1
|
Napolitano E, Criscuolo A, Riccardi C, Platella C, Gaglione R, Arciello A, Musumeci D, Montesarchio D. When annealing is detrimental: The case of HMGB1-targeting G-quadruplex aptamers. Int J Biol Macromol 2024; 283:137148. [PMID: 39505169 DOI: 10.1016/j.ijbiomac.2024.137148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
In this work, we present the case of the G-quadruplex(G4)-forming aptamers we recently identified for the recognition of HMGB1, protein involved in inflammation, autoimmune diseases and cancer. These aptamers were previously analyzed, without annealing them, after proper dilution of the stock solution in a pseudo-physiological buffer mimicking the extracellular environment where the protein exerts its pathological activity, and showed high thermal stability and nuclease resistance, good protein affinity and remarkable in vitro activity. These features were more marked for the aptamers forming dimeric, parallel G4 structures in solution. Herein, we fully characterized the same anti-HMGB1 aptamers after a standard annealing procedure performed on diluted samples. Notably, upon a thermal unfolding/folding cycle, these aptamers, and particularly the best ones in the not-annealed form, showed significant conformational switches compared to the same systems analyzed without annealing, forming exclusively monomeric G4 structures, featured by poor thermal and enzymatic stabilities, along with lower protein affinities. These results prove that, for these aptamers, analyzed in the chosen conditions, annealing at low concentration does not produce a beneficial effect in terms of favouring the most bioactive species.
Collapse
Affiliation(s)
- Ettore Napolitano
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; Institute of Biostructure and Bioimaging (IBB) - CNR, 80145 Napoli, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy.
| |
Collapse
|
2
|
Gilar M, Redstone S, Gomes A. Impact of mobile and stationary phases on siRNA duplex stability in liquid chromatography. J Chromatogr A 2024; 1733:465285. [PMID: 39173502 DOI: 10.1016/j.chroma.2024.465285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Nucleic acid duplexes are typically analyzed in non-denaturing conditions. Melting temperature (Tm) is the property used to measure duplex stability; however, it is not known how the chromatographic conditions and mobile phase composition affect the duplex stability. We employed differential scanning calorimetry (DSC) method to measure the melting temperature of chemically modified silencing RNA duplex (21 base pairs, 0.15 mM duplex concentration) in mobile phases commonly used in reversed-phase, ion-pair reversed-phase, size exclusion and hydrophilic interaction chromatography. We investigated mobile phases consisting of ammonium acetate, alkylammonium ion-pairing reagents, alkali-ion chlorides, magnesium chloride, and additives including methanol, ethanol, acetonitrile and hexafluoroisopropanol. Increasing buffer concentration enhanced the duplex stability (Tm was 67.1 - 78.2 °C for 10-100 mM [Na+] concentration). The melting temperature decreases with the increase in cation size (70.2 °C in 10 mM [Li+], 68.1 °C in 10 mM [NH4+], 65.6 °C in 10 mM [Cs+], and 56.6 °C in 10 mM [triethylammonium+] solutions). Inclusion of 20 % of organic solvent in buffer reduced the melting temperature by 1-3 °C, and denaturation power increases in the order MeOH
Collapse
Affiliation(s)
- Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA, 01757, USA.
| | - Samuel Redstone
- Waters Corporation, 34 Maple Street, Milford, MA, 01757, USA
| | - Alexandre Gomes
- Waters Corporation, 34 Maple Street, Milford, MA, 01757, USA
| |
Collapse
|
3
|
Miranda A, Cucchiarini A, Esnault C, Andrau JC, Oliveira PA, Mergny JL, Cruz C. G-quadruplex forming motifs in the promoter region of the B-MYB proto-oncogene. Int J Biol Macromol 2024; 270:132244. [PMID: 38729459 DOI: 10.1016/j.ijbiomac.2024.132244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
To combat cancer, a comprehensive understanding of the molecular mechanisms and behaviors involved in carcinogenesis is crucial, as tumorigenesis is a complex process influenced by various genetic events and disease hallmarks. The B-MYB gene encodes a transcription factor involved in cell cycle regulation, survival, and differentiation in normal cells. B-MYB can be transformed into an oncogene through mutations, and abnormal expression of B-MYB has been identified in various cancers, including lung cancer, and is associated with poor prognosis. Targeting this oncogene is a promising approach for anti-cancer drug design. B-MYB has been deemed undruggable in previous reports, necessitating the search for novel therapeutic options. In this study, we found that the B-MYB gene promoter contains several G/C rich motifs compatible with G-quadruplex (G4) formation. We investigated and validated the existence of G4 structures in the promoter region of B-MYB, first in vitro using a combination of bioinformatics, biophysical, and biochemical methods, then in cell with the recently developed G4access method.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Cyril Esnault
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR, 5535 Montpellier, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR, 5535 Montpellier, France
| | - Paula A Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
4
|
Napolitano E, Criscuolo A, Riccardi C, Esposito CL, Catuogno S, Coppola G, Roviello GN, Montesarchio D, Musumeci D. Directing in Vitro Selection towards G-quadruplex-forming Aptamers to Inhibit HMGB1 Pathological Activity. Angew Chem Int Ed Engl 2024; 63:e202319828. [PMID: 38358301 DOI: 10.1002/anie.202319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
In the search for novel, effective inhibitors of High-Mobility Group Box1 (HMGB1)-a protein involved in various inflammatory and autoimmune diseases as well as in cancer-we herein discovered a set of anti-HMGB1 G-quadruplex(G4)-forming aptamers by using an in vitro selection procedure applied to a doped library of guanine-rich oligonucleotides. The selected DNA sequences were then studied in a pseudo-physiological buffer mimicking the extracellular medium, where HMGB1 exerts its pathological activity, using spectroscopic, electrophoretic, and chromatographic techniques. All the oligonucleotides proved to fold into monomeric G4s and in some cases also dimeric species, stable at physiological temperature. Remarkably, the protein preferentially recognized the sequences forming dimeric parallel G4 structures, as evidenced by a properly designed chemiluminescent binding assay which also highlighted a good selectivity of these aptamers for HMGB1. Moreover, all aptamers showed anti-HMGB1 activity, inhibiting protein-induced cell migration. The acquired data allowed identifying L12 as the best anti-HMGB1 aptamer, featured by high thermal and enzymatic stability, no toxicity at least up to 5 μM concentration on healthy cells, along with potent anti-HMGB1 activity (IC50 ca. 28 nM) and good binding affinity for the protein, thus indicating it as a very promising lead candidate for in vivo studies.
Collapse
Affiliation(s)
- Ettore Napolitano
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Carla L Esposito
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Silvia Catuogno
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Gabriele Coppola
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 80145, Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 80145, Napoli, Italy
| |
Collapse
|
5
|
Veríssimo NVP, Mussagy CU, Bento HBS, Pereira JFB, Santos-Ebinuma VDC. Ionic liquids and deep eutectic solvents for the stabilization of biopharmaceuticals: A review. Biotechnol Adv 2024; 71:108316. [PMID: 38199490 DOI: 10.1016/j.biotechadv.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Biopharmaceuticals have allowed the control of previously untreatable diseases. However, their low solubility and stability still hinder their application, transport, and storage. Hence, researchers have applied different compounds to preserve and enhance the delivery of biopharmaceuticals, such as ionic liquids (ILs) and deep eutectic solvents (DESs). Although the biopharmaceutical industry can employ various substances for enhancing formulations, their effect will change depending on the properties of the target biomolecule and environmental conditions. Hence, this review organized the current state-of-the-art on the application of ILs and DESs to stabilize biopharmaceuticals, considering the properties of the biomolecules, ILs, and DESs classes, concentration range, types of stability, and effect. We also provided a critical discussion regarding the potential utilization of ILs and DESs in pharmaceutical formulations, considering the restrictions in this field, as well as the advantages and drawbacks of these substances for medical applications. Overall, the most applied IL and DES classes for stabilizing biopharmaceuticals were cholinium-, imidazolium-, and ammonium-based, with cholinium ILs also employed to improve their delivery. Interestingly, dilute and concentrated ILs and DESs solutions presented similar results regarding the stabilization of biopharmaceuticals. With additional investigation, ILs and DESs have the potential to overcome current challenges in biopharmaceutical formulation.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, São Paulo University, CEP: 14040-020 Ribeirão Preto, SP, Brazil.
| | - Cassamo Usemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Heitor Buzetti Simões Bento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| | | | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| |
Collapse
|
6
|
Wang J, Qiao JQ, Zheng WJ, Lian HZ. Effect of ionic liquids as mobile phase additives on retention behaviors of G-quadruplexes in reversed-phase high performance liquid chromatography. J Chromatogr A 2024; 1715:464604. [PMID: 38176351 DOI: 10.1016/j.chroma.2023.464604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
G-quadruplexes (G4s) play an important role in a variety of biological processes and have extensive application prospects. Due to the significance of G4s in physiology and biosensing, studies on G4s have attracted much attention, stimulating the development or improvement of methods for G4 structures and polymorphism analysis. In this work, ionic liquids (ILs) were involved as mobile phase additives in reversed-phase high performance liquid chromatography (RP-HPLC) to analyse G4s with various conformations for the first time. How ILs affected the retention behaviors of G4s was investigated comprehensively. It was found that the addition of ILs markedly enhanced G4 retention, along with obvious amelioration on chromatographic peak shapes and separation. The influence of pH of mobile phase and types of ILs were also included in order to acquire an in-depth understanding. It appeared that the effect of ILs on G4 retention behaviors was the result of a combination of various interactions between G4s with the hydrophobic stationary phase and with the IL-containing mobile phase, where ion pair mechanism and enhanced hydrophobic interaction dominated. The findings of this work revealed that ILs could effectively improve the separation of G4s in RP-HPLC, which was conducive to G4 structural analysis, especially for G4s polymorphism elucidation.
