1
|
Liu M, Jin Z, Xiang Q, He H, Huang Y, Long M, Wu J, Zhi Huang C, Mao C, Zuo H. Rational Design of Untranslated Regions to Enhance Gene Expression. J Mol Biol 2024; 436:168804. [PMID: 39326490 DOI: 10.1016/j.jmb.2024.168804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
How to improve gene expression by optimizing mRNA structures is a crucial question for various medical and biotechnological applications. Previous efforts focus largely on investigation of the 5' UTR hairpin structures. In this study, we present a rational strategy that enhances mRNA stability and translation by engineering both the 5' and 3' UTR sequences. We have successfully demonstrated this strategy using green fluorescent protein (GFP) as a model in Escherichia coli and across different expression vectors. We further validated it with luciferase and Plasmodium falciparum lactate dehydrogenase (PfLDH). To elucidate the underlying mechanism, we have quantitatively analyzed both protein, mRNA levels and half-life time. We have identified several key aspects of UTRs that significantly influence mRNA stability and protein expression in our system: (1) The optimal length of the single-stranded spacer between the stabilizer hairpin and ribosome binding site (RBS) in the 5' UTR is 25-30 nucleotide (nt) long. An optimal 32% GC content in the spacer yielded the highest levels of GFP protein production. (2) The insertion of a homodimerdizable, G-quadruplex structure containing RNA aptamer, "Corn", in the 3' UTR markedly increased the protein expression. Our findings indicated that the carefully engineered 5' UTRs and 3' UTRs significantly boosted gene expression. Specifically, the inclusion of 5 × Corn in the 3' UTR appeared to facilitate the local aggregation of mRNA, leading to the formation of mRNA condensates. Aside from shedding light on the regulation of mRNA stability and expression, this study is expected to substantially increase biological protein production.
Collapse
Affiliation(s)
- Mingchun Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhuoer Jin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qing Xiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huawei He
- Biological Sciences Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mengfei Long
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Cheng Zhi Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Barrault M, Chabelskaya S, Coronel-Tellez R, Toffano-Nioche C, Jacquet E, Bouloc P. Staphylococcal aconitase expression during iron deficiency is controlled by an sRNA-driven feedforward loop and moonlighting activity. Nucleic Acids Res 2024; 52:8241-8253. [PMID: 38869061 PMCID: PMC11317140 DOI: 10.1093/nar/gkae506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Pathogenic bacteria employ complex systems to cope with metal ion shortage conditions and propagate in the host. IsrR is a regulatory RNA (sRNA) whose activity is decisive for optimum Staphylococcus aureus fitness upon iron starvation and for full virulence. IsrR down-regulates several genes encoding iron-containing enzymes to spare iron for essential processes. Here, we report that IsrR regulates the tricarboxylic acid (TCA) cycle by controlling aconitase (CitB), an iron-sulfur cluster-containing enzyme, and its transcriptional regulator, CcpE. This IsrR-dependent dual-regulatory mechanism provides an RNA-driven feedforward loop, underscoring the tight control required to prevent aconitase expression. Beyond its canonical enzymatic role, aconitase becomes an RNA-binding protein with regulatory activity in iron-deprived conditions, a feature that is conserved in S. aureus. Aconitase not only negatively regulates its own expression, but also impacts the enzymes involved in both its substrate supply and product utilization. This moonlighting activity concurrently upregulates pyruvate carboxylase expression, allowing it to compensate for the TCA cycle deficiency associated with iron scarcity. These results highlight the cascade of complex posttranscriptional regulations controlling S. aureus central metabolism in response to iron deficiency.
Collapse
Affiliation(s)
- Maxime Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Svetlana Chabelskaya
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Rodrigo H Coronel-Tellez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Claire Toffano-Nioche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR2301, 91198 Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Kim HJ, Cho SY, Jung SJ, Cho YJ, Roe JH, Kim KD. Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast. J Microbiol 2024; 62:639-648. [PMID: 38916790 DOI: 10.1007/s12275-024-00147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/26/2024]
Abstract
Aconitase-2 (Aco2) is present in the mitochondria, cytosol, and nucleus of fission yeast. To explore its function beyond the well-known role in the mitochondrial tricarboxylic acid (TCA) cycle, we conducted genome-wide profiling using the aco2ΔNLS mutant, which lacks a nuclear localization signal (NLS). The RNA sequencing (RNA-seq) data showed a general downregulation of electron transport chain (ETC) genes in the aco2ΔNLS mutant, except for those in the complex II, leading to a growth defect in respiratory-prone media. Complementation analysis with non-catalytic Aco2 [aco2ΔNLS + aco2(3CS)], where three cysteines were substituted with serine, restored normal growth and typical ETC gene expression. This suggests that Aco2's catalytic activity is not essential for its role in ETC gene regulation. Our mRNA decay assay indicated that the decrease in ETC gene expression was due to transcriptional regulation rather than changes in mRNA stability. Additionally, we investigated the Php complex's role in ETC gene regulation and found that ETC genes, except those within complex II, were downregulated in php3Δ and php5Δ strains, similar to the aco2ΔNLS mutant. These findings highlight a novel role for nuclear aconitase in ETC gene regulation and suggest a potential connection between the Php complex and Aco2.
