1
|
Zhu L, Cui X, Yan Z, Tao Y, Shi L, Zhang X, Yao Y, Shi L. Design and evaluation of a multi-epitope DNA vaccine against HPV16. Hum Vaccin Immunother 2024; 20:2352908. [PMID: 38780076 PMCID: PMC11123455 DOI: 10.1080/21645515.2024.2352908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Cervical cancer, among the deadliest cancers affecting women globally, primarily arises from persistent infection with high-risk human papillomavirus (HPV). To effectively combat persistent infection and prevent the progression of precancerous lesions into malignancy, a therapeutic HPV vaccine is under development. This study utilized an immunoinformatics approach to predict epitopes of cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) using the E6 and E7 oncoproteins of the HPV16 strain as target antigens. Subsequently, through meticulous selection of T-cell epitopes and other necessary elements, a multi-epitope vaccine was constructed, exhibiting good immunogenic, physicochemical, and structural characteristics. Furthermore, in silico simulations showed that the vaccine not only interacted well with toll-like receptors (TLR2/TLR3/TLR4), but also induced a strong innate and adaptive immune response characterized by elevated Th1-type cytokines, such as interferon-gamma (IFN-γ) and interleukin-2 (IL2). Additionally, our study investigated the effects of different immunization intervals on immune responses, aiming to optimize a time-efficient immunization program. In animal model experiments, the vaccine exhibited robust immunogenic, therapeutic, and prophylactic effects. Administered thrice, it consistently induced the expansion of specific CD4 and CD8 T cells, resulting in substantial cytokines release and increased proliferation of memory T cell subsets in splenic cells. Overall, our findings support the potential of this multi-epitope vaccine in combating HPV16 infection and signify its candidacy for future HPV vaccine development.
Collapse
Affiliation(s)
- Lanfang Zhu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xiangjie Cui
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yufen Tao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xinwen Zhang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
2
|
Kanwal M, Basheer A, Bilal M, Faheem M, Aziz T, Alamri AS, Alsanie WF, Alhomrani M, Jamal SB. In silico vaccine design for Yersinia enterocolitica: A comprehensive approach to enhanced immunogenicity, efficacy and protection. Int Immunopharmacol 2024; 143:113241. [PMID: 39369465 DOI: 10.1016/j.intimp.2024.113241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Yersinia enterocolitica, a foodborne pathogen, has emerged as a significant public health concern due to its increased prevalence and multidrug resistance. This study employed reverse vaccinology to identify novel vaccine candidates against Y. enterocolitica through comprehensive in silico analyses. The core genome's conserved protein translocase subunit SecY was selected as the target, and potential B-cell, MHC class I, and MHC class II epitopes were mapped. 3B-cell epitopes, 3 MHCI and 11 MHCII epitopes were acquired. A multi-epitope vaccine construct was designed by incorporating the identified epitopes, TLR4 Agonist was used as adjuvants to enhance the immunogenic response. EAAAK, CPGPG and AYY linkers were used to form a vaccine construct, followed by extensive computational evaluations. The vaccine exhibited desirable physicochemical properties, stable secondary and tertiary structures as evaluated by PDBSum and trRosetta. Moreover, favorable interactions with the human Toll-like receptor 4 (TLR4) was observed by ClusPro. Population coverage analysis estimated the vaccine's applicability across 99.74 % in diverse populations. In addition, molecular dynamics simulations and normal mode analysis confirmed the vaccine's structural stability and dynamics in a simulated biological environment. Furthermore, codon optimization and in silico cloning facilitated the evaluation of the vaccine's expression potential in E. coli and pET-28a was used a recombinant plasmid. This study provides a promising foundation for the development of an efficacious vaccine against Y. enterocolitica infections.
Collapse
Affiliation(s)
- Munazza Kanwal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Muhammad Bilal
- Department of Biological Sciences, Oakland University, MI, USA.
| | - Muhammad Faheem
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA.
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece.
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
3
|
Pang F, Long Q, Liang S. Designing a multi-epitope subunit vaccine against Orf virus using molecular docking and molecular dynamics. Virulence 2024; 15:2398171. [PMID: 39258802 PMCID: PMC11404621 DOI: 10.1080/21505594.2024.2398171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 09/12/2024] Open
Abstract
Orf virus (ORFV) is an acute contact, epitheliotropic, zoonotic, and double-stranded DNA virus that causes significant economic losses in the livestock industry. The objective of this study is to design an immunoinformatics-based multi-epitope subunit vaccine against ORFV. Various immunodominant cytotoxic T lymphocytes (CTL), helper T lymphocytes (HTL), and B-cell epitopes from the B2L, F1L, and 080 protein of ORFV were selected and linked by short connectors to construct a multi-epitope subunit vaccine. Immunogenicity was enhanced by adding an adjuvant β-defensin to the N-terminal of the vaccine using the EAAAK linker. The vaccine exhibited a significant degree of antigenicity and solubility, without allergenicity or toxicity. The 3D formation of the vaccine was subsequently anticipated, improved, and verified. The optimized model exhibited a lower Z-score of -4.33, indicating higher quality. Molecular docking results demonstrated that the vaccine strongly binds to TLR2 and TLR4. Molecular dynamics results indicated that the docked vaccine-TLR complexes were stable. Immune simulation analyses further confirmed that the vaccine can induce a marked increase in IgG and IgM antibody titers, and elevated levels of IFN-γ and IL-2. Finally, the optimized DNA sequence of the vaccine was cloned into the vector pET28a (+) for high expression in the E.coli expression system. Overall, the designed multi-epitope subunit vaccine is highly stable and can induce robust humoral and cellular immunity, making it a promising vaccine candidate against ORFV.
Collapse
MESH Headings
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Molecular Docking Simulation
- Animals
- Orf virus/immunology
- Orf virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Molecular Dynamics Simulation
- Mice
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/chemistry
- Ecthyma, Contagious/prevention & control
- Ecthyma, Contagious/immunology
- Ecthyma, Contagious/virology
- Mice, Inbred BALB C
- Female
- T-Lymphocytes, Cytotoxic/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
Collapse
Affiliation(s)
- Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Qinqin Long
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Shaobo Liang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Kantroo HA, Mubarak MM, Chowdhary R, Rai R, Ahmad Z. Antifungal Efficacy of Ultrashort β-Peptides against Candida Species: Mechanistic Understanding and Therapeutic Implications. ACS Infect Dis 2024; 10:3736-3743. [PMID: 39392829 DOI: 10.1021/acsinfecdis.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Candidiasis, a condition spurred by the unchecked proliferation of Candida species, poses a formidable global health threat, particularly in immunocompromised individuals. The emergence of drug-resistant strains complicates management strategies, necessitating novel therapeutic avenues. Antimicrobial peptides (AMPs) have garnered attention for their potent antifungal properties and broad-spectrum activity against Candida species. This study assessed the antifungal effectiveness of ultrashort β-peptides against Candida strains, with a specific focus on peptide P3 (LAU-β3,3-Pip-β2,2-Ac6c-PEA). Our findings showed P3's remarkable fungistatic and fungicidal activities against Candida albicans, exhibiting an MIC of 4 μg/mL, comparable to those of standard antifungal drugs. The MIC value remained unchanged in the presence of ADC and BSA, indicating that serum albumin does not diminish the activity of P3. P3 demonstrates synergistic effects when combined with Fluconazole (FLU), Itraconazole (ITR), and Nystatin (NYS) to the extent that it becomes effective at 0.125, 0.125, and 0.03125 μg/mL, respectively. Concentration versus time-kill kinetics showed its time-dependent activity up to the first 12 h against C. albicans, and later concentration also played a role; indeed, at 24 h the whole culture was sterilized at 8× MIC. Post-antifungal effect assays confirmed prolonged suppression of pathogen growth after the removal of P3 from the media for significant durations. More importantly, P3 inhibits hyphae formation and biofilm development of Candida, outperforming Fluconazole with respect to these properties. Mechanistic insights display P3's potential to disrupt fungal cell membrane integrity and dose-dependent inhibition of ergosterol biosynthesis, essential for fungal cell wall integrity. Using the Bradford assay, it was observed that extracellular protein concentrations increased with higher doses of the compound, thereby validating the effect of P3 on membrane integrity. A comparative gene analysis using RT-PCR showed that P3 downregulates ERG3, ERG11, and HWP1, which are crucial for the survival and pathogenicity of C. albicans. The impact of P3 on ERG11 and ERG3 is more effective than that of Fluconazole. Molecular docking studies revealed strong binding of P3 to various isoforms of lanosterol 14-α-demethylase, a key enzyme in ergosterol synthesis. Furthermore, molecular dynamic simulations validated the stability of the most promising docking complex. Overall, our findings underscore P3's potential as a leading candidate for the development of innovative antifungal therapies, warranting further investigation and optimization.
Collapse
Affiliation(s)
- Hadiya Amin Kantroo
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar-190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohamad Mosa Mubarak
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar-190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rubina Chowdhary
- Natural Products & Medicinal Chemistry Division, CSIR - Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajkishor Rai
- Natural Products & Medicinal Chemistry Division, CSIR - Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Zahoor Ahmad
- Clinical Microbiology PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar-190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Karmakar M, Jana D, Manna T, Mitra M, Guchhait KC, Dey S, Raul P, Jana S, Roy S, Baitalik A, Ghosh K, Panda AK, Ghosh C. Bioremediation by Brevibacterium sediminis: a prospective pyrene degrading agent to eliminate environmental polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2024; 40:377. [PMID: 39495360 DOI: 10.1007/s11274-024-04178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Environmental abuses and subsequent array of health hazards by petroleum products have emerged as a global concern that warrants proper remediation. Pyrene (PYR), a polycyclic aromatic hydrocarbon, is a xenobiotic by-product during crude petroleum processing. Biodegradation potential of two bacterial isolates (MK4 and MK9) of Brevibacterium sediminis from oil contaminated sites was explored. MK4 and MK9 could degrade PYR up to 23 and 59% (1000 mg.L- 1), respectively. A first-order formalism with the rate constant for MK4 and MK9 were found to be 0.022 ± 0.001 and 0.081 ± 0.005 day- 1, respectively with the corresponding half life period of 31.4 ± 1.4 and 8.6 ± 0.60 days respectively. Both the isolates produce biosurfactants as established by drop collapse assay, oil spreading and emulsification activity studies. Decrease in pH, change in absorbance (bacterial growth), and catechol formation support adaptation capability of the isolates to degrade PYR by using it as a source of carbon. PYR ring cleavage was induced by the ring hydroxylating dioxogenase enzyme present in the strains, as identified by PCR assay. In silico analyses of the PYR degrading enzyme revealed its higher binding affinity (-7.6 kcal.mol- 1) and stability (Eigen value:1.655763 × 10- 04) to PYR, as further supported by other thoeroretical studies. MK9 strain was more efficient than the MK4 strain in PYR degradation. Studies gain its prominence as it reports for the first time on the aptitude of B. sediminis as novel PYR-degrading agent that can efficiently be used in the bioremediation of petroleum product pollution with a greener approach.