Collapse
Affiliation(s)
- Ju Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
7
|
Luo Y, Granzhan A, Marquevielle J, Cucchiarini A, Lacroix L, Amrane S, Verga D, Mergny JL. Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie 2023; 214:5-23. [PMID: 36596406 DOI: 10.1016/j.biochi.2022.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
| | - Julien Marquevielle
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Anne Cucchiarini
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Laurent Lacroix
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Samir Amrane
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France.
| | - Jean-Louis Mergny
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
8
|
Bchara L, Eritja R, Gargallo R, Benavente F. Rapid and Highly Efficient Separation of i-Motif DNA Species by CE-UV and Multivariate Curve Resolution. Anal Chem 2023; 95:15189-15198. [PMID: 37782260 PMCID: PMC10585953 DOI: 10.1021/acs.analchem.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
The i-motif is a class of nonstandard DNA structure with potential biological implications. A novel capillary electrophoresis with an ultraviolet absorption spectrophotometric detection (CE-UV) method has been developed for the rapid analysis of the i-motif folding equilibrium as a function of pH and temperature. The electrophoretic analyses are performed in reverse polarity of the separation voltage with 32 cm long fused silica capillaries permanently coated with hydroxypropyl cellulose (HPC), after an appropriate conditioning procedure was used to achieve good repeatability. However, the electrophoretic separation between the folded and unfolded conformers of the studied cytosine-rich i-motif sequences (i.e., TT, Py39WT, and nmy01) is compromised, especially for Py39WT and nmy01, which result in completely overlapped peaks. Therefore, deconvolution with multivariate curve resolution-alternating least-squares (MCR-ALS) has been required for the efficient separation of the folded and unfolded species found at different concentration levels at pH 6.5 and between 12 and 40 °C, taking advantage of the small dissimilarities in the electrophoretic mobilities and UV spectra levels. MCR-ALS has also provided quantitative information that has been used to estimate melting temperatures (Tm), which are similar to those determined by UV and circular dichroism (CD) spectroscopies. The obtained results demonstrate that CE-UV assisted by MCR-ALS may become a very useful tool to get novel insight into the folding of i-motifs and other complex DNA structures.
Collapse
Affiliation(s)
- Laila Bchara
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Ramon Eritja
- Institute
for Advanced Chemistry of Catalonia (IQAC−CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Fernando Benavente
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
- Institute
for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
9
|
Gilar M, Doneanu C, Gaye MM. Liquid Chromatography Methods for Analysis of mRNA Poly(A) Tail Length and Heterogeneity. Anal Chem 2023; 95:14308-14316. [PMID: 37696042 PMCID: PMC10535021 DOI: 10.1021/acs.analchem.3c02552] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Messenger RNA (mRNA) is a new class of therapeutic compounds. The current advances in mRNA technology require the development of efficient analytical methods. In this work, we describe the development of several methods for measurement of mRNA poly(A) tail length and heterogeneity. Poly(A) tail was first cleaved from mRNA with the RNase T1 enzyme. The average length of a liberated poly(A) tail was analyzed with the size exclusion chromatography method. Size heterogeneity of the poly(A) tail was estimated with high-resolution ion-pair reversed phase liquid chromatography (IP RP LC). The IP RP LC method provides resolution of poly(A) tail oligonucleotide variants up to 150 nucleotide long. Both methods use a robust ultraviolet detection suitable for mRNA analysis in quality control laboratories. The results were confirmed by the LC-mass spectrometry (LC MS) analysis of the same mRNA sample. The poly(A) tail length and heterogeneity results were in good agreement.
Collapse
Affiliation(s)
- Martin Gilar
- Separations
R&D, Waters Corporation, Milford, Massachusetts 01757, United States
| | - Catalin Doneanu
- Discovery
and Development, Waters Corporation, Milford, Massachusetts 01757, United States
| | - Maissa M. Gaye
- Consumables
Research, Waters Corporation, Milford, Massachusetts 01757, United States
| |
Collapse
|
10
|
Vanhinsbergh C, Hook EC, Oxby N, Dickman MJ. Optimization of orthogonal separations for the analysis of oligonucleotides using 2D-LC. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123812. [PMID: 37454408 DOI: 10.1016/j.jchromb.2023.123812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Oligonucleotides are commonly analysed using one dimensional chromatography (1D-LC) to resolve and characterise manufacturing impurities, structural isomers and (in respect to emerging oligonucleotide therapeutics) drug substance and drug product. Due to low selectivity and co-elution of closely related oligonucleotides using 1D-LC, analyte resolution is challenged. This leads to the requirement for improved analytical methods. Multidimensional chromatography has demonstrated utility in a range of applications as it increases peak capacity using orthogonal separations, however there are limited studies demonstrating the 2D-LC analysis of closely related oligonucleotides. In this study we optimised OGN size and sequence based separations using a variety of 1D-LC methods and coupled these orthogonal modes of chromatography within a 2D-LC workflow. Theoretical 2D-LC workflows were evaluated for optimal orthogonality using the minimum convex hull metric. The most orthogonal workflow identified in this study was ion-pair reversed phase using tributylammonium acetate (IP-RP-TBuAA) coupled with strong anion exchange in conjunction with sodium perchlorate (SAX-NaClO4) at high mobile phase pH. We developed a heart-cut (IP-RP-TBuAA)-(SAX-NaClO4) 2D-LC method for analysis of closely related size and sequence variant OGNs and OGN manufacturing impurities. The 2D-LC method resulted in an increased orthogonality and a reduction in co-elution (or close elution). Application of a UV based reference mapping strategy in conjunction with the 2D-LC method demonstrated a reduction in analytical complexity by reducing the reliance on mass based detection methods.
Collapse
Affiliation(s)
- Christina Vanhinsbergh
- Department of Chemical and Biological Engineering, Mappin Street, University of Sheffield, S1 3JD, UK
| | - Elliot C Hook
- GlaxoSmithKline, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Nicola Oxby
- GlaxoSmithKline, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, Mappin Street, University of Sheffield, S1 3JD, UK.
| |
Collapse
|
11
|
Ozer I, Pitoc GA, Layzer JM, Moreno A, Olson LB, Layzer KD, Hucknall AM, Sullenger BA, Chilkoti A. PEG-Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107852. [PMID: 34994037 DOI: 10.1002/adma.202107852] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo-a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic promise, RNA aptamers are limited by their poor blood circulation. The attachment of polyethylene glycol (PEG) to RNA aptamers addresses this limitation. However, an RNA aptamer-PEG conjugate that is a reversible anticoagulant fails in a clinical trial due to the reactivity of the conjugate with pre-existing PEG antibodies and has cast a pall over PEGylation of aptamers and other biologics, despite its long history of utility in drug delivery. Here, PEG antibody-reactivity of this RNA aptamer is eliminated by conjugating it to a next-generation PEG-like brush polymer-poly[(oligoethylene glycol) methyl ether methacrylate)] (POEGMA). The conjugate retained the drug's therapeutic action and the ability to be easily reversed. Importantly, this conjugate does not bind pre-existing PEG antibodies that are prevalent in humans and does not induce a humoral immune response against the polymer itself in mice. These findings suggest a path to rescuing the PEGylation of RNA therapeutics and vaccines from the deleterious side-effects of PEG.
