1
|
Das M, Hile SE, Brewster J, Boer JL, Bezalel-Buch R, Guo Q, Yang W, Burgers PM, Eckert KA, Freudenreich CH. DNA polymerase zeta can efficiently replicate structures formed by AT/TA repeat sequences and prevent their deletion. Nucleic Acids Res 2024:gkae1254. [PMID: 39727171 DOI: 10.1093/nar/gkae1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence. DNA polymerase eta is not protective for deletions at AT-rich structures, while DNA polymerase delta is protective, but not in a repeat-specific manner. Using purified replicative holoenzymes in vitro, we show that hairpin structures are most inhibitory to yeast DNA polymerase epsilon, whereas yeast and human Pol ζ efficiently synthesize these regions in a stepwise manner. A requirement for the Rev1 protein and the modifiable lysine 164 of proliferating cell nuclear antigen to prevent deletions at AT/TA repeats suggests a mechanism for Pol ζ recruitment. Our results reveal a novel role for Pol ζ in replicating through AT-rich hairpins and suggest a role for Pol ζ in rescue of stalled replication forks caused by DNA structures.
Collapse
Affiliation(s)
- Mili Das
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Suzanne E Hile
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Jennifer Brewster
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Jan Leendert Boer
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Qiong Guo
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Wei Yang
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
2
|
Bennett L, Vernon E, Thanendran V, Jones C, Gamble A, Staples C. MRNIP limits ssDNA gaps during replication stress. Nucleic Acids Res 2024; 52:8320-8331. [PMID: 38917325 PMCID: PMC11317133 DOI: 10.1093/nar/gkae546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Replication repriming by the specialized primase-polymerase PRIMPOL ensures the continuity of DNA synthesis during replication stress. PRIMPOL activity generates residual post-replicative single-stranded nascent DNA gaps, which are linked with mutagenesis and chemosensitivity in BRCA1/2-deficient models, and which are suppressed by replication fork reversal mediated by the DNA translocases SMARCAL1 and ZRANB3. Here, we report that the MRE11 regulator MRNIP limits the prevalence of PRIMPOL and MRE11-dependent ssDNA gaps in cells in which fork reversal is perturbed either by treatment with the PARP inhibitor Olaparib, or by depletion of SMARCAL1 or ZRANB3. MRNIP-deficient cells are sensitive to PARP inhibition and accumulate PRIMPOL-dependent DNA damage, supportive of a pro-survival role for MRNIP linked to the regulation of gap prevalence. In MRNIP-deficient cells, post-replicative gap filling is driven in S-phase by UBC13-mediated template switching involving REV1 and the TLS polymerase Pol-ζ. Our findings represent the first report of modulation of post-replicative ssDNA gap dynamics by a direct MRE11 regulator.
Collapse
Affiliation(s)
- Laura G Bennett
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Ellen G Vernon
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Vithursha Thanendran
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Caryl M Jones
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Amelia Gamble
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Christopher J Staples
- North West Cancer Research Institute, North Wales Medical School, Bangor, Gwynedd, Wales LL57 2UW, UK
| |
Collapse
|
3
|
Khodaverdian V, Sano T, Maggs LR, Tomarchio G, Dias A, Tran M, Clairmont C, McVey M. REV1 coordinates a multi-faceted tolerance response to DNA alkylation damage and prevents chromosome shattering in Drosophila melanogaster. PLoS Genet 2024; 20:e1011181. [PMID: 39074150 PMCID: PMC11309488 DOI: 10.1371/journal.pgen.1011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
When replication forks encounter damaged DNA, cells utilize damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses in Drosophila melanogaster. We report that tolerance of DNA alkylation damage in rapidly dividing larval tissues depends heavily on translesion synthesis. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av (Drosophila γ-H2AX) foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
Collapse
Affiliation(s)
- Varandt Khodaverdian
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Tokio Sano
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lara R. Maggs
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Gina Tomarchio
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Ana Dias
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mai Tran
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Connor Clairmont
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
4
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
5
|
Khodaverdian V, Sano T, Maggs L, Tomarchio G, Dias A, Clairmont C, Tran M, McVey M. REV1 Coordinates a Multi-Faceted Tolerance Response to DNA Alkylation Damage and Prevents Chromosome Shattering in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580051. [PMID: 38405884 PMCID: PMC10888836 DOI: 10.1101/2024.02.13.580051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When replication forks encounter damaged DNA, cells utilize DNA damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses following alkylation damage in Drosophila melanogaster. We report that translesion synthesis, rather than template switching, is the preferred response to alkylation-induced damage in diploid larval tissues. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Drosophila larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
Collapse
Affiliation(s)
- Varandt Khodaverdian
- Department of Biology, Tufts University, Medford, MA 02155
- Current address: Yarrow Biotechnology, New York, NY
| | - Tokio Sano
- Department of Biology, Tufts University, Medford, MA 02155
| | - Lara Maggs
- Department of Biology, Tufts University, Medford, MA 02155
| | - Gina Tomarchio
- Current address: Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ana Dias
- Department of Biology, Tufts University, Medford, MA 02155
| | - Connor Clairmont
- Department of Biology, Tufts University, Medford, MA 02155
- Current address: Vertex Pharmaceuticals, Boston, MA
| | - Mai Tran
- Department of Biology, Tufts University, Medford, MA 02155
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA 02155
| |
Collapse
|
6
|
Shumega AR, Pavlov YI, Chirinskaite AV, Rubel AA, Inge-Vechtomov SG, Stepchenkova EI. CRISPR/Cas9 as a Mutagenic Factor. Int J Mol Sci 2024; 25:823. [PMID: 38255897 PMCID: PMC10815272 DOI: 10.3390/ijms25020823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of the CRISPR/Cas9 microbial adaptive immune system has revolutionized the field of genetics, by greatly enhancing the capacity for genome editing. CRISPR/Cas9-based editing starts with DNA breaks (or other lesions) predominantly at target sites and, unfortunately, at off-target genome sites. DNA repair systems differing in accuracy participate in establishing desired genetic changes but also introduce unwanted mutations, that may lead to hereditary, oncological, and other diseases. New approaches to alleviate the risks associated with genome editing include attenuating the off-target activity of editing complex through the use of modified forms of Cas9 nuclease and single guide RNA (sgRNA), improving delivery methods for sgRNA/Cas9 complex, and directing DNA lesions caused by the sgRNA/Cas9 to non-mutagenic repair pathways. Here, we have described CRISPR/Cas9 as a new powerful mutagenic factor, discussed its mutagenic properties, and reviewed factors influencing the mutagenic activity of CRISPR/Cas9.
Collapse
Affiliation(s)
- Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Sergey G. Inge-Vechtomov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Jiang YK, Medley EA, Brown GW. Two independent DNA repair pathways cause mutagenesis in template switching deficient Saccharomyces cerevisiae. Genetics 2023; 225:iyad153. [PMID: 37594077 DOI: 10.1093/genetics/iyad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
Upon DNA replication stress, cells utilize the postreplication repair pathway to repair single-stranded DNA and maintain genome integrity. Postreplication repair is divided into 2 branches: error-prone translesion synthesis, signaled by proliferating cell nuclear antigen (PCNA) monoubiquitination, and error-free template switching, signaled by PCNA polyubiquitination. In Saccharomyces cerevisiae, Rad5 is involved in both branches of repair during DNA replication stress. When the PCNA polyubiquitination function of Rad5 s disrupted, Rad5 recruits translesion synthesis polymerases to stalled replication forks, resulting in mutagenic repair. Details of how mutagenic repair is carried out, as well as the relationship between Rad5-mediated mutagenic repair and the canonical PCNA-mediated mutagenic repair, remain to be understood. We find that Rad5-mediated mutagenic repair requires the translesion synthesis polymerase ζ but does not require other yeast translesion polymerase activities. Furthermore, we show that Rad5-mediated mutagenic repair is independent of PCNA binding by Rev1 and so is separable from canonical mutagenic repair. In the absence of error-free template switching, both modes of mutagenic repair contribute additively to replication stress response in a replication timing-independent manner. Cellular contexts where error-free template switching is compromised are not simply laboratory phenomena, as we find that a natural variant in RAD5 is defective in PCNA polyubiquitination and therefore defective in error-free repair, resulting in Rad5- and PCNA-mediated mutagenic repair. Our results highlight the importance of Rad5 in regulating spontaneous mutagenesis and genetic diversity in S. cerevisiae through different modes of postreplication repair.