Collapse
Affiliation(s)
- Monalisha Karmakar
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Debarati Jana
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Maitreyee Mitra
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Kartik Chandra Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Subhamoy Dey
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Priyanka Raul
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sahadeb Jana
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Anirban Baitalik
- Department of Pure and Applied Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
6
|
Bhowmik D, Bhuyan A, Gunalan S, Kothandan G, Kumar D. In silico and immunoinformatics based multiepitope subunit vaccine design for protection against visceral leishmaniasis. J Biomol Struct Dyn 2024; 42:9731-9752. [PMID: 37655736 DOI: 10.1080/07391102.2023.2252901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Visceral leishmaniasis (VL) is a vector-borne neglected tropical protozoan disease with high fatality and no certified vaccine. Conventional vaccine preparation is challenging and tedious. Here in this work, we created a global multiepitope subunit vaccination against VL utilizing innovative immunoinformatics technique based on the extensively conserved epitopic regions of the PrimPol protein of Leishmania donovani consisting of four subunits which were analyzed and studied, out of which DNA primase large subunit and DNA polymerase α subunit B were evaluated as antigens by Vaxijen 2.0. The multiepitope vaccine design includes a single adjuvant β-defensins, eight CTL epitopes, eight HTL epitopes, seven linear BCL epitopes and one discontinuous BCL epitope to induce innate, cellular and humoral immune responses against VL. The Expasy ProtParam tool characterized the physiochemical parameters of the vaccine. At the same time, SOLpro evaluated our vaccine constructs to be soluble upon expression. We also modeled the stable tertiary structure of our vaccine construct through Robetta modeling for molecular docking studies with toll-like receptor proteins through HADDOCK 2.4. Simulations based on molecular dynamics revealed an intact vaccine and TLR8 complex, supporting our vaccine design's immunogenicity. Also, the immune simulation of our vaccine by the C-ImmSim server demonstrated the potency of the multiepitope vaccine construct to induce proper immune response for host defense. Codon optimization and in silico cloning of our vaccine further assured high expression. The outcomes of our study on multiepitope vaccine design significantly produced a potential candidate against VL and can potentially eradicate the disease in the future after clinical investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deep Bhowmik
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| | - Achyut Bhuyan
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| | - Seshan Gunalan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Gugan Kothandan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Diwakar Kumar
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
7
|
Douradinha B. Computational strategies in Klebsiella pneumoniae vaccine design: navigating the landscape of in silico insights. Biotechnol Adv 2024; 76:108437. [PMID: 39216613 DOI: 10.1016/j.biotechadv.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae poses a grave threat to global public health, necessitating urgent strategies for vaccine development. In this context, computational tools have emerged as indispensable assets, offering unprecedented insights into klebsiellal biology and facilitating the design of effective vaccines. Here, a review of the application of computational methods in the development of K. pneumoniae vaccines is presented, elucidating the transformative impact of in silico approaches. Through a systematic exploration of bioinformatics, structural biology, and immunoinformatics techniques, the complex landscape of K. pneumoniae pathogenesis and antigenicity was unravelled. Key insights into virulence factors, antigen discovery, and immune response mechanisms are discussed, highlighting the pivotal role of computational tools in accelerating vaccine development efforts. Advancements in epitope prediction, antigen selection, and vaccine design optimisation are examined, highlighting the potential of in silico approaches to update vaccine development pipelines. Furthermore, challenges and future directions in leveraging computational tools to combat K. pneumoniae are discussed, emphasizing the importance of multidisciplinary collaboration and data integration. This review provides a comprehensive overview of the current state of computational contributions to K. pneumoniae vaccine development, offering insights into innovative strategies for addressing this urgent global health challenge.
Collapse
|
8
|
Hasan A, Ibrahim M, Alonazi WB, Shen J. Application of immunoinformatics to develop a novel and effective multiepitope chimeric vaccine against Variovorax durovernensis. Comput Biol Chem 2024; 113:108266. [PMID: 39504600 DOI: 10.1016/j.compbiolchem.2024.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Bloodstream infections pose a significant public health challenge caused by resistant bacteria such as Variovorax durovernensis, a recently reported Gram-negative bacterium, worsening the burden on healthcare systems. The design of a vaccine using chimeric peptides derived from a representative V. durovernensis strain holds significant promise for preventing disease onset. The current study aimed to employ reverse vaccinology (RV) approaches such as the retrieval of V. durovernensis proteomics data, removal of redundant proteins by CD-HIT, filtering of non-homologous proteins to humans and essential proteins, identification of outer membrane (OM) proteins by CELLO and PSORTb. Following these steps immunoinformatic approaches were applied, such as epitope prediction by IEDB, vaccine design using linkers and adjuvant and analysis of antigenicity, allergenicity, safety and stability. Among the 4208 nonredundant proteins, an OmpA family protein (A0A940EKP4) was designated a potential candidate for the development of a multiepitope vaccine construct. Upon analysis of OM protein, six immunodominant (B cell) epitopes were found on the basis of the chimeric construct following the prediction of CTL stands cytotoxic T lymphocyte and HTL stands helper T lymphocyte epitopes. To ensure comprehensive population coverage globally, the CTL and HTL coverage rates were 58.18 % and 46.56 %, respectively, and 77.23 % overall. By utilizing EAAAK, GPGPG, and AAY linkers, Cholera toxin B subunit adjuvants, and appropriate epitopes were smoothly incorporated into a chimeric vaccine effectively triggering both adaptive and innate immune responses. For example, the administered antigen showed a peak in counts on the fifthday post injection and then gradually declined until the fifteenth day. Elevated levels of several antibodies (IgG + IgM > 700,000; IgM > 600,000; IgG1 + IgG2; IgG1 > 500,000) were observed as decreased in the antigen concentration. Molecular dynamics simulations carried out via iMODS revealed strong correlations between residue pairs, highlighting the stability of the docked complex. The designed vaccine has promising potential in eliciting specific immunogenic responses, thereby facilitating future research for vaccine development against V. durovernensis.
Collapse
Affiliation(s)
- Ahmad Hasan
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Muhammad Ibrahim
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Jian Shen
- Department of Medical Administration, Zhejiang Province People Hospital, Affiliated People Hospital, Hangzhou Medical College Hangzhou, Zhejiang, PR China.
| |
Collapse
|
9
|
Zhang M, Lian L, Wang T, Yang J, Yan Q, Zhang X, Huang H, Liu X, Jiang Y, Zhan S, Huang X. Experimental and proteomics evidence revealed the protective mechanisms of Shemazhichuan Liquid in attenuating neutrophilic asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156180. [PMID: 39515107 DOI: 10.1016/j.phymed.2024.156180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Neutrophilic asthma (NA) is one of the most important phenotypes of non-Th2 asthma and is often insensitive to glucocorticoid therapy, making current treatment difficult. Shemazhichuan Liquid (SMZCL), a Chinese medicine compound preparation, has unique advantages in the treatment of asthma. However, the underlying mechanisms of SMZCL in treating NA are not fully understood. PURPOSE The efficacy and underlying mechanisms of SMZCL on NA were investigated by TMT-labeled quantitative proteomics analysis and in vivo and in vitro experiments. METHODS NA mouse model was constructed by OVA/CFA sensitization followed by a 10-day challenge with 5 % OVA. Lung histopathology, leukocyte counts and cell sorting counts, inflammatory cytokines levels, as well as expression of autophagy markers were then assessed. The specific pathways and proteins of SMZCL for treating NA were further illustrated through TMT-based quantitative proteomics. In addition, RAW264.7 cells were induced by LPS to further explore the mechanism of the main active ingredient of SMZCL on autophagy pathway. RESULTS In vivo, SMZCL contributed to attenuating airway inflammation and collagen disposition, markedly reduced the number of leukocytes, especially neutrophils in bronchoalveolar lavage fluid (BALF), as well as decreased IgE and inflammatory cytokine levels (TNF-α, IL-1β, IL-6 and IL-8) in BALF and serum. Besides, SMZCL elevated the levels of LC3 and ATG5 while inhibiting the expression of p62 and mTOR. Mzb1 and Rab3ip were identified as the critical overlapping DEPs whose expression was inhibited by SMZCL and rapamycin. KEGG enrichment analysis showed that necroptosis process was a key pathway for SMZCL to treat NA airway inflammation. IHC and WB results confirmed that SMZCL and rapamycin inhibited the phosphorylation of RIPK1, PIPK3 and MLKL. In vitro, ATG5 and LC3 proteins were obviously increased while p-mTOR expression was inhibited after amygdalin treatment. CONCLUSION SMZCL attenuated airway inflammation in NA mainly through inhibition of the mTOR pathway, along with inhibition of the necroptosis pathway regulated by the RIPK1/RIPK3/MLKL axis and inhibition of Mzb1 and Rab3ip expression.
Collapse
Affiliation(s)
- Miaofen Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Leshen Lian
- Dongguan Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Dongguan, China
| | - Ting Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jing Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Qian Yan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xinxin Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China.
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiufang Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Naorem RS, Pangabam BD, Bora SS, Fekete C, Teli AB. Immunoinformatics Design of a Multiepitope Vaccine (MEV) Targeting Streptococcus mutans: A Novel Computational Approach. Pathogens 2024; 13:916. [PMID: 39452787 PMCID: PMC11509883 DOI: 10.3390/pathogens13100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Dental caries, a persistent oral health challenge primarily linked to Streptococcus mutans, extends its implications beyond dental decay, affecting over 4 billion individuals globally. Despite its historical association with childhood, dental caries often persists into adulthood with prevalence rates ranging from 60 to 90% in children and 26 to 85% in adults. Currently, there is a dearth of multiepitope vaccines (MEVs) specifically designed to combat S. mutans. To address this gap, we employed an immunoinformatics approach for MEV design, identifying five promising vaccine candidates (PBP2X, PBP2b, MurG, ATP-F, and AGPAT) based on antigenicity and conservation using several tools including CELLO v.2.5, Vaxign, v2.0, ANTIGENpro, and AllerTop v2.0 tools. Subsequent identification of linear B-cell and T-cell epitopes by SVMTrip and NetCTL/NetMHC II tools, respectively, guided the construction of a MEV comprising 10 Cytotoxic T Lymphocyte (CTL) epitopes, 5 Helper T Lymphocyte (HTL) epitopes, and 5 linear B-cell epitopes, interconnected by suitable linkers. The resultant MEV demonstrated high antigenicity, solubility, and structural stability. In silico immune simulations showcased the MEV's potential to elicit robust humoral and cell-mediated immune responses. Molecular docking studies revealed strong interactions between the MEV construct and Toll-Like Receptors (TLRs) and Major Histocompatibility Complex (MHC) molecules. Remarkably, the MEV-TLR-4 complexes exhibited a low energy score, high binding affinity, and a low dissociation constant. The Molecular Dynamic (MD) simulation analysis suggested that MEV-TLR-4 complexes had the highest stability and minimal conformational changes indicating equilibrium within 40 nanosecond time frames. Comprehensive computational analyses strongly support the potential of the proposed MEV to combat dental caries and associated infections. The study's computational assays yielded promising results, but further validation through in vitro and in vivo experiments is needed to assess its efficacy and safety.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
| | - Bandana Devi Pangabam
- Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary;
| | - Sudipta Sankar Bora
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
| | - Csaba Fekete
- Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary;
| | - Anju Barhai Teli
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
- Department of Biochemistry, Jorhat Medical College and Hospital, Jorhat 785001, India
| |
Collapse
|
11
|
Wajeeha AW, Mukhtar M, Zaidi NUSS. Unlocking Hope: Paving the Way for a Cutting-Edge Multi-Epitope Dengue Virus Vaccine. Mol Biotechnol 2024:10.1007/s12033-024-01294-4. [PMID: 39388049 DOI: 10.1007/s12033-024-01294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Dengue fever is a significant health issue in Pakistan, demanding a vaccine effective against all the viral strains. This study employs reverse vaccinology to develop potential dengue vaccine candidates (DVAX I-III). The study thoroughly examined conserved areas of dengue virus serotypes 1-4's structural and non-structural proteins. Key viral proteins were analyzed to find antigenic peptides, which were incorporated into vaccine candidates and potentiated with adjuvants. Computational methods predicted peptide structures and evaluated their binding to immune receptors TLR 2, TLR 4, HLA *A1101, and DRB*401. A molecular dynamics simulation lasting 100 ns of the DVAX II-TLR4 complex at different time intervals clearly indicated that the ligand is attached to the receptor. Normal mode analysis assessed the stability and flexibility of these interactions. Encouragingly, all three vaccine candidates demonstrated favorable interactions with these immune receptors and the potential to induce a robust immune response. These findings suggest their safety and warrant further in vivo studies to evaluate their efficacy for clinical development.
