collapse
|
34
|
Sieburth LE, Vincent JN. Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000Res 2018; 7. [PMID: 30613385 PMCID: PMC6305221 DOI: 10.12688/f1000research.16203.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Gene expression is typically quantified as RNA abundance, which is influenced by both synthesis (transcription) and decay. Cytoplasmic decay typically initiates by deadenylation, after which decay can occur through any of three cytoplasmic decay pathways. Recent advances reveal several mechanisms by which RNA decay is regulated to control RNA abundance. mRNA can be post-transcriptionally modified, either indirectly through secondary structure or through direct modifications to the transcript itself, sometimes resulting in subsequent changes in mRNA decay rates. mRNA abundances can also be modified by tapping into pathways normally used for RNA quality control. Regulated mRNA decay can also come about through post-translational modification of decapping complex subunits. Likewise, mRNAs can undergo changes in subcellular localization (for example, the deposition of specific mRNAs into processing bodies, or P-bodies, where stabilization and destabilization occur in a transcript- and context-dependent manner). Additionally, specialized functions of mRNA decay pathways were implicated in a genome-wide mRNA decay analysis in Arabidopsis. Advances made using plants are emphasized in this review, but relevant studies from other model systems that highlight RNA decay mechanisms that may also be conserved in plants are discussed.
Collapse
Affiliation(s)
- Leslie E Sieburth
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jessica N Vincent
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
35
|
Yang L, Wang HN, Hou XH, Zou YP, Han TS, Niu XM, Zhang J, Zhao Z, Todesco M, Balasubramanian S, Guo YL. Parallel Evolution of Common Allelic Variants Confers Flowering Diversity in Capsella rubella. THE PLANT CELL 2018; 30:1322-1336. [PMID: 29764984 PMCID: PMC6048796 DOI: 10.1105/tpc.18.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/04/2023]
Abstract
Flowering time is an adaptive life history trait. Capsella rubella, a close relative of Arabidopsis thaliana and a young species, displays extensive variation for flowering time but low standing genetic variation due to an extreme bottleneck event, providing an excellent opportunity to understand how phenotypic diversity can occur with a limited initial gene pool. Here, we demonstrate that common allelic variation and parallel evolution at the FLC locus confer variation in flowering time in C. rubella. We show that two overlapping deletions in the 5' untranslated region (UTR) of C. rubella FLC, which are associated with local changes in chromatin conformation and histone modifications, reduce its expression levels and promote flowering. We further show that these two pervasive variants originated independently in natural C. rubella populations after speciation and spread to an intermediate frequency, suggesting a role of this parallel cis-regulatory change in adaptive evolution. Our results provide an example of how parallel mutations in the same 5' UTR region can shape phenotypic evolution in plants.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui-Na Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
A Genetic Screen Identifies PRP18a, a Putative Second Step Splicing Factor Important for Alternative Splicing and a Normal Phenotype in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2018; 8:1367-1377. [PMID: 29487188 PMCID: PMC5873924 DOI: 10.1534/g3.118.200022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Splicing of pre-mRNA involves two consecutive trans-esterification steps that take place in the spliceosome, a large dynamic ribonucleoprotein complex situated in the nucleus. In addition to core spliceosomal proteins, each catalytic step requires step-specific factors. Although the Arabidopsis thaliana genome encodes around 430 predicted splicing factors, functional information about these proteins is limited. In a forward genetic screen based on an alternatively-spliced GFP reporter gene in Arabidopsis thaliana, we identified a mutant impaired in putative step II factor PRP18a, which has not yet been investigated for its role in pre-mRNA splicing in plants. Step II entails cleavage at the 3' splice site accompanied by ligation of the 5' and 3' exons and intron removal. In the prp18 mutant, splicing of a U2-type intron with non-canonical AT-AC splice sites in GFP pre-mRNA is reduced while splicing of a canonical GT-AG intron is enhanced, resulting in decreased levels of translatable GFP mRNA and GFP protein. These findings suggest that wild-type PRP18a may in some cases promote splicing at weak, non-canonical splice sites. Analysis of genome-wide changes in alternative splicing in the prp18a mutant identified numerous cases of intron retention and a preponderance of altered 3' splice sites, suggesting an influence of PRP18a on 3' splice site selection. The prp18a mutant featured short roots on synthetic medium and small siliques, illustrating that wild-type PRP18a function is needed for a normal phenotype. Our study expands knowledge of plant splicing factors and provides foundational information and resources for further functional studies of PRP18 proteins in plants.
