1
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
2
|
Al Khatib I, Deng J, Lei Y, Torres-Odio S, Rojas GR, Newman LE, Chung BK, Symes A, Zhang H, Huang SYN, Pommier Y, Khan A, Shadel GS, West AP, Gibson WT, Shutt TE. Activation of the cGAS-STING innate immune response in cells with deficient mitochondrial topoisomerase TOP1MT. Hum Mol Genet 2023; 32:2422-2440. [PMID: 37129502 PMCID: PMC10360396 DOI: 10.1093/hmg/ddad062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.
Collapse
Affiliation(s)
- Iman Al Khatib
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jingti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Gladys R Rojas
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laura E Newman
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brian K Chung
- Norwegian PSC Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andrew Symes
- Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shar-yin N Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aneal Khan
- Discovery DNA, Calgary, Alberta T2L 1Y8, Canada
- M.A.G.I.C. Clinic Ltd. (Metabolics and Genetics in Calgary)
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta T2M OL6, Canada
| | - Gerald S Shadel
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - William T Gibson
- Department of Medical Genetics, Faculty of Medicine, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
3
|
Rubalcava-Gracia D, García-Villegas R, Larsson NG. No role for nuclear transcription regulators in mammalian mitochondria? Mol Cell 2023; 83:832-842. [PMID: 36182692 DOI: 10.1016/j.molcel.2022.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Although the mammalian mtDNA transcription machinery is simple and resembles bacteriophage systems, there are many reports that nuclear transcription regulators, as exemplified by MEF2D, MOF, PGC-1α, and hormone receptors, are imported into mammalian mitochondria and directly interact with the mtDNA transcription machinery. However, the supporting experimental evidence for this concept is open to alternate interpretations, and a main issue is the difficulty in distinguishing indirect regulation of mtDNA transcription, caused by altered nuclear gene expression, from direct intramitochondrial effects. We provide a critical discussion and experimental guidelines to stringently assess roles of intramitochondrial factors implicated in direct regulation of mammalian mtDNA transcription.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rodolfo García-Villegas
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Lamanilao GG, Dogan M, Patel PS, Azim S, Patel DS, Bhattacharya SK, Eason JD, Kuscu C, Kuscu C, Bajwa A. Key hepatoprotective roles of mitochondria in liver regeneration. Am J Physiol Gastrointest Liver Physiol 2023; 324:G207-G218. [PMID: 36648139 PMCID: PMC9988520 DOI: 10.1152/ajpgi.00220.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Treatment of advanced liver disease using surgical modalities is possible due to the liver's innate ability to regenerate following resection. Several key cellular events in the regenerative process converge at the mitochondria, implicating their crucial roles in liver regeneration. Mitochondria enable the regenerating liver to meet massive metabolic demands by coordinating energy production to drive cellular proliferative processes and vital homeostatic functions. Mitochondria are also involved in terminating the regenerative process by mediating apoptosis. Studies have shown that attenuation of mitochondrial activity results in delayed liver regeneration, and liver failure following resection is associated with mitochondrial dysfunction. Emerging mitochondria therapy (i.e., mitotherapy) strategies involve isolating healthy donor mitochondria for transplantation into diseased organs to promote regeneration. This review highlights mitochondria's inherent role in liver regeneration.
Collapse
Affiliation(s)
- Gene G Lamanilao
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Murat Dogan
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Prisha S Patel
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Shafquat Azim
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Disha S Patel
- Department of Legal Studies, Belmont University, Nashville, Tennessee, United States
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James D Eason
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Canan Kuscu
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Cem Kuscu
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Amandeep Bajwa
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
5
|
Menger KE, Chapman J, Díaz-Maldonado H, Khazeem M, Deen D, Erdinc D, Casement JW, Di Leo V, Pyle A, Rodríguez-Luis A, Cowell I, Falkenberg M, Austin C, Nicholls T. Two type I topoisomerases maintain DNA topology in human mitochondria. Nucleic Acids Res 2022; 50:11154-11174. [PMID: 36215039 PMCID: PMC9638942 DOI: 10.1093/nar/gkac857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Genetic processes require the activity of multiple topoisomerases, essential enzymes that remove topological tension and intermolecular linkages in DNA. We have investigated the subcellular localisation and activity of the six human topoisomerases with a view to understanding the topological maintenance of human mitochondrial DNA. Our results indicate that mitochondria contain two topoisomerases, TOP1MT and TOP3A. Using molecular, genomic and biochemical methods we find that both proteins contribute to mtDNA replication, in addition to the decatenation role of TOP3A, and that TOP1MT is stimulated by mtSSB. Loss of TOP3A or TOP1MT also dysregulates mitochondrial gene expression, and both proteins promote transcription elongation in vitro. We find no evidence for TOP2 localisation to mitochondria, and TOP2B knockout does not affect mtDNA maintenance or expression. Our results suggest a division of labour between TOP3A and TOP1MT in mtDNA topology control that is required for the proper maintenance and expression of human mtDNA.