Collapse
Affiliation(s)
- Amtul Wadood Wajeeha
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mamuna Mukhtar
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Najam Us Sahar Sadaf Zaidi
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Khanpur Road, Mang Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
12
|
Durojaye OA. Delineation of the CENP-LN sub-complex dissociation mechanism upon multisite phosphorylation during mitosis. J Biomol Struct Dyn 2024; 42:8983-9001. [PMID: 37605944 DOI: 10.1080/07391102.2023.2249101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023]
Abstract
Phosphorylation is the most prevalent form of regulation in cells, organizing virtually all cellular functions, including survival, motility, differentiation, proliferation, and metabolism. This regulatory function has been largely conserved from the primitive single-cell to the more complex multicellular organisms. More than a third of proteins in eukaryotes are phosphorylated, and essentially every class of protein undergoes regulation by phosphorylation. A decline in the cellular level of CENP-L and CENP-N (components of the constitutive centromere associated network) has earlier been reported and linked to cyclin-dependent kinase (CDK) phosphorylation upon transition into mitosis. Given the importance of posttranslational modifications in cell cycle regulation, mechanistic comprehension of the impact of phosphorylation on both proteins (CENP-L and CENP-N) is of high significance. Through the application of diverse computational analytical techniques, including atomistic molecular dynamics simulations, the mechanism of kinetochore mis-localization and dissociation of the CENP-LN sub-complex in mitosis was delineated. We showed that the phosphorylation of both components of the sub-complex induces global conformational destabilizing effects on the proteins, combined with changes in the electrostatic potential and increase in steric clashes around the protein-protein interaction interface. This, consistent with earlier experimental reports, suggest that the multisite phosphorylation of the CENP-LN sub-complex plays a crucial role in the regulation of cell division.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria
| |
Collapse
|
13
|
Bhattacharya K, Chanu NR, Jha SK, Khanal P, Paudel KR. In silico design and evaluation of a multiepitope vaccine targeting the nucleoprotein of Puumala orthohantavirus. Proteins 2024; 92:1161-1176. [PMID: 38742930 DOI: 10.1002/prot.26703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
The Puumala orthohantavirus is present in the body of the bank vole (Myodes glareolus). Humans infected with this virus may develop hemorrhagic fever accompanying renal syndrome. In addition, the infection may further lead to the failure of an immune system completely. The present study aimed to propose a possible vaccine by employing bioinformatics techniques to identify B and T-cell antigens. The best multi-epitope of potential immunogenicity was generated by combining epitopes. Additionally, the linkers EAAAK, AAY, and GPGPG were utilized in order to link the epitopes successfully. Further, C-ImmSim was used to perform in silico immunological simulations upon the vaccine. For the purpose of conducting expression tests in Escherichia coli, the chimeric protein construct was cloned using Snapgene into the pET-9c vector. The designed vaccine showed adequate results, evidenced by the global population coverage and favorable immune response. The developed vaccine was found to be highly effective and to have excellent population coverage in a number of computer-based assessments. This work is fully dependent on the development of nucleoprotein-based vaccines, which would constitute a significant step forward if our findings were used in developing a global vaccination to combat the Puumala virus.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India
| | - Nongmaithem Randhoni Chanu
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Faculty of Pharmaceutical Science, Assam Downtown University, Guwahati, Assam, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Sharma G, Sharma CS. Tetrahydropyridine appended 8-aminoquinoline derivatives: Design, synthesis, in silico, and in vitro antimalarial studies. Bioorg Chem 2024; 151:107674. [PMID: 39059071 DOI: 10.1016/j.bioorg.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Antimalarial drug resistance is a major obstacle in the ongoing quest against malaria. The disease affects half of the world's population. The majority of them are toddlers and pregnant women. Needed a potent compound to act on drug-resistant Pf at appropriate concentrations without endangering the host. Envisaged solving this issue through rational drug design by creating a novel hybrid drug possessing two pharmacophores that can act on two marvellous and independent aims within the cell. Synthesized a new series of substituted 4-phenyl-1,2,3,6-tetrahydropyridine (THP) 8-Aminoquinoline-based hybrid analogs which have been integrated with quinoline, chloroquine, pamaquine, and primaquine, which exhibited antimalarial activity against Pf. Out of thirteen 4-phenyl-1,2,3,6-THP appended 8-Aminoquinoline derivatives, the compounds 1j, 1e, 1b, and 1l have exhibited good antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-9) strain with the minimum inhibitory concentration. Compound 1b was the most effective and showed consistently good potency against the drug-resistant (RKL-9) strain, although all other arrays showed good antimalarial efficacy. Additional docking and molecular dynamics studies were carried out at several targeting sites to quantify the structural parameters necessary for the activity.
Collapse
Affiliation(s)
- Ganesh Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India.
| | - C S Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India
| |
Collapse
|
15
|
Alhassan HH, Ullah MI, Niazy AA, Alzarea SI, Alsaidan OA, Alzarea AI, Alsaidan AA, Alhassan AA, Alruwaili M, Alruwaili YS. Exploring glutathione transferase and Cathepsin L-like proteinase for designing of epitopes-based vaccine against Fasciola hepatica by immunoinformatics and biophysics studies. Front Immunol 2024; 15:1478107. [PMID: 39391319 PMCID: PMC11464328 DOI: 10.3389/fimmu.2024.1478107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Fasciolosis is a zoonotic infection and is considered a developing deserted tropical illness threatening ruminant productivity and causing financial losses. Herein, we applied immunoinformatics and biophysics studies to develop an epitopes vaccine against Fasciola hepatica using glutathione transferase and Cathepsin L-like proteinase as possible vaccine candidates. Using the selected proteins, B- and T-cell epitopes were predicted. After epitopes prediction, the epitopes were clarified over immunoinformatics screening, and only five epitopes, EFGRWQQEKCTIDLD, RRNIWEKNVKHIQEH, FKAKYLTEMSRASDI, TDMTFEEFKAKYLTE, and YTAVEGQCR were selected for vaccine construction; selected epitopes were linked with the help of a GPGPG linker and attached with an adjuvant through another linker, EAAAK linker. Cholera toxin B subunit was used as an adjuvant. The ExPASy ProtParam tool server predicted 234 amino acids, 25.86257 kDa molecular weight, 8.54 theoretical pI, 36.86 instability index, and -0.424 grand average of hydropathicity. Molecular docking analysis predicted that the vaccine could activate the immune system against F. hepatica. We calculated negative binding energy values. A biophysics study, likely molecular docking molecular dynamic simulation, further validated the docking results. In molecular dynamic simulation analysis, the top hit docked compounds with the lowest binding energy values were subjected to MD simulation; the simulation analysis showed that the vaccine and immune cell receptors are stable and can activate the immune system. MMGBSA of -146.27 net energy (kcal/mol) was calculated for the vaccine-TLR2 complex, while vaccine-TLR4 of -148.11 net energy (kcal/mol) was estimated. Furthermore, the C-ImmSim bioinformatics tool predicted that the vaccine construct can activate the immune system against F. hepatica, eradicate the infection caused by F. hepatica, and reduce financial losses that need to be spent while protecting against infections of F. hepatica. The computational immune simulation unveils that the vaccine model can activate the immune system against F. hepatica; hence, the experimental scientist can validate the finding accomplished through computational approaches.
Collapse
Affiliation(s)
- Hassan H. Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Aseel Awad Alsaidan
- Department of Family and Community Medicine, College of Medicine, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Abulaziz A. Alhassan
- Department of Pediatric, Domat Aljandal General Hospital, Ministry of Health, Domat Aljandal, Al-Jouf, Saudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Yasir S. Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
- Sustainable Development Research and Innovation Center, Deanship of Graduate Studies and Scientific Research, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
16
|
Iqbal S, Begum F, Alfaifi MY, Elbehairi SEI, Siddique A, Shaw P. Exploring Antimicrobial Potency, ADMET, and Optimal Drug Target of a Non-ribosomal Peptide Sevadicin from Bacillus pumilus, through In Vitro Assay and Molecular Dynamics Simulation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10355-8. [PMID: 39316258 DOI: 10.1007/s12602-024-10355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The current study was designed to explore the biosynthetic potential of sevadicin in Bacillus pumilus species and its interaction with bacterial drug target molecules. The non-ribosomal peptide (NRP) cluster in B. pumilus SF-4 was preliminarily confirmed using PCR-based screening, and the bioactivity of strain SF-4 culture extract was assessed against a set of human pathogenic strains. The susceptibility assay showed that strain SF-4 extract had higher inhibitory concentrations (312-375 µg/mL) than ciprofloxacin. Genome mining of B. pumilus strains (n = 22) using AntiSMASH and BAGEL identified sevadicin coding biosynthetic gene cluster only in strain SF-4, constitutes of two core biosynthetic genes, three additional biosynthetic genes, two transport-related genes, and one regulatory gene. The molecular docking of sevadicin with various putative bacterial drug targets such as dihydropteroate, muramyl ligase E, topoisomerase, penicillin-binding protein, and in vitro safety analyses were conducted with detailed ADMET screening. The results showed that sevadicin makes hydrophobic interaction with MurE (PDB ID: 1E8C and 4C13) via hydrogen bonding, suggesting bacterial growth inhibition by disrupting the cell wall synthesis pathway and exhibiting a secure biosafety profile. The stability and compactness of sevadicin/MurE complexes were assessed via molecular dynamic simulation using RMSD, RMSF, and Rg. The simulation results revealed the binding stability of sevadicin/MurE complexes and indicated that the complexes can't be easily deformed. In conclusion, the current study explored the biosynthesis of sevadicin in B. pumilus for the first time and found that sevadicin inhibits bacterial growth by inhibiting cell wall synthesis via targeting the MurE enzyme and exhibits no toxicity.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Farida Begum
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, P.R. China
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha, 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha, 9004, Saudi Arabia
| | - Abubakar Siddique
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, P.R. China.
| |
Collapse
|
17
|
Ahmad S, Ali SS, Iqbal A, Ali S, Hussain Z, Khan I, Khan H. Using a dual immunoinformatics and bioinformatics approach to design a novel and effective multi-epitope vaccine against human torovirus disease. Comput Biol Chem 2024; 113:108213. [PMID: 39326336 DOI: 10.1016/j.compbiolchem.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Human Torovirus (HToV), a member of the Coronaviridae family, causes severe enteric diseases with no specific medication available. To develop novel preventative measures, we employed immunoinformatics techniques to design a multi-epitope-based subunit vaccine (HToV-MEV) triggering diverse immune responses. We selected non-allergenic, non-toxic, and antigenic epitopes from structural polyproteins, joined them with suitable linkers, and added an adjuvant 50S ribosomal L7/L12 peptide. The vaccine's solubility score of 0.903678 and physiochemical properties were found effective. Molecular dynamics simulations and free energy calculations revealed strong binding affinity for Toll-like receptor 3 (TLR-3), with a lowest energy score of -303.88, indicating high affinity. In-silico cloning and codon optimization showed significant production potential in E. coli. Immune simulations predicted a human immunological response. Our results are promising, but subsequent in vivo research is recommended. The HToV-MEV vaccine design demonstrates potential for preventing HToV-related diseases, and further investigation is warranted to explore its therapeutic applications.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan.
| | - Shahid Ali
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Zahid Hussain
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Ishaq Khan
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Hayat Khan
- Department of Genomics, Phenomics, and Bioinformatics, North Dakota State University, USA
| |
Collapse
|
18
|
Khanam A, Hridoy HM, Alam MS, Sultana A, Hasan I. An immunoinformatics approach for a potential NY-ESO-1 and WT1 based multi-epitope vaccine designing against triple-negative breast cancer. Heliyon 2024; 10:e36935. [PMID: 39286192 PMCID: PMC11402771 DOI: 10.1016/j.heliyon.2024.e36935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
Breast cancer emerges as one of the most prevalent malignancies in women, its incidence showing a concerning upward trend. Among the diverse array of breast cancer subtypes, triple-negative breast cancer (TNBC) assumes notable significance, due to lack of estrogen, progesterone, and HER-2 receptors. More focus has to be placed on creating effective therapy due to the high prevalence and rising incidence of TNBC. Currently, conventional passive treatments have several drawbacks that have not yet been resolved. On the other hand, as innovative immunotherapy approaches, cancer vaccines have offered promising prospects in combatting advanced stages of TNBC. Therefore, the main objective of this study was to utilize WT1 and NY-ESO-1 antigenic proteins in designing a multiepitope vaccine against TNBC. Initially, to generate robust immune responses, we identified antigenic epitopes of both proteins and assessed their immunogenicity. In order to reduce junctional immunogenicity, promiscuous epitopes were joined using the suitable adjuvant (50S ribosomal L7/L12 protein) and incorporated appropriate linkers (GPGPG, AAY, and EAAAK). The best predicted 3D model was refined and validated to achieve an excellent 3D model. Molecular docking analysis and dynamic simulation were conducted to demonstrate the structural stability and integrity of the vaccine/TLR-4 complex. Finally, the vaccine was cloned into the vector pET28 (+). Thus, analysis of the constructed vaccine through immunoinformatics indicates its capability to elicit robust humoral and cellular immune responses in the targeted organism. As such, it holds promise as a therapeutic weapon against TNBC and may open doors for further research in the field.