Collapse
|
37
|
Krzyszton M, Zakrzewska-Placzek M, Kwasnik A, Dojer N, Karlowski W, Kufel J. Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1017-1031. [PMID: 29356198 DOI: 10.1111/tpj.13826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Arabidopsis thaliana contains two nuclear XRN2/3 5'-3' exonucleases that are homologs of yeast and human Rat1/Xrn2 proteins involved in the processing and degradation of several classes of nuclear RNAs and in transcription termination of RNA polymerase II. Using strand-specific short read sequencing we show that knockdown of XRN3 leads to an altered expression of hundreds of genes and the accumulation of uncapped and polyadenylated read-through transcripts generated by inefficiently terminated Pol II. Our data support the notion that XRN3-mediated changes in the expression of a subset of genes are caused by upstream read-through transcription and these effects are enhanced by RNA-mRNA chimeras generated in xrn3 plants. In turn, read-through transcripts that are antisense to downstream genes may trigger production of siRNA. Our results highlight the importance of XRN3 exoribonuclease in Pol II transcription termination in plants and show that disturbance in this process may significantly alter gene expression.
Collapse
Affiliation(s)
- Michal Krzyszton
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Monika Zakrzewska-Placzek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Kwasnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Norbert Dojer
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
38
|
Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc Natl Acad Sci U S A 2018; 115:E1485-E1494. [PMID: 29386391 DOI: 10.1073/pnas.1712312115] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The decay of mRNA plays a vital role in modulating mRNA abundance, which, in turn, influences cellular and organismal processes. In plants and metazoans, three distinct pathways carry out the decay of most cytoplasmic mRNAs: The mRNA decapping complex, which requires the scaffold protein VARICOSE (VCS), removes a protective 5' cap, allowing for 5' to 3' decay via EXORIBONUCLEASE4 (XRN4, XRN1 in metazoans and yeast), and both the exosome and SUPPRESSOR OF VCS (SOV)/DIS3L2 degrade RNAs in the 3' to 5' direction. However, the unique biological contributions of these three pathways, and whether they degrade specialized sets of transcripts, are unknown. In Arabidopsis, the participation of SOV in RNA homeostasis is also unclear, because Arabidopsis sov mutants have a normal phenotype. We carried out mRNA decay analyses in wild-type, sov, vcs, and vcs sov seedlings, and used a mathematical modeling approach to determine decay rates and quantify gene-specific contributions of VCS and SOV to decay. This analysis revealed that VCS (decapping) contributes to decay of 68% of the transcriptome, and, while it initiates degradation of mRNAs with a wide range of decay rates, it especially contributes to decay of short-lived RNAs. Only a few RNAs were clear SOV substrates in that they decayed more slowly in sov mutants. However, 4,506 RNAs showed VCS-dependent feedback in sov that modulated decay rates, and, by inference, transcription, to maintain RNA abundances, suggesting that these RNAs might also be SOV substrates. This feedback was shown to be independent of siRNA activity.
Collapse
|
39
|
Wawer I, Golisz A, Sulkowska A, Kawa D, Kulik A, Kufel J. mRNA Decapping and 5'-3' Decay Contribute to the Regulation of ABA Signaling in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:312. [PMID: 29593767 PMCID: PMC5857609 DOI: 10.3389/fpls.2018.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
Defects in RNA processing and degradation pathways often lead to developmental abnormalities, impaired hormonal signaling and altered resistance to abiotic and biotic stress. Here we report that components of the 5'-3' mRNA decay pathway, DCP5, LSM1-7 and XRN4, contribute to a proper response to a key plant hormone abscisc acid (ABA), albeit in a different manner. Plants lacking DCP5 are more sensitive to ABA during germination, whereas lsm1a lsm1b and xrn4-5 mutants are affected at the early stages of vegetative growth. In addition, we show that DCP5 and LSM1 regulate mRNA stability and act in translational repression of the main components of the early ABA signaling, PYR/PYL ABA receptors and SnRK2s protein kinases. mRNA decapping DCP and LSM1-7 complexes also appear to modulate ABA-dependent expression of stress related transcription factors from the AP2/ERF/DREB family that in turn affect the level of genes regulated by the PYL/PYR/RCAR-PP2C-SnRK2 pathway. These observations suggest that ABA signaling through PYL/PYR/RCAR receptors and SnRK2s kinases is regulated directly and indirectly by the cytoplasmic mRNA decay pathway.