Collapse
Affiliation(s)
- Katja E Menger
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Héctor Díaz-Maldonado
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Mushtaq M Khazeem
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dasha Deen
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Direnis Erdinc
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - John W Casement
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Al Khatib I, Deng J, Symes A, Kerr M, Zhang H, Huang SYN, Pommier Y, Khan A, Shutt TE. Functional characterization of two variants of mitochondrial topoisomerase TOP1MT that impact regulation of the mitochondrial genome. J Biol Chem 2022; 298:102420. [PMID: 36030054 PMCID: PMC9513266 DOI: 10.1016/j.jbc.2022.102420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
TOP1MT encodes a mitochondrial topoisomerase that is important for mtDNA regulation and is involved in mitochondrial replication, transcription, and translation. Two variants predicted to affect TOP1MT function (V1 - R198C and V2 - V338L) were identified by exome sequencing of a newborn with hypertrophic cardiomyopathy. As no pathogenic TOP1MT variants had been confirmed previously, we characterized these variants for their ability to rescue several TOP1MT functions in KO cells. Consistent with these TOP1MT variants contributing to the patient phenotype, our comprehensive characterization suggests that both variants had impaired activity. Critically, we determined neither variant was able to restore steady state levels of mitochondrial-encoded proteins nor to rescue oxidative phosphorylation when re-expressed in TOP1MT KO cells. However, we found the two variants behaved differently in some respects; while the V1 variant was more efficient in restoring transcript levels, the V2 variant showed better rescue of mtDNA copy number and replication. These findings suggest that the different TOP1MT variants affect distinct TOP1MT functions. Altogether, these findings begin to provide insight into the many roles that TOP1MT plays in the maintenance and expression of the mitochondrial genome and how impairments in this important protein may lead to human pathology.
Collapse
Affiliation(s)
- Iman Al Khatib
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jingti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Symes
- Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Shar-Yin Naomi Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Aneal Khan
- Discovery DNA, Calgary, Alberta, Canada; M.A.G.I.C. Clinic Ltd (Metabolics and Genetics in Calgary), Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Carvalho G, Repolês BM, Mendes I, Wanrooij PH. Mitochondrial DNA Instability in Mammalian Cells. Antioxid Redox Signal 2022; 36:885-905. [PMID: 34015960 PMCID: PMC9127837 DOI: 10.1089/ars.2021.0091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Significance: The small, multicopy mitochondrial genome (mitochondrial DNA [mtDNA]) is essential for efficient energy production, as alterations in its coding information or a decrease in its copy number disrupt mitochondrial ATP synthesis. However, the mitochondrial replication machinery encounters numerous challenges that may limit its ability to duplicate this important genome and that jeopardize mtDNA stability, including various lesions in the DNA template, topological stress, and an insufficient nucleotide supply. Recent Advances: An ever-growing array of DNA repair or maintenance factors are being reported to localize to the mitochondria. We review current knowledge regarding the mitochondrial factors that may contribute to the tolerance or repair of various types of changes in the mitochondrial genome, such as base damage, incorporated ribonucleotides, and strand breaks. We also discuss the newly discovered link between mtDNA instability and activation of the innate immune response. Critical Issues: By which mechanisms do mitochondria respond to challenges that threaten mtDNA maintenance? What types of mtDNA damage are repaired, and when are the affected molecules degraded instead? And, finally, which forms of mtDNA instability trigger an immune response, and how? Future Directions: Further work is required to understand the contribution of the DNA repair and damage-tolerance factors present in the mitochondrial compartment, as well as the balance between mtDNA repair and degradation. Finally, efforts to understand the events underlying mtDNA release into the cytosol are warranted. Pursuing these and many related avenues can improve our understanding of what goes wrong in mitochondrial disease. Antioxid. Redox Signal. 36, 885-905.