Collapse
Affiliation(s)
- Ho-Jung Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo-Jin Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
| | - Yong-Jun Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung-Hye Roe
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
4
|
de Araújo HL, Picinato BA, Lorenzetti APR, Muthunayake NS, Rathnayaka-Mudiyanselage IW, dos Santos NM, Schrader J, Koide T, Marques MV. The DEAD-box RNA helicase RhlB is required for efficient RNA processing at low temperature in Caulobacter. Microbiol Spectr 2023; 11:e0193423. [PMID: 37850787 PMCID: PMC10715135 DOI: 10.1128/spectrum.01934-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE One of the most important control points in gene regulation is RNA stability, which determines the half-life of a transcript from its transcription until its degradation. Bacteria have evolved a sophisticated multi-enzymatic complex, the RNA degradosome, which is dedicated mostly to RNA turnover. The combined activity of RNase E and the other RNA degradosome enzymes provides an efficient pipeline for the complete degradation of RNAs. The DEAD-box RNA helicases are very often found in RNA degradosomes from phylogenetically distant bacteria, confirming their importance in unwinding structured RNA for subsequent degradation. This work showed that the absence of the RNA helicase RhlB in the free-living Alphaproteobacterium Caulobacter crescentus causes important changes in gene expression and cell physiology. These are probably due, at least in part, to inefficient RNA processing by the RNA degradosome, particularly at low-temperature conditions.
Collapse
Affiliation(s)
- Hugo L. de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz A. Picinato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alan P. R. Lorenzetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | - Naara M. dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jared Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
6
|
Nandavaram A, Nandakumar A, Kashif GM, Sagar AL, Shailaja G, Ramesh A, Siddavattam D. Unusual Relationship between Iron Deprivation and Organophosphate Hydrolase Expression. Appl Environ Microbiol 2023; 89:e0190322. [PMID: 37074175 PMCID: PMC10231211 DOI: 10.1128/aem.01903-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023] Open
Abstract
Organophosphate hydrolases (OPH), hitherto known to hydrolyze the third ester bond of organophosphate (OP) insecticides and nerve agents, have recently been shown to interact with outer membrane transport components, namely, TonB and ExbB/ExbD. In an OPH negative background, Sphingopyxis wildii cells failed to transport ferric enterobactin and showed retarded growth under iron-limiting conditions. We now show the OPH-encoding organophosphate degradation (opd) gene from Sphingobium fuliginis ATCC 27551 to be part of the iron regulon. A fur-box motif found to be overlapping with the transcription start site (TSS) of the opd gene coordinates with an iron responsive element (IRE) RNA motif identified in the 5' coding region of the opd mRNA to tightly regulate opd gene expression. The fur-box motif serves as a target for the Fur repressor in the presence of iron. A decrease in iron concentration leads to the derepression of opd. IRE RNA inhibits the translation of opd mRNA and serves as a target for apo-aconitase (IRP). The IRP recruited by the IRE RNA abrogates IRE-mediated translational inhibition. Our findings establish a novel, multilayered, iron-responsive regulation that is crucial for OPH function in the transport of siderophore-mediated iron uptake. IMPORTANCE Sphingobium fuliginis, a soil-dwelling microbe isolated from agricultural soils, was shown to degrade a variety of insecticides and pesticides. These synthetic chemicals function as potent neurotoxins, and they belong to a class of chemicals termed organophosphates. S. fuliginis codes for OPH, an enzyme that has been shown to be involved in the metabolism of several organophosphates and their derivatives. Interestingly, OPH has also been shown to facilitate siderophore-mediated iron uptake in S. fuliginis and in another Sphingomonad, namely, Sphingopyxis wildii, implying that this organophosphate-metabolizing protein has a role in iron homeostasis, as well. Our research dissects the underlying molecular mechanisms linking iron to the expression of OPH, prompting a reconsideration of the role of OPH in Sphingomonads and a reevaluation of the evolutionary origins of the OPH proteins from soil bacteria.