Collapse
Affiliation(s)
- Yangyang Kate Jiang
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Eleanor A Medley
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
8
|
Paniagua I, Jacobs JJL. Freedom to err: The expanding cellular functions of translesion DNA polymerases. Mol Cell 2023; 83:3608-3621. [PMID: 37625405 DOI: 10.1016/j.molcel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023]
Abstract
Translesion synthesis (TLS) DNA polymerases were originally described as error-prone enzymes involved in the bypass of DNA lesions. However, extensive research over the past few decades has revealed that these enzymes play pivotal roles not only in lesion bypass, but also in a myriad of other cellular processes. Such processes include DNA replication, DNA repair, epigenetics, immune signaling, and even viral infection. This review discusses the wide range of functions exhibited by TLS polymerases, including their underlying biochemical mechanisms and associated mutagenicity. Given their multitasking ability to alleviate replication stress, TLS polymerases represent a cellular dependency and a critical vulnerability of cancer cells. Hence, this review also highlights current and emerging strategies for targeting TLS polymerases in cancer therapy.
Collapse
Affiliation(s)
- Inés Paniagua
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Gyüre Z, Póti Á, Németh E, Szikriszt B, Lózsa R, Krawczyk M, Richardson AL, Szüts D. Spontaneous mutagenesis in human cells is controlled by REV1-Polymerase ζ and PRIMPOL. Cell Rep 2023; 42:112887. [PMID: 37498746 DOI: 10.1016/j.celrep.2023.112887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Translesion DNA synthesis (TLS) facilitates replication over damaged or difficult-to-replicate templates by employing specialized DNA polymerases. We investigate the effect on spontaneous mutagenesis of three main TLS control mechanisms: REV1 and PCNA ubiquitylation that recruit TLS polymerases and PRIMPOL that creates post-replicative gaps. Using whole-genome sequencing of cultured human RPE-1 cell clones, we find that REV1 and Polymerase ζ are wholly responsible for one component of base substitution mutagenesis that resembles homologous recombination deficiency, whereas the remaining component that approximates oxidative mutagenesis is reduced in PRIMPOL-/- cells. Small deletions in short repeats appear in REV1-/-PCNAK164R/K164R double mutants, revealing an alternative TLS mechanism. Also, 500-5,000 bp deletions appear in REV1-/- and REV3L-/- mutants, and chromosomal instability is detectable in REV1-/-PRIMPOL-/- cells. Our results indicate that TLS protects the genome from deletions and large rearrangements at the expense of being responsible for the majority of spontaneous base substitutions.
Collapse
Affiliation(s)
- Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, 1085 Budapest, Hungary; Turbine Simulated Cell Technologies, 1027 Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Rita Lózsa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Michał Krawczyk
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | | | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; National Laboratory for Drug Research and Development, 1117 Budapest, Hungary.
| |
Collapse
|
10
|
Kadyrova LY, Mieczkowski PA, Kadyrov FA. Genome-wide contributions of the MutSα- and MutSβ-dependent DNA mismatch repair pathways to the maintenance of genetic stability in S. cerevisiae. J Biol Chem 2023; 299:104705. [PMID: 37059180 DOI: 10.1016/j.jbc.2023.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses inherited and sporadic cancers in humans. In eukaryotes the MutSα-dependent and MutSβ-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole-genome level in S. cerevisiae. We found that inactivation of MutSα-dependent MMR by deletion of the MSH6 gene increases the genome-wide mutation rate by ∼17-fold, and loss of MutSβ-dependent MMR via deletion of MSH3 elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSβ-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1-6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSβ-dependent MMR for protection from 1-bp insertions, while MutSβ-dependent MMR has a more critical role in the defense against 1-bp deletions and 2-6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSβ-dependent MMR pathways.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
11
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
12
|
McPherson KS, Rizzo AA, Erlandsen H, Chatterjee N, Walker GC, Korzhnev DM. Evolution of Rev7 interactions in eukaryotic TLS DNA polymerase Polζ. J Biol Chem 2023; 299:102859. [PMID: 36592930 PMCID: PMC9926120 DOI: 10.1016/j.jbc.2022.102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Translesion synthesis (TLS) DNA polymerase Polζ is crucial for the bypass replication over sites of DNA damage. The Rev7 subunit of Polζ is a HORMA (Hop1, Rev7, Mad2) protein that facilitates recruitment of Polζ to the replication fork via interactions with the catalytic subunit Rev3 and the translesion synthesis scaffold protein Rev1. Human Rev7 (hRev7) interacts with two Rev7-binding motifs (RBMs) of hRev3 by a mechanism conserved among HORMA proteins whereby the safety-belt loop of hRev7 closes on the top of the ligand. The two copies of hRev7 tethered by the two hRev3-RBMs form a symmetric head-to-head dimer through the canonical HORMA dimerization interface. Recent cryo-EM structures reveal that Saccharomyces cerevisiae Polζ (scPolζ) also includes two copies of scRev7 bound to distinct regions of scRev3. Surprisingly, the HORMA dimerization interface is not conserved in scRev7, with the two scRev7 protomers forming an asymmetric head-to-tail dimer with a much smaller interface than the hRev7 dimer. Here, we validated the two adjacent RBM motifs in scRev3, which bind scRev7 with affinities that differ by two orders of magnitude and confirmed the 2:1 stoichiometry of the scRev7:Rev3 complex in solution. However, our biophysical studies reveal that scRev7 does not form dimers in solution either on its own accord or when tethered by the two RBMs in scRev3. These findings imply that the scRev7 dimer observed in the cryo-EM structures is induced by scRev7 interactions with other Polζ subunits and that Rev7 homodimerization via the HORMA interface is a mechanism that emerged later in evolution.
Collapse
Affiliation(s)
- Kerry Silva McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment, University of Connecticut, Storrs, Connecticut, USA
| | - Nimrat Chatterjee
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
13
|
Siebler HM, Cui J, Hill SE, Pavlov YI. DNA Polymerase ζ without the C-Terminus of Catalytic Subunit Rev3 Retains Characteristic Activity, but Alters Mutation Specificity of Ultraviolet Radiation in Yeast. Genes (Basel) 2022; 13:1576. [PMID: 36140745 PMCID: PMC9498848 DOI: 10.3390/genes13091576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase ζ (pol ζ) plays a central role in replicating damaged genomic DNA. When DNA synthesis stalls at a lesion, it participates in translesion DNA synthesis (TLS), which helps replication proceed. TLS prevents cell death at the expense of new mutations. The current model indicates that pol ζ-dependent TLS events are mediated by Pol31/Pol32 pol ζ subunits, which are shared with replicative polymerase pol δ. Surprisingly, we found that the mutant rev3-ΔC in yeast, which lacks the C-terminal domain (CTD) of the catalytic subunit of pol ζ and, thus, the platform for interaction with Pol31/Pol32, retains most pol ζ functions. To understand the underlying mechanisms, we studied TLS in normal templates or templates with abasic sites in vitro in primer extension reactions with purified four-subunit pol ζ versus pol ζ with Rev3-ΔC. We also examined the specificity of ultraviolet radiation (UVR)-induced mutagenesis in the rev3-ΔC strains. We found that the absence of Rev3 CTD reduces activity levels, but does not alter the basic biochemical properties of pol ζ, and alters the mutation spectrum only at high doses of UVR, alluding to the existence of mechanisms of recruitment of pol ζ to UVR-damaged sites independent of the interaction of Pol31/Pol32 with the CTD of Rev3.
Collapse
Affiliation(s)
- Hollie M. Siebler
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - Jian Cui
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah E. Hill
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I. Pavlov
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Pathology and Microbiology, Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Barbari SR, Beach AK, Markgren JG, Parkash V, Moore E, Johansson E, Shcherbakova PV. Enhanced polymerase activity permits efficient synthesis by cancer-associated DNA polymerase ϵ variants at low dNTP levels. Nucleic Acids Res 2022; 50:8023-8040. [PMID: 35822874 PMCID: PMC9371911 DOI: 10.1093/nar/gkac602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Amino acid substitutions in the exonuclease domain of DNA polymerase ϵ (Polϵ) cause ultramutated tumors. Studies in model organisms suggested pathogenic mechanisms distinct from a simple loss of exonuclease. These mechanisms remain unclear for most recurrent Polϵ mutations. Particularly, the highly prevalent V411L variant remained a long-standing puzzle with no detectable mutator effect in yeast despite the unequivocal association with ultramutation in cancers. Using purified four-subunit yeast Polϵ, we assessed the consequences of substitutions mimicking human V411L, S459F, F367S, L424V and D275V. While the effects on exonuclease activity vary widely, all common cancer-associated variants have increased DNA polymerase activity. Notably, the analog of Polϵ-V411L is among the strongest polymerases, and structural analysis suggests defective polymerase-to-exonuclease site switching. We further show that the V411L analog produces a robust mutator phenotype in strains that lack mismatch repair, indicating a high rate of replication errors. Lastly, unlike wild-type and exonuclease-dead Polϵ, hyperactive variants efficiently synthesize DNA at low dNTP concentrations. We propose that this characteristic could promote cancer cell survival and preferential participation of mutator polymerases in replication during metabolic stress. Our results support the notion that polymerase fitness, rather than low fidelity alone, is an important determinant of variant pathogenicity.