Collapse
Affiliation(s)
- Gustavo Carvalho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Bruno Marçal Repolês
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Isabela Mendes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Paulina H. Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline. Hum Genome Var 2022; 9:10. [PMID: 35422034 PMCID: PMC9010413 DOI: 10.1038/s41439-022-00188-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023] Open
Abstract
CAG-expanded ATXN7 has been previously defined in the pathogenesis of spinocerebellar ataxia type 7 (SCA7), a polyglutamine expansion autosomal dominant cerebellar ataxia. Pathology in SCA7 occurs as a result of a CAG triplet repeat expansion in excess of 37 in the first exon of ATXN7, which encodes ataxin-7. SCA7 presents clinically with spinocerebellar ataxia and cone-rod dystrophy. Here, we present a novel spinocerebellar ataxia variant occurring in a patient with mutations in both ATXN7 and TOP1MT, which encodes mitochondrial topoisomerase I (top1mt). Using machine-guided, unbiased microscopy image analysis, we demonstrate alterations in ataxin-7 subcellular localization, and through high-fidelity measurements of cellular respiration, bioenergetic defects in association with top1mt mutations. We identify ataxin-7 Q35P and top1mt R111W as deleterious mutations, potentially contributing to disease states. We recapitulate our mutations through Drosophila genetic models. Our work provides important insight into the cellular biology of ataxin-7 and top1mt and offers insight into the pathogenesis of spinocerebellar ataxia applicable to multiple subtypes of the illness. Moreover, our study demonstrates an effective pipeline for the characterization of previously unreported genetic variants at the level of cell biology.
Collapse
|
9
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
10
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
11
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
12
|
Potential targets for intervention against doxorubicin-induced cardiotoxicity based on genetic studies: a systematic review of the literature. J Mol Cell Cardiol 2020; 138:88-98. [DOI: 10.1016/j.yjmcc.2019.11.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
|
13
|
Mishmar D, Levin R, Naeem MM, Sondheimer N. Higher Order Organization of the mtDNA: Beyond Mitochondrial Transcription Factor A. Front Genet 2019; 10:1285. [PMID: 31998357 PMCID: PMC6961661 DOI: 10.3389/fgene.2019.01285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023] Open
Abstract
The higher order organization of eukaryotic and prokaryotic genomes is pivotal in the regulation of gene expression. Specifically, chromatin accessibility in eukaryotes and nucleoid accessibility in bacteria are regulated by a cohort of proteins to alter gene expression in response to diverse physiological conditions. By contrast, prior studies have suggested that the mitochondrial genome (mtDNA) is coated solely by mitochondrial transcription factor A (TFAM), whose increased cellular concentration was proposed to be the major determinant of mtDNA packaging in the mitochondrial nucleoid. Nevertheless, recent analysis of DNase-seq and ATAC-seq experiments from multiple human and mouse samples suggest gradual increase in mtDNA occupancy during the course of embryonic development to generate a conserved footprinting pattern which correlate with sites that have low TFAM occupancy in vivo (ChIP-seq) and tend to adopt G-quadruplex structures. These findings, along with recent identification of mtDNA binding by known modulators of chromatin accessibility such as MOF, suggest that mtDNA higher order organization is generated by cross talk with the nuclear regulatory system, may have a role in mtDNA regulation, and is more complex than once thought.