Collapse
Affiliation(s)
- Aparna Nandavaram
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anirudh Nandakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bengaluru, Karnataka, India
| | - G. M. Kashif
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - G. Shailaja
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arati Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Biochemistry, School of Sciences, GITAM University, Visakhapatnam, India
| |
Collapse
|
7
|
Ranava D, Scheidler CM, Pfanzelt M, Fiedler M, Sieber SA, Schneider S, Yap MNF. Bidirectional sequestration between a bacterial hibernation factor and a glutamate metabolizing protein. Proc Natl Acad Sci U S A 2022; 119:e2207257119. [PMID: 36122228 PMCID: PMC9522360 DOI: 10.1073/pnas.2207257119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial hibernating 100S ribosomes (the 70S dimers) are excluded from translation and are protected from ribonucleolytic degradation, thereby promoting long-term viability and increased regrowth. No extraribosomal target of any hibernation factor has been reported. Here, we discovered a previously unrecognized binding partner (YwlG) of hibernation-promoting factor (HPF) in the human pathogen Staphylococcus aureus. YwlG is an uncharacterized virulence factor in S. aureus. We show that the HPF-YwlG interaction is direct, independent of ribosome binding, and functionally linked to cold adaptation and glucose metabolism. Consistent with the distant resemblance of YwlG to the hexameric structures of nicotinamide adenine dinucleotide (NAD)-specific glutamate dehydrogenases (GDHs), YwlG overexpression can compensate for a loss of cellular GDH activity. The reduced abundance of 100S complexes and the suppression of YwlG-dependent GDH activity provide evidence for a two-way sequestration between YwlG and HPF. These findings reveal an unexpected layer of regulation linking the biogenesis of 100S ribosomes to glutamate metabolism.
Collapse
Affiliation(s)
- David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Martin Pfanzelt
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Michaela Fiedler
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mee-Ngan F. Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Menendez-Gil P, Catalan-Moreno A, Caballero CJ, Toledo-Arana A. Staphylococcus aureus ftnA 3'-Untranslated Region Modulates Ferritin Production Facilitating Growth Under Iron Starvation Conditions. Front Microbiol 2022; 13:838042. [PMID: 35572681 PMCID: PMC9093591 DOI: 10.3389/fmicb.2022.838042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Iron acquisition and modulation of its intracellular concentration are critical for the development of all living organisms. So far, several proteins have been described to be involved in iron homeostasis. Among them, ferritins act as the major iron storage proteins, sequestering internalized iron and modulating its concentration inside bacterial cells. We previously described that the deletion of the 3’-untranslated region (3’UTR) of the ftnA gene, which codes for ferritin in Staphylococcus aureus, increased the ftnA mRNA and ferritin levels. Here, we show that the ferritin levels are affected by RNase III and PNPase, which target the ftnA 3’UTR. Rifampicin mRNA stability experiments revealed that the half-life of the ftnA mRNA is affected by both RNase III and the ftnA 3’UTR. A transcriptional fusion of the ftnA 3’UTR to the gfp reporter gene decreased green fluorescent protein (GFP) expression, indicating that the ftnA 3’UTR could work as an independent module. Additionally, a chromosomal deletion of the ftnA 3’UTR impaired S. aureus growth under conditions of iron starvation. Overall, this work highlights the biological relevance of the ftnA 3’UTR for iron homeostasis in S. aureus.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
9
|
Kung WM, Lin CC, Chen WJ, Jiang LL, Sun YY, Hsieh KH, Lin MS. Anti-Inflammatory CDGSH Iron-Sulfur Domain 2: A Biomarker of Central Nervous System Insult in Cellular, Animal Models and Patients. Biomedicines 2022; 10:biomedicines10040777. [PMID: 35453528 PMCID: PMC9030396 DOI: 10.3390/biomedicines10040777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) promotes brain inflammation; conversely, brain injury promotes spinal neuron loss. There is a need to identify molecular biomarkers and therapeutic targets for central nervous system (CNS) injury. CDGSH iron-sulfur structural domain 2 (CISD2), an NF-κB antagonist, is downregulated after injury in vivo and in vitro. We aimed to examine the diagnostic value of CISD2 in patients with CNS insult. Plasma and cerebrospinal fluid (CSF) CISD2 levels were decreased in 13 patients with CNS insult and were negatively correlated with plasma IL6 levels (associated with disease severity; r = −0.7062; p < 0.01). SCI-induced inflammatory mediators delivered through CSF promoted mouse brain inflammation at 1 h post-SCI. Anti-CISD2 antibody treatment exacerbated SCI-induced inflammation in mouse spine and brain. Lipopolysaccharide-stimulated siCISD2-transfected EOC microglial cells exhibited proinflammatory phenotypes (enhanced M1 polarization, decreased M2 polarization, and increased intranuclear NF-κB p65 translocation). Plasma and CSF CISD2 levels were increased in three patients with CNS insult post-therapeutic hypothermia. CISD2 levels were negatively correlated with plasma and CSF levels of inflammatory mediators. CISD2 inhibition and potentiation experiments in cells, animals, and humans revealed CISD2 as a biomarker for CNS insult and upregulation of CISD2 anti-inflammatory properties as a potential therapeutic strategy for CNS insult.