Collapse
Affiliation(s)
- Izabela Wawer
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- *Correspondence: Izabela Wawer
| | - Anna Golisz
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Sulkowska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Dorota Kawa
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Joanna Kufel
| |
Collapse
|
40
|
Chantarachot T, Bailey-Serres J. Polysomes, Stress Granules, and Processing Bodies: A Dynamic Triumvirate Controlling Cytoplasmic mRNA Fate and Function. PLANT PHYSIOLOGY 2018; 176:254-269. [PMID: 29158329 PMCID: PMC5761823 DOI: 10.1104/pp.17.01468] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/17/2017] [Indexed: 05/05/2023]
Abstract
Discoveries illuminate highly regulated dynamics of mRNA translation, sequestration, and degradation within the cytoplasm of plants.
Collapse
Affiliation(s)
- Thanin Chantarachot
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
41
|
Carrasco-López C, Hernández-Verdeja T, Perea-Resa C, Abia D, Catalá R, Salinas J. Environment-dependent regulation of spliceosome activity by the LSM2-8 complex in Arabidopsis. Nucleic Acids Res 2017; 45:7416-7431. [PMID: 28482101 PMCID: PMC5499552 DOI: 10.1093/nar/gkx375] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/25/2017] [Indexed: 11/20/2022] Open
Abstract
Spliceosome activity is tightly regulated to ensure adequate splicing in response to internal and external cues. It has been suggested that core components of the spliceosome, such as the snRNPs, would participate in the control of its activity. The experimental indications supporting this proposition, however, remain scarce, and the operating mechanisms poorly understood. Here, we present genetic and molecular evidence demonstrating that the LSM2–8 complex, the protein moiety of the U6 snRNP, regulates the spliceosome activity in Arabidopsis, and that this regulation is controlled by the environmental conditions. Our results show that the complex ensures the efficiency and accuracy of constitutive and alternative splicing of selected pre-mRNAs, depending on the conditions. Moreover, miss-splicing of most targeted pre-mRNAs leads to the generation of nonsense mediated decay signatures, indicating that the LSM2–8 complex also guarantees adequate levels of the corresponding functional transcripts. Interestingly, the selective role of the complex has relevant physiological implications since it is required for adequate plant adaptation to abiotic stresses. These findings unveil an unanticipated function for the LSM2–8 complex that represents a new layer of posttranscriptional regulation in response to external stimuli in eukaryotes.
Collapse
Affiliation(s)
- Cristian Carrasco-López
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Tamara Hernández-Verdeja
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Carlos Perea-Resa
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - David Abia
- Unidad de Bioinformática, Centro de Biología Molecular Severo Ochoa, CSIC, 28049 Madrid, Spain
| | - Rafael Catalá
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
42
|
Sun J, Wang P, Zhou T, Rong J, Jia H, Liu Z. Transcriptome Analysis of the Effects of Shell Removal and Exogenous Gibberellin on Germination of Zanthoxylum Seeds. Sci Rep 2017; 7:8521. [PMID: 28819199 PMCID: PMC5561108 DOI: 10.1038/s41598-017-07424-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
The zanthoxylum seeds are oil-rich and have a very thick, dense and oily shell. In the natural conditions the seeds have a very low germination rate. Prior to treatment with GAs to promote germination, the seeds were usually soaked in sulfuric acid to remove shells easily. A high-throughput sequencing of mRNAs was performed to investigate the effects of the above treatments on the germination of zanthoxylum seeds. Seven libraries were assembled into 100,982 unigenes and 59,509 unigenes were annotated. We focused on the expression profiles of the key genes related to the oil metabolisms and hormone regulations during seed germination. Our data indicated the endogenous ABA of seeds was rich. The effects that the exogenous GAs promoted germination were apparent in the secong day of germination. Especially, for the first time our results indicated the exogenous GAs lowered the aerobic metabolism including the oil metabolisms during imbibition. We inferred that the exogenous GAs had inhibitory effects on the oil metabolisms to avoide oxidative damages to the imbibed seeds, and the seed shell played the role similiar to the exogenous GAs in the initial stage of germination in the natural conditions.