Collapse
Affiliation(s)
- Alima Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hossain Mohammad Hridoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Shahin Alam
- Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Adiba Sultana
- Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Microbiology, University of Rajshahi, Rajshah, 6205, Bangladesh
| |
Collapse
|
19
|
Khakpour N, Zahmatkesh A, Hosseini SY, Ghamar H, Nezafat N. Identification of the Potential Role of the E4orf4 Protein in Adenovirus A, B, C, and D Groups in Cancer Therapy: Computational Approaches. Mol Biotechnol 2024:10.1007/s12033-024-01278-4. [PMID: 39269574 DOI: 10.1007/s12033-024-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
The human adenovirus (HADV) early region 4 open reading frame 4 (E4orf4) protein plays a regulatory role in promoting viral infection by interacting with various cellular proteins. E4orf4 can induce death in cancer cells. One of the death pathways that is induced by this protein is related to the formation of membrane blebbing following the phosphorylation of tyrosine amino acids. The activation of this pathway requires the interaction of E4orf4 with Src family kinases (SFKs). The modulation mechanism of Src-dependent signaling via E4orf4 is not yet fully understood. However, evidence suggests that a physical association between the Src kinase domain and the arginine-rich motif of E4orf4 is crucial. Physically connecting E4orf4 to Src kinase leads to the deregulation of the Src-related signaling pathway, thereby inducing cytoplasmic death. In this study, we mapped the E4orf4 interaction site in Src to investigate the interaction between E4orf4 and Src in detail. We also compared the binding strength of E4orf4 proteins from different HADV groups. To this end, we performed bioinformatics structural analysis of the Src kinase domain and E4orf4 to identify E4orf4 interaction sites. The group with the lowest binding energy was predicted to be the most likely candidate for the highest cytoplasmic death in tumor cells based on the energy of the E4orf4-Src complex in various HADV groups. These results show that HADV-A and HADV-C have minimal binding energies to the E4orf4-Src complex, while the dissociation constant (Kd) of HADV-A was less than that of HADV-C. According to the obtained results, E4orf4 of the HADV-A group is more effective at triggering cytoplasmic death based on its most robust interaction with the Src kinase domain.
Collapse
Affiliation(s)
- Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Zahmatkesh
- Shiraz Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ghamar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Kafle A, Tenorio JCB, Mahato RK, Dhakal S, Heikal MF, Suttiprapa S. Construction and validation of a novel multi-epitope in silico vaccine design against the paramyosin protein of Opisthorchis viverrini using immunoinformatics analyses. Acta Trop 2024; 260:107389. [PMID: 39251174 DOI: 10.1016/j.actatropica.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Liver fluke infection caused by Opisthorchis viverrini (O. viverrini) remains a significant but neglected health threat across Southeastern Asia. The early infective anabolic growth stage of O. viverrini expresses and exposes proteins integral for the growth and maturation of immature worms to the adult catabolic stage. Among these proteins, paramyosin emerged as a distinct immunogenic protein during opisthorchiasis. The functional region of the paramyosin protein known as myosin tail was selected to design a multi-epitope vaccine (MEV) to elicit T and B cell immune responses in susceptible human hosts utilizing various immunoinformatics and in silico vaccinology tools. The vaccine candidate had several B- and T-cell epitopes that stimulate both humoral and cellular immune responses. Moreover, in silico structural, docking, and dynamic analyses showed that the construct interacted with target immune receptors effectively, which may result in sufficient immunological stimulation. Analysis of simulated coverage efficacy also supports vaccine application in the field. Cloning and expression of the vaccine candidate were determined to be viable based on physicochemical and in silico assessments. These results reveal that the vaccine candidate developed herein is stable and potentially useful in addressing opisthorchiasis. The promising result of this study establishes a strong platform for initiating laboratory and efficacy trials for the vaccine candidate.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jan Clyden B Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Sahara Dhakal
- Master of Nursing Science, Faculty of Nursing, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Muhammad F Heikal
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
21
|
Khalid A, Farhat N. Structural Insight on Interaction of NMDA receptor with fentanyl, ketamine and Isoflurane: A Computational Study to Unravel Mode of Binding. Cell Biochem Biophys 2024:10.1007/s12013-024-01499-z. [PMID: 39231847 DOI: 10.1007/s12013-024-01499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
NMDA receptors are considered targets for many anesthetics if they are modulated by the drugs at clinically relevant concentrations. Volatile anesthetics like isoflurane and ketamine interact with NMDA receptors, inhibiting channel activation and thus blocking NMDA neurotransmission at clinically relevant concentrations. The mode of binding of commonly used drugs like ketamine, isoflurane, and fentanyl is poorly understood. We used molecular docking, molecular dynamics simulations, and DFT calculation of these drugs against the NMDA receptor. Using well-defined computational methods, we identified that these drugs have high docking scores and significant interaction with receptors. These drugs bind to the substrate-binding pocket and form a remarkable number of interactions. We have found that these interactions are stable and have low HOMO-LUMO energy gaps. This study provides enough evidences of strong and stable interaction between drugs and NMDA receptor.
Collapse
Affiliation(s)
- Atif Khalid
- Department of Anaesthesiology, Veeranga AvantiBai Lodhi Autonomous State Medical College, Etah, India
| | - Nabeela Farhat
- School of Energy Science and Engineering, IIT Guwahati, Guwahati, India.
| |
Collapse
|
22
|
da Rocha MN, de Sousa DS, da Silva Mendes FR, Dos Santos HS, Marinho GS, Marinho MM, Marinho ES. Ligand and structure-based virtual screening approaches in drug discovery: minireview. Mol Divers 2024:10.1007/s11030-024-10979-6. [PMID: 39223358 DOI: 10.1007/s11030-024-10979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The compilation of ligand and structure-based molecular modeling methods has become an important practice in virtual screening applied to drug discovery. This systematic review addresses and ranks various virtual screening strategies to drive the selection of the optimal method for studies that have as their starting point a multi-ligand investigation and investigation based on the protein structure of a therapeutic target. This study shows examples of applications and an evaluation based on the objective and problematic of a series of virtual screening studies present in the ScienceDirect® database. The results showed that the molecular docking technique is widely used in scientific production, indicating that approaches that use protein structure as a starting point are the most promising strategy for drug discovery that relies on virtual screening-based research.
Collapse
Affiliation(s)
- Matheus Nunes da Rocha
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil.
| | - Damião Sampaio de Sousa
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
| | | | - Helcio Silva Dos Santos
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
- Chemistry Department, State University of Acaraú Valley, Sobral, CE, Brazil
| | - Gabrielle Silva Marinho
- Faculdade de Educação, Ciências e Letras de Iguatu, State University of Ceará, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
23
|
Hassan A, Zaib S, Anjum T. Evaluation of antifungal potentials of Albizia kalkora extract as a natural fungicide: In vitro and computational studies. Bioorg Chem 2024; 150:107561. [PMID: 38936050 DOI: 10.1016/j.bioorg.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
The antifungal bioactivity potential of the organic extract of silk tree (Albizia kalkora) was investigated in the current study. The crude extracts of A. kalkora and methanol, n-hexane, chloroform, and ethyl acetate fractions were prepared. The antifungal activity of obtained fractions of A. kalkora was studied at different concentrations ranging from 0.39-50 µg/mL. Dimethyl sulfoxide (DMSO) was taken as a toxicity control, whereas thiophanate methyl (TM) as a positive control. All the fractions significantly reduced the FOL growth (methanolic: 9.49-94.93 %, n-hexane: 11.12-100 %, chloroform: 20.96-91.41 %, and ethyl acetate: 18.75-96.70 %). The n-hexane fraction showed 6.25 µg/mL MIC as compared to TM with 64 µg/mL MIC. The non-polar (n-hexane) fraction showed maximum antifungal bioactivity against FOL in comparison with chloroform, methanol, and ethyl acetate fractions. GC/MS analysis exhibited that the n-hexane fraction contained hexadecanoic acid, 9,12,15-octadecatrienoic acid, 9,12-octadecadienoic acid, bis(2-ethylhexyl) phthalate, methyl stearate, and [1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid. The results of in vitro antifungal inhibition were further reinforced by molecular docking analysis. Five virulence proteins of FOL i.e., pH-responsive PacC transcription factor (PACC), MeaB, TOR; target of rapamycin (FMK1), Signal transducing MAP kinase kinase (STE-STE7), and High Osmolarity Glycerol 1(HOG1) were docked with identified phytocompounds in the n-hexane fraction by GC/MS analysis. MEAB showed maximum binding affinities with zinnimide (-12.03 kcal/mol), HOG1 and FMK1with α-Tocospiro-B (-11.51 kcal/mol) and (-10.55 kcal/mol) respectively, STE-STE7 with docosanoic acid (-11.31 kcal/mol), and PACC with heptadecanoic acid (-9.88 kcal/mol) respectively with strong hydrophobic or hydrophilic interactions with active pocket residues. In conclusion, the n-hexane fraction of the A. kalkora can be used to manage FOL.