Collapse
Affiliation(s)
- Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rotem Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mansur M Naeem
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| | - Neal Sondheimer
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Baechler SA, Dalla Rosa I, Spinazzola A, Pommier Y. Beyond the unwinding: role of TOP1MT in mitochondrial translation. Cell Cycle 2019; 18:2377-2384. [PMID: 31345095 DOI: 10.1080/15384101.2019.1646563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria contain their own genome (mtDNA), encoding 13 proteins of the enzyme complexes of the oxidative phosphorylation. Synthesis of these 13 mitochondrial proteins requires a specific translation machinery, the mitoribosomes whose RNA components are encoded by the mtDNA, whereas more than 80 proteins are encoded by nuclear genes. It has been well established that mitochondrial topoisomerase I (TOP1MT) is important for mtDNA integrity and mitochondrial transcription as it prevents excessive mtDNA negative supercoiling and releases topological stress during mtDNA replication and transcription. We recently showed that TOP1MT also supports mitochondrial protein synthesis, and thus is critical for promoting tumor growth. Impaired mitochondrial protein synthesis leads to activation of the mitonuclear stress response through the transcription factor ATF4, and induces cytoprotective genes in order to prevent mitochondrial and cellular dysfunction. In this perspective, we highlight the novel role of TOP1MT in mitochondrial protein synthesis and as potential target for chemotherapy.
Collapse
Affiliation(s)
- Simone A Baechler
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology , London , UK
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology , London , UK
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
15
|
Twist and Turn-Topoisomerase Functions in Mitochondrial DNA Maintenance. Int J Mol Sci 2019; 20:ijms20082041. [PMID: 31027213 PMCID: PMC6514783 DOI: 10.3390/ijms20082041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Like any genome, mitochondrial DNA (mtDNA) also requires the action of topoisomerases to resolve topological problems in its maintenance, but for a long time, little was known about mitochondrial topoisomerases. The last years have brought a closer insight into the function of these fascinating enzymes in mtDNA topology regulation, replication, transcription, and segregation. Here, we summarize the current knowledge about mitochondrial topoisomerases, paying special attention to mammalian mitochondrial genome maintenance. We also discuss the open gaps in the existing knowledge of mtDNA topology control and the potential involvement of mitochondrial topoisomerases in human pathologies. While Top1mt, the only exclusively mitochondrial topoisomerase in mammals, has been studied intensively for nearly a decade, only recent studies have shed some light onto the mitochondrial function of Top2β and Top3α, enzymes that are shared between nucleus and mitochondria. Top3α mediates the segregation of freshly replicated mtDNA molecules, and its dysfunction leads to mtDNA aggregation and copy number depletion in patients. Top2β, in contrast, regulates mitochondrial DNA replication and transcription through the alteration of mtDNA topology, a fact that should be acknowledged due to the frequent use of Topoisomerase 2 inhibitors in medical therapy.
Collapse
|
16
|
Hangas A, Aasumets K, Kekäläinen NJ, Paloheinä M, Pohjoismäki JL, Gerhold JM, Goffart S. Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of Topoisomerase 2. Nucleic Acids Res 2018; 46:9625-9636. [PMID: 30169847 PMCID: PMC6182158 DOI: 10.1093/nar/gky793] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022] Open
Abstract
Maintenance of topological homeostasis is vital for gene expression and genome replication in all organisms. Similar to other circular genomes, also mitochondrial DNA (mtDNA) is known to exist in various different topological forms, although their functional significance remains unknown. We report here that both known type II topoisomerases Top2α and Top2β are present in mammalian mitochondria, with especially Top2β regulating the supercoiling state of mtDNA. Loss of Top2β or its inhibition by ciprofloxacin results in accumulation of positively supercoiled mtDNA, followed by cessation of mitochondrial transcription and replication initiation, causing depletion of mtDNA copy number. These mitochondrial effects block both cell proliferation and differentiation, possibly explaining some of the side effects associated with fluoroquinolone antibiotics. Our results show for the first time the importance of topology for maintenance of mtDNA homeostasis and provide novel insight into the mitochondrial effects of fluoroquinolones.