Collapse
Affiliation(s)
- Imran Ozer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Pitoc
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Juliana M Layzer
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
- Duke Clinical and Translational Science Institute, Durham, NC, 27707, USA
| | - Angelo Moreno
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Lyra B Olson
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Kyle D Layzer
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Angus M Hucknall
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, NC, 27707, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
12
|
Ruiz N, Jarosova P, Taborsky P, Gargallo R. Study of the interaction of the palmatine alkaloid with hybrid G-quadruplex/duplex and i-motif/duplex DNA structures. Biophys Chem 2021; 281:106715. [PMID: 34784553 DOI: 10.1016/j.bpc.2021.106715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022]
Abstract
There is an increasing interest in the study of guanine or cytosine-rich sequences that may fold into G-quadruplex (G4) or i-motif (iM) structures showing a short hairpin (or stem-loop) stabilized by Watson-Crick base pairs. These hybrid spatial arrangements may be target of ligands that have been shown to interact strongly with B-DNA. In this work, the interaction of the palmatine alkaloid with several sequences forming different G4s, iMs, and hybrid structures has been studied by means of spectroscopic and separation techniques, as well as multivariate data analysis methods. At the experimental conditions used in this work, the results have shown that this ligand strongly stabilizes parallel G4 structures, whereas a weaker interaction was observed with the antiparallel G4 adopted by the thrombin-binding aptamer or iMs. The presence of hairpins within the loops scarcely affects the affinity of this ligand for the hybrid G4/duplex or iM/duplex structures. Fluorescence measurements have provided evidence of a certain interaction with iMs at pH 5.1, despite the absence of thermal stabilization effects.
Collapse
Affiliation(s)
- Noelia Ruiz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí I Franqués 1-11, E-08028 Barcelona, Spain
| | - Petra Jarosova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Taborsky
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí I Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
13
|
An analytical study of lipid-oligonucleotide aggregation properties. J Pharm Biomed Anal 2021; 205:114327. [PMID: 34479172 DOI: 10.1016/j.jpba.2021.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Lipid-oligonucleotides (LON) attract great interest as supramolecular scaffolds to improve the intracellular delivery of nucleic acids. Analytical characterization of LON assemblies is critical to formulation development, understanding in-vivo performance, as well as quality control. For this study, we selected LONs featuring different modifications on both oligonucleotide (with or without a G4 prone sequence) and lipid (mono or bis-alkyl chain covalently attached to the oligonucleotide sequence). Size exclusion chromatography (SEC) and, for the first time, capillary electrophoresis (CE) were investigated to study LON supramolecular self-assemblies. Results were correlated to those obtained with conventional physico-chemical characterization techniques i.e. gel electrophoresis, dynamic light scattering, and circular dichroism. In SEC, a separation between LON monomers and micelles was achieved in 5min on a TSK-gel G3000PW column at 70°C with 100% water, as mobile phase. CE conditions were optimized using a fused-silica capillary length of 10.0cm effective length at 15°C. Different background electrolytes were tested by varying the nature and the concentration of salts added. A sodium tetraborate buffer with 75mM NaCl appeared suitable to promote LON assembly. CE offers benefits to LON micelle analysis in terms of speed of analysis, high resolution, and low quantity of sample injected. Moreover, CE provides an appropriate tool to assess the impact of media of biological relevance on LON self-assembly. In this work, the key role of lipophilic tails and the formation of tetramolecular G-quadruplexes on the stability of LON micelles was confirmed.
Collapse
|
14
|
Singh SM, Furman R, Singh RK, Balakrishnan G, Chennamsetty N, Tao L, Li Z. Size exclusion chromatography for the characterization and quality control of biologics. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1979582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Surinder M. Singh
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Ran Furman
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Rajesh K. Singh
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | | | | | - Li Tao
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Zhengjian Li
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
16
|
Chen J, Cheng M, Salgado G, Stadlbauer P, Zhang X, Amrane S, Guédin A, He F, Šponer J, Ju H, Mergny JL, Zhou J. The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology. Nucleic Acids Res 2021; 49:9548-9559. [PMID: 34379785 PMCID: PMC8450091 DOI: 10.1093/nar/gkab681] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
Genomic sequences susceptible to form G-quadruplexes (G4s) are always flanked by other nucleotides, but G4 formation in vitro is generally studied with short synthetic DNA or RNA oligonucleotides, for which bases adjacent to the G4 core are often omitted. Herein, we systematically studied the effects of flanking nucleotides on structural polymorphism of 371 different oligodeoxynucleotides that adopt intramolecular G4 structures. We found out that the addition of nucleotides favors the formation of a parallel fold, defined as the 'flanking effect' in this work. This 'flanking effect' was more pronounced when nucleotides were added at the 5'-end, and depended on loop arrangement. NMR experiments and molecular dynamics simulations revealed that flanking sequences at the 5'-end abolish a strong syn-specific hydrogen bond commonly found in non-parallel conformations, thus favoring a parallel topology. These analyses pave a new way for more accurate prediction of DNA G4 folding in a physiological context.
Collapse
Affiliation(s)
- Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
| | - Gilmar F Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27,783 71, Olomouc – Holice, Czech Republic
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Samir Amrane
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
| | - Fangni He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27,783 71, Olomouc – Holice, Czech Republic
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128Palaiseau cedex, France
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
17
|
McAdorey A, Bennett HA, Vanloon J, Yan H. Use of anion-exchange HPLC to study DNA conformational polymorphism. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122890. [PMID: 34403914 DOI: 10.1016/j.jchromb.2021.122890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Anion-exchange chromatography carried out under non-denaturing conditions is a versatile tool to differentiate DNA conformations. In this work, the utility of this form of HPLC was demonstrated in four examples. The hairpin and duplex forms of d(CG)9 were readily resolved, which allowed for the studies of the influence of salt on the equilibrium of these two forms of secondary structures. Similarly, the minimum size of Tn in the loop region required for the sequence 5'-d(CCCAA-(T)n-TTGGG)-3' to form hairpin was established to be two nucleotides using anion-exchange HPLC and fluorescence resonance energy transfer. Furthermore, the efficiency of hybridization of partially self-complementary sequences d[(CG)6Nx] was readily monitored by non-denaturing anion-exchange HPLC. Finally, different structures adopted by quadruplex-forming sequences were resolved in the same manner.
Collapse
Affiliation(s)
- Alyssa McAdorey
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Hayley-Ann Bennett
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Jesse Vanloon
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Hongbin Yan
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
18
|
Demelenne A, Servais AC, Crommen J, Fillet M. Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. J Chromatogr A 2021; 1651:462283. [PMID: 34107400 DOI: 10.1016/j.chroma.2021.462283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023]
Abstract
The number of RNA-based therapeutics has significantly grown in number on the market over the last 20 years. This number is expected to further increase in the coming years as many RNA therapeutics are being tested in late clinical trials stages. The first part of this paper considers the mechanism of action, the synthesis and the potential impurities resulting from synthesis as well as the strategies used to increase RNA-based therapeutics efficacy. In the second part of this review, the tests that are usually performed in the pharmaceutical industry for the quality testing of antisense oligonucleotides (ASOs), small-interfering RNAs (siRNAs) and messenger RNAs (mRNAs) will be described. In the last part, the remaining challenges and the ongoing developments to meet them are discussed.
Collapse
Affiliation(s)
- Alice Demelenne
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium.