Collapse
Affiliation(s)
- Woon-Man Kung
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (C.-C.L.); (W.-J.C.); (L.-L.J.)
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (C.-C.L.); (W.-J.C.); (L.-L.J.)
| | - Li-Lin Jiang
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (C.-C.L.); (W.-J.C.); (L.-L.J.)
| | - Yu-Yo Sun
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Kuang-Hui Hsieh
- Department of Laboratory Service, Kuang Tien General Hospital, Taichung 43303, Taiwan;
| | - Muh-Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (C.-C.L.); (W.-J.C.); (L.-L.J.)
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Cho SY, Jung SJ, Kim KD, Roe JH. Non-mitochondrial aconitase regulates the expression of iron-uptake genes by controlling the RNA turnover process in fission yeast. J Microbiol 2021; 59:1075-1082. [PMID: 34705258 DOI: 10.1007/s12275-021-1438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
Aconitase, a highly conserved protein across all domains of life, functions in converting citrate to isocitrate in the tricarboxylic acid cycle. Cytosolic aconitase is also known to act as an iron regulatory protein in mammals, binding to the RNA hairpin structures known as iron-responsive elements within the untranslated regions of specific RNAs. Aconitase-2 (Aco2) in fission yeast is a fusion protein consisting of an aconitase and a mitochondrial ribosomal protein, bL21, residing not only in mitochondria but also in cytosol and the nucleus. To investigate the role of Aco2 in the nucleus and cytoplasm of fission yeast, we analyzed the transcriptome of aco2ΔN mutant that is deleted of nuclear localization signal (NLS). RNA sequencing revealed that the aco2ΔN mutation caused increase in mRNAs encoding iron uptake transporters, such as Str1, Str3, and Shu1. The half-lives of mRNAs for these genes were found to be significantly longer in the aco2ΔN mutant than the wild-type strain, suggesting the role of Aco2 in mRNA turnover. The three conserved cysteines required for the catalytic activity of aconitase were not necessary for this role. The UV cross-linking RNA immunoprecipitation analysis revealed that Aco2 directly bound to the mRNAs of iron uptake transporters. Aco2-mediated degradation of iron-uptake mRNAs appears to utilize exoribonuclease pathway that involves Rrp6 as evidenced by genetic interactions. These results reveal a novel role of non-mitochondrial aconitase protein in the mRNA turnover in fission yeast to fine-tune iron homeostasis, independent of regulation by transcriptional repressor Fep1.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo-Jin Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Jung-Hye Roe
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Wong A, Hu N, Tian X, Yang Y, Gehring C. Nitric oxide sensing revisited. TRENDS IN PLANT SCIENCE 2021; 26:885-897. [PMID: 33867269 DOI: 10.1016/j.tplants.2021.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) sensing is an ancient trait enabled by hemoproteins harboring a highly conserved Heme-Nitric oxide/OXygen (H-NOX) domain that operates throughout bacteria, fungi, and animal kingdoms including in humans, but that has long thought to be absent in plants. Recently, H-NOX-containing plant hemoproteins mediating crucial NO-dependent responses such as stomatal closure and pollen tube guidance have been reported. There are indications that the detection method that led to these discoveries will uncover many more heme-based NO sensors that operate as regulatory sites in complex proteins. Their characterizations will in turn offer a much more complete picture of plant NO responses at both the molecular and systems level.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China.