Collapse
Affiliation(s)
- Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Koit Aasumets
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Nina J Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Mika Paloheinä
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Jaakko L Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Joachim M Gerhold
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
17
|
Huang SYN, Dalla Rosa I, Michaels SA, Tulumello DV, Agama K, Khiati S, Jean SR, Baechler SA, Factor VM, Varma S, Murai J, Miller Jenkins LM, Kelley SO, Pommier Y. Mitochondrial tyrosyl-DNA phosphodiesterase 2 and its TDP2 S short isoform. EMBO Rep 2018; 19:embr.201642139. [PMID: 29438979 DOI: 10.15252/embr.201642139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/04/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs abortive topoisomerase II cleavage complexes. Here, we identify a novel short isoform of TDP2 (TDP2S) expressed from an alternative transcription start site. TDP2S contains a mitochondrial targeting sequence, contributing to its enrichment in the mitochondria and cytosol, while full-length TDP2 contains a nuclear localization signal and the ubiquitin-associated domain in the N-terminus. Our study reveals that both TDP2 isoforms are present and active in the mitochondria. Comparison of isogenic wild-type (WT) and TDP2 knockout (TDP2-/-/-) DT40 cells shows that TDP2-/-/- cells are hypersensitive to mitochondrial-targeted doxorubicin (mtDox), and that complementing TDP2-/-/- cells with human TDP2 restores resistance to mtDox. Furthermore, mtDox selectively depletes mitochondrial DNA in TDP2-/-/- cells. Using CRISPR-engineered human cells expressing only the TDP2S isoform, we show that TDP2S also protects human cells against mtDox. Finally, lack of TDP2 in the mitochondria reduces the mitochondria transcription levels in two different human cell lines. In addition to identifying a novel TDP2S isoform, our report demonstrates the presence and importance of both TDP2 isoforms in the mitochondria.
Collapse
Affiliation(s)
- Shar-Yin N Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ilaria Dalla Rosa
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie A Michaels
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - David V Tulumello
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Salim Khiati
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sae Rin Jean
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Simone A Baechler
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sudhir Varma
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Junko Murai
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
18
|
Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J 2018; 475:373-398. [PMID: 29363591 PMCID: PMC6110615 DOI: 10.1042/bcj20160583] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.
Collapse
Affiliation(s)
- Justine L Delgado
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, U.S.A
| | - Chao-Ming Hsieh
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, U.S.A.
| |
Collapse
|
19
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
20
|
Dalla Rosa I, Zhang H, Khiati S, Wu X, Pommier Y. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription. J Biol Chem 2017; 292:20162-20172. [PMID: 29021209 DOI: 10.1074/jbc.m117.815241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/01/2017] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.
Collapse
Affiliation(s)
- Ilaria Dalla Rosa
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Salim Khiati
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Xiaolin Wu
- Laboratory of Molecular Technology, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
21
|
Zollo O, Sondheimer N. Topological requirements of the mitochondrial heavy-strand promoters. Transcription 2017; 8:307-312. [PMID: 28841355 DOI: 10.1080/21541264.2017.1331156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In vitro studies of mitochondrial transcription often use linear templates that fail to replicate key features of transcription on a circular genome. We developed a plasmid-based system for the analysis of heavy-strand promoters that recapitulates key features of native mtDNA to study topological and protein requirements of promoter activation. The heavy-strand promoters (HSP1 and HSP2) are simultaneously active on a circular template. HSP2 requires supercoiling for maximal activation. Increasing TFAM concentrations suppress HSP2 at levels that result in HSP1 stimulation. This study shows distinct modes of promoter activation, providing opportunities for the regulation of mitochondrial gene expression by promoter selection.