| |
Collapse
|
19
|
Minasyan AS, Chakravarthy S, Vardelly S, Joseph M, Nesterov EE, Nesterova IV. Rational design of guiding elements to control folding topology in i-motifs with multiple quadruplexes. NANOSCALE 2021; 13:8875-8883. [PMID: 33949568 PMCID: PMC8210535 DOI: 10.1039/d1nr00611h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleic acids are versatile scaffolds that accommodate a wide range of precisely defined operational characteristics. Rational design of sensing, molecular computing, nanotechnology, and other nucleic acid devices requires precise control over folding conformations in these macromolecules. Here, we report a new approach that empowers well-defined conformational transitions in DNA molecular devices. Specifically, we develop tools for precise folding of multiple DNA quadruplexes (i-motifs) within the same oligonucleotide strand. To accomplish this task, we modify a DNA strand with kinetic control elements (hairpins and double stranded stems) that fold on a much faster timescale and consequently guide quadruplexes toward the targeted folding topology. To demonstrate that such guiding elements indeed facilitate formation of the targeted folding topology, we thoroughly characterize the folding/unfolding transitions through a combination of thermodynamic techniques, size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS). Furthermore, we extend SAXS capabilities to produce a direct insight on the shape and dimensions of the folded quadruplexes by computing their electron density maps from solution scattering data.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | - Suchitra Vardelly
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Mark Joseph
- Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Evgueni E Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
20
|
Cheng M, Chen J, Ju H, Zhou J, Mergny JL. Drivers of i-DNA Formation in a Variety of Environments Revealed by Four-Dimensional UV Melting and Annealing. J Am Chem Soc 2021; 143:7792-7807. [PMID: 33988990 DOI: 10.1021/jacs.1c02209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
i-DNA is a four-stranded, pH-sensitive structure formed by cytosine-rich DNA sequences. Previous reports have addressed the conditions for formation of this motif in DNA in vitro and validated its existence in human cells. Unfortunately, these in vitro studies have often been performed under different experimental conditions, making comparisons difficult. To overcome this, we developed a four-dimensional UV melting and annealing (4DUVMA) approach to analyze i-DNA formation under a variety of conditions (e.g., pH, temperature, salt, crowding). Analysis of 25 sequences provided a global understanding of i-DNA formation under disparate conditions, which should ultimately allow the design of accurate prediction tools. For example, we found reliable linear correlations between the midpoint of pH transition and temperature (-0.04 ± 0.003 pH unit per 1.0 °C temperature increment) and between the melting temperature and pH (-23.8 ± 1.1 °C per pH unit increment). In addition, by analyzing the hysteresis between denaturing and renaturing profiles in both pH and thermal transitions, we found that loop length, nature of the C-tracts, pH, temperature, and crowding agents all play roles in i-DNA folding kinetics. Interestingly, our data indicate which conformer is more favorable for the sequences with an odd number of cytosine base pairs. Then the thermal and pH stabilities of "native" i-DNAs from human promoter genes were measured under near physiological conditions (pH 7.0, 37 °C). The 4DUVMA method can become a universal resource to analyze the properties of any i-DNA-prone sequence.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau Cedex 91128, France
| |
Collapse
|
21
|
Covalent Bi-Modular Parallel and Antiparallel G-Quadruplex DNA Nanocostructs Reduce Viability of Patient Glioma Primary Cell Cultures. Int J Mol Sci 2021; 22:ijms22073372. [PMID: 33806042 PMCID: PMC8036578 DOI: 10.3390/ijms22073372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
G-quadruplex oligonucleotides (GQs) exhibit specific anti-proliferative activity in human cancer cell lines, and they can selectively inhibit the viability/proliferation of cancer cell lines vs. non-cancer ones. This ability could be translated into a cancer treatment, in particular for glioblastoma multiform (GBM), which currently has a poor prognosis and low-efficiency therapeutic treatments. A novel bi-modular GQ, bi-(AID-1-T), a twin of the previously described three-quartet AID-1-T, was designed and studied in terms of both its structure and function. A covalent conjugation of two AID-1-Ts via three thymidine link, TTT, did not interfere with its initial GQ structure. A comparison of bi-(AID-1-T) with its mono-modular AID-1-T, mono-modular two-quartet HD1, and bi-modular bi-HD1, as well as conventional two-quartet AS1411, was made. Among the five GQs studied, bi-(AID-1-T) had the highest anti-proliferative activity for the neural cancer cell line U87, while not affecting the control cell line, human embryonic fibroblasts. GQs, for the first time, were tested on several primary glioma cultures from patient surgical samples. It turned out that the sensitivity of the patient primary glioma cultures toward GQs varied, with an apparent IC50 of less than 1 μM for bi-(AID-1-T) toward the most sensitive G11 cell culture (glioma, Grade III).
Collapse
|
22
|
Bizyaeva AA, Bunin DA, Moiseenko VL, Gambaryan AS, Balk S, Tashlitsky VN, Arutyunyan AM, Kopylov AM, Zavyalova EG. The Functional Role of Loops and Flanking Sequences of G-Quadruplex Aptamer to the Hemagglutinin of Influenza a Virus. Int J Mol Sci 2021; 22:2409. [PMID: 33673708 PMCID: PMC7957560 DOI: 10.3390/ijms22052409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains. These hemagglutinins have homologous tertiary structures but moderate-to-low amino acid sequence identities. Here, the experiment was inverted, targeting the same protein using a set of related, parallel G-quadruplexes. The 5'- and 3'-flanking sequences of RHA0385 were truncated to yield parallel G-quadruplex with three propeller loops that were 7, 1, and 1 nucleotides in length. Next, a set of minimal, parallel G-quadruplexes with three single-nucleotide loops was tested. These G-quadruplexes were characterized both structurally and functionally. All parallel G-quadruplexes had affinities for both recombinant hemagglutinin and influenza virions. In summary, the parallel G-quadruplex represents a minimal core structure with functional activity that binds influenza A hemagglutinin. The flanking sequences and loops represent additional features that can be used to modulate the affinity. Thus, the RHA0385-hemagglutinin complex serves as an excellent example of the hypothesis of a core structure that is decorated with additional recognizing elements capable of improving the binding properties of the aptamer.
Collapse
Affiliation(s)
- Anastasia A. Bizyaeva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Dmitry A. Bunin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Valeria L. Moiseenko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Alexandra S. Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | | | - Vadim N. Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Alexander M. Arutyunyan
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexey M. Kopylov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Elena G. Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| |
Collapse
|
23
|
Cheng Y, Cheng M, Hao J, Jia G, Monchaud D, Li C. The noncovalent dimerization of a G-quadruplex/hemin DNAzyme improves its biocatalytic properties. Chem Sci 2020; 11:8846-8853. [PMID: 34123138 PMCID: PMC8163442 DOI: 10.1039/d0sc02907f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022] Open
Abstract
While many protein enzymes exert their functions through multimerization, which improves both selectivity and activity, this has not yet been demonstrated for other naturally occurring catalysts. Here, we report a multimerization effect applied to catalytic DNAs (or DNAzymes) and demonstrate that the enzymatic efficiency of G-quadruplexes (GQs) in interaction with the hemin cofactor is remarkably enhanced by homodimerization. The resulting non-covalent dimeric GQ-DNAzyme system provides hemin with a structurally defined active site in which both the cofactor (hemin) and the oxidant (H2O2) are activated. This new biocatalytic system efficiently performs peroxidase- and peroxygenase-type biotransformations of a broad range of substrates, thus providing new perspectives for biotechnological application of GQs.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mingpan Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - David Monchaud
- Institut de Chimie Moléculaire de l' Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon 21078 Dijon France
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
24
|
Navarro A, Benabou S, Eritja R, Gargallo R. Influence of pH and a porphyrin ligand on the stability of a G-quadruplex structure within a duplex segment near the promoter region of the SMARCA4 gene. Int J Biol Macromol 2020; 159:383-393. [PMID: 32416304 DOI: 10.1016/j.ijbiomac.2020.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
In a previous work, the formation of G-quadruplex structures in a 44-nucleotide long sequence found near the promoter region of the SMARCA4 gene was reported. The central 25 nucleotides were able to fold into an antiparallel G-quadruplex structure, the stability of which was pH-dependent. In the present work, the effect of the presence of lateral nucleotides and the complementary cytosine-rich strand on the stability of this G-quadruplex has been characterized. Moreover, the role of the model ligand TMPyP4 has been studied. Spectroscopic and separation techniques, as well as multivariate data analysis methods, have been used with these purposes. The results have shown that stability of the G-quadruplex as a function of pH or temperature is greatly reduced in the presence of the lateral nucleotides. The influence of the complementary strand does not prevent the formation of the G-quadruplex. Moreover, attempts to modulate the equilibria by an external ligand led us to determine the influence of the TMPyP4 porphyrin on these complex equilibria. This study could eventually help to understand the regulation of SMARCA4 expression.
Collapse
Affiliation(s)
- Alba Navarro
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain
| | - Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain; Université de Bordeaux, CNRS, Inserm, Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain.
| |
Collapse
|
25
|
Rauser V, Weinhold E. Quantitative Formation of Monomeric G-Quadruplex DNA from Multimeric Structures of c-Myc Promoter Sequence. Chembiochem 2020; 21:2445-2448. [PMID: 32267052 PMCID: PMC7496815 DOI: 10.1002/cbic.202000159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Indexed: 12/02/2022]
Abstract
G‐Quadruplex (G4)‐forming DNA sequences have a tendency to form stable multimeric structures. This can be problematic for studies with synthetic oligodeoxynucleotides. Herein, we describe a method that quantitatively converts multimeric intermolecular structures of the Pu27 sequence from the c‐myc promoter into the desired monomeric G4 by alkaline treatment and refolding.