Collapse
Affiliation(s)
- Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annette K Beach
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joel G Markgren
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Vimal Parkash
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
16
|
Osia B, Twarowski J, Jackson T, Lobachev K, Liu L, Malkova A. Migrating bubble synthesis promotes mutagenesis through lesions in its template. Nucleic Acids Res 2022; 50:6870-6889. [PMID: 35748867 PMCID: PMC9262586 DOI: 10.1093/nar/gkac520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Break-induced replication (BIR) proceeds via a migrating D-loop for hundreds of kilobases and is highly mutagenic. Previous studies identified long single-stranded (ss) nascent DNA that accumulates during leading strand synthesis to be a target for DNA damage and a primary source of BIR-induced mutagenesis. Here, we describe a new important source of mutagenic ssDNA formed during BIR: the ssDNA template for leading strand BIR synthesis formed during D-loop migration. Specifically, we demonstrate that this D-loop bottom template strand (D-BTS) is susceptible to APOBEC3A (A3A)-induced DNA lesions leading to mutations associated with BIR. Also, we demonstrate that BIR-associated ssDNA promotes an additional type of genetic instability: replication slippage between microhomologies stimulated by inverted DNA repeats. Based on our results we propose that these events are stimulated by both known sources of ssDNA formed during BIR, nascent DNA formed by leading strand synthesis, and the D-BTS that we describe here. Together we report a new source of mutagenesis during BIR that may also be shared by other homologous recombination pathways driven by D-loop repair synthesis.
Collapse
Affiliation(s)
| | | | - Tyler Jackson
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kirill Lobachev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Liping Liu
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Anna Malkova
- To whom correspondence should be addressed. Tel: +1 319 384 1285;
| |
Collapse
|
17
|
Allred DR. Integration of DNA Repair, Antigenic Variation, Cytoadhesion, and Chance in Babesia Survival: A Perspective. Front Cell Infect Microbiol 2022; 12:869696. [PMID: 35493746 PMCID: PMC9047050 DOI: 10.3389/fcimb.2022.869696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites live in hostile environments in which they are challenged chemically and their hosts attempt in many ways to kill them. In response, the parasites have evolved multiple mechanisms that take advantage of these challenges to enhance their survival. Perhaps the most impressive example is the evolutionary co-option of DNA repair mechanisms by the parasites as a means to rapidly manipulate the structure, antigenicity, and expression of the products of specific multigene families. The purpose of variant proteins that mediate cytoadhesion has long been thought to be primarily the avoidance of splenic clearance. Based upon known biology, I present an alternative perspective in which it is survival of the oxidative environment within which Babesia spp. parasites live that has driven integration of DNA repair, antigenic variation, and cytoadhesion, and speculate on how genome organization affects that integration. This perspective has ramifications for the development of parasite control strategies.
Collapse
Affiliation(s)
- David R. Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: David R. Allred,
| |
Collapse
|
18
|
Qi M, Stenson PD, Ball EV, Tainer JA, Bacolla A, Kehrer-Sawatzki H, Cooper DN, Zhao H. Distinct sequence features underlie microdeletions and gross deletions in the human genome. Hum Mutat 2021; 43:328-346. [PMID: 34918412 PMCID: PMC9069542 DOI: 10.1002/humu.24314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Microdeletions and gross deletions are important causes (~20%) of human inherited disease and their genomic locations are strongly influenced by the local DNA sequence environment. This notwithstanding, no study has systematically examined their underlying generative mechanisms. Here, we obtained 42,098 pathogenic microdeletions and gross deletions from the Human Gene Mutation Database (HGMD) that together form a continuum of germline deletions ranging in size from 1 to 28,394,429 bp. We analyzed the DNA sequence within 1 kb of the breakpoint junctions and found that the frequencies of non‐B DNA‐forming repeats, GC‐content, and the presence of seven of 78 specific sequence motifs in the vicinity of pathogenic deletions correlated with deletion length for deletions of length ≤30 bp. Further, we found that the presence of DR, GQ, and STR repeats is important for the formation of longer deletions (>30 bp) but not for the formation of shorter deletions (≤30 bp) while significantly (χ2, p < 2E−16) more microhomologies were identified flanking short deletions than long deletions (length >30 bp). We provide evidence to support a functional distinction between microdeletions and gross deletions. Finally, we propose that a deletion length cut‐off of 25–30 bp may serve as an objective means to functionally distinguish microdeletions from gross deletions.
Collapse
Affiliation(s)
- Mengling Qi
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| |
Collapse
|
19
|
Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis. Microorganisms 2021; 9:microorganisms9061284. [PMID: 34204686 PMCID: PMC8231525 DOI: 10.3390/microorganisms9061284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-induced mutagenic mechanisms limit genetic changes to times when expression happens and to coding DNA. It has been hypothesized that intrinsic sequences that have the potential to form alternate DNA structures, such as non-B DNA structures, influence these mechanisms. Non-B DNA structures are promoted by transcription and induce genome instability in eukaryotic cells, but their impact in bacterial genomes is less known. Here, we investigated if G4 DNA- and hairpin-forming motifs influence stationary-phase mutagenesis in Bacillus subtilis. We developed a system to measure the influence of non-B DNA on B. subtilis stationary-phase mutagenesis by deleting the wild-type argF at its chromosomal position and introducing IPTG-inducible argF alleles differing in their ability to form hairpin and G4 DNA structures into an ectopic locus. Using this system, we found that sequences predicted to form non-B DNA structures promoted mutagenesis in B. subtilis stationary-phase cells; such a response did not occur in growing conditions. We also found that the transcription-coupled repair factor Mfd promoted mutagenesis at these predicted structures. In summary, we showed that non-B DNA-forming motifs promote genetic instability, particularly in coding regions in stressed cells; therefore, non-B DNA structures may have a spatial and temporal mutagenic effect in bacteria. This study provides insights into mechanisms that prevent or promote mutagenesis and advances our understanding of processes underlying bacterial evolution.
Collapse
|
20
|
Walker CR, Scally A, De Maio N, Goldman N. Short-range template switching in great ape genomes explored using pair hidden Markov models. PLoS Genet 2021; 17:e1009221. [PMID: 33651813 PMCID: PMC7954356 DOI: 10.1371/journal.pgen.1009221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes’ genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons. DNA replication is an imperfect process which causes the mutations that give rise to genetic diversity during the evolution of genomes. While many mutations are independent, single-nucleotide substitutions or small insertions and deletions, some mutations arise as nonindependent clusters of substitutions and larger scale chromosomal rearrangements. Large-scale rearrangements (also called structural variants) in particular can have a profound impact on genome evolution and contribute to both germline and somatic disease in humans. The replication-based mechanisms underlying structural variation typically involve a polymerase switch event in which a large segment of DNA is copied using a template from an alternate location in the genome. Methods for identifying these template switch mutations lack the power to detect smaller scale rearrangements which can arise through the same replication-based pathways. Here we outline a model which can detect and assess the statistical significance of such small-scale template switches within their evolutionary context. We show that these events are widespread in the evolution of great apes and that the genomic features associated with these small-scale rearrangements are similar to those of large-scale structural variants.
Collapse
Affiliation(s)
- Conor R. Walker
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Reha-Krantz LJ, Goodman MF. John W. (Jan) Drake: A Biochemical View of a Geneticist Par Excellence. Genetics 2020; 216:827-836. [PMID: 33268388 PMCID: PMC7768258 DOI: 10.1534/genetics.120.303813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
John W. Drake died 02-02-2020, a mathematical palindrome, which he would have enjoyed, given his love of "word play and logic," as stated in his obituary and echoed by his family, friends, students, and colleagues. Many aspects of Jan's career have been reviewed previously, including his early years as a Caltech graduate student, and when he was editor-in-chief, with the devoted assistance of his wife Pam, of this journal for 15 impactful years. During his editorship, he raised the profile of GENETICS as the flagship journal of the Genetics Society of America and inspired and contributed to the creation of the Perspectives column, coedited by Jim Crow and William Dove. At the same time, Jan was building from scratch the Laboratory of Molecular Genetics on the newly established Research Triangle Park campus of the National Institute of Environmental Health Science, which he headed for 30 years. This commentary offers a unique perspective on Jan's legacy; we showcase Jan's 1969 benchmark discovery of antimutagenic T4 DNA polymerases and the research by three generations (and counting) of scientists whose research stems from that groundbreaking discovery. This is followed by a brief discussion of Jan's passion: his overriding interest in analyzing mutation rates across species. Several anecdotal stories are included to bring alive one of Jan's favorite phrases, "to think like a geneticist." We feature Jan's genetical approach to mutation studies, along with the biochemistry of DNA polymerase function, our area of expertise. But in the end, we acknowledge, as Jan did, that genetics, also known as in vivo biochemistry, prevails.