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Yixin Yang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, I-06121 Perugia, Italy
| |
Collapse
|
12
|
Serafini A. Interplay between central carbon metabolism and metal homeostasis in mycobacteria and other human pathogens. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34080971 DOI: 10.1099/mic.0.001060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial nutrition is a fundamental aspect of pathogenesis. While the host environment is in principle nutrient-rich, hosts have evolved strategies to interfere with nutrient acquisition by pathogens. In turn, pathogens have developed mechanisms to circumvent these restrictions. Changing the availability of bioavailable metal ions is a common strategy used by hosts to limit bacterial replication. Macrophages and neutrophils withhold iron, manganese, and zinc ions to starve bacteria. Alternatively, they can release manganese, zinc, and copper ions to intoxicate microorganisms. Metals are essential micronutrients and participate in catalysis, macromolecular structure, and signalling. This review summarises our current understanding of how central carbon metabolism in pathogens adapts to local fluctuations in free metal ion concentrations. We focus on the transcriptomics and proteomics data produced in studies of the iron-sparing response in Mycobacterium tuberculosis, the etiological agent of tuberculosis, and consequently generate a hypothetical model linking trehalose accumulation, succinate secretion and substrate-level phosphorylation in iron-starved M. tuberculosis. This review also aims to highlight a large gap in our knowledge of pathogen physiology: the interplay between metal homeostasis and central carbon metabolism, two cellular processes which are usually studied separately. Integrating metabolism and metal biology would allow the discovery of new weaknesses in bacterial physiology, leading to the development of novel and improved antibacterial therapies.
Collapse
Affiliation(s)
- Agnese Serafini
- Independent researcher 00012 Guidonia Montecelio, Rome, Italy
| |
Collapse
|
13
|
Menendez-Gil P, Toledo-Arana A. Bacterial 3'UTRs: A Useful Resource in Post-transcriptional Regulation. Front Mol Biosci 2021; 7:617633. [PMID: 33490108 PMCID: PMC7821165 DOI: 10.3389/fmolb.2020.617633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bacterial messenger RNAs (mRNAs) are composed of 5′ and 3′ untranslated regions (UTRs) that flank the coding sequences (CDSs). In eukaryotes, 3′UTRs play key roles in post-transcriptional regulatory mechanisms. Shortening or deregulation of these regions is associated with diseases such as cancer and metabolic disorders. Comparatively, little is known about the functions of 3′UTRs in bacteria. Over the past few years, 3′UTRs have emerged as important players in the regulation of relevant bacterial processes such as virulence, iron metabolism, and biofilm formation. This MiniReview is an update for the different 3′UTR-mediated mechanisms that regulate gene expression in bacteria. Some of these include 3′UTRs that interact with the 5′UTR of the same transcript to modulate translation, 3′UTRs that are targeted by specific ribonucleases, RNA-binding proteins and small RNAs (sRNAs), and 3′UTRs that act as reservoirs of trans-acting sRNAs, among others. In addition, recent findings regarding a differential evolution of bacterial 3′UTRs and its impact in the species-specific expression of orthologous genes are also discussed.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
14
|
Gerovac M, El Mouali Y, Kuper J, Kisker C, Barquist L, Vogel J. Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. RNA (NEW YORK, N.Y.) 2020; 26:1448-1463. [PMID: 32646969 PMCID: PMC7491321 DOI: 10.1261/rna.076992.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 05/20/2023]
Abstract
RNA-binding proteins (RBPs) play important roles in bacterial gene expression and physiology but their true number and functional scope remain little understood even in model microbes. To advance global RBP discovery in bacteria, we here establish glycerol gradient sedimentation with RNase treatment and mass spectrometry (GradR). Applied to Salmonella enterica, GradR confirms many known RBPs such as CsrA, Hfq, and ProQ by their RNase-sensitive sedimentation profiles, and discovers the FopA protein as a new member of the emerging family of FinO/ProQ-like RBPs. FopA, encoded on resistance plasmid pCol1B9, primarily targets a small RNA associated with plasmid replication. The target suite of FopA dramatically differs from the related global RBP ProQ, revealing context-dependent selective RNA recognition by FinO-domain RBPs. Numerous other unexpected RNase-induced changes in gradient profiles suggest that cellular RNA helps to organize macromolecular complexes in bacteria. By enabling poly(A)-independent generic RBP discovery, GradR provides an important element in the quest to build a comprehensive catalog of microbial RBPs.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Youssef El Mouali
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| |
Collapse
|
15