Collapse
Affiliation(s)
- Valerie Rauser
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
26
|
Riccardi C, Musumeci D, Platella C, Gaglione R, Arciello A, Montesarchio D. Tuning the Polymorphism of the Anti-VEGF G-rich V7t1 Aptamer by Covalent Dimeric Constructs. Int J Mol Sci 2020; 21:ijms21061963. [PMID: 32183039 PMCID: PMC7139925 DOI: 10.3390/ijms21061963] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 01/11/2023] Open
Abstract
In the optimization process of nucleic acid aptamers, increased affinity and/or activity are generally searched by exploring structural analogues of the lead compound. In many cases, promising results have been obtained by dimerization of the starting aptamer. Here we studied a focused set of covalent dimers of the G-quadruplex (G4) forming anti-Vascular Endothelial Growth Factor (VEGF) V7t1 aptamer with the aim of identifying derivatives with improved properties. In the design of these covalent dimers, connecting linkers of different chemical nature, maintaining the same polarity along the strand or inverting it, have been introduced. These dimeric aptamers have been investigated using several biophysical techniques to disclose the conformational behavior, molecularity and thermal stability of the structures formed in different buffers. This in-depth biophysical characterization revealed the formation of stable G4 structures, however in some cases accompanied by alternative tridimensional arrangements. When tested for their VEGF165 binding and antiproliferative activity in comparison with V7t1, these covalent dimers showed slightly lower binding ability to the target protein but similar if not slightly higher antiproliferative activity on human breast adenocarcinoma MCF-7 cells. These results provide useful information for the design of improved dimeric aptamers based on further optimization of the linker joining the two consecutive V7t1 sequences.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; (C.R.); (D.M.); (C.P.); (R.G.); (A.A.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; (C.R.); (D.M.); (C.P.); (R.G.); (A.A.)
- Institute of Biostructures and Bioimages (IBB), CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; (C.R.); (D.M.); (C.P.); (R.G.); (A.A.)
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; (C.R.); (D.M.); (C.P.); (R.G.); (A.A.)
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; (C.R.); (D.M.); (C.P.); (R.G.); (A.A.)
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; (C.R.); (D.M.); (C.P.); (R.G.); (A.A.)
- Correspondence:
| |
Collapse
|
27
|
Largy E, Gabelica V. Native Hydrogen/Deuterium Exchange Mass Spectrometry of Structured DNA Oligonucleotides. Anal Chem 2020; 92:4402-4410. [PMID: 32039580 DOI: 10.1021/acs.analchem.9b05298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although solution hydrogen-deuterium exchange mass spectrometry (HDX/MS) is well-established for the analysis of the structure and dynamics of proteins, it is currently not exploited for nucleic acids. Here we used DNA G-quadruplex structures as model systems to demonstrate that DNA oligonucleotides are amenable to in-solution HDX/MS in native conditions. In trimethylammonium acetate solutions and in soft source conditions, the protonated phosphate groups are fully back-exchanged in the source, while the exchanged nucleobases remain labeled without detectable back-exchange. As a result, the exchange rates depend strongly on the secondary structure (hydrogen bonding status) of the oligonucleotides, but neither on their charge state nor on the presence of nonspecific adducts. We show that native mass spectrometry methods can measure these exchange rates on the second to the day time scale with high precision. Such combination of HDX with native MS opens promising avenues for the analysis of the structural and biophysical properties of oligonucleotides and their complexes.
Collapse
Affiliation(s)
- Eric Largy
- University of Bordeaux, INSERM and CNRS, Laboratoires Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, Laboratoires Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| |
Collapse
|
28
|
Marzano M, Falanga AP, Marasco D, Borbone N, D’Errico S, Piccialli G, Roviello GN, Oliviero G. Evaluation of an Analogue of the Marine ε-PLL Peptide as a Ligand of G-quadruplex DNA Structures. Mar Drugs 2020; 18:md18010049. [PMID: 31940851 PMCID: PMC7024349 DOI: 10.3390/md18010049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
ε-poly-l-Lysine (ε-PLL) peptide is a product of the marine bacterium Bacillus subtilis with antibacterial and anticancer activity largely used worldwide as a food preservative. ε-PLL and its synthetic analogue α,ε-poly-l-lysine (α,ε-PLL) are also employed in the biomedical field as enhancers of anticancer drugs and for drug and gene delivery applications. Recently, several studies reported the interaction between these non-canonical peptides and DNA targets. Among the most important DNA targets are the DNA secondary structures known as G-quadruplexes (G4s) which play relevant roles in many biological processes and disease-related mechanisms. The search for novel ligands capable of interfering with G4-driven biological processes elicits growing attention in the screening of new classes of G4 binders. In this context, we have here investigated the potential of α,ε-PLL as a G4 ligand. In particular, the effects of the incubation of two different models of G4 DNA, i.e., the parallel G4 formed by the Pu22 (d[TGAGGGTGGGTAGGGTGGGTAA]) sequence, a mutated and shorter analogue of the G4-forming sequence known as Pu27 located in the promoter of the c-myc oncogene, and the hybrid parallel/antiparallel G4 formed by the human Tel22 (d[AGGGTTAGGGTTAGGGTTAGGG]) telomeric sequence, with α,ε-PLL are discussed in the light of circular dichroism (CD), UV, fluorescence, size exclusion chromatography (SEC), and surface plasmon resonance (SPR) evidence. Even though the SPR results indicated that α,ε-PLL is capable of binding with µM affinity to both the G4 models, spectroscopic and SEC investigations disclosed significant differences in the structural properties of the resulting α,ε-PLL/G4 complexes which support the use of α,ε-PLL as a G4 ligand capable of discriminating among different G4 topologies.
Collapse
Affiliation(s)
- Maria Marzano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging—CNR 1, Via Mezzocannone 16, 80134 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giovanni Nicola Roviello
- Institute of Biostructures and Bioimaging—CNR 1, Via Mezzocannone 16, 80134 Naples, Italy
- Correspondence:
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
29
|
Novoseltseva AA, Ivanov NM, Novikov RA, Tkachev YV, Bunin DA, Gambaryan AS, Tashlitsky VN, Arutyunyan AM, Kopylov AM, Zavyalova EG. Structural and Functional Aspects of G-Quadruplex Aptamers Which Bind a Broad Range of Influenza A Viruses. Biomolecules 2020; 10:biom10010119. [PMID: 31936820 PMCID: PMC7022617 DOI: 10.3390/biom10010119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
An aptamer is a synthetic oligonucleotide with a unique spatial structure that provides specific binding to a target. To date, several aptamers to hemagglutinin of the influenza A virus have been described, which vary in affinity and strain specificity. Among them, the DNA aptamer RHA0385 is able to recognize influenza hemagglutinins with highly variable sequences. In this paper, the structure of RHA0385 was studied by circular dichroism spectroscopy, nuclear magnetic resonance, and size-exclusion chromatography, demonstrating the formation of a parallel G-quadruplex structure. Three derivatives of RHA0385 were designed in order to determine the contribution of the major loop to affinity. Shortening of the major loop from seven to three nucleotides led to stabilization of the scaffold. The affinities of the derivatives were studied by surface plasmon resonance and an enzyme-linked aptamer assay on recombinant hemagglutinins and viral particles, respectively. The alterations in the loop affected the binding to influenza hemagglutinin, but did not abolish it. Contrary to aptamer RHA0385, two of the designed aptamers were shown to be conformationally homogeneous, retaining high affinities and broad binding abilities for both recombinant hemagglutinins and whole influenza A viruses.
Collapse
Affiliation(s)
- Anastasia A. Novoseltseva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
- Correspondence: ; Tel.: +7-495-939-3149
| | - Nikita M. Ivanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Roman A. Novikov
- Engelhardt Institute of Molecular Biology RAS, 119991 Moscow, Russia; (R.A.N.)