Collapse
Affiliation(s)
- Jikang Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Tao Zhou
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jian Rong
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Hao Jia
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM88130, USA
| |
Collapse
|
43
|
Tsuzuki M, Motomura K, Kumakura N, Takeda A. Interconnections between mRNA degradation and RDR-dependent siRNA production in mRNA turnover in plants. JOURNAL OF PLANT RESEARCH 2017; 130:211-226. [PMID: 28197782 DOI: 10.1007/s10265-017-0906-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Accumulation of an mRNA species is determined by the balance between the synthesis and the degradation of the mRNA. Individual mRNA molecules are selectively and actively degraded through RNA degradation pathways, which include 5'-3' mRNA degradation pathway, 3'-5' mRNA degradation pathway, and RNA-dependent RNA polymerase-mediated mRNA degradation pathway. Recent studies have revealed that these RNA degradation pathways compete with each other in mRNA turnover in plants and that plants have a hidden layer of non-coding small-interfering RNA production from a set of mRNAs. In this review, we summarize the current information about plant mRNA degradation pathways in mRNA turnover and discuss the potential roles of a novel class of the endogenous siRNAs derived from plant mRNAs.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kazuki Motomura
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Naoyoshi Kumakura
- Center for Sustainable Resource Science, RIKEN, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Takeda
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| |
Collapse
|
44
|
Zhang X, Guo H. mRNA decay in plants: both quantity and quality matter. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:138-144. [PMID: 28011423 DOI: 10.1016/j.pbi.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
In eukaryotes, degradation of messenger RNAs (mRNAs) is required for both mRNA quantity and quality control. Fine-tuning of the abundance of mRNAs that are to be translated can be achieved through a deadenylation-mediated RNA decay pathway involving progressive removal of poly(A) tails, decapping and exoribonuclease digestion. While the classical view assumes that mRNAs are degraded only after their exit from protein translation, recent studies have revealed mRNA decay can occur during translation in plants. Those mRNAs that have structural or functional defects can be filtered by translation-dependent RNA quality control pathways and rapidly degraded, so that translation fidelity is preserved. In addition, aberrant transcripts can also be efficiently eliminated through bidirectional RNA decay pathways. In the absence of those pathways, accumulation of those aberrant transcripts evokes the activation of RNA silencing, with detrimental consequences.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
45
|
Mäkinen K, Lõhmus A, Pollari M. Plant RNA Regulatory Network and RNA Granules in Virus Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:2093. [PMID: 29312371 PMCID: PMC5732267 DOI: 10.3389/fpls.2017.02093] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/24/2017] [Indexed: 05/18/2023]
Abstract
Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual components contribute to these processes. In this review we discuss the roles of cellular RNA regulatory mechanisms and RNA granules in plant virus infection in the light of current knowledge and compare the findings to those made in animal virus studies.
Collapse
|
46
|
Wong MM, Chong GL, Verslues PE. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol Biol 2017; 1631:3-21. [PMID: 28735388 DOI: 10.1007/978-1-4939-7136-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
47
|
Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc Natl Acad Sci U S A 2016; 113:E7846-E7855. [PMID: 27856735 DOI: 10.1073/pnas.1608827113] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Seed dormancy is one of the most crucial process transitions in a plant's life cycle. Its timing is tightly controlled by the expression level of the Delay of Germination 1 gene (DOG1). DOG1 is the major quantitative trait locus for seed dormancy in Arabidopsis and has been shown to control dormancy in many other plant species. This is reflected by the evolutionary conservation of the functional short alternatively polyadenylated form of the DOG1 mRNA. Notably, the 3' region of DOG1, including the last exon that is not included in this transcript isoform, shows a high level of conservation at the DNA level, but the encoded polypeptide is poorly conserved. Here, we demonstrate that this region of DOG1 contains a promoter for the transcription of a noncoding antisense RNA, asDOG1, that is 5' capped, polyadenylated, and relatively stable. This promoter is autonomous and asDOG1 has an expression profile that is different from known DOG1 transcripts. Using several approaches we show that asDOG1 strongly suppresses DOG1 expression during seed maturation in cis, but is unable to do so in trans Therefore, the negative regulation of seed dormancy by asDOG1 in cis results in allele-specific suppression of DOG1 expression and promotes germination. Given the evolutionary conservation of the asDOG1 promoter, we propose that this cis-constrained noncoding RNA-mediated mechanism limiting the duration of seed dormancy functions across the Brassicaceae.