Collapse
Affiliation(s)
- Linda J Reha-Krantz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
22
|
Pavlov YI, Zhuk AS, Stepchenkova EI. DNA Polymerases at the Eukaryotic Replication Fork Thirty Years after: Connection to Cancer. Cancers (Basel) 2020; 12:E3489. [PMID: 33255191 PMCID: PMC7760166 DOI: 10.3390/cancers12123489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named "division of labor," remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants' effects on cancer.
Collapse
Affiliation(s)
- Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Anna S. Zhuk
- International Laboratory of Computer Technologies, ITMO University, 197101 Saint Petersburg, Russia;
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
23
|
Gadgil RY, Romer EJ, Goodman CC, Rider SD, Damewood FJ, Barthelemy JR, Shin-Ya K, Hanenberg H, Leffak M. Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication. J Biol Chem 2020; 295:15378-15397. [PMID: 32873711 DOI: 10.1074/jbc.ra120.013495] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Short tandemly repeated DNA sequences, termed microsatellites, are abundant in the human genome. These microsatellites exhibit length instability and susceptibility to DNA double-strand breaks (DSBs) due to their tendency to form stable non-B DNA structures. Replication-dependent microsatellite DSBs are linked to genome instability signatures in human developmental diseases and cancers. To probe the causes and consequences of microsatellite DSBs, we designed a dual-fluorescence reporter system to detect DSBs at expanded (CTG/CAG) n and polypurine/polypyrimidine (Pu/Py) mirror repeat structures alongside the c-myc replication origin integrated at a single ectopic chromosomal site. Restriction cleavage near the (CTG/CAG)100 microsatellite leads to homology-directed single-strand annealing between flanking AluY elements and reporter gene deletion that can be detected by flow cytometry. However, in the absence of restriction cleavage, endogenous and exogenous replication stressors induce DSBs at the (CTG/CAG)100 and Pu/Py microsatellites. DSBs map to a narrow region at the downstream edge of the (CTG)100 lagging-strand template. (CTG/CAG) n chromosome fragility is repeat length-dependent, whereas instability at the (Pu/Py) microsatellites depends on replication polarity. Strikingly, restriction-generated DSBs and replication-dependent DSBs are not repaired by the same mechanism. Knockdown of DNA damage response proteins increases (Rad18, polymerase (Pol) η, Pol κ) or decreases (Mus81) the sensitivity of the (CTG/CAG)100 microsatellites to replication stress. Replication stress and DSBs at the ectopic (CTG/CAG)100 microsatellite lead to break-induced replication and high-frequency mutagenesis at a flanking thymidine kinase gene. Our results show that non-B structure-prone microsatellites are susceptible to replication-dependent DSBs that cause genome instability.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Eric J Romer
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Caitlin C Goodman
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - French J Damewood
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Joanna R Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Kazuo Shin-Ya
- Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany; Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
24
|
Wang Q, Pierce-Hoffman E, Cummings BB, Alföldi J, Francioli LC, Gauthier LD, Hill AJ, O'Donnell-Luria AH, Karczewski KJ, MacArthur DG. Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes. Nat Commun 2020; 11:2539. [PMID: 32461613 PMCID: PMC7253413 DOI: 10.1038/s41467-019-12438-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
Multi-nucleotide variants (MNVs), defined as two or more nearby variants existing on the same haplotype in an individual, are a clinically and biologically important class of genetic variation. However, existing tools typically do not accurately classify MNVs, and understanding of their mutational origins remains limited. Here, we systematically survey MNVs in 125,748 whole exomes and 15,708 whole genomes from the Genome Aggregation Database (gnomAD). We identify 1,792,248 MNVs across the genome with constituent variants falling within 2 bp distance of one another, including 18,756 variants with a novel combined effect on protein sequence. Finally, we estimate the relative impact of known mutational mechanisms - CpG deamination, replication error by polymerase zeta, and polymerase slippage at repeat junctions - on the generation of MNVs. Our results demonstrate the value of haplotype-aware variant annotation, and refine our understanding of genome-wide mutational mechanisms of MNVs.
Collapse
Affiliation(s)
- Qingbo Wang
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, 02115, USA
| | - Emma Pierce-Hoffman
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Beryl B Cummings
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Program in Biomedical and Biological Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Jessica Alföldi
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Laurent C Francioli
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Laura D Gauthier
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew J Hill
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
25
|
Abstract
Polδ and Polε are the two major replicative polymerases in eukaryotes, but their precise roles at the replication fork remain a subject of debate. A bulk of data supports a model where Polε and Polδ synthesize leading and lagging DNA strands, respectively. However, this model has been difficult to reconcile with the fact that mutations in Polδ have much stronger consequences for genome stability than equivalent mutations in Polε. We provide direct evidence for a long-entertained idea that Polδ can proofread errors made by Polε in addition to its own errors, thus, making a more prominent contribution to mutation avoidance. This paper provides an essential advance in the understanding of the mechanism of eukaryotic DNA replication. During eukaryotic replication, DNA polymerases ε (Polε) and δ (Polδ) synthesize the leading and lagging strands, respectively. In a long-known contradiction to this model, defects in the fidelity of Polε have a much weaker impact on mutagenesis than analogous Polδ defects. It has been previously proposed that Polδ contributes more to mutation avoidance because it proofreads mismatches created by Polε in addition to its own errors. However, direct evidence for this model was missing. We show that, in yeast, the mutation rate increases synergistically when a Polε nucleotide selectivity defect is combined with a Polδ proofreading defect, demonstrating extrinsic proofreading of Polε errors by Polδ. In contrast, combining Polδ nucleotide selectivity and Polε proofreading defects produces no synergy, indicating that Polε cannot correct errors made by Polδ. We further show that Polδ can remove errors made by exonuclease-deficient Polε in vitro. These findings illustrate the complexity of the one-strand–one-polymerase model where synthesis appears to be largely divided, but Polδ proofreading operates on both strands.
Collapse
|
26
|
Similar genomic patterns of clinical infective endocarditis and oral isolates of Streptococcus sanguinis and Streptococcus gordonii. Sci Rep 2020; 10:2728. [PMID: 32066773 PMCID: PMC7026040 DOI: 10.1038/s41598-020-59549-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/28/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis belong to the Mitis group streptococci, which mostly are commensals in the human oral cavity. Though they are oral commensals, they can escape their niche and cause infective endocarditis, a severe infection with high mortality. Several virulence factors important for the development of infective endocarditis have been described in these two species. However, the background for how the commensal bacteria, in some cases, become pathogenic is still not known. To gain a greater understanding of the mechanisms of the pathogenic potential, we performed a comparative analysis of 38 blood culture strains, S. sanguinis (n = 20) and S. gordonii (n = 18) from patients with verified infective endocarditis, along with 21 publicly available oral isolates from healthy individuals, S. sanguinis (n = 12) and S. gordonii (n = 9). Using whole genome sequencing data of the 59 streptococci genomes, functional profiles were constructed, using protein domain predictions based on the translated genes. These functional profiles were used for clustering, phylogenetics and machine learning. A clear separation could be made between the two species. No clear differences between oral isolates and clinical infective endocarditis isolates were found in any of the 675 translated core-genes. Additionally, random forest-based machine learning and clustering of the pan-genome data as well as amino acid variations in the core-genome could not separate the clinical and oral isolates. A total of 151 different virulence genes was identified in the 59 genomes. Among these homologs of genes important for adhesion and evasion of the immune system were found in all of the strains. Based on the functional profiles and virulence gene content of the genomes, we believe that all analysed strains had the ability to become pathogenic.