Collapse
|
22
|
Chiang SC, Meagher M, Kassouf N, Hafezparast M, McKinnon PJ, Haywood R, El-Khamisy SF. Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical-induced DNA damage. SCIENCE ADVANCES 2017; 3:e1602506. [PMID: 28508041 PMCID: PMC5409496 DOI: 10.1126/sciadv.1602506] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/02/2017] [Indexed: 05/06/2023]
Abstract
Breakage of one strand of DNA is the most common form of DNA damage. Most damaged DNA termini require end-processing in preparation for ligation. The importance of this step is highlighted by the association of defects in the 3'-end processing enzyme tyrosyl DNA phosphodiesterase 1 (TDP1) and neurodegeneration and by the cytotoxic induction of protein-linked DNA breaks (PDBs) and oxidized nucleic acid intermediates during chemotherapy and radiotherapy. Although much is known about the repair of PDBs in the nucleus, little is known about this process in the mitochondria. We reveal that TDP1 resolves mitochondrial PDBs (mtPDBs), thereby promoting mitochondrial gene transcription. Overexpression of a toxic form of mitochondrial topoisomerase I (TOP1mt*), which generates excessive mtPDBs, results in a TDP1-dependent compensatory up-regulation of mitochondrial gene transcription. In the absence of TDP1, the imbalance in transcription of mitochondrial- and nuclear-encoded electron transport chain (ETC) subunits results in misassembly of ETC complex III. Bioenergetics profiling further reveals that TDP1 promotes oxidative phosphorylation under both basal and high energy demands. It is known that mitochondrial dysfunction results in free radical leakage and nuclear DNA damage; however, the detection of intermediates of radical damage to DNA is yet to be shown. Consequently, we report an increased accumulation of carbon-centered radicals in cells lacking TDP1, using electron spin resonance spectroscopy. Overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) reduces carbon-centered adducts and protects TDP1-deficient cells from oxidative stress. Conversely, overexpression of the amyotrophic lateral sclerosis-associated mutant SOD1G93A leads to marked sensitivity. Whereas Tdp1 knockout mice develop normally, overexpression of SOD1G93A suggests early embryonic lethality. Together, our data show that TDP1 resolves mtPDBs, thereby regulating mitochondrial gene transcription and oxygen consumption by oxidative phosphorylation, thus conferring cellular protection against reactive oxygen species-induced damage.
Collapse
Affiliation(s)
- Shih-Chieh Chiang
- Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN Sheffield, U.K
| | - Martin Meagher
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Nick Kassouf
- RAFT Institute, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, U.K
| | - Majid Hafezparast
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K
| | - Peter J. McKinnon
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105–3678, USA
| | - Rachel Haywood
- RAFT Institute, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, U.K
| | - Sherif F. El-Khamisy
- Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN Sheffield, U.K
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12588, Egypt
| |
Collapse
|
23
|
Abstract
Mammalian mitochondrial DNA (mtDNA) encodes 13 proteins that are essential for the function of the oxidative phosphorylation system, which is composed of four respiratory-chain complexes and adenosine triphosphate (ATP) synthase. Remarkably, the maintenance and expression of mtDNA depend on the mitochondrial import of hundreds of nuclear-encoded proteins that control genome maintenance, replication, transcription, RNA maturation, and mitochondrial translation. The importance of this complex regulatory system is underscored by the identification of numerous mutations of nuclear genes that impair mtDNA maintenance and expression at different levels, causing human mitochondrial diseases with pleiotropic clinical manifestations. The basic scientific understanding of the mechanisms controlling mtDNA function has progressed considerably during the past few years, thanks to advances in biochemistry, genetics, and structural biology. The challenges for the future will be to understand how mtDNA maintenance and expression are regulated and to what extent direct intramitochondrial cross talk between different processes, such as transcription and translation, is important.
Collapse
Affiliation(s)
- Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden; ,
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden; ,
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; .,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
24
|
Abstract
Genes in mitochondria and chloroplasts are co-located with their gene products to permit regulation of trans-membrane electron transport at the energetic boundary of the cell.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Human Mitochondrial DNA-Protein Complexes Attach to a Cholesterol-Rich Membrane Structure. Sci Rep 2015; 5:15292. [PMID: 26478270 PMCID: PMC4609938 DOI: 10.1038/srep15292] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/22/2015] [Indexed: 01/05/2023] Open
Abstract
The helicase Twinkle is indispensable for mtDNA replication in nucleoids. Previously, we showed that Twinkle is tightly membrane-associated even in the absence of mtDNA, which suggests that Twinkle is part of a membrane-attached replication platform. Here we show that this platform is a cholesterol-rich membrane structure. We fractionated mitochondrial membrane preparations on flotation gradients and show that membrane-associated nucleoids accumulate at the top of the gradient. This fraction was shown to be highly enriched in cholesterol, a lipid that is otherwise low abundant in mitochondria. In contrast, more common mitochondrial lipids, and abundant inner-membrane associated proteins concentrated in the bottom-half of these gradients. Gene silencing of ATAD3, a protein with proposed functions related to nucleoid and mitochondrial cholesterol homeostasis, modified the distribution of cholesterol and nucleoids in the gradient in an identical fashion. Both cholesterol and ATAD3 were previously shown to be enriched in ER-mitochondrial junctions, and we detect nucleoid components in biochemical isolates of these structures. Our data suggest an uncommon membrane composition that accommodates platforms for replicating mtDNA, and reconcile apparently disparate functions of ATAD3. We suggest that mtDNA replication platforms are organized in connection with ER-mitochondrial junctions, facilitated by a specialized membrane architecture involving mitochondrial cholesterol.