Collapse
|
48
|
Kawa D, Testerink C. Regulation of mRNA decay in plant responses to salt and osmotic stress. Cell Mol Life Sci 2016; 74:1165-1176. [PMID: 27677492 PMCID: PMC5346435 DOI: 10.1007/s00018-016-2376-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
Plant acclimation to environmental stresses requires fast signaling to initiate changes in developmental and metabolic responses. Regulation of gene expression by transcription factors and protein kinases acting upstream are important elements of responses to salt and drought. Gene expression can be also controlled at the post-transcriptional level. Recent analyses on mutants in mRNA metabolism factors suggest their contribution to stress signaling. Here we highlight the components of mRNA decay pathways that contribute to responses to osmotic and salt stress. We hypothesize that phosphorylation state of proteins involved in mRNA decapping affect their substrate specificity.
Collapse
Affiliation(s)
- Dorota Kawa
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Elvira-Matelot E, Bardou F, Ariel F, Jauvion V, Bouteiller N, Le Masson I, Cao J, Crespi MD, Vaucheret H. The Nuclear Ribonucleoprotein SmD1 Interplays with Splicing, RNA Quality Control, and Posttranscriptional Gene Silencing in Arabidopsis. THE PLANT CELL 2016; 28:426-38. [PMID: 26842463 PMCID: PMC4790881 DOI: 10.1105/tpc.15.01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
RNA quality control (RQC) eliminates aberrant RNAs based on their atypical structure, whereas posttranscriptional gene silencing (PTGS) eliminates both aberrant and functional RNAs through the sequence-specific action of short interfering RNAs (siRNAs). The Arabidopsis thaliana mutant smd1b was identified in a genetic screen for PTGS deficiency, revealing the involvement of SmD1, a component of the Smith (Sm) complex, in PTGS. The smd1a and smd1b single mutants are viable, but the smd1a smd1b double mutant is embryo-lethal, indicating that SmD1 function is essential. SmD1b resides in nucleoli and nucleoplasmic speckles, colocalizing with the splicing-related factor SR34. Consistent with this, the smd1b mutant exhibits intron retention at certain endogenous mRNAs. SmD1 binds to RNAs transcribed from silenced transgenes but not nonsilenced ones, indicating a direct role in PTGS. Yet, mutations in the RQC factors UPFRAMESHIFT3, EXORIBONUCLEASE2 (XRN2), XRN3, and XRN4 restore PTGS in smd1b, indicating that SmD1 is not essential for but rather facilitates PTGS. Moreover, the smd1b mtr4 double mutant is embryo-lethal, suggesting that SmD1 is essential for mRNA TRANSPORT REGULATOR4-dependent RQC. These results indicate that SmD1 interplays with splicing, RQC, and PTGS. We propose that SmD1 facilitates PTGS by protecting transgene-derived aberrant RNAs from degradation by RQC in the nucleus, allowing sufficient amounts to enter cytoplasmic siRNA bodies to activate PTGS.
Collapse
Affiliation(s)
- Emilie Elvira-Matelot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Florian Bardou
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405 Orsay, France
| | - Federico Ariel
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405 Orsay, France
| | - Vincent Jauvion
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Ivan Le Masson
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Jun Cao
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Martin D Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405 Orsay, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France
| |
Collapse
|
50
|
Cyrek M, Fedak H, Ciesielski A, Guo Y, Sliwa A, Brzezniak L, Krzyczmonik K, Pietras Z, Kaczanowski S, Liu F, Swiezewski S. Seed Dormancy in Arabidopsis Is Controlled by Alternative Polyadenylation of DOG1. PLANT PHYSIOLOGY 2016; 170:947-55. [PMID: 26620523 PMCID: PMC4734566 DOI: 10.1104/pp.15.01483] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/25/2015] [Indexed: 05/19/2023]
Abstract
DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript.
Collapse
Affiliation(s)
- Malgorzata Cyrek
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Halina Fedak
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Arkadiusz Ciesielski
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Yanwu Guo
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Aleksandra Sliwa
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Lien Brzezniak
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Katarzyna Krzyczmonik
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Zbigniew Pietras
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Fuquan Liu
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| |
Collapse
|