Collapse
|
27
|
Martin SK, Wood RD. DNA polymerase ζ in DNA replication and repair. Nucleic Acids Res 2019; 47:8348-8361. [PMID: 31410467 PMCID: PMC6895278 DOI: 10.1093/nar/gkz705] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Here, we survey the diverse functions of DNA polymerase ζ (pol ζ) in eukaryotes. In mammalian cells, REV3L (3130 residues) is the largest catalytic subunit of the DNA polymerases. The orthologous subunit in yeast is Rev3p. Pol ζ also includes REV7 subunits (encoded by Rev7 in yeast and MAD2L2 in mammalian cells) and two subunits shared with the replicative DNA polymerase, pol δ. Pol ζ is used in response to circumstances that stall DNA replication forks in both yeast and mammalian cells. The best-examined situation is translesion synthesis at sites of covalent DNA lesions such as UV radiation-induced photoproducts. We also highlight recent evidence that uncovers various roles of pol ζ that extend beyond translesion synthesis. For instance, pol ζ is also employed when the replisome operates sub-optimally or at difficult-to-replicate DNA sequences. Pol ζ also participates in repair by microhomology mediated break-induced replication. A rev3 deletion is tolerated in yeast but Rev3l disruption results in embryonic lethality in mice. Inactivation of mammalian Rev3l results in genomic instability and invokes cell death and senescence programs. Targeting of pol ζ function may be a useful strategy in cancer therapy, although chromosomal instability associated with pol ζ deficiency must be considered.
Collapse
Affiliation(s)
- Sara K Martin
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences
| |
Collapse
|
28
|
Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism. PLoS Genet 2019; 15:e1008494. [PMID: 31815930 PMCID: PMC6922473 DOI: 10.1371/journal.pgen.1008494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/19/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Faithful replication and repair of DNA lesions ensure genome maintenance. During replication in eukaryotic cells, DNA is unwound by the CMG helicase complex, which is composed of three major components: the Cdc45 protein, Mcm2-7, and the GINS complex. The CMG in complex with DNA polymerase epsilon (CMG-E) participates in the establishment and progression of the replisome. Impaired functioning of the CMG-E was shown to induce genomic instability and promote the development of various diseases. Therefore, CMG-E components play important roles as caretakers of the genome. In Saccharomyces cerevisiae, the GINS complex is composed of the Psf1, Psf2, Psf3, and Sld5 essential subunits. The Psf1-1 mutant form fails to interact with Psf3, resulting in impaired replisome assembly and chromosome replication. Here, we show increased instability of repeat tracts (mononucleotide, dinucleotide, trinucleotide and longer) in yeast psf1-1 mutants. To identify the mechanisms underlying this effect, we analyzed repeated sequence instability using derivatives of psf1-1 strains lacking genes involved in translesion synthesis, recombination, or mismatch repair. Among these derivatives, deletion of RAD52, RAD51, MMS2, POL32, or PIF1 significantly decreased DNA repeat instability. These results, together with the observed increased amounts of single-stranded DNA regions and Rfa1 foci suggest that recombinational mechanisms make important contributions to repeat tract instability in psf1-1 cells. We propose that defective functioning of the CMG-E complex in psf1-1 cells impairs the progression of DNA replication what increases the contribution of repair mechanisms such as template switch and break-induced replication. These processes require sequence homology search which in case of a repeated DNA tract may result in misalignment leading to its expansion or contraction. Processes that ensure genome stability are crucial for all organisms to avoid mutations and decrease the risk of diseases. The coordinated activity of mechanisms underlying the maintenance of high-fidelity DNA duplication and repair is critical to deal with the malfunction of replication forks or DNA damage. Repeated sequences in DNA are particularly prone to instability; these sequences undergo expansions or contractions, leading in humans to various neurological, neurodegenerative, and neuromuscular disorders. A mutant form of one of the noncatalytic subunits of active DNA helicase complex impairs DNA replication. Here, we show that this form also significantly increases the instability of mononucleotide, dinucleotide, trinucleotide and longer repeat tracts. Our results suggest that in cells that harbor a mutated variant of the helicase complex, continuation of DNA replication is facilitated by recombination processes, and this mechanism can be highly mutagenic during repair synthesis through repetitive regions, especially regions that form secondary structures. Our results indicate that proper functioning of the DNA helicase complex is crucial for maintenance of the stability of repeated DNA sequences, especially in the context of recently described disorders in which mutations or deregulation of the human homologs of genes encoding DNA helicase subunits were observed.
Collapse
|
29
|
Garbacz MA, Cox PB, Sharma S, Lujan SA, Chabes A, Kunkel TA. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Nucleic Acids Res 2019; 47:3986-3995. [PMID: 30698744 DOI: 10.1093/nar/gkz048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.
Collapse
Affiliation(s)
- Marta A Garbacz
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Phillip B Cox
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
30
|
Estep KN, Butler TJ, Ding J, Brosh RM. G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets. Curr Med Chem 2019; 26:2881-2897. [PMID: 29149833 DOI: 10.2174/0929867324666171116123345] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). In recent years, the G-quadruplex field has blossomed as new evidence strongly suggests that such alternately folded DNA structures are likely to exist in vivo. G4 DNA presents obstacles for the replication machinery, and both eukaryotic DNA helicases and polymerases have evolved to resolve and copy G4 DNA in vivo. In addition, G4-forming sequences are prevalent in gene promoters, suggesting that G4-resolving helicases act to modulate transcription. METHODS We have searched the PubMed database to compile an up-to-date and comprehensive assessment of the field's current knowledge to provide an overview of the molecular interactions of Gquadruplexes with DNA helicases and polymerases implicated in their resolution. RESULTS Novel computational tools and alternative strategies have emerged to detect G4-forming sequences and assess their biological consequences. Specialized DNA helicases and polymerases catalytically act upon G4-forming sequences to maintain normal replication and genomic stability as well as appropriate gene regulation and cellular homeostasis. G4 helicases also resolve telomeric repeats to maintain chromosomal DNA ends. Bypass of many G4-forming sequences is achieved by the action of translesion DNS polymerases or the PrimPol DNA polymerase. While the collective work has supported a role of G4 in nuclear DNA metabolism, an emerging field centers on G4 abundance in the mitochondrial genome. CONCLUSION Discovery of small molecules that specifically bind and modulate DNA helicases and polymerases or interact with the G4 DNA structure itself may be useful for the development of anticancer regimes.
Collapse
Affiliation(s)
- Katrina N Estep
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Thomas J Butler
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Jun Ding
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| |
Collapse
|
31
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
32
|
DNA Rereplication Is Susceptible to Nucleotide-Level Mutagenesis. Genetics 2019; 212:445-460. [PMID: 31028114 PMCID: PMC6553831 DOI: 10.1534/genetics.119.302194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
The initiation of eukaryotic DNA replication at replication origins is tightly regulated to prevent re-initiation and re-replication within each cell cycle. This regulation is critical for genome stability as re-replication is an extremely potent inducer... The sources of genome instability, a hallmark of cancer, remain incompletely understood. One potential source is DNA rereplication, which arises when the mechanisms that prevent the reinitiation of replication origins within a single cell cycle are compromised. Using the budding yeast Saccharomyces cerevisiae, we previously showed that DNA rereplication is extremely potent at inducing gross chromosomal alterations and that this arises in part because of the susceptibility of rereplication forks to break. Here, we examine the ability of DNA rereplication to induce nucleotide-level mutations. During normal replication these mutations are restricted by three overlapping error-avoidance mechanisms: the nucleotide selectivity of replicative polymerases, their proofreading activity, and mismatch repair. Using lys2InsEA14, a frameshift reporter that is poorly proofread, we show that rereplication induces up to a 30× higher rate of frameshift mutations and that this mutagenesis is due to passage of the rereplication fork, not secondary to rereplication fork breakage. Rereplication can also induce comparable rates of frameshift and base-substitution mutations in a more general mutagenesis reporter CAN1, when the proofreading activity of DNA polymerase ε is inactivated. Finally, we show that the rereplication-induced mutagenesis of both lys2InsEA14 and CAN1 disappears in the absence of mismatch repair. These results suggest that mismatch repair is attenuated during rereplication, although at most sequences DNA polymerase proofreading provides enough error correction to mitigate the mutagenic consequences. Thus, rereplication can facilitate nucleotide-level mutagenesis in addition to inducing gross chromosomal alterations, broadening its potential role in genome instability.