Collapse
|
26
|
Lack of mitochondrial topoisomerase I (TOP1mt) impairs liver regeneration. Proc Natl Acad Sci U S A 2015; 112:11282-7. [PMID: 26305952 DOI: 10.1073/pnas.1511016112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The liver has an exceptional replicative capacity following partial hepatectomy or chemical injuries. Cellular proliferation requires increased production of energy and essential metabolites, which critically depend on the mitochondria. To determine whether Top1mt, the vertebrate mitochondrial topoisomerase, is involved in this process, we studied liver regeneration after carbon tetrachloride (CCl4) administration. TOP1mt knockout (KO) mice showed a marked reduction in regeneration and hepatocyte proliferation. The hepatic mitochondrial DNA (mtDNA) failed to increase during recovery from CCl4 exposure. Reduced glutathione was also depleted, indicating increased reactive oxygen species (ROS). Steady-state levels of ATP, O2 consumption, mtDNA, and mitochondrial mass were also reduced in primary hepatocytes from CCl4-treated KO mice. To further test whether Top1mt acted by enabling mtDNA regeneration, we tested TOP1mt KO fibroblasts and human colon carcinoma HCT116 cells and measured mtDNA after 3-d treatment with ethidium bromide. Both types of TOP1mt knockout cells showed defective mtDNA regeneration following mtDNA depletion. Our study demonstrates that Top1mt is required for normal mtDNA homeostasis and for linking mtDNA expansion with hepatocyte proliferation.
Collapse
|
27
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
28
|
Anticancer properties of lamellarins. Mar Drugs 2015; 13:1105-23. [PMID: 25706633 PMCID: PMC4377975 DOI: 10.3390/md13031105] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/24/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.
Collapse
|
29
|
Nitiss KC, Nitiss JL. Twisting and ironing: doxorubicin cardiotoxicity by mitochondrial DNA damage. Clin Cancer Res 2014; 20:4737-9. [PMID: 24916696 DOI: 10.1158/1078-0432.ccr-14-0821] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anthracyclines are active clinical agents that have multiple mechanisms of cytotoxicity. Cardiotoxicity by anthracyclines limits the therapeutic potential of these agents, but mechanisms leading to cardiotoxicity remain controversial. Transgenic mice that lack mitochondrial topoisomerase I are hypersensitive to doxorubicin cardiotoxicity, providing support for cardiotoxicity arising from damage of mitochondrial DNA.
Collapse
Affiliation(s)
- Karin C Nitiss
- Biomedical Sciences Department, UIC College of Medicine and Department of Biopharmaceutical Sciences, UIC College of Pharmacy, Rockford, Illinois
| | - John L Nitiss
- Biomedical Sciences Department, UIC College of Medicine and Department of Biopharmaceutical Sciences, UIC College of Pharmacy, Rockford, Illinois.