|
Menendez-Gil P, Caballero CJ, Catalan-Moreno A, Irurzun N, Barrio-Hernandez I, Caldelari I, Toledo-Arana A. Differential evolution in 3'UTRs leads to specific gene expression in Staphylococcus. Nucleic Acids Res 2020; 48:2544-2563. [PMID: 32016395 PMCID: PMC7049690 DOI: 10.1093/nar/gkaa047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
The evolution of gene expression regulation has contributed to species differentiation. The 3' untranslated regions (3'UTRs) of mRNAs include regulatory elements that modulate gene expression; however, our knowledge of their implications in the divergence of bacterial species is currently limited. In this study, we performed genome-wide comparative analyses of mRNAs encoding orthologous proteins from the genus Staphylococcus and found that mRNA conservation was lost mostly downstream of the coding sequence (CDS), indicating the presence of high sequence diversity in the 3'UTRs of orthologous genes. Transcriptomic mapping of different staphylococcal species confirmed that 3'UTRs were also variable in length. We constructed chimeric mRNAs carrying the 3'UTR of orthologous genes and demonstrated that 3'UTR sequence variations affect protein production. This suggested that species-specific functional 3'UTRs might be specifically selected during evolution. 3'UTR variations may occur through different processes, including gene rearrangements, local nucleotide changes, and the transposition of insertion sequences. By extending the conservation analyses to specific 3'UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis mRNAs, we showed that 3'UTR variability is widespread in bacteria. In summary, our work unveils an evolutionary bias within 3'UTRs that results in species-specific non-coding sequences that may contribute to bacterial diversity.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000-Strasbourg, France
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| |
Collapse
|
16
|
Khan MA, Durica‐Mitic S, Göpel Y, Heermann R, Görke B. Small RNA-binding protein RapZ mediates cell envelope precursor sensing and signaling in Escherichia coli. EMBO J 2020; 39:e103848. [PMID: 32065419 PMCID: PMC7073468 DOI: 10.15252/embj.2019103848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 11/24/2022] Open
Abstract
The RNA-binding protein RapZ cooperates with small RNAs (sRNAs) GlmY and GlmZ to regulate the glmS mRNA in Escherichia coli. Enzyme GlmS synthesizes glucosamine-6-phosphate (GlcN6P), initiating cell envelope biosynthesis. GlmZ activates glmS expression by base-pairing. When GlcN6P is ample, GlmZ is bound by RapZ and degraded through ribonuclease recruitment. Upon GlcN6P depletion, the decoy sRNA GlmY accumulates through a previously unknown mechanism and sequesters RapZ, suppressing GlmZ decay. This circuit ensures GlcN6P homeostasis and thereby envelope integrity. In this work, we identify RapZ as GlcN6P receptor. GlcN6P-free RapZ stimulates phosphorylation of the two-component system QseE/QseF by interaction, which in turn activates glmY expression. Elevated GlmY levels sequester RapZ into stable complexes, which prevents GlmZ decay, promoting glmS expression. Binding of GlmY also prevents RapZ from activating QseE/QseF, generating a negative feedback loop limiting the response. When GlcN6P is replenished, GlmY is released from RapZ and rapidly degraded. We reveal a multifunctional sRNA-binding protein that dynamically engages into higher-order complexes for metabolite signaling.
Collapse
Affiliation(s)
- Muna A Khan
- Department of Microbiology, Immunobiology and GeneticsMax Perutz LabsVienna Biocenter (VBC)University of ViennaViennaAustria
| | - Svetlana Durica‐Mitic
- Department of Microbiology, Immunobiology and GeneticsMax Perutz LabsVienna Biocenter (VBC)University of ViennaViennaAustria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and GeneticsMax Perutz LabsVienna Biocenter (VBC)University of ViennaViennaAustria
| | - Ralf Heermann
- Microbiology and Wine ResearchInstitute for Molecular PhysiologyJohannes Gutenberg‐University MainzMainzGermany
| | - Boris Görke
- Department of Microbiology, Immunobiology and GeneticsMax Perutz LabsVienna Biocenter (VBC)University of ViennaViennaAustria
| |
Collapse
|
17
|
Abstract
RNA-binding proteins (RBPs) are central to most if not all cellular processes, dictating the fate of virtually all RNA molecules in the cell. Starting with pioneering work on ribosomal proteins, studies of bacterial RBPs have paved the way for molecular studies of RNA-protein interactions. Work over the years has identified major RBPs that act on cellular transcripts at the various stages of bacterial gene expression and that enable their integration into post-transcriptional networks that also comprise small non-coding RNAs. Bacterial RBP research has now entered a new era in which RNA sequencing-based methods permit mapping of RBP activity in a truly global manner in vivo. Moreover, the soaring interest in understudied members of host-associated microbiota and environmental communities is likely to unveil new RBPs and to greatly expand our knowledge of RNA-protein interactions in bacteria.