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology RAS, 119991 Moscow, Russia; (R.A.N.)
| | - Dmitry A. Bunin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Alexandra S. Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | - Vadim N. Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Alexander M. Arutyunyan
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey M. Kopylov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Elena G. Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| |
Collapse
|
30
|
Moccia F, Riccardi C, Musumeci D, Leone S, Oliva R, Petraccone L, Montesarchio D. Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one! Nucleic Acids Res 2019; 47:8318-8331. [PMID: 31276595 PMCID: PMC6735921 DOI: 10.1093/nar/gkz589] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
The G-quadruplex-forming VEGF-binding aptamer V7t1 was previously found to be highly polymorphic in a K+-containing solution and, to restrict its conformational preferences to a unique, well-defined form, modified nucleotides (LNA and/or UNA) were inserted in its sequence. We here report an in-depth biophysical characterization of V7t1 in a Na+-rich medium, mimicking the extracellular environment in which VEGF targeting should occur, carried out combining several techniques to analyse the conformational behaviour of the aptamer and its binding to the protein. Our results demonstrate that, in the presence of high Na+ concentrations, V7t1 behaves in a very different way if subjected or not to annealing procedures, as evidenced by native gel electrophoresis, size exclusion chromatography and dynamic light scattering analysis. Indeed, not-annealed V7t1 forms both monomeric and dimeric G-quadruplexes, while the annealed oligonucleotide is a monomeric species. Remarkably, only the dimeric aptamer efficiently binds VEGF, showing higher affinity for the protein compared to the monomeric species. These findings provide new precious information for the development of improved V7t1 analogues, allowing more efficient binding to the cancer-related protein and the design of effective biosensors or theranostic devices based on VEGF targeting.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy.,Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy.,Institute for Endocrinology and Oncology 'Gaetano Salvatore', CNR, Via Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
31
|
Benabou S, Mazzini S, Aviñó A, Eritja R, Gargallo R. A pH-dependent bolt involving cytosine bases located in the lateral loops of antiparallel G-quadruplex structures within the SMARCA4 gene promotor. Sci Rep 2019; 9:15807. [PMID: 31676783 PMCID: PMC6825181 DOI: 10.1038/s41598-019-52311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Some lung and ovarian tumors are connected to the loss of expression of SMARCA4 gene. In its promoter region, a 44-nucleotides long guanine sequence prone to form G-quadruplex structures has been studied by means of spectroscopic techniques (circular dichroism, molecular absorption and nuclear magnetic resonance), size exclusion chromatography and multivariate analysis. The results have shown that the central 21-nucleotides long sequence comprising four guanine tracts of disparate length is able to fold into a pH-dependent ensemble of G-quadruplex structures. Based on acid-base titrations and melting experiments of wild and mutated sequences, the formation of a C·C+ base pair between cytosine bases present at the two lateral loops is shown to promote a reduction in conformational heterogeneity, as well as an increase in thermal stability. The formation of this base pair is characterized by a pKa value of 7.1 ± 0.2 at 20 °C and 150 mM KCl. This value, higher than those usually found in i-motif structures, is related to the additional stability provided by guanine tetrads in the G-quadruplex. To our knowledge, this is the first thermodynamic description of this base pair in loops of antiparallel G-quadruplex structures.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Riccardi C, Meyer A, Vasseur JJ, Russo Krauss I, Paduano L, Morvan F, Montesarchio D. Fine-tuning the properties of the thrombin binding aptamer through cyclization: Effect of the 5'-3' connecting linker on the aptamer stability and anticoagulant activity. Bioorg Chem 2019; 94:103379. [PMID: 31699393 DOI: 10.1016/j.bioorg.2019.103379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
A small library of cyclic TBA analogues (named cycTBA I-IV), obtained by covalently connecting its 5'- and 3'-ends with flexible linkers, has been synthesized with the aim of improving its chemical and enzymatic stability, as well as its anticoagulant properties. Two chemical procedures have been exploited to achieve the desired cyclization, based on the oxime ligation method (providing cycTBA I and II) or on Cu(I)-assisted azide-alkyne cycloaddition (CuAAC) protocols (for cycTBA III and IV), leading to analogues containing circularizing linkers with different chemical nature and length, overall spanning from 22 to 48 atoms. The resulting cyclic TBAs have been characterized using a variety of biophysical methods (UV, CD, gel electrophoresis, SE-HPLC analyses) and then tested for their serum resistance and anticoagulant activity under in vitro experiments. A fine-tuning of the length and flexibility of the linker allowed identifying a cyclic analogue, cycTBA II, with improved anticoagulant activity, associated with a dramatically stabilized G-quadruplex structure (ΔTm = +17 °C) and a 6.6-fold higher enzymatic resistance in serum compared to unmodified TBA.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - François Morvan
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy.
| |
Collapse
|
33
|
Mazzini S, Gargallo R, Musso L, De Santis F, Aviñó A, Scaglioni L, Eritja R, Di Nicola M, Zunino F, Amatulli A, Dallavalle S. Stabilization of c-KIT G-Quadruplex DNA Structures by the RNA Polymerase I Inhibitors BMH-21 and BA-41. Int J Mol Sci 2019; 20:ijms20194927. [PMID: 31590335 PMCID: PMC6801708 DOI: 10.3390/ijms20194927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
The stabilization of G-quadruplex DNA structures by small molecules with affinity to oncogene promoters has emerged as a promising anticancer strategy, due to a potential role in gene expression regulation. We explored the ability of BMH-21 (1) and its analogue BA-41 (2) to bind the G-quadruplex structure present in the c-KIT promoter by biophysical methods and molecular modeling. We provide evidence that both compounds interact with the c-KIT 21-mer sequence. The stable monomeric intramolecular parallel G-quadruplex obtained by the mutation of positions 12 and 21 allowed the precise determination of the binding mode by NMR and molecular dynamics studies. Both compounds form a complex characterized by one ligand molecule positioned over the tetrad at the 3′-end, stabilized by an extensive network of π–π interactions. The binding constants (Kb) obtained with fluorescence are similar for both complexes (around 106 M−1). Compound BA-41 (2) showed significant antiproliferative activity against a human lymphoma cell line, SU-DHL4, known to express substantial levels of c-KIT. However, the partial inhibition of c-KIT expression by Western blot analysis suggested that the interaction of compound 2 with the c-KIT promoter is not the primary event and that multiple effects provide a contribution as determinants of biological activity.
Collapse
Affiliation(s)
- Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Division of Chemistry and Molecular Biology, University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí I Franqués 1-11, 08028 Barcelona, Spain.
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Division of Chemistry and Molecular Biology, University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Francesca De Santis
- Unit of Immunotherapy and Anticancer innovative Therapeutics, Department of Medical Oncology Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy.
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Division of Chemistry and Molecular Biology, University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Massimo Di Nicola
- Unit of Immunotherapy and Anticancer innovative Therapeutics, Department of Medical Oncology Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy.
| | - Franco Zunino
- Unit of Immunotherapy and Anticancer innovative Therapeutics, Department of Medical Oncology Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy.
| | - Annabella Amatulli
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Division of Chemistry and Molecular Biology, University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Division of Chemistry and Molecular Biology, University of Milan, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
34
|
Cho HY, Lee YA, Oh YS, Lee GJ, Jang YJ, Kim SK. Binding mode of a cationic porphyrin to parallel and antiparallel thrombin binding aptamer G-quadruplex. J Biomol Struct Dyn 2019; 38:2686-2692. [PMID: 31307279 DOI: 10.1080/07391102.2019.1642241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The spectral properties of meso-tetrakis (N-methylpyridinium-4-yl)porphyrin (TMPyP) in the presence of parallel and antiparallel G-quadruplexes formed from a thrombin-binding aptamer G-quadruplex (5'-G3T2G3TGTG3T2G3) were investigated in this study. Red shift and hypochromism in the Soret absorption band of TMPyP were observed after binding to both parallel and antiparallel G-quadruplexes. The extent of changes in the absorption spectra were similar for both conformers. No circular dichroism spectrum was induced in the Soret region for both parallel and antiparallel G-quadruplexes. This is suggest that there is no or very weak interaction between electric transitions of nucleobases and porphyrin molecule. The accessibility of the neutral quencher I2 to the G-quadruplex-bound TMPyP was similar for both parallel and antiparallel G-quadruplexes. All these observations suggest that TMPyP was bound at the outside of the quadruplexes, and conceivably interacted with the phosphate group via a weak electrostatic interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ha Young Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Young-Ae Lee
- Department of Chemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ye Sol Oh
- Department of Chemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Gil Jun Lee
- Department of Safety and Disaster Prevention Engineering, Kyungwoon University, Gumi, Republic of Korea
| | - Yoon Jung Jang
- College of Basis Education, Yeungnam University, Gyeongsan, Republic of Korea
| | - Seog K Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
35
|
Alieva RR, Zavyalova EG, Tashlitsky VN, Kopylov AM. Quantitative characterization of oligomeric state of G-quadruplex antithrombin aptamers by size exclusion HPLC. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Rogers RA, Fleming AM, Burrows CJ. Unusual Isothermal Hysteresis in DNA i-Motif pH Transitions: A Study of the RAD17 Promoter Sequence. Biophys J 2019; 114:1804-1815. [PMID: 29694860 DOI: 10.1016/j.bpj.2018.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 11/15/2022] Open
Abstract
We have interrogated the isothermal folding behavior of the DNA i-motif of the human telomere, dC19, and a high-stability i-motif-forming sequence in the promoter of the human DNA repair gene RAD17 using human physiological solution and temperature conditions. We developed a circular-dichroism-spectroscopy-based pH titration method that is followed by analysis of titration curves in the derivative domain and found that the observed pH-dependent folding behavior can be significantly different and, in some cases, multiphasic, with a dependence on how rapidly i-motif folding is induced. Interestingly, the human telomere sequence exhibits unusual isothermal hysteresis in which the unfolding process always occurs at a higher pH than the folding process. For the RAD17 i-motif, rapid folding by injection into a low-pH solution results in triphasic unfolding behavior that is completely diminished when samples are slowly folded in a stepwise manner via pH titration. Chemical footprinting of the RAD17 sequence and pH titrations of dT-substituted mutants of the RAD17 sequence were used to develop a model of RAD17 folding and unfolding. These results may provide valuable information pertinent to i-motif use in sensors and materials, as well as insight into the potential biological activity of i-motif-forming sequences under stepwise or instantaneous changes in pH.