Collapse
Affiliation(s)
- Ahmad Hassan
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
24
|
Pritam M, Dutta S, Medicherla KM, Kumar R, Singh SP. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics. J Biomol Struct Dyn 2024; 42:7321-7339. [PMID: 37498146 DOI: 10.1080/07391102.2023.2239932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Somenath Dutta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
25
|
Hasan M, Ahmed S, Imranuzzaman M, Bari R, Roy S, Hasan MM, Mia MM. Designing and development of efficient multi-epitope-based peptide vaccine candidate against emerging avian rotavirus strains: A vaccinomic approach. J Genet Eng Biotechnol 2024; 22:100398. [PMID: 39179326 PMCID: PMC11260576 DOI: 10.1016/j.jgeb.2024.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Enteric avian rotavirus (ARV) is the etiological agent of several health problems that pose a global threat to commercial chickens. Therefore, to avoid these widespread epidemics and high mortality rates, only vaccine and strict biosecurity are required. METHOD The present study employs computational techniques to design a unique multi-epitope-based vaccine candidate that successfully activates immune cells against the ARV by combining adjuvant, linker, and B and T-cell epitopes. Starting, homologous sequences in the various ARV serotypes were revealed in the NCBI BLAST database, and then the two surface proteins (VP4 and VP7) of the ARV were retrieved from the UniprotKB database. The Clustal Omega server was then used to identify the conserved regions among the homologous sequences, and the B and T-cell epitopes were predicted using IEDB servers. Then, superior epitopes-2 MHC-1 epitopes, 2 MHC-2 epitopes, and 3B-cell epitopes-were combined with various adjuvants to create a total of four unique vaccine candidates. Afterward, the designed vaccine candidates underwent computational validation to assess their antigenicity, allergenicity, and stability. The vaccine candidate (V2) that demonstrated non-antigenicity, a high VaxiJen score, and non-allergenicity was ultimately chosen for molecular docking and dynamic simulation. RESULTS Although the V2 and V4 vaccine candidates were highly immunogenic, V2 had a higher solubility rate. The predicted values of the aliphatic index and GRAVY value were 30.4 and 0.417, respectively. In terms of binding energy, V2 outperformed V4. Being successfully docked with TLRs, V2 was praised as the finest. After adaptation, the sequence's 50.73 % GC content outside of the BglII or ApaI restriction sites indicated that it was equivalently safe to clone. The chosen sequence was then inserted into the pET28a(+) vector within the BglII and ApaI restriction sites. This resulted in a final clone that was 4914 base pairs long, with the inserted sequence accounting for 478 bp and the vector accounting for the remainder. CONCLUSIONS The immune-mediated simulation results for the selected vaccine construct showed significant response; thus, the study confirmed that the selected V2 vaccine candidate could enhance the immune response against ARV.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Md Imranuzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rezaul Bari
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Shiplu Roy
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Livestock Production and Management, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mahadi Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mukthar Mia
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
26
|
Chand Y, Jain T, Singh S. Unveiling a Comprehensive Multi-epitope Subunit Vaccine Strategy Against Salmonella subsp. enterica: Bridging Core, Subtractive Proteomics, and Immunoinformatics. Cell Biochem Biophys 2024; 82:2901-2936. [PMID: 39018007 DOI: 10.1007/s12013-024-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Salmonella subsp. enterica (SE) presents a significant global health challenge in both developed and developing countries. Current SE vaccines have limitations, targeting specific strains and demonstrating moderate efficacy in adults, while also being unsuitable for young children and often unaffordable in regions with lower income levels where the disease is prevalent. To address these challenges, this study employed a computational approach integrating core proteomics, subtractive proteomics, and immunoinformatics to develop a universal SE vaccine and identify potential drug targets. Analysis of the core proteome of 185 SE strains revealed 1964 conserved proteins. Subtractive proteomics identified 9 proteins as potential vaccine candidates and 41 as novel drug targets. Using reverse vaccinology-based immunoinformatics, four multi-epitope-based subunit vaccine constructs (MESVCs) were designed, aiming to stimulate cytotoxic T lymphocyte, helper T lymphocyte, and linear B lymphocyte responses. These constructs underwent comprehensive evaluations for antigenicity, immunogenicity, toxicity, hydropathicity, and physicochemical properties. Predictive modeling, refinement, and validation were conducted to determine the secondary and tertiary structures of the SE-MESVCs, followed by docking studies with MHC-I, MHC-II, and TLR4 receptors. Molecular docking assessments showed favorable binding with all three receptors, with SE-MESVC-4 exhibiting the most promising binding energy. Molecular dynamics simulations confirmed the binding affinity and stability of SE-MESVC-4 with the TLR4/MD2 complex. Additionally, codon optimization and in silico cloning verified the efficient translation and successful expression of SE-MESVC-4 in Escherichia coli (E. coli) str. K12. Subsequent in silico immune simulation evaluated the efficacy of SE-MESVC-4 in triggering an effective immune response. These results suggest that SE-MESVC-4 may induce both humoral and cellular immune responses, making it a potential candidate for an effective SE vaccine. However, further experimental investigations are necessary to validate the immunogenicity and efficacy of SE-MESVC-4, bringing us closer to effectively combating SE infections.
Collapse
Affiliation(s)
- Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Tanvi Jain
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy and Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
27
|
Singh NS, Mukherjee I. Investigating PCB degradation by indigenous fungal strains isolated from the transformer oil-contaminated site: degradation kinetics, Bayesian network, artificial neural networks, QSAR with DFT, molecular docking, and molecular dynamics simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55676-55694. [PMID: 39240431 DOI: 10.1007/s11356-024-34902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
The widespread prevalence of polychlorinated biphenyls (PCBs) in the environment has raised major concerns due to the associated risks to human health, wildlife, and ecological systems. Here, we investigated the degradation kinetics, Bayesian network (BN), quantitative structure-activity relationship-density functional theory (QSAR-DFT), artificial neural network (ANN), molecular docking (MD), and molecular dynamics stimulation (MS) of PCB biodegradation, i.e., PCB-10, PCB-28, PCB-52, PCB-138, PCB-153, and PCB-180 in the soil system using fungi isolated from the transformer oil-contaminated sites. Results revealed that the efficacy of PCB biodegradation best fits the first-order kinetics (R2 ≥ 0.93). The consortium treatment (29.44-74.49%) exhibited more efficient degradation of PCBs than those of Aspergillus tamarii sp. MN69 (27.09-71.25%), Corynespora cassiicola sp. MN69 (23.76-57.37%), and Corynespora cassiicola sp. MN70 (23.09-54.98%). 3'-Methoxy-2, 4, 4'-trichloro-biphenyl as an intermediate derivative was detected in the fungal consortium treatment. The BN analysis predicted that the biodegradation efficiency of PCBs ranged from 11.6 to 72.9%. The ANN approach showed the importance of chemical descriptors in decreasing order, i.e., LUMO > MW > IP > polarity no. > no. of chlorine > Wiener index > Zagreb index > HOMU > Pogliani index > APE in PCB removal. Furthermore, the QSAR-DFT model between the chemical descriptors and rate constant (log K) exhibited a high fit and good robustness of R2 = 99.12% in predicting ability. The MD and MS analyses showed the lowest binding energy through normal mode analysis (NMA), implying stability in the interactions of the docked complexes. These findings provide crucial insights for devising strategies focused on natural attenuation, holding substantial potential for mitigating PCB contamination within the environment.
Collapse
Affiliation(s)
- Ningthoujam Samarendra Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| | - Irani Mukherjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India.
| |
Collapse
|
28
|
Pourhajibagher M, Javanmard Z, Bahador A. Molecular docking and antimicrobial activities of photoexcited inhibitors in antimicrobial photodynamic therapy against Enterococcus faecalis biofilms in endodontic infections. AMB Express 2024; 14:94. [PMID: 39215887 PMCID: PMC11365891 DOI: 10.1186/s13568-024-01751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is a promising approach to combat antibiotic resistance in endodontic infections. It eliminates residual bacteria from the root canal space and reduces the need for antibiotics. To enhance its effectiveness, an in silico and in vitro study was performed to investigate the potential of targeted aPDT using natural photosensitizers, Kojic acid and Parietin. This approach aims to inhibit the biofilm formation of Enterococcus faecalis, a frequent cause of endodontic infections, by targeting the Ace and Esp proteins. After determining the physicochemical characteristics of Ace and Esp proteins and model quality assessment, the molecular dynamic simulation was performed to recognize the structural variations. The stability and physical movement of the protein-ligand complexes were evaluated. In silico molecular docking was conducted, followed by ADME/Tox profiling, pharmacokinetics characteristics, and assessment of drug-likeness properties of the natural photosensitizers. The study also investigated the changes in the expression of genes (esp and ace) involved in E. faecalis biofilm formation. The results showed that both Kojic acid and Parietin complied with Lipinski's rule of five and exhibited drug-like properties. In silico analysis indicated stable complexes between Ace and Esp proteins and the natural photosensitizers. The molecular docking studies demonstrated good binding affinity. Additionally, the expression of the ace and esp genes was significantly downregulated in aPDT using Kojic acid and Parietin with blue light compared to the control group. This investigation concluded that Kojic acid and Parietin with drug-likeness could efficiently interact with Ace and Esp proteins with a strong binding affinity. Hence, natural photosensitizers-mediated aPDT can be considered a promising adjunctive treatment against endodontic infections.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
29
|
Asadinezhad M, Pakzad I, Asadollahi P, Ghafourian S, Kalani BS. Proteomics Exploration of Brucella melitensis to Design an Innovative Multi-Epitope mRNA Vaccine. Bioinform Biol Insights 2024; 18:11779322241272404. [PMID: 39220468 PMCID: PMC11365029 DOI: 10.1177/11779322241272404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Brucellosis is a chronic and debilitating disease in humans, causing great economic losses in the livestock industry. Making an effective vaccine is one of the most important concerns for this disease. The new mRNA vaccine technology due to its accuracy and high efficiency has given promising results in various diseases. The objective of this research was to create a novel mRNA vaccine with multiple epitopes targeting Brucella melitensis. Seventeen antigenic proteins and their appropriate epitopes were selected with immunoinformatic tools and surveyed in terms of toxicity, allergenicity, and homology. Then, their presentation and identification by MHC cells and other immune cells were checked with valid tools such as molecular docking, and a multi-epitope protein was modeled, and after optimization, mRNA was analyzed in terms of structure and stability. Ultimately, the immune system's reaction to this novel vaccine was evaluated and the results disclosed that the designed mRNA construct can be an effective and promising vaccine that requires laboratory and clinical trials.
Collapse
Affiliation(s)
- Maryam Asadinezhad
- Students Research Committee, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Pakzad
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sobhan Ghafourian
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
30
|
Mursaleen S, Sarfraz A, Shehroz M, Zaman A, Rahman FU, Moura AA, Sheheryar S, Aziz S, Ullah R, Iqbal Z, Nishan U, Shah M, Sun W. Genome-level therapeutic targets identification and chimeric Vaccine designing against the Blastomyces dermatitidis. Heliyon 2024; 10:e36153. [PMID: 39224264 PMCID: PMC11367477 DOI: 10.1016/j.heliyon.2024.e36153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Blastomyces dermatitidis is a thermally dimorphic fungus that can cause serious and sometimes fatal infections, including blastomycosis. After spore inhalation, a pulmonary infection develops, which can be asymptomatic and have lethal effects, such as acute respiratory distress syndrome. Its most common extra-pulmonary sites are the central nervous system, bones, skin, and genito-urinary systems. Currently, no vaccine has been approved by the FDA to prevent this infection. In the study, a peptide-based vaccine was developed against blastomycosis by using subtractive proteomics and reverse vaccinology approaches. It focuses on mining the whole genome of B. dermatitidis, identifying potential therapeutic targets, and pinpointing potential epitopes for both B- and T-cells that are immunogenic, non-allergenic, non-toxic, and highly antigenic. Multi-epitope constructs were generated by incorporating appropriate linker sequences. A linker (EAAAK) was also added to incorporate an adjuvant sequence to increase immunological potential. The addition of adjuvants and linkers ultimately resulted in the formation of a vaccine construct in which the number of amino acids was 243 and the molecular weight was 26.18 kDa. The designed antigenic and non-allergenic vaccine constructs showed suitable physicochemical properties. The vaccine's structures were predicted, and further analysis verified their interactions with the human TLR-4 receptor through protein-protein docking. Additionally, MD simulation showed a potent interaction between prioritized vaccine-receptor complexes. Immune simulation predicted that the final vaccine injections resulted in significant immune responses for the T- and B-cell immune responses. Moreover, in silico cloning ensured a high expression possibility of the lead vaccine in the E. coli (K12) vector. This study offers an initiative for the development of effective vaccines against B. dermatitidis; however, it is necessary to validate the designed vaccine's immunogenicity experimentally.