Collapse
|
33
|
Silvestri A, Fiorilli V, Miozzi L, Accotto GP, Turina M, Lanfranco L. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics 2019; 20:169. [PMID: 30832582 PMCID: PMC6399891 DOI: 10.1186/s12864-019-5561-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are short non-coding RNA molecules (20-30 nt) that regulate gene expression at transcriptional or post-transcriptional levels in many eukaryotic organisms, through a mechanism known as RNA interference (RNAi). Recent studies have highlighted that they are also involved in cross-kingdom communication: sRNAs can move across the contact surfaces from "donor" to "receiver" organisms and, once in the host cells of the receiver, they can target specific mRNAs, leading to a modulation of host metabolic pathways and defense responses. Very little is known about RNAi mechanism and sRNAs occurrence in Arbuscular Mycorrhizal Fungi (AMF), an important component of the plant root microbiota that provide several benefits to host plants, such as improved mineral uptake and tolerance to biotic and abiotic stress. RESULTS Taking advantage of the available genomic resources for the AMF Rhizophagus irregularis we described its putative RNAi machinery, which is characterized by a single Dicer-like (DCL) gene and an unusual expansion of Argonaute-like (AGO-like) and RNA-dependent RNA polymerase (RdRp) gene families. In silico investigations of previously published transcriptomic data and experimental assays carried out in this work provided evidence of gene expression for most of the identified sequences. Focusing on the symbiosis between R. irregularis and the model plant Medicago truncatula, we characterized the fungal sRNA population, highlighting the occurrence of an active sRNA-generating pathway and the presence of microRNA-like sequences. In silico analyses, supported by host plant degradome data, revealed that several fungal sRNAs have the potential to target M. truncatula transcripts, including some specific mRNA already shown to be modulated in roots upon AMF colonization. CONCLUSIONS The identification of RNAi-related genes, together with the characterization of the sRNAs population, suggest that R. irregularis is equipped with a functional sRNA-generating pathway. Moreover, the in silico analysis predicted 237 plant transcripts as putative targets of specific fungal sRNAs suggesting that cross-kingdom post-transcriptional gene silencing may occur during AMF colonization.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
34
|
Ito M, Watanabe K, Maruyama T, Mori T, Niwa K, Chow S, Takeyama H. Enrichment of bacteria and alginate lyase genes potentially involved in brown alga degradation in the gut of marine gastropods. Sci Rep 2019; 9:2129. [PMID: 30765748 PMCID: PMC6375959 DOI: 10.1038/s41598-018-38356-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
Gut bacteria of phytophagous and omnivorous marine invertebrates often possess alginate lyases (ALGs), which are key enzymes for utilizing macroalgae as carbon neutral biomass. We hypothesized that the exclusive feeding of a target alga to marine invertebrates would shift the gut bacterial diversity suitable for degrading the algal components. To test this hypothesis, we reared sea hare (Dolabella auricularia) and sea snail (Batillus cornutus) for two to four weeks with exclusive feeding of a brown alga (Ecklonia cava). Pyrosequencing analysis of the gut bacterial 16S rRNA genes revealed shifts in the gut microbiota after rearing, mainly due to a decrease in the variety of bacterial members. Significant increases in six and four 16S rRNA gene phylotypes were observed in the reared sea hares and sea snails, respectively, and some of them were phylogenetically close to known alginate-degrading bacteria. Clone library analysis of PL7 family ALG genes using newly designed degenerate primer sets detected a total of 50 ALG gene phylotypes based on 90% amino acid identity. The number of ALG gene phylotypes increased in the reared sea hare but decreased in reared sea snail samples, and no phylotype was shared between them. Out of the 50 phylotypes, 15 were detected only after the feeding procedure. Thus, controlled feeding strategy may be valid and useful for the efficient screening of genes suitable for target alga fermentation.
Collapse
Affiliation(s)
- Michihiro Ito
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku, Tokyo, 162-0041, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Kotaro Watanabe
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Toru Maruyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Tetsushi Mori
- International Center for Science and Engineering Programs, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kentaro Niwa
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Seinen Chow
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku, Tokyo, 162-0041, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-0072, Japan.
| |
Collapse
|
35
|
Xing X, Kane DP, Bulock CR, Moore EA, Sharma S, Chabes A, Shcherbakova PV. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat Commun 2019; 10:374. [PMID: 30670691 PMCID: PMC6343027 DOI: 10.1038/s41467-018-08145-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Alterations in the exonuclease domain of DNA polymerase ε (Polε) cause ultramutated tumors. Severe mutator effects of the most common variant, Polε-P286R, modeled in yeast suggested that its pathogenicity involves yet unknown mechanisms beyond simple proofreading deficiency. We show that, despite producing a catastrophic amount of replication errors in vivo, the yeast Polε-P286R analog retains partial exonuclease activity and is more accurate than exonuclease-dead Polε. The major consequence of the arginine substitution is a dramatically increased DNA polymerase activity. This is manifested as a superior ability to copy synthetic and natural templates, extend mismatched primer termini, and bypass secondary DNA structures. We discuss a model wherein the cancer-associated substitution limits access of the 3’-terminus to the exonuclease site and promotes binding at the polymerase site, thus stimulating polymerization. We propose that the ultramutator effect results from increased polymerase activity amplifying the contribution of Polε errors to the genomic mutation rate. Somatic alterations in the exonuclease domain of DNA polymerase ɛ have been linked to the development of highly mutated cancers. Here, the authors report that a major consequence of the most common cancer-associated Polɛ variant is a dramatically increased DNA polymerase activity.
Collapse
Affiliation(s)
- Xuanxuan Xing
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Daniel P Kane
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY, 13214, USA
| | - Chelsea R Bulock
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87, Umeå, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
36
|
Tsao WC, Eckert KA. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int J Mol Sci 2018; 19:ijms19103255. [PMID: 30347795 PMCID: PMC6214091 DOI: 10.3390/ijms19103255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.
Collapse
Affiliation(s)
- Wei-Chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| |
Collapse
|
37
|
Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex. Proc Natl Acad Sci U S A 2018; 115:E8191-E8200. [PMID: 30111544 DOI: 10.1073/pnas.1801149115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The translesion synthesis (TLS) polymerases Polζ and Rev1 form a complex that enables replication of damaged DNA. The Rev7 subunit of Polζ, which is a multifaceted HORMA (Hop1, Rev7, Mad2) protein with roles in TLS, DNA repair, and cell-cycle control, facilitates assembly of this complex by binding Rev1 and the catalytic subunit of Polζ, Rev3. Rev7 interacts with Rev3 by a mechanism conserved among HORMA proteins, whereby an open-to-closed transition locks the ligand underneath the "safety belt" loop. Dimerization of HORMA proteins promotes binding and release of this ligand, as exemplified by the Rev7 homolog, Mad2. Here, we investigate the dimerization of Rev7 when bound to the two Rev7-binding motifs (RBMs) in Rev3 by combining in vitro analyses of Rev7 structure and interactions with a functional assay in a Rev7-/- cell line. We demonstrate that Rev7 uses the conventional HORMA dimerization interface both to form a homodimer when tethered by the two RBMs in Rev3 and to heterodimerize with other HORMA domains, Mad2 and p31comet Structurally, the Rev7 dimer can bind only one copy of Rev1, revealing an unexpected Rev1/Polζ architecture. In cells, mutation of the Rev7 dimer interface increases sensitivity to DNA damage. These results provide insights into the structure of the Rev1/Polζ TLS assembly and highlight the function of Rev7 homo- and heterodimerization.
Collapse
|
38
|
GC content elevates mutation and recombination rates in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2018; 115:E7109-E7118. [PMID: 29987035 PMCID: PMC6064992 DOI: 10.1073/pnas.1807334115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The chromosomes of many eukaryotes have regions of high GC content interspersed with regions of low GC content. In the yeast Saccharomyces cerevisiae, high-GC regions are often associated with high levels of meiotic recombination. In this study, we constructed URA3 genes that differ substantially in their base composition [URA3-AT (31% GC), URA3-WT (43% GC), and URA3-GC (63% GC)] but encode proteins with the same amino acid sequence. The strain with URA3-GC had an approximately sevenfold elevated rate of ura3 mutations compared with the strains with URA3-WT or URA3-AT About half of these mutations were single-base substitutions and were dependent on the error-prone DNA polymerase ζ. About 30% were deletions or duplications between short (5-10 base) direct repeats resulting from DNA polymerase slippage. The URA3-GC gene also had elevated rates of meiotic and mitotic recombination relative to the URA3-AT or URA3-WT genes. Thus, base composition has a substantial effect on the basic parameters of genome stability and evolution.