Collapse
Affiliation(s)
- R Aaron Rogers
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
37
|
The role of G-quadruplex structures of LIGS-generated aptamers R1.2 and R1.3 in IgM specific recognition. Int J Biol Macromol 2019; 133:839-849. [PMID: 31022491 DOI: 10.1016/j.ijbiomac.2019.04.141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022]
Abstract
Exploiting a variant of SELEX called "Ligand-Guided Selection" (LI-GS), we recently identified two novel truncated G-rich aptamers, called R1.2 and R1.3, specific for membrane-bound IgM (mIgM), the hallmark of B cells. Herein, the conformational behaviour of these aptamers has been analysed by multiple biophysical methods. In order to investigate their functional secondary structures, these studies have been carried out in pseudo-physiological buffers mimicking different cellular environments. Both aptamers proved to be highly polymorphic, folding into stable, unimolecular G-quadruplex structures in K+-rich buffers. In turn, in buffered solutions containing Na+/Mg2+ ions, R1.2 and R1.3 formed mainly duplex structures. Remarkably, these aptamers were able to effectively bind mIgM on B-cell lymphoma exclusively in the presence of potassium ions. These findings demonstrate the key role of G-quadruplex folding in the molecular recognition and efficient binding of R1.2 and R1.3 to mIgM expressed in lymphoma and leukemia cells, providing a precious rational basis for the design of effective aptamer-based biosensors potentially useful for the detection of cancer-relevant biomarkers.
Collapse
|
38
|
Su Y, Fujii H, Burakova EA, Chelobanov BP, Fujii M, Stetsenko DA, Filichev VV. Neutral and Negatively Charged Phosphate Modifications Altering Thermal Stability, Kinetics of Formation and Monovalent Ion Dependence of DNA G-Quadruplexes. Chem Asian J 2019; 14:1212-1220. [PMID: 30600926 DOI: 10.1002/asia.201801757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Indexed: 12/18/2022]
Abstract
The effect of phosphate group modifications on formation and properties of G-quadruplexes (G4s) has not been investigated in detail. Here, we evaluated the structural, thermodynamic and kinetic properties of the parallel G-quadruplexes formed by oligodeoxynucleotides d(G4 T), d(TG4 T) and d(TG5 T), in which all phosphates were replaced with N-methanesulfonyl (mesyl) phosphoramidate or phosphoryl guanidine groups resulting in either negatively charged or neutral DNA sequences, respectively. We established that all modified sequences were able to form G-quadruplexes of parallel topology; however, the presence of modifications led to a decrease in thermal stability relative to unmodified G4s. In contrast to negatively charged G4s, assembly of neutral G4 DNA species was faster in the presence of sodium ions than potassium ions, and was independent of the salt concentration used. Formation of mixed G4s composed of both native and neutral G-rich strands has been detected using native gel electrophoresis, size-exclusion chromatography and ESI-MS. In summary, our results indicate that the phosphate modifications studied are compatible with G-quadruplex formation, which could be used for the design of biologically active compounds.
Collapse
Affiliation(s)
- Yongdong Su
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Hirofumi Fujii
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Fukuoka, Iizuka, Japan
| | - Ekaterina A Burakova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Boris P Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Masayuki Fujii
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Fukuoka, Iizuka, Japan
| | - Dmitry A Stetsenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Vyacheslav V Filichev
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| |
Collapse
|
39
|
Zuffo M, Xie X, Granzhan A. Strength in Numbers: Development of a Fluorescence Sensor Array for Secondary Structures of DNA. Chemistry 2019; 25:1812-1818. [DOI: 10.1002/chem.201805422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Michela Zuffo
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| | - Xiao Xie
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| |
Collapse
|
40
|
Biological activity of Pt IV prodrugs triggered by riboflavin-mediated bioorthogonal photocatalysis. Sci Rep 2018; 8:17198. [PMID: 30464209 PMCID: PMC6249213 DOI: 10.1038/s41598-018-35655-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that riboflavin (Rf) functions as unconventional bioorthogonal photocatalyst for the activation of PtIV prodrugs. In this study, we show how the combination of light and Rf with two PtIV prodrugs is a feasible strategy for light-mediated pancreatic cancer cell death induction. In Capan-1 cells, which have high tolerance against photodynamic therapy, Rf-mediated activation of the cisplatin and carboplatin prodrugs cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] (1) and cis,cis,trans-[Pt(NH3)2(CBDCA)(O2CCH2CH2CO2H)2] (2, where CBDCA = cyclobutane dicarboxylate) resulted in pronounced reduction of the cell viability, including under hypoxia conditions. Such photoactivation mode occurs to a considerable extent intracellularly, as demonstrated for 1 by uptake and cell viability experiments. 195Pt NMR, DNA binding studies using circular dichroism, mass spectrometry and immunofluorescence microscopy were performed using the Rf-1 catalyst-substrate pair and indicated that cell death is associated with the efficient light-induced formation of cisplatin. Accordingly, Western blot analysis revealed signs of DNA damage and activation of cell death pathways through Rf-mediated photochemical activation. Phosphorylation of H2AX as indicator for DNA damage, was detected for Rf-1 in a strictly light-dependent fashion while in case of free cisplatin also in the dark. Photochemical induction of nuclear pH2AX foci by Rf-1 was confirmed in fluorescence microscopy again proving efficient light-induced cisplatin release from the prodrug system.
Collapse
|
41
|
Two-dimensional liquid chromatography-mass spectrometry for the characterization of modified oligonucleotide impurities. Anal Biochem 2018; 556:45-52. [PMID: 29936097 DOI: 10.1016/j.ab.2018.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022]
Abstract
A 2D-LC system coupled with a TOF mass spectrometer has been evaluated for its capabilities to provide enhanced characterization of oligonucleotide impurities. To address loop limitations in the total volume (40 μL) sampled across 1D peaks, a column trap was incorporated between the 1D and 2D columns. The main advantages of the column trap include reduction of the total number of sequential 2D runs required to fully sample broad 1D peaks, and most importantly, reduction of the error in quantitative determination of the components in broad 1D peaks by avoiding the numerical stitching of data from several 2D runs. Comprehensive RP x IP provided orthogonal separation despite its lower 1D resolution. In contrast, IP x IP did not provide orthogonal separation. RP x IP using the direct on-line extended heart-cutting system with the column trap showed additional benefits, in the elimination of off-line fractionation and sample handling errors and was successfully applied in a pH stability study of a crude oligonucleotide. SAX x IP successfully separated the isobaric "n+16" doublet of the "n + O" and "[n + S-O]" impurity species, a feat not currently possible by mass spectrometry alone or 1D-LC, demonstrating the importance of the added capabilities of the 2D-LC approach.
Collapse
|
42
|
Baronti L, Karlsson H, Marušič M, Petzold K. A guide to large-scale RNA sample preparation. Anal Bioanal Chem 2018; 410:3239-3252. [PMID: 29546546 PMCID: PMC5937877 DOI: 10.1007/s00216-018-0943-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
RNA is becoming more important as an increasing number of functions, both regulatory and enzymatic, are being discovered on a daily basis. As the RNA boom has just begun, most techniques are still in development and changes occur frequently. To understand RNA functions, revealing the structure of RNA is of utmost importance, which requires sample preparation. We review the latest methods to produce and purify a variation of RNA molecules for different purposes with the main focus on structural biology and biophysics. We present a guide aimed at identifying the most suitable method for your RNA and your biological question and highlighting the advantages of different methods. Graphical abstract In this review we present different methods for large-scale production and purification of RNAs for structural and biophysical studies.