Collapse
Affiliation(s)
- Sawvara Mursaleen
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree-47150, Pakistan
| | - Aqal Zaman
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Faiz U Rahman
- Department of Zoology, Shangla Campus, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - Arlindo A. Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Shahid Aziz
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia, Kingdom of Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University P.O. Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Wenwen Sun
- Department of Intensive Care Unit, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 213004, China
| |
Collapse
|
31
|
Bhattacharya M, Sarkar A, Wen ZH, Wu YJ, Chakraborty C. Rational Design of a Multi-epitope Vaccine Using Neoantigen Against Colorectal Cancer Through Structural Immunoinformatics and ML-Enabled Simulation Approach. Mol Biotechnol 2024:10.1007/s12033-024-01242-2. [PMID: 39190054 DOI: 10.1007/s12033-024-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer poses a substantial global health burden. Regarding WHO, the global burden of colorectal cancer will be about 3.2 million new cases by the year 2040. Simultaneously, it indicated that this cancer will cause 6 million deaths per year. Despite advancements in chemotherapy and monoclonal antibody therapy, the disease remains a significant challenge due to the resistance of cancer stem cells. This study endeavors to design a multi-epitopic peptide (9-mer epitopes) neoantigen-based vaccine targeting the TLR4/MD2 complex as a potential vaccine candidate. These tumor-specific neoantigens (TSA) are considered novel antigens that can be used for vaccine development against cancer. To develop the neoantigen vaccine candidate, we used the SPENCER database, and 140 lncRNA-derived epitopes were retrieved. From 140 epitopes, we selected seven neoantigens with high antigenic properties for the vaccine construct. A novel vaccine containing epitopes, linkers (EAAAK and CPCPG), and adjuvants (ribosomal [50S] protein L7L12) was formulated utilizing immunoinformatics tools. The vaccine's biophysical properties were evaluated, revealing its antigenicity (0.6469), stability (instability index: 37.05), and potential for immune system interaction. In-depth structural analyses, molecular docking studies, and ML-enabled immune simulation profiling underscored the vaccine's structural integrity, binding affinity with TLR4, and ability to elicit robust immune responses against colorectal cancer antigens. These findings suggest that the multi-epitopic vaccine holds promise as a next-generation approach to combat colorectal cancer. Our in silico studies exhibit potentiality of the vaccine candidate; however, further in vivo and in vitro investigations are crucial to validate immunogenicity, safety, and efficacy before clinical implementation. Our study developed a first-time lncRNA-derived neoantigen-based cancer vaccine.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Anindita Sarkar
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yueh-Jung Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
32
|
Abdel Hafez SMN, Saber EA, Aziz NM, Aleem MMAE, Mohamed MS, Abdelhafez EMN, Ibrahim RA. Possible protective effects of vanillin against stress-induced seminiferous tubule injury via modulation of Nrf2 and ZO1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03355-6. [PMID: 39186188 DOI: 10.1007/s00210-024-03355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Around 20% of the human population is distressed. Previous studies have looked into the relationship between restraint immobilization stress (IS) and sexual behavior in male rats. The current study aimed to provide a brief explanation of the mechanisms that generated testicular injury with chronic IS and an attempt to evaluate the mechanisms and effects of vanillin as a novel protective agent. Forty-eight adult male albino rats were divided into six groups: control, vanillin-treated, chronic 2-h IS, 2-h stressed-vanillin-treated, chronic 6-h IS, and 6-h stressed-vanillin treated. The rats were sacrificed, and blood samples were collected for biochemical study. The testes were processed for biochemical and histological study, as well as histological Johnsen score. The results showed that prolonged IS increased both corticosterone and TNF-α levels as well as decreased testosterone, luteinizing hormone, catalase, and Nrf2 levels. This effect was more pronounced after 6 h of IS compared to 2 h. It also induced various testicular injuries with weak ZO-1 and CD34 immunoreactions. On the contrary, vanillin improved all mentioned biochemical and histological alternations induced by stress. Additionally, computational molecular docking analyses were conducted on the compound vanillin within the active site of Zona Occludens-1 (PDB ID: 2JWE). The results demonstrated remarkable docking scores and binding affinity, corroborating its potential protective efficacy. It could be concluded that vanillin is a promising treatment alternative for protecting testicular tissue from the harmful effects of IS via its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Entesar Ali Saber
- Department of Medical Sciences (Histology and Cell Biology), Deraya University, New Minia City, Egypt
| | - Neven Makram Aziz
- Department of Medical Sciences (Physiology), Deraya University, New Minia City, Egypt
| | | | | | | | - Randa Ahmed Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
33
|
Cui M, Ji X, Guan F, Su G, Du L. Design of a Helicobacter pylori multi-epitope vaccine based on immunoinformatics. Front Immunol 2024; 15:1432968. [PMID: 39247202 PMCID: PMC11377293 DOI: 10.3389/fimmu.2024.1432968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious bacterium that colonizes the stomach of approximately half of the global population. It has been classified as a Group I carcinogen by the World Health Organization due to its strong association with an increased incidence of gastric cancer and exacerbation of stomach diseases. The primary treatment for H. pylori infection currently involves triple or quadruple therapy, primarily consisting of antibiotics and proton pump inhibitors. However, the increasing prevalence of antibiotic resistance poses significant challenges to this approach, underscoring the urgent need for an effective vaccine. In this study, a novel multi-epitope H. pylori vaccine was designed using immunoinformatics. The vaccine contains epitopes derived from nine essential proteins. Software tools and online servers were utilized to predict, evaluate, and analyze the physiochemical properties, secondary and tertiary structures, and immunogenicity of the candidate vaccine. These comprehensive assessments ultimately led to the formulation of an optimal design scheme for the vaccine. Through constructing a novel multi-epitope vaccine based on immunoinformatics, this study offers promising prospects and great potential for the prevention of H. pylori infection. This study also provides a reference strategy to develop multi-epitope vaccines for other pathogens.
Collapse
Affiliation(s)
- Man Cui
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Xiaohui Ji
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Fengtao Guan
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Guimin Su
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Lin Du
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| |
Collapse
|
34
|
Rastogi A, Gautam S, Kumar M. Bioinformatic elucidation of conserved epitopes to design a potential vaccine candidate against existing and emerging SARS-CoV-2 variants of concern. Heliyon 2024; 10:e35129. [PMID: 39157328 PMCID: PMC11328099 DOI: 10.1016/j.heliyon.2024.e35129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 poses a significant adverse effects on health and economy globally. Due to mutations in genome, COVID-19 vaccine efficacy decreases. We used immuno-informatics to design a Multi epitope vaccine (MEV) candidate for SARS-CoV-2 variants of concern (VOCs). Hence, we predicted binders/epitopes MHC-I, CD8+, MHC-II, CD4+, and CTLs from spike, membrane and envelope proteins of VOCs. In addition, we assessed the conservation of these binders and epitopes across different VOCs. Subsequently, we designed MEV by combining the predicted CTL and CD4+ epitopes from spike protein, peptide linkers, and an adjuvant. Further, we evaluated the binding of MEV candidate against immune receptors namely HLA class I histocompatibility antigen, HLA class II histocompatibility antigen, and TLR4, achieving binding scores of -1265.3, -1330.7, and -1337.9. Molecular dynamics and normal mode analysis revealed stable docking complexes. Moreover, immune simulation suggested MEV candidate elicits both innate and adaptive immune response. We anticipate that this conserved MEV candidate will provide protection from VOCs and emerging strains.
Collapse
Affiliation(s)
- Amber Rastogi
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Gautam
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
35
|
Ryan N, Pratiwi SE, Mardhia M, Ysrafil Y, Liana DF, Mahyarudin M. Immunoinformatics approach for design novel multi-epitope prophylactic and therapeutic vaccine based on capsid proteins L1 and L2 and oncoproteins E6 and E7 of human papillomavirus 16 and human papillomavirus 18 against cervical cancer. Osong Public Health Res Perspect 2024; 15:307-328. [PMID: 39039819 PMCID: PMC11391375 DOI: 10.24171/j.phrp.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND This study aimed to identify the optimal protein construction for designing a multi-epitope vaccine with both prophylactic and therapeutic effects against cervical cancer, utilizing an immunoinformatics approach. The construction process involved using capsid epitopes L1 and L2, as well as oncoproteins E5, E6, and E7 from human papillomavirus (HPV) types 16 and 18. METHODS An experimental in silico analysis with an immunoinformatics approach was used to develop 2 multi-epitope vaccine constructs (A and B). Further analysis was then conducted to compare the constructs and select the one with the highest potential against cervical cancer. RESULTS This study produced 2 antigenic, non-allergenic, and nontoxic multi-epitope vaccine constructs (A and B), which exhibited the ideal physicochemical properties for a vaccine. Further analysis revealed that construct B effectively induced both cellular and humoral immune responses. CONCLUSION The multi-epitope vaccine construct B for HPV 16 and 18, designed for both prophylactic and therapeutic purposes, met the development criteria for a cervical cancer vaccine. However, these findings need to be validated through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Nicholas Ryan
- Medical Study Program, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Sari Eka Pratiwi
- Department of Biology and Pathobiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Mardhia Mardhia
- Department of Microbiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Ysrafil Ysrafil
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya, Indonesia
| | - Delima Fajar Liana
- Department of Microbiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Mahyarudin Mahyarudin
- Department of Microbiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| |
Collapse
|
36
|
Kuri PR, Goswami P. Reverse vaccinology-based multi-epitope vaccine design against Indian group A rotavirus targeting VP7, VP4, and VP6 proteins. Microb Pathog 2024; 193:106775. [PMID: 38960216 DOI: 10.1016/j.micpath.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvβ3 and αIIbβ3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.
Collapse
Affiliation(s)
- Pooja Rani Kuri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
37
|
Rout S, Satapathy BS, Sahoo RN, Pattnaik S. Telmisartan loaded lipid nanocarrier as a potential repurposing approach to treat glioma: characterization, apoptosis evaluation in U87MG cells, pharmacokinetic and molecular simulation study. NANOTECHNOLOGY 2024; 35:425101. [PMID: 39025086 DOI: 10.1088/1361-6528/ad64e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The study explores anticancer potential of telmisartan (TS) loaded lipid nanocarriers (TLNs) in glioma cells as a potential repurposing nanomodality along with estimation of drug availability at rat brain. Experimental TLNs were produced by previously reported method and characterized.In vitroanticancer efficacy of experimental TLNs was estimated by MTT, confocal microscopy, and FACs analysis in glioma cells. Plasma and brain pharmacokinetic (PK) parameters were also analysed by LCMS/MS. Spherical, nanosized, homogenous, unilamellar, TLNs were reported having desirable drug loading (9.5% ± 0.6%), negative zeta potential and sustained TS release tendency. FITC-TLNs were sufficiently internalized into U87MG cells line within 0.5 h incubation period. IC50for TLNs was considerably higher than free TS in the tested glioma cell lines. Further, TLNs induced superior apoptotic effect in U87MG cells than TS. PK (plasma/brain) data depicted higher AUC,Vss, MRT with lower Cltfor TLNs suggesting improved bioavailability,in vivoresidence and sustained drug availability than free TS administration. Docking studies rationalizedin vitro/in vivoresults as preferably higher binding affinity (docking score:12.4) was detected for TS with glioma proteins. Further,in vivostudies in glioma bearing xenograft model is underway for futuristic clinical validation of TLNs.