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany. .,Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
18
|
Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 2019; 45:W435-W439. [PMID: 28472523 PMCID: PMC5570192 DOI: 10.1093/nar/gkx279] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023] Open
Abstract
The IntaRNA algorithm enables fast and accurate prediction of RNA-RNA hybrids by incorporating seed constraints and interaction site accessibility. Here, we introduce IntaRNAv2, which enables enhanced parameterization as well as fully customizable control over the prediction modes and output formats. Based on up to date benchmark data, the enhanced predictive quality is shown and further improvements due to more restrictive seed constraints are highlighted. The extended web interface provides visualizations of the new minimal energy profiles for RNA-RNA interactions. These allow a detailed investigation of interaction alternatives and can reveal potential interaction site multiplicity. IntaRNAv2 is freely available (source and binary), and distributed via the conda package manager. Furthermore, it has been included into the Galaxy workflow framework and its already established web interface enables ad hoc usage.
Collapse
Affiliation(s)
- Martin Mann
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Patrick R Wright
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Lyu Y, Wu J, Shi Y. Metabolic and physiological perturbations of Escherichia coli W3100 by bacterial small RNA RyhB. Biochimie 2019; 162:144-155. [PMID: 31002843 DOI: 10.1016/j.biochi.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
RyhB is a key regulator of iron level in Escherichia coli (E. coli), which assists in conserving iron for life-sustaining cellular functions when cytoplasmic levels of the ferrous form of iron is limited. RyhB affects glucose metabolism. Seventy percent of the genes that are regulated by RyhB are related to metabolism. We demonstrated for the first time that the activity of the pentose phosphate pathway increased upon ryhB activation using a13C stable isotope-based technique called METAFoR (Metabolic flux ratio analysis). U-13C glucose-based studies showed that the reversible exchange activity of serine and glycine was enhanced by flux redistribution, which further favors NADPH formation. In addition, Entner-Doudoroff (ED) pathway activity was inhibited in the ryhB-defective cells. Quantitative physiology-based experiments highlighted a significant increase in the levels of reactive oxygen species (ROS) in ryhB-induced W3100 E. coli cells in batch culture. A simultaneous decrease in NADH/NAD+ and NADPH/NADP+ ratios outlined the potentially direct roles of NADH and NADPH in antagonizing the excess ROS formed after ryhB activation. Our observations offer a new perspective regarding the roles of RyhB and highlight that this small RNA can significantly affect cell metabolism in addition to its role as a regulator of gene expression.
Collapse
Affiliation(s)
- Yu Lyu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
| |
Collapse
|
20
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
21
|
Chareyre S, Mandin P. Bacterial Iron Homeostasis Regulation by sRNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0010-2017. [PMID: 29573257 PMCID: PMC11633579 DOI: 10.1128/microbiolspec.rwr-0010-2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
While iron is essential to sustain growth, its excess can be detrimental to the cell by generating highly toxic reactive oxygen species. Regulation of iron homeostasis thus plays a vital role in almost all living organisms. During the last 15 years, the small RNA (sRNA) RyhB has been shown to be a key actor of iron homeostasis regulation in bacteria. Through multiple molecular mechanisms, RyhB represses expendable iron-utilizing proteins, promotes siderophore production, and coordinates Fe-S cluster cofactor biogenesis, thereby establishing a so-called iron-sparing response. In this review, we will summarize knowledge on how sRNAs control iron homeostasis mainly through studies on RyhB in Escherichia coli. The parallel roles and modes of action of other sRNAs in different bacteria will also be described. Finally, we will discuss what questions remain to be answered concerning this important stress response regulation by sRNAs.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Aix Marseille Université-CNRS, Institut de Microbiologie de la Méditéranée, Laboratoire de Chimie Bactérienne, Marseille 13009, France
| | - Pierre Mandin
- Aix Marseille Université-CNRS, Institut de Microbiologie de la Méditéranée, Laboratoire de Chimie Bactérienne, Marseille 13009, France
| |
Collapse
|
22
|
Gonzalez GM, Durica-Mitic S, Hardwick SW, Moncrieffe MC, Resch M, Neumann P, Ficner R, Görke B, Luisi BF. Structural insights into RapZ-mediated regulation of bacterial amino-sugar metabolism. Nucleic Acids Res 2017; 45:10845-10860. [PMID: 28977623 PMCID: PMC5737377 DOI: 10.1093/nar/gkx732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/05/2017] [Accepted: 08/09/2017] [Indexed: 11/13/2022] Open
Abstract
In phylogenetically diverse bacteria, the conserved protein RapZ plays a central role in RNA-mediated regulation of amino-sugar metabolism. RapZ contributes to the control of glucosamine phosphate biogenesis by selectively presenting the regulatory small RNA GlmZ to the essential ribonuclease RNase E for inactivation. Here, we report the crystal structures of full length Escherichia coli RapZ at 3.40 Å and 3.25 Å, and its isolated C-terminal domain at 1.17 Å resolution. The structural data confirm that the N-terminal domain of RapZ possesses a kinase fold, whereas the C-terminal domain bears closest homology to a subdomain of 6-phosphofructokinase, an important enzyme in the glycolytic pathway. RapZ self-associates into a domain swapped dimer of dimers, and in vivo data support the importance of quaternary structure in RNA-mediated regulation of target gene expression. Based on biochemical, structural and genetic data, we suggest a mechanism for binding and presentation by RapZ of GlmZ and the closely related decoy sRNA, GlmY. We discuss a scenario for the molecular evolution of RapZ through re-purpose of enzyme components from central metabolism.