Collapse
Affiliation(s)
- Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Maja Marušič
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden.
| |
Collapse
|
43
|
Ahmed S, Kaushik M, Chaudhary S, Kukreti S. Formation of G-wires, bimolecular and tetramolecular quadruplex: Cation-induced structural polymorphs of G-rich DNA sequence of human SYTX gene. Biopolymers 2018; 109:e23115. [PMID: 29672834 DOI: 10.1002/bip.23115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 01/18/2023]
Abstract
An exceptional property of auto-folding into a range of intra- as well as intermolecular quadruplexes by guanine-rich oligomers (GROs) of promoters, telomeres and various other genomic locations is still one of the most attractive areas of research at present times. The main reason for this attention is due to their established in vivo existence and biological relevance. Herein, the structural status of a 20-nt long G-rich sequence with two G5 stretches (SG20) is investigated using various biophysical and biochemical techniques. Bioinformatics analysis suggested the presence of a 17-nt stretch of this SG20 sequence in the intronic region of human SYTX (Synaptotagmin 10) gene. The SYTX gene helps in sensing out the Ca2+ ion, causing its intake in the pre-synaptic neuron. A range of various topologies like bimolecular, tetramolecular and guanine-wires (nano-wires) was exhibited by the studied sequence, as a function of cations (Na+ /K+ ) concentration. UV-thermal denaturation, gel electrophoresis, and circular dichroism (CD) spectroscopy showed correlations and established a cation-dependent structural switch. The G-wire formation, in the presence of K+ , may further be explored for its possible relevance in nano-biotechnological applications.
Collapse
Affiliation(s)
- Saami Ahmed
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Mahima Kaushik
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Swati Chaudhary
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
44
|
Qiao JQ, Cao ZM, Liang C, Chen HJ, Zheng WJ, Lian HZ. Study on the polymorphism of G-quadruplexes by reversed-phase HPLC and LC–MS. J Chromatogr A 2018; 1542:61-71. [DOI: 10.1016/j.chroma.2018.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/03/2018] [Accepted: 02/11/2018] [Indexed: 12/16/2022]
|
45
|
Zhou J, Amrane S, Rosu F, Salgado GF, Bian Y, Tateishi-Karimata H, Largy E, Korkut DN, Bourdoncle A, Miyoshi D, Zhang J, Ju H, Wang W, Sugimoto N, Gabelica V, Mergny JL. Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. J Am Chem Soc 2017; 139:7768-7779. [PMID: 28523907 DOI: 10.1021/jacs.7b00648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand the role of ribose G-quartets and how they affect the properties of G-quadruplex structures, we studied three systems in which one, two, three, or four deoxyribose G-quartets were substituted with ribose G-quartets. These systems were a parallel DNA intramolecular G-quadruplex, d(TTGGGTGGGTTGGGTGGGTT), and two tetramolecular G-quadruplexes, d(TGGGT) and d(TGGGGT). Thermal denaturation experiments revealed that ribose G-quartets have position-dependent and cumulative effects on G-quadruplex stability. An unexpected destabilization was observed when rG quartets were presented at the 5'-end of the G stack. This observation challenges the general belief that RNA residues stabilize G-quadruplexes. Furthermore, in contrast to past proposals, hydration is not the main factor determining the stability of our RNA/DNA chimeric G-quadruplexes. Interestingly, the presence of rG residues in a central G-quartet facilitated the formation of additional tetramolecular G-quadruplex topologies showing positive circular dichroism signals at 295 nm. 2D NMR analysis of the tetramolecular TGgGGT (lowercase letter indicates ribose) indicates that Gs in the 5'-most G-quartet adopt the syn conformation. These analyses highlight several new aspects of the role of ribose G-quartets on G-quadruplex structure and stability, and demonstrate that the positions of ribose residues are critical for tuning G-quadruplex properties.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China.,Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Samir Amrane
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Université de Bordeaux , CNRS UMS 3033, INSERM US001, IECB, F-33600 Pessac, France
| | - Gilmar F Salgado
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University , Dezhou 253023, China
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Eric Largy
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Dursun Nizam Korkut
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Daisuke Miyoshi
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jian Zhang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Valérie Gabelica
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Jean-Louis Mergny
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
46
|
Vialet B, Gissot A, Delzor R, Barthélémy P. Controlling G-quadruplex formation via lipid modification of oligonucleotide sequences. Chem Commun (Camb) 2017; 53:11560-11563. [DOI: 10.1039/c7cc05693a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G-quadruplexes (G4) represent attractive supramolecular scaffolds.
Collapse
Affiliation(s)
- Brune Vialet
- Univ. Bordeaux
- ARNA Laboratory
- F-33000 Bordeaux
- France
- INSERM
| | - Arnaud Gissot
- Univ. Bordeaux
- ARNA Laboratory
- F-33000 Bordeaux
- France
- INSERM
| | - Romain Delzor
- Univ. Bordeaux
- ARNA Laboratory
- F-33000 Bordeaux
- France
- INSERM
| | | |
Collapse
|
47
|
Shimoyama A, Fujisaka A, Obika S. Evaluation of size-exclusion chromatography for the analysis of phosphorothioate oligonucleotides. J Pharm Biomed Anal 2016; 136:55-65. [PMID: 28063336 DOI: 10.1016/j.jpba.2016.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/24/2016] [Accepted: 12/24/2016] [Indexed: 11/17/2022]
Abstract
We evaluated size exclusion chromatography (SEC) for the detection of high-order structure of phosphorothioate oligonucleotides (PS-oligo). Because of strong interaction between PS-oligo and column packing material, peaks were broader and elution time was longer than those of the corresponding natural DNA oligonucleotides. However, single- and double-stranded structures of PS-oligo were clearly separated and discriminated, while single-stranded with high-order structures such as G-quadruplex and hairpin structure were not distinguished from each other.
Collapse
Affiliation(s)
- Atsuko Shimoyama
- Analytical Research Laboratories, Technology, Astellas Pharma Inc., 5-2-3 Tokodai, Tsukuba-Shi, Ibaraki 300-2698, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aki Fujisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka 584-8540, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
48
|
Qiao JQ, Liang C, Wei LC, Cao ZM, Lian HZ. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence. J Sep Sci 2016; 39:4502-4511. [DOI: 10.1002/jssc.201600701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Jun-qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| | - Chao Liang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| | - Lan-chun Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| | - Zhao-ming Cao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis; Nanjing University; Nanjing China
| |
Collapse
|
49
|
Marchand A, Gabelica V. Folding and misfolding pathways of G-quadruplex DNA. Nucleic Acids Res 2016; 44:10999-11012. [PMID: 27924036 PMCID: PMC5159560 DOI: 10.1093/nar/gkw970] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes adopt various folding topologies, but information on their folding pathways remains scarce. Here, we used electrospray mass spectrometry to detect and quantify the specifically bound potassium ions, and circular dichroism to characterize the stacking topology of each ensemble. For human telomeric (hTel) sequences containing the d((GGGTTA)3GGG) core, K+ binding affinity and cooperativity strongly depends on the chosen construct. The shortest sequences bind only one K+ at low KCl concentration, and this 2-quartet G-quadruplex is antiparallel. Flanking bases increase the K+ binding cooperativity. To decipher the folding pathways, we investigated the kinetics of K+ binding to telomeric (hybrid) and c-myc (parallel) G-quadruplexes. G-quadruplexes fold via branched pathways with multiple parallel reactions. Up to six states (one ensemble without K+, two ensembles with 1-K+ and three ensembles with 2-K+) are separated based on their formation rates and ion mobility spectrometry. All G-quadruplexes first form long-lived misfolded structures (off-pathway compared to the most stable structures) containing one K+ and two quartets in an antiparallel stacking arrangement. The results highlight the particular ruggedness of G-quadruplex nucleic acid folding landscapes. Misfolded structures can play important roles for designing artificial G-quadruplex based structures, and for conformational selection by ligands or proteins in a biological context.
Collapse
Affiliation(s)
- Adrien Marchand
- INSERM, CNRS, Univ. Bordeaux, U1212 / UMR5320 - Acides Nucléiques: Régulations Naturelle et Artificielle, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Valérie Gabelica
- INSERM, CNRS, Univ. Bordeaux, U1212 / UMR5320 - Acides Nucléiques: Régulations Naturelle et Artificielle, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
50
|
Alba JJ, Sadurní A, Gargallo R. Nucleic Acid i-Motif Structures in Analytical Chemistry. Crit Rev Anal Chem 2016; 46:443-54. [DOI: 10.1080/10408347.2016.1143347] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joan Josep Alba
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Anna Sadurní
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Raimundo Gargallo
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|