Collapse
|
39
|
Lange SS, Bhetawal S, Reh S, Powell KL, Kusewitt DF, Wood RD. DNA polymerase ζ deficiency causes impaired wound healing and stress-induced skin pigmentation. Life Sci Alliance 2018; 1. [PMID: 30046772 PMCID: PMC6055517 DOI: 10.26508/lsa.201800048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mice harboring DNA polymerase ζ–defective keratinocytes are shown to have a defect in wound healing and a striking p53-dependent migration of melanocytes to the skin following UV radiation or wounding. DNA polymerase ζ (pol ζ) is well established as a specialized enzyme important for DNA damage tolerance, facilitating DNA synthesis past lesions caused by radiation or chemical damage. We report that disruption of Rev3l (encoding the catalytic subunit of pol ζ) in mouse epidermis leads to a defect in proliferation that impairs cutaneous wound healing. A striking increase in epidermal skin pigmentation accompanied both wound healing and UV irradiation in these mice. This was a consequence of stress-induced migration of Rev3l-proficient melanocytes to the Rev3l-defective epidermis. We found that this pigmentation corresponded with p53 activation in keratinocytes and was absent in p53-negative areas of the epidermis. Expression of the kit ligand (Kitl) gene, a p53-controlled mediator of keratinocyte to melanocyte signaling, was enhanced during wound healing or following UV irradiation. This study extends the function of pol ζ to the process of proliferation during wound healing. Rev3l-deficient epidermis may be a useful mouse model system for examining communication between damaged keratinocytes and melanocytes, including signaling relevant to human disease.
Collapse
Affiliation(s)
- Sabine S Lange
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Sarita Bhetawal
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Shelley Reh
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Katherine Leslie Powell
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Donna F Kusewitt
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| |
Collapse
|
40
|
Szwajczak E, Fijalkowska IJ, Suski C. The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity. Curr Genet 2018; 64:575-580. [PMID: 29189894 PMCID: PMC5948306 DOI: 10.1007/s00294-017-0789-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Precisely controlled mechanisms have been evolved to rescue impeded DNA replication resulting from encountered obstacles and involve a set of low-fidelity translesion synthesis (TLS) DNA polymerases. Studies in recent years have brought new insights into those TLS polymerases, especially concerning the structure and subunit composition of DNA polymerase zeta (Pol ζ). Pol ζ is predominantly involved in induced mutagenesis as well as the bypass of noncanonical DNA structures, and it is proficient in extending from terminal mismatched nucleotides incorporated by major replicative DNA polymerases. Two active forms of Pol ζ, heterodimeric (Pol ζ2) and heterotetrameric (Pol ζ4) ones, have been identified and studied. Here, in the light of recent publications regarding induced and spontaneous mutagenesis and diverse interactions within Pol ζ holoenzyme, combined with Pol ζ binding to the TLS polymerase Rev1p, we discuss the subunit composition of Pol ζ in various cellular physiological conditions. Available data show that it is the heterotetrameric form of Pol ζ that is involved both during spontaneous and induced mutagenesis, and underline the importance of interactions within Pol ζ when an increased Pol ζ recruitment occurs. Understanding Pol ζ function in the bypass of DNA obstacles would give a significant insight into cellular tolerance of DNA damage, genetic instability and the onset of cancer progression.
Collapse
Affiliation(s)
- Ewa Szwajczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Catherine Suski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland.
| |
Collapse
|
41
|
Cui G, Botuyan MV, Mer G. Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin. J Mol Biol 2018; 430:2042-2050. [PMID: 29778604 DOI: 10.1016/j.jmb.2018.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022]
Abstract
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance.
Collapse
Affiliation(s)
- Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
42
|
Genetic Control of Genomic Alterations Induced in Yeast by Interstitial Telomeric Sequences. Genetics 2018; 209:425-438. [PMID: 29610215 PMCID: PMC5972418 DOI: 10.1534/genetics.118.300950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/27/2018] [Indexed: 11/23/2022] Open
Abstract
In many organisms, telomeric sequences can be located internally on the chromosome in addition to their usual positions at the ends of the chromosome. In humans, such interstitial telomeric sequences (ITSs) are nonrandomly associated with translocation breakpoints in tumor cells and with chromosome fragile sites (regions of the chromosome that break in response to perturbed DNA replication). We previously showed that ITSs in yeast generated several different types of instability, including terminal inversions (recombination between the ITS and the “true” chromosome telomere) and point mutations in DNA sequences adjacent to the ITS. In the current study, we examine the genetic control of these events. We show that the terminal inversions occur by the single-strand annealing pathway of DNA repair following the formation of a double-stranded DNA break within the ITS. The point mutations induced by the ITS require the error-prone DNA polymerase ζ. Unlike the terminal inversions, these events are not initiated by a double-stranded DNA break, but likely result from the error-prone repair of a single-stranded DNA gap or recruitment of DNA polymerase ζ in the absence of DNA damage.
Collapse
|
43
|
Barbari SR, Kane DP, Moore EA, Shcherbakova PV. Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2018; 8:1019-1029. [PMID: 29352080 PMCID: PMC5844290 DOI: 10.1534/g3.118.200042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/17/2018] [Indexed: 01/17/2023]
Abstract
DNA replication fidelity relies on base selectivity of the replicative DNA polymerases, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR). Ultramutated human cancers without MMR defects carry alterations in the exonuclease domain of DNA polymerase ε (Polε). They have been hypothesized to result from defective proofreading. However, modeling of the most common variant, Polε-P286R, in yeast produced an unexpectedly strong mutator effect that exceeded the effect of proofreading deficiency by two orders of magnitude and indicated the involvement of other infidelity factors. The in vivo consequences of many additional Polε mutations reported in cancers remain poorly understood. Here, we genetically characterized 13 cancer-associated Polε variants in the yeast system. Only variants directly altering the DNA binding cleft in the exonuclease domain elevated the mutation rate. Among these, frequently recurring variants were stronger mutators than rare variants, in agreement with the idea that mutator phenotype has a causative role in tumorigenesis. In nearly all cases, the mutator effects exceeded those of an exonuclease-null allele, suggesting that mechanisms distinct from loss of proofreading may drive the genome instability in most ultramutated tumors. All mutator alleles were semidominant, supporting the view that heterozygosity for the polymerase mutations is sufficient for tumor development. In contrast to the DNA binding cleft alterations, peripherally located variants, including a highly recurrent V411L, did not significantly elevate mutagenesis. Finally, the analysis of Polε variants found in MMR-deficient tumors suggested that the majority cause no mutator phenotype alone but some can synergize with MMR deficiency to increase the mutation rate.
Collapse
Affiliation(s)
- Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Daniel P Kane
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
44
|
Quinet A, Lerner LK, Martins DJ, Menck CFM. Filling gaps in translesion DNA synthesis in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:127-142. [PMID: 30442338 DOI: 10.1016/j.mrgentox.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
During DNA replication, forks may encounter unrepaired lesions that hamper DNA synthesis. Cells have universal strategies to promote damage bypass allowing cells to survive. DNA damage tolerance can be performed upon template switch or by specialized DNA polymerases, known as translesion (TLS) polymerases. Human cells count on more than eleven TLS polymerases and this work reviews the functions of some of these enzymes: Rev1, Pol η, Pol ι, Pol κ, Pol θ and Pol ζ. The mechanisms of damage bypass vary according to the lesion, as well as to the TLS polymerases available, and may occur directly at the fork during replication. Alternatively, the lesion may be skipped, leaving a single-stranded DNA gap that will be replicated later. Details of the participation of these enzymes are revised for the replication of damaged template. TLS polymerases also have functions in other cellular processes. These include involvement in somatic hypermutation in immunoglobulin genes, direct participation in recombination and repair processes, and contributing to replicating noncanonical DNA structures. The importance of DNA damage replication to cell survival is supported by recent discoveries that certain genes encoding TLS polymerases are induced in response to DNA damaging agents, protecting cells from a subsequent challenge to DNA replication. We retrace the findings on these genotoxic (adaptive) responses of human cells and show the common aspects with the SOS responses in bacteria. Paradoxically, although TLS of DNA damage is normally an error prone mechanism, in general it protects from carcinogenesis, as evidenced by increased tumorigenesis in xeroderma pigmentosum variant patients, who are deficient in Pol η. As these TLS polymerases also promote cell survival, they constitute an important mechanism by which cancer cells acquire resistance to genotoxic chemotherapy. Therefore, the TLS polymerases are new potential targets for improving therapy against tumors.