Collapse
Affiliation(s)
- Sagar Rout
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Snigdha Pattnaik
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| |
Collapse
|
38
|
Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep 2024; 14:17645. [PMID: 39085250 PMCID: PMC11291903 DOI: 10.1038/s41598-024-67553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, 11566, Egypt.
| |
Collapse
|
39
|
Elalouf A, Maoz H, Rosenfeld AY. Bioinformatics-Driven mRNA-Based Vaccine Design for Controlling Tinea Cruris Induced by Trichophyton rubrum. Pharmaceutics 2024; 16:983. [PMID: 39204328 PMCID: PMC11357599 DOI: 10.3390/pharmaceutics16080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Tinea cruris, a dermatophyte fungal infection predominantly caused by Trichophyton rubrum and Epidermophyton floccosum, primarily affects the groin, pubic region, and adjacent thigh. Its recurrence is frequent, attributable to repeated fungal infections in susceptible individuals, especially those with onychomycosis or tinea pedis, which act as reservoirs for dermatophytes. Given the persistent nature of tinea cruris, vaccination emerges as a promising strategy for fungal infection management, offering targeted, durable protection against various fungal species. Vaccines stimulate both humoral and cell-mediated immunity and are administered prophylactically to prevent infections while minimizing the risk of antifungal resistance development. Developing fungal vaccines is challenging due to the thick fungal cell wall, similarities between fungal and human cells, antigenic variation, and evolutionary resemblance to animals, complicating non-toxic target identification and T-cell response variability. No prior research has shown an mRNA vaccine for T. rubrum. Hence, this study proposes a novel mRNA-based vaccine for tinea cruris, potentially offering long-term immunity and reducing reliance on antifungal medications. This study explores the complete proteome of T. rubrum, identifying potential protein candidates for vaccine development through reverse vaccinology. Immunogenic epitopes from these candidates were mapped and integrated into multitope vaccines and reverse translated to construct mRNA vaccines. Then, the mRNA was translated and computationally assessed for physicochemical, chemical, and immunological attributes. Notably, 1,3-beta-glucanosyltransferase, CFEM domain-containing protein, cell wall galactomannoprotein, and LysM domain-containing protein emerged as promising vaccine targets. Antigenic, immunogenic, non-toxic, and non-allergenic cytotoxic T lymphocyte, helper T lymphocyte, and B lymphocyte epitopes were selected and linked with appropriate linkers and Toll-like receptor (TLR) agonist adjuvants to formulate vaccine candidates targeting T. rubrum. The protein-based vaccines underwent reverse translation to construct the mRNA vaccines, which, after inoculation, were translated again by host ribosomes to work as potential components for triggering the immune response. After that, molecular docking, normal mode analysis, and molecular dynamic simulation confirmed strong binding affinities and stable complexes between vaccines and TLR receptors. Furthermore, immune simulations of vaccines with and without adjuvant demonstrated activation of immune responses, evidenced by elevated levels of IgG1, IgG2, IgM antibodies, cytokines, and interleukins. There was no significant change in antibody production between vaccines with and without adjuvants, but adjuvants are crucial for activating the innate immune response via TLRs. Although mRNA vaccines hold promise against fungal infections, further research is essential to assess their safety and efficacy. Experimental validation is crucial for evaluating their immunogenicity, effectiveness, and safety.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan 5290002, Israel; (H.M.); (A.Y.R.)
| | | | | |
Collapse
|
40
|
Mamun TI, Bourhia M, Neoaj T, Akash S, Azad MAK, Hossain MS, Rahman MM, Bin Jardan YA, Ibenmoussa S, Sitotaw B. Structure based functional identification of an uncharacterized protein from Coxiella burnetii involved in adipogenesis. Sci Rep 2024; 14:16789. [PMID: 39039093 PMCID: PMC11263603 DOI: 10.1038/s41598-024-66072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is an intracellular pathogen posing a significant global public health threat. There is a pressing need for dependable and effective treatments, alongside an urgency for further research into the molecular characterization of its genome. Within the genomic landscape of Coxiella burnetii, numerous hypothetical proteins remain unidentified, underscoring the necessity for in-depth study. In this study, we conducted comprehensive in silico analyses to identify and prioritize potential hypothetical protein of Coxiella burnetii, aiming to elucidate the structure and function of uncharacterized protein. Furthermore, we delved into the physicochemical properties, localization, and molecular dynamics and simulations, and assessed the primary, secondary, and tertiary structures employing a variety of bioinformatics tools. The in-silico analysis revealed that the uncharacterized protein contains a conserved Mth938-like domain, suggesting a role in preadipocyte differentiation and adipogenesis. Subcellular localization predictions indicated its presence in the cytoplasm, implicating a significant role in cellular processes. Virtual screening identified ligands with high binding affinities, suggesting the protein's potential as a drug target against Q fever. Molecular dynamics simulations confirmed the stability of these complexes, indicating their therapeutic relevance. The findings provide a structural and functional overview of an uncharacterized protein from C. burnetii, implicating it in adipogenesis. This study underscores the power of in-silico approaches in uncovering the biological roles of uncharacterized proteins and facilitating the discovery of new therapeutic strategies. The findings provide valuable preliminary data for further investigation into the protein's role in adipogenesis.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| | - Taufiq Neoaj
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md A K Azad
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Md Masudur Rahman
- Department of Pathology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, 34000, Montpellier, France
| | - Baye Sitotaw
- Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
| |
Collapse
|
41
|
Naskar S, Harsukhbhai Chandpa H, Agarwal S, Meena J. Super epitope dengue vaccine instigated serotype independent immune protection in-silico. Vaccine 2024; 42:3857-3873. [PMID: 38616437 DOI: 10.1016/j.vaccine.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024]
Abstract
Dengue becomes the most common life-threatening infectious arbovirus disease globally, with prevalence in the tropical and subtropical areas. The major clinical features include dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), a condition of hypovolemic shock. Four different serotypes of the dengue virus, known as dengue virus serotype (DENV)- 1, 2, 3 and 4 can infect humans. Only one vaccine is available in the market, named Dengvaxia by Sanofi Pasteur, but there is no desired outcome of this treatment due the antibody dependent enhancement (ADE) of the multiple dengue serotypes. As of now, there is no cure against dengue disease. Our goal in this work was to create a subunit vaccine based on several epitopes that would be effective against every serotype of the dengue virus. Here, computational methods like- immunoinformatics and bioinformatics were implemented to find out possible dominant epitopes. A total of 21 epitopes were chosen using various in-silico techniques from the expected 133 major histocompatibility complex (MHC)- I and major histocompatibility complex (MHC)- II epitopes, along with 95 B-cell epitopes which were greatly conserved. Immune stimulant, non-allergenic and non-toxic immunodominant epitopes (super epitopes) with a suitable adjuvant (Heparin-Binding Hemagglutinin Adhesin, HBHA) were used to construct the vaccine. Following the physicochemical analysis, vaccine construct was docked with Toll-like receptors (TLRs) to predict the immune stimulation. Consequently, the optimal docked complex that demonstrated the least amount of ligand-receptor complex deformability was used to conduct the molecular dynamics analysis. By following the codon optimization, the final vaccine molecule was administered into an expressing vector to perform in-silico cloning. The robust immune responses were generated in the in-silico immune simulation analysis. Hence, this study provides a hope to control the dengue infections. For validation of the immune outcomes, in-vitro as well as in-vivo investigations are essential.
Collapse
Affiliation(s)
- Shovan Naskar
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shalini Agarwal
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
42
|
Agarwal S, Harsukhbhai Chandpa H, Naskar S, Lal Meena C, Kumar Panda A, Meena J. Dominant B cell-T cell epitopes instigated robust immune response in-silico against Scrub Typhus. Vaccine 2024; 42:3899-3915. [PMID: 38719691 DOI: 10.1016/j.vaccine.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Scrub typhus, a potentially life-threatening infectious disease, is attributed to bacteria Orientia tsutsugamushi (O. tsutsugamushi). The transmission of this illness to humans occurs through the bite of infected chiggers, which are the larval forms of mites belonging to the genus Leptotrombidium. In this research, we developed a subunit vaccine specifically designed to target outer membrane proteins. Immunodominant cytotoxic T-lymphocytes (CTLs), B- lymphocytes (BCLs), and major histocompatibility complex (MHC)- II epitopes were identified using machine learning and bioinformatics approaches. These epitopes were arranged in different combinations with the help of suitable linkers like AAY, KK, GPGPG and adjuvant (cholera toxin B) that resulted in a vaccine construct. Physiochemical properties were assessed, where the predicted solubility (0.571) was higher than threshold value. Tertiary structure was predicted using I-TASSER web server and evaluated using Ramachandran plot (94 % residues in most favourable region) and z-score (-6.04), which had shown the structure to have good stability and residue arrangement. Molecular docking with immune receptors, Toll-like receptor (TLR)-2 and -4 showed good residue interaction with 13 and 5 hydrogen bonds respectively. Molecular dynamics simulations of receptor-ligand complex provided the idea about the strong interaction having 1.524751 × 10-5 eigenvalue. Amino acid sequence of vaccine was converted to nucleotide sequence and underwent codon optimization. The optimized codon sequence was used for in-silico cloning, which provided idea about the possibility of synthesis of vaccine using E. coli as host. Overall, this study provided a promising blueprint for a scrub typhus vaccine, although experimental validation is needed for confirmation. Furthermore, it is crucial to acknowledge that while bioinformatics provides valuable insights, in-vitro and in-vivo studies are imperative for a comprehensive evaluation of vaccine candidate. Thus, the integration of computational predictions with empirical research is essential to validate the efficacy, safety, and real-world applicability of the designed vaccine against Scrub Typhus. Nevertheless, the findings are good to carry forward for in-vitro and in-vivo investigations.
Collapse
Affiliation(s)
- Shalini Agarwal
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shovan Naskar
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Chhuttan Lal Meena
- Drug Design Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amulya Kumar Panda
- Panacea Biotec Limited, Mohan Cooperative Industrial Estate, Badarpur New Delhi 110044, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
43
|
Pan X, Guo X, Shi J. Design of a novel multiepitope vaccine with CTLA-4 extracellular domain against Mycoplasma pneumoniae: A vaccine-immunoinformatics approach. Vaccine 2024; 42:3883-3898. [PMID: 38777697 DOI: 10.1016/j.vaccine.2024.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Community-acquired pneumonia often stems from the macrolide-resistant strain of Mycoplasma pneumoniae, yet no effective vaccine exists against it. METHODS This study proposes a vaccine-immunoinformatics strategy for Mycoplasma pneumoniae and other pathogenic microbes. Specifically, dominant B and T cell epitopes of the Mycoplasma pneumoniae P30 adhesion protein were identified through immunoinformatics method. The vaccine sequence was then constructed by coupling with CTLA-4 extracellular region, a novel molecular adjuvant for antigen-presenting cells. Subsequently, the vaccine's physicochemical properties, antigenicity, and allergenicity were verified. Molecular dynamics modeling was employed to confirm interaction with TLR-2, TLR-4, B7-1, and B7-2. Finally, the vaccine underwent in silico cloning for expression. RESULTS The vaccine exhibited both antigenicity and non-allergenicity. Molecular dynamics simulation, post-docking with TLR-2, TLR-4, B7-1, and B7-2, demonstrated stable interaction between the vaccine and these molecules. In silico cloning confirmed effective expression of the vaccine gene in insect baculovirus vectors. CONCLUSION This vaccine-immunoinformatics approach holds promise for the development of vaccines against Mycoplasma pneumoniae and other pathogenic non-viral and non-bacterial microbes.
Collapse
Affiliation(s)
- Xiaohong Pan
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaomei Guo
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China; Kunming Medical University, Kunming, Yunnan, China
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China; National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan China.
| |
Collapse
|
44
|
Koehl P, Navaza R, Tekpinar M, Delarue M. MinActionPath2: path generation between different conformations of large macromolecular assemblies by action minimization. Nucleic Acids Res 2024; 52:W256-W263. [PMID: 38783081 PMCID: PMC11223808 DOI: 10.1093/nar/gkae421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recent progress in solving macromolecular structures and assemblies by cryogenic electron microscopy techniques enables sampling of their conformations in different states that are relevant to their biological function. Knowing the transition path between these conformations would provide new avenues for drug discovery. While the experimental study of transition paths is intrinsically difficult, in-silico methods can be used to generate an initial guess for those paths. The Elastic Network Model (ENM), along with a coarse-grained representation (CG) of the structures are among the most popular models to explore such possible paths. Here we propose an update to our software platform MinActionPath that generates non-linear transition paths based on ENM and CG models, using action minimization to solve the equations of motion. The new website enables the study of large structures such as ribosomes or entire virus envelopes. It provides direct visualization of the trajectories along with quantitative analyses of their behaviors at http://dynstr.pasteur.fr/servers/minactionpath/minactionpath2_submission.