Collapse
Affiliation(s)
- Grecia M. Gonzalez
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Svetlana Durica-Mitic
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Martin C. Moncrieffe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Marcus Resch
- Georg-August University Göttingen, Department of Molecular Structural Biology Justus von Liebig Weg 11, D-37077 Göttingen, Germany
| | - Piotr Neumann
- Georg-August University Göttingen, Department of Molecular Structural Biology Justus von Liebig Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Georg-August University Göttingen, Department of Molecular Structural Biology Justus von Liebig Weg 11, D-37077 Göttingen, Germany
| | - Boris Görke
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
23
|
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts. mBio 2016; 7:mBio.01782-16. [PMID: 27795405 PMCID: PMC5082906 DOI: 10.1128/mbio.01782-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. IMPORTANCE The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment.
Collapse
|
24
|
The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 2016; 6:29766. [PMID: 27405932 PMCID: PMC4942612 DOI: 10.1038/srep29766] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/08/2016] [Indexed: 12/28/2022] Open
Abstract
RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category 'RNA-binding', have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.
Collapse
|
25
|
Hu YH, Sun L. The global regulatory effect of Edwardsiella tarda Fur on iron acquisition, stress resistance, and host infection: A proteomics-based interpretation. J Proteomics 2016; 140:100-10. [PMID: 27102497 DOI: 10.1016/j.jprot.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/27/2016] [Accepted: 04/07/2016] [Indexed: 02/01/2023]
Abstract
UNLABELLED Ferric uptake regulator (Fur) is an important transcriptional regulator of Gram-negative bacteria. Edwardsiella tarda is a severe fish bacterial pathogen with a broad host range that includes humans. In this study, we examined the regulatory function of Fur in E. tarda via a proteomic approach. Compared to the wild type TX01, the fur mutant TX01Δfur exhibited (i) retarded growth, (ii) enhanced siderophore production, (iii) increased acid tolerance, which is in contrast to observations in other bacterial species, (iv) decreased survival against oxidative stress and host serum, (v) impaired ability to inhibit host immune response, (vi) attenuated tissue infectivity and overall virulence. The deficiency of TX01Δfur was rescued by introduction of an exogenous fur gene. iTRAQ-based comparative proteomic analysis of TX01Δfur and TX01 identified 89 differentially expressed proteins that cover a wide range of functional categories including those affected by fur mutation. In addition, 16 proteins were identified for the first time to be regulated by Fur in Gram-negative bacteria. These results provide the first protein-based interpretation of the global impact of Fur on the physiology and infectivity of E. tarda. SIGNIFICANCE This study demonstrates that in E. tarda, Fur controls multiple aspects of bacterial life, including growth, metabolism, iron acquisition, stress response, and host infection. In line with these observations, proteomics analysis identified a large amount of proteins affected in expression by Fur, which are involved in bacterial physiology and infectivity. Hence, these results link for the first time the pleiotropic effect of Fur with global protein expression and shed new light on the function and regulatory mechanism of Fur in pathogenic bacteria.
Collapse
Affiliation(s)
- Yong-Hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
26
|
Wang J, Rennie W, Liu C, Carmack CS, Prévost K, Caron MP, Massé E, Ding Y, Wade JT. Identification of bacterial sRNA regulatory targets using ribosome profiling. Nucleic Acids Res 2015; 43:10308-20. [PMID: 26546513 PMCID: PMC4666370 DOI: 10.1093/nar/gkv1158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 10/19/2015] [Indexed: 12/30/2022] Open
Abstract
Bacteria express large numbers of non-coding, regulatory RNAs known as ‘small RNAs’ (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets.
Collapse
Affiliation(s)
- Jing Wang
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - William Rennie
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Chaochun Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Charles S Carmack
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Karine Prévost
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Marie-Pier Caron
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Ye Ding
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
27
|
|