Collapse
Affiliation(s)
- Annabel Quinet
- Saint Louis University School of Medicine, St. Louis, MO, United States.
| | - Leticia K Lerner
- MRC Laboratory of Molecular Biology,Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Davi J Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos F M Menck
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
45
|
Subirana JA, Messeguer X. Evolution of Tandem Repeat Satellite Sequences in Two Closely Related Caenorhabditis Species. Diminution of Satellites in Hermaphrodites. Genes (Basel) 2017; 8:genes8120351. [PMID: 29182550 PMCID: PMC5748669 DOI: 10.3390/genes8120351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023] Open
Abstract
The availability of the genome sequence of the unisexual (male-female) Caenorhabditis nigoni offers an opportunity to compare its non-coding features with the related hermaphroditic species Caenorhabditis briggsae; to understand the evolutionary dynamics of their tandem repeat sequences (satellites), as a result of evolution from the unisexual ancestor. We take advantage of the previously developed SATFIND program to build satellite families defined by a consensus sequence. The relative number of satellites (satellites/Mb) in C. nigoni is 24.6% larger than in C. briggsae. Some satellites in C. nigoni have developed from a proto-repeat present in the ancestor species and are conserved as an isolated sequence in C. briggsae. We also identify unique satellites which occur only once and joint satellite families with a related sequence in both species. Some of these families are only found in C. nigoni, which indicates a recent appearance; they contain conserved adjacent 5′ and 3′ regions, which may favor transposition. Our results show that the number, length and turnover of satellites are restricted in the hermaphrodite C. briggsae when compared with the unisexual C. nigoni. We hypothesize that this results from differences in unequal recombination during meiotic chromosome pairing, which limits satellite turnover in hermaphrodites.
Collapse
Affiliation(s)
- Juan A Subirana
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
- Evolutionary Genomics Group, Research Program on Biomedical Informatics (GRIB)-Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Doctor Aiguader 86, 08003 Barcelona, Spain.
| | - Xavier Messeguer
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
| |
Collapse
|
46
|
Le TT, Furukohri A, Tatsumi-Akiyama M, Maki H. Collision with duplex DNA renders Escherichia coli DNA polymerase III holoenzyme susceptible to DNA polymerase IV-mediated polymerase switching on the sliding clamp. Sci Rep 2017; 7:12755. [PMID: 29038530 PMCID: PMC5643309 DOI: 10.1038/s41598-017-13080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/18/2017] [Indexed: 11/12/2022] Open
Abstract
Organisms possess multiple DNA polymerases (Pols) and use each for a different purpose. One of the five Pols in Escherichia coli, DNA polymerase IV (Pol IV), encoded by the dinB gene, is known to participate in lesion bypass at certain DNA adducts. To understand how cells choose Pols when the replication fork encounters an obstacle on template DNA, the process of polymerase exchange from the primary replicative enzyme DNA polymerase III (Pol III) to Pol IV was studied in vitro. Replicating Pol III forming a tight holoenzyme (Pol III HE) with the sliding clamp was challenged by Pol IV on a primed ssDNA template carrying a short inverted repeat. A rapid and lesion-independent switch from Pol III to Pol IV occurred when Pol III HE encountered a hairpin stem duplex, implying that the loss of Pol III-ssDNA contact induces switching to Pol IV. Supporting this idea, mutant Pol III with an increased affinity for ssDNA was more resistant to Pol IV than wild-type Pol III was. We observed that an exchange between Pol III and Pol IV also occurred when Pol III HE collided with primer/template duplex. Our data suggest that Pol III-ssDNA interaction may modulate the susceptibility of Pol III HE to Pol IV-mediated polymerase exchange.
Collapse
Affiliation(s)
- Thanh Thi Le
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Asako Furukohri
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Masahiro Tatsumi-Akiyama
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hisaji Maki
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
47
|
Szwajczak E, Fijalkowska IJ, Suski C. The CysB motif of Rev3p involved in the formation of the four-subunit DNA polymerase ζ is required for defective-replisome-induced mutagenesis. Mol Microbiol 2017; 106:659-672. [PMID: 28941243 DOI: 10.1111/mmi.13846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
Abstract
Eukaryotic DNA replication is performed by high-fidelity multi-subunit replicative B-family DNA polymerases (Pols) α, δ and ɛ. Those complexes are composed of catalytic and accessory subunits and organized in multicomplex machinery: the replisome. The fourth B-family member, DNA polymerase zeta (Pol ζ), is responsible for a large portion of mutagenesis in eukaryotic cells. Two forms of Pol ζ have been identified, a hetero-dimeric (Pol ζ2 ) and a hetero-tetrameric (Pol ζ4 ) ones and recent data have demonstrated that Pol ζ4 is responsible for damage-induced mutagenesis. Here, using yeast Pol ζ mutant defective in the assembly of the Pol ζ four-subunit form, we show in vivo that [4Fe-4S] cluster in Pol ζ catalytic subunit (Rev3p) is also required for spontaneous (wild-type cells) and defective-replisome-induced mutagenesis - DRIM (pol3-Y708A, pol2-1 or psf1-100 cells), when cells are not treated with any external damaging agents.
Collapse
Affiliation(s)
- Ewa Szwajczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, 02-106, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, 02-106, Poland
| | - Catherine Suski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, 02-106, Poland
| |
Collapse
|
48
|
Kochenova OV, Bezalel-Buch R, Tran P, Makarova AV, Chabes A, Burgers PMJ, Shcherbakova PV. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations. Nucleic Acids Res 2017; 45:1200-1218. [PMID: 28180291 PMCID: PMC5388397 DOI: 10.1093/nar/gkw1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
In yeast, dNTP pools expand drastically during DNA damage response. We show that similar dNTP elevation occurs in strains, in which intrinsic replisome defects promote the participation of error-prone DNA polymerase ζ (Polζ) in replication of undamaged DNA. To understand the significance of dNTP pools increase for Polζ function, we studied the activity and fidelity of four-subunit Polζ (Polζ4) and Polζ4-Rev1 (Polζ5) complexes in vitro at ‘normal S-phase’ and ‘damage-response’ dNTP concentrations. The presence of Rev1 inhibited the activity of Polζ and greatly increased the rate of all three ‘X-dCTP’ mispairs, which Polζ4 alone made extremely inefficiently. Both Polζ4 and Polζ5 were most promiscuous at G nucleotides and frequently generated multiple closely spaced sequence changes. Surprisingly, the shift from ‘S-phase’ to ‘damage-response’ dNTP levels only minimally affected the activity, fidelity and error specificity of Polζ complexes. Moreover, Polζ-dependent mutagenesis triggered by replisome defects or UV irradiation in vivo was not decreased when dNTP synthesis was suppressed by hydroxyurea, indicating that Polζ function does not require high dNTP levels. The results support a model wherein dNTP elevation is needed to facilitate non-mutagenic tolerance pathways, while Polζ synthesis represents a unique mechanism of rescuing stalled replication when dNTP supply is low.
Collapse
Affiliation(s)
- Olga V Kochenova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
49
|
Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res 2017; 808:62-73. [PMID: 28843435 DOI: 10.1016/j.mrfmmm.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/31/2023]
Abstract
Replication stress is a strong and early driving force for genomic instability and tumor development. Beside replicative DNA polymerases, an emerging group of specialized DNA polymerases is involved in the technical assistance of the replication machinery in order to prevent replicative stress and its deleterious consequences. During S-phase, altered progression of the replication fork by endogenous or exogenous impediments induces replicative stress, causing cells to reach mitosis with genomic regions not fully duplicated. Recently, specific mechanisms to resolve replication intermediates during mitosis with the aim of limiting DNA damage transmission to daughter cells have been identified. In this review, we detail the two major actions of specialized DNA polymerases that limit DNA damage transmission: the prevention of replicative stress by non-B DNA replication and the recovery of stalled replication forks.
Collapse
Affiliation(s)
- Elodie Bournique
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Marina Dall'Osto
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France.
| |
Collapse
|
50
|
Abstract
The instability of microsatellite DNA repeats is responsible for at least 40 neurodegenerative diseases. Recently, Mirkin and co-workers presented a novel mechanism for microsatellite expansions based on break-induced replication (BIR) at sites of microsatellite-induced replication stalling and fork collapse. The BIR model aims to explain single-step, large expansions of CAG/CTG trinucleotide repeats in dividing cells. BIR has been characterized extensively in Saccharomyces cerevisiae as a mechanism to repair broken DNA replication forks (single-ended DSBs) and degraded telomeric DNA. However, the structural footprints of BIR-like DSB repair have been recognized in human genomic instability and tied to the etiology of diverse developmental diseases; thus, the implications of the paper by Kim et al. (Kim JC, Harris ST, Dinter T, Shah KA, et al., Nat Struct Mol Biol 24: 55-60) extend beyond trinucleotide repeat expansion in yeast and microsatellite instability in human neurological disorders. Significantly, insight into BIR-like repair can explain certain pathways of complex genome rearrangements (CGRs) initiated at non-B form microsatellite DNA in human cancers.
Collapse
Affiliation(s)
- Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|