| |
Collapse
|
30
|
Khiati S, Seol Y, Agama K, Dalla Rosa I, Agrawal S, Fesen K, Zhang H, Neuman KC, Pommier Y. Poisoning of mitochondrial topoisomerase I by lamellarin D. Mol Pharmacol 2014; 86:193-9. [PMID: 24890608 DOI: 10.1124/mol.114.092833] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lamellarin D (Lam-D) is a hexacyclic pyrole alkaloid isolated from marine invertebrates, whose biologic properties have been attributed to mitochondrial targeting. Mitochondria contain their own DNA (mtDNA), and the only specific mitochondrial topoisomerase in vertebrates is mitochondrial topoisomerase I (Top1mt). Here, we show that Top1mt is a direct mitochondrial target of Lam-D. In vitro Lam-D traps Top1mt and induces Top1mt cleavage complexes (Top1mtcc). Using single-molecule analyses, we also show that Lam-D slows down supercoil relaxation of Top1mt and strongly inhibits Top1mt religation in contrast to the inefficacy of camptothecin on Top1mt. In living cells, we show that Lam-D accumulates rapidly inside mitochondria, induces cellular Top1mtcc, and leads to mtDNA damage. This study provides evidence that Top1mt is a direct mitochondrial target of Lam-D and suggests that developing Top1mt inhibitors represents a novel strategy for targeting mitochondrial DNA.
Collapse
Affiliation(s)
- Salim Khiati
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Yeonee Seol
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Ilaria Dalla Rosa
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Surbhi Agrawal
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Katherine Fesen
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Keir C Neuman
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Dalla Rosa I, Huang SYN, Agama K, Khiati S, Zhang H, Pommier Y. Mapping topoisomerase sites in mitochondrial DNA with a poisonous mitochondrial topoisomerase I (Top1mt). J Biol Chem 2014; 289:18595-602. [PMID: 24798329 DOI: 10.1074/jbc.m114.555367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.
Collapse
Affiliation(s)
- Ilaria Dalla Rosa
- From the Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shar-Yin N Huang
- From the Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Keli Agama
- From the Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Salim Khiati
- From the Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hongliang Zhang
- From the Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yves Pommier
- From the Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
32
|
Kalfalah F, Sobek S, Bornholz B, Götz-Rösch C, Tigges J, Fritsche E, Krutmann J, Köhrer K, Deenen R, Ohse S, Boerries M, Busch H, Boege F. Inadequate mito-biogenesis in primary dermal fibroblasts from old humans is associated with impairment of PGC1A-independent stimulation. Exp Gerontol 2014; 56:59-68. [PMID: 24699405 DOI: 10.1016/j.exger.2014.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/15/2014] [Accepted: 03/22/2014] [Indexed: 01/17/2023]
Abstract
Extrinsic skin ageing converges on the dermis, a post-mitotic tissue compartment consisting of extracellular matrix and long-lived fibroblasts prone to damage accumulation and maladaptation. Aged human fibroblasts exhibit mitochondrial and nuclear dysfunctions, which may be a cause or consequence of ageing. We report on a systematic study of human dermal fibroblasts retrieved from female donors aged 20-67 years and analysed ex vivo at low population doubling precluding replicative senescence. According to gene set enrichment analysis of genome wide array data, the most prominent age-associated change of the transcriptome was decreased expression of mitochondrial genes. Consistent with that, mitochondrial content and cell proliferation declined with donor age. This was associated with upregulation of AMP-dependent protein kinase (AMPK), increased mRNA levels of PPARγ-coactivator 1α (PGC1A) and decreased levels of NAD(+)-dependent deacetylase sirtuin 1. In the old cells the PGC1A-mediated mito-biogenetic response to direct AMPK-stimulation by AICAR was undiminished, while the PGC1A-independent mito-biogenetic response to starvation was attenuated and accompanied by increased ROS-production. In summary, these observations suggest an age-associated decline in PGC1A-independent mito-biogenesis, which is insufficiently compensated by upregulation of the AMPK/PGC1A-axis leading under baseline conditions to decreased mitochondrial content and reductive overload of residual respiratory capacity.
Collapse
Affiliation(s)
- Faiza Kalfalah
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany
| | - Stefan Sobek
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany
| | - Beatrice Bornholz
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany
| | - Christine Götz-Rösch
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Julia Tigges
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Jean Krutmann
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - René Deenen
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Ohse
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany; Freiburg Institute for Advanced Studies - FRIAS, Albert-Ludwigs-University, Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Freiburg Institute for Advanced Studies - FRIAS, Albert-Ludwigs-University, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Freiburg Institute for Advanced Studies - FRIAS, Albert-Ludwigs-University, Freiburg, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany.
| |
Collapse
|