Collapse
Affiliation(s)
- Patrice Koehl
- Department of Computer Science and Genome Centre, University of California, Davis, CA 95616, USA
| | - Rafael Navaza
- Plateforme de Cristallographie, C2RT, Institut Pasteur, Université Paris Cité, UMR 3528 du CNRS, 75015 Paris, France
| | - Mustafa Tekpinar
- Unité Architecture et Dynamique des Macromolécules Biologiques, Institut Pasteur, Université Paris Cité, UMR 3528 du CNRS, 75015 Paris, France
| | - Marc Delarue
- Unité Architecture et Dynamique des Macromolécules Biologiques, Institut Pasteur, Université Paris Cité, UMR 3528 du CNRS, 75015 Paris, France
| |
Collapse
|
45
|
Ezzemani W, Ouladlahsen A, Altawalah H, Saile R, Sarih M, Kettani A, Ezzikouri S. Identification of novel T-cell epitopes on monkeypox virus and development of multi-epitopes vaccine using immunoinformatics approaches. J Biomol Struct Dyn 2024; 42:5349-5364. [PMID: 37354141 DOI: 10.1080/07391102.2023.2226733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Monkeypox virus (MPV) is closely related to the smallpox virus, and previous data from Africa suggest that the smallpox vaccine (VARV) is at least 85% effective in preventing MPV. No multi-epitope vaccine has yet been developed to prevent MPV infection. In this work, we used in silico structural biology and advanced immunoinformatic strategies to design a multi-epitope subunit vaccine against MPV infection. The designed vaccine sequence is adjuvanted with CpG-ODN and includes HTL/CTL epitopes for similar proteins between vaccinia virus (VACV) that induced T-cell production in vaccinated volunteers and the first draft sequence of the MPV genome associated with the suspected outbreak in several countries, May 2022. In addition, the specific binding of the modified vaccine and the immune Toll-like receptor 9 (TLR9) was estimated by molecular interaction studies. Strong interaction in the binding groove as well as good docking scores confirmed the stringency of the modified vaccine. The stability of the interaction was confirmed by a classical molecular dynamics simulation and normal mode analysis. Then, the immune simulation also indicated the ability of this vaccine to induce an effective immune response against MPV. Codon optimization and in silico cloning of the vaccine into the pET-28a (+) vector also showed its expression potential in the E. coli K12 system. The promising data obtained from the various in silico studies indicate that this vaccine is effective against MPV. However, additional in vitro and in vivo studies are still needed to confirm its efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service des maladies infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Rachid Saile
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
46
|
Zaka A, Yousaf M, Shahzad S, Rao HZ, Foo JN, Siddiqi S. Structural and functional insights into a novel homozygous missense pathogenic variant in CUL7 identified in consanguineous Pakistani family. J Biomol Struct Dyn 2024; 42:5092-5103. [PMID: 37345548 DOI: 10.1080/07391102.2023.2224889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
3M syndrome is a rare genetic familial disorder characterized by short stature, growth retardation, facial dysmorphism, skeletal abnormalities, fleshy protruding heels, and normal intelligence, caused by mutations in the CUL7, OBSL1 and CCDC8 genes. In the present study, a novel homozygous missense variant of CUL7 (NP_001161842.1, c.4493T > C, p.L1498P) has been identified in a consanguineous Pakistani family by whole exome sequencing. In silico structural evaluation, molecular docking and simulation studies of mutant CUL7 provides substantial evidence about its crucial role in the progression of discussed ailment. The newly discovered variant significantly altered the protein's three dimensional structure, leading to abnormal interaction with binding proteins. This computational and experimental investigation provides useful information to drug developers for the synthesis of novel therapeutics against the discussed ailment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayesha Zaka
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Maha Yousaf
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Shaheen Shahzad
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Hadi Zahid Rao
- Department of Oral & Maxillofacial Surgery, Bahria University Medical and Dental College Karachi, Pakistan
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Saima Siddiqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
47
|
Hasan A, Alonazi WB, Ibrahim M, Bin L. Immunoinformatics and Reverse Vaccinology Approach for the Identification of Potential Vaccine Candidates against Vandammella animalimors. Microorganisms 2024; 12:1270. [PMID: 39065039 PMCID: PMC11278545 DOI: 10.3390/microorganisms12071270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vandammella animalimorsus is a Gram-negative and non-motile bacterium typically transmitted to humans through direct contact with the saliva of infected animals, primarily through biting, scratches, or licks on fractured skin. The absence of a confirmed post-exposure treatment of V. animalimorsus bacterium highlights the imperative for developing an effective vaccine. We intended to determine potential vaccine candidates and paradigm a chimeric vaccine against V. animalimorsus by accessible public data analysis of the strain by utilizing reverse vaccinology. By subtractive genomics, five outer membranes were prioritized as potential vaccine candidates out of 2590 proteins. Based on the instability index and transmembrane helices, a multidrug transporter protein with locus ID A0A2A2AHJ4 was designated as a potential candidate for vaccine construct. Sixteen immunodominant epitopes were retrieved by utilizing the Immune Epitope Database. The epitope encodes the strong binding affinity, nonallergenic properties, non-toxicity, high antigenicity scores, and high solubility revealing the more appropriate vaccine construct. By utilizing appropriate linkers and adjuvants alongside a suitable adjuvant molecule, the epitopes were integrated into a chimeric vaccine to enhance immunogenicity, successfully eliciting both adaptive and innate immune responses. Moreover, the promising physicochemical features, the binding confirmation of the vaccine to the major innate immune receptor TLR-4, and molecular dynamics simulations of the designed vaccine have revealed the promising potential of the selected candidate. The integration of computational methods and omics data has demonstrated significant advantages in discovering novel vaccine targets and mitigating vaccine failure rates during clinical trials in recent years.
Collapse
Affiliation(s)
- Ahmad Hasan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (A.H.); (M.I.)
| | - Wadi B. Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Muhammad Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (A.H.); (M.I.)
| | - Li Bin
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (A.H.); (M.I.)
| |
Collapse
|
48
|
Rasool D, Jan SA, Khan SU, Nahid N, Ashfaq UA, Umar A, Qasim M, Noor F, Rehman A, Shahzadi K, Alshammari A, Alharbi M, Nisar MA. Subtractive proteomics-based vaccine targets annotation and reverse vaccinology approaches to identify multiepitope vaccine against Plesiomonas shigelloides. Heliyon 2024; 10:e31304. [PMID: 38845922 PMCID: PMC11153098 DOI: 10.1016/j.heliyon.2024.e31304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Plesiomonas shigelloides, an aquatic bacterium belonging to the Enterobacteriaceae family, is a frequent cause of gastroenteritis with diarrhea and gastrointestinal severe disease. Despite decades of research, discovering a licensed and globally accessible vaccine is still years away. Developing a putative vaccine that can combat the Plesiomonas shigelloides infection by boosting population immunity against P. shigelloides is direly needed. In the framework of the current study, the entire proteome of P. shigelloides was explored using subtractive genomics integrated with the immunoinformatics approach for designing an effective vaccine construct against P. shigelloides. The overall stability of the vaccine construct was evaluated using molecular docking, which demonstrated that MEV showed higher binding affinities with toll-like receptors (TLR4: 51.5 ± 10.3, TLR2: 60.5 ± 9.2) and MHC receptors(MHCI: 79.7 ± 11.2 kcal/mol, MHCII: 70.4 ± 23.7). Further, the therapeutic efficacy of the vaccine construct for generating an efficient immune response was evaluated by computational immunological simulation. Finally, computer-based cloning and improvement in codon composition without altering amino acid sequence led to the development of a proposed vaccine. In a nutshell, the findings of this study add to the existing knowledge about the pathogenesis of this infection. The schemed MEV can be a possible prophylactic agent for individuals infected with P. shigelloides. Nevertheless, further authentication is required to guarantee its safeness and immunogenic potential.
Collapse
Affiliation(s)
- Danish Rasool
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | - Sohail Ahmad Jan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | | | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ahitsham Umar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A & F Uiversity, yangling, 712100, Shaanxi, China
| | - Kiran Shahzadi
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Atif Nisar
- College of Science and Engineering, Flinders University, Adelaide, 5042, Australia
| |
Collapse
|
49
|
Hameed H, Irshad N, Yousaf MA, Mumtaz S, Sohail I. Berberine ameliorates the progression of primary sclerosing cholangitis by activating farnesoid X receptor. Cell Biochem Biophys 2024; 82:767-776. [PMID: 38332450 DOI: 10.1007/s12013-024-01226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a rare cholestatic disease characterized by biliary infiltration, hepatic fibrosis and bile duct destruction. To date, treatment options for PSC are very limited. Therefore, the current study is aimed to investigate the therapeutic potential of berberine (BBR) against PSC. The disease was induced by feeding the mice with 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-collidine (DDC) for four weeks. The serum biochemistry and liver histology were analyzed. Furthermore, the expression of farnesoid X receptor (FXR) was also evaluated by real-time PCR. The results indicated that berberine prevents the progression of PSC by modulating the expression of FXR which ultimately regulates other genes (including Cyp7A1 and BSEP) thus maintaining bile acids homeostasis. Furthermore, the docking analysis showed that berberine interacts with the binding pocket of FXR to activate the protein thus acting as an FXR agonist. In conclusion, data indicate that berberine protects the liver from PSC-related injury. This effect might be due to the modulation of FXR activity.
Collapse
Affiliation(s)
- Hassan Hameed
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Nida Irshad
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Abrar Yousaf
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sidra Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Imran Sohail
- Department of Zoology, Government College University Lahore, Lahore, Pakistan.
| |
Collapse
|
50
|
Aktaş E, Özdemir Özgentürk N. A comprehensive examination of ACE2 receptor and prediction of spike glycoprotein and ACE2 interaction based on in silico analysis of ACE2 receptor. J Biomol Struct Dyn 2024; 42:4412-4428. [PMID: 37349943 DOI: 10.1080/07391102.2023.2220814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Abstract
The ACE2 receptor plays a vital role not only in the SARS-CoV-induced epidemic but also in various other diseases, including cardiovascular diseases and ARDS. While studies have explored the interactions between ACE2 and SARS-CoV proteins, comprehensive research utilizing bioinformatic tools on the ACE2 protein has been lacking. The one aim of present study was to extensively analyze the regions of the ACE2 protein. After utilizing all bioinformatics tools especially G104 and L108 regions on ACE2 were come forward. The results of our analysis revealed that possible mutations or deletions in the G104 and L108 regions play a critical role in both the biological functioning and the determination of the chemical-physical properties of ACE2. Additionally, these regions were found to be more susceptible to mutations or deletions compared to other regions of the ACE2 protein. Notably, the randomly selected peptide, LQQNGSSVLS (100-109), which includes G104 and L108, exhibited a crucial role in binding the RBD of the spike protein, as supported by docking scores. Furthermore, both MDs and iMODs results provided evidence that G104 and L108 influence the dynamics of ACE2-spike complexes. This study is expected to offer a new perspective on the ACE2-SARS-CoV interaction and other research areas where ACE2 plays a significant role, such as biotechnology (protein engineering, enzyme optimization), medicine (RAS, pulmonary and cardiac diseases), and basic research (structural motifs, stabilizing protein folds, or facilitating important inter molecular contacts, protein's proper structure and function).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emre Aktaş
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|