1
|
Kundnani DL, Yang T, Gombolay AL, Mukherjee K, Newnam G, Meers C, Verma I, Chhatlani K, Mehta ZH, Mouawad C, Storici F. Distinct features of ribonucleotides within genomic DNA in Aicardi-Goutières syndrome ortholog mutants of Saccharomyces cerevisiae. iScience 2024; 27:110012. [PMID: 38868188 PMCID: PMC11166700 DOI: 10.1016/j.isci.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Ribonucleoside monophosphates (rNMPs) are abundantly found within genomic DNA of cells. The embedded rNMPs alter DNA properties and impact genome stability. Mutations in ribonuclease (RNase) H2, a key enzyme for rNMP removal, are associated with the Aicardi-Goutières syndrome (AGS), a severe neurological disorder. Here, we engineered orthologs of the human RNASEH2A-G37S and RNASEH2C-R69W AGS mutations in yeast Saccharomyces cerevisiae: rnh201-G42S and rnh203-K46W. Using the ribose-seq technique and the Ribose-Map bioinformatics toolkit, we unveiled rNMP abundance, composition, hotspots, and sequence context in these AGS-ortholog mutants. We found a high rNMP presence in the nuclear genome of rnh201-G42S-mutant cells, and an elevated rCMP content in both mutants, reflecting preferential cleavage of RNase H2 at rGMP. We discovered unique rNMP patterns in each mutant, showing differential activity of the AGS mutants on the leading or lagging replication strands. This study guides future research on rNMP characteristics in human genomes with AGS mutations.
Collapse
Affiliation(s)
- Deepali L. Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L. Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bacterial Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ishika Verma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirti Chhatlani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zeel H. Mehta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Celine Mouawad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Gillet N, Dumont E, Bignon E. DNA damage and repair in the nucleosome: insights from computational methods. Biophys Rev 2024; 16:345-356. [PMID: 39099841 PMCID: PMC11297232 DOI: 10.1007/s12551-024-01183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 08/06/2024] Open
Abstract
Cellular DNA is constantly exposed to endogenous or exogenous factors that can induce lesions. Several types of lesions have been described that can result from UV/ionizing irradiations, oxidative stress, or free radicals, among others. In order to overcome the deleterious effects of such damages, i.e., mutagenicity or cytotoxicity, cells possess a highly complex DNA repair machinery, involving repair enzymes targeting specific types of lesions through dedicated cellular pathways. In addition, DNA is highly compacted in the nucleus, the first level of compaction consisting of ~ 147 DNA base pairs wrapped around a core of histones, the so-called nucleosome core particle. In this complex environment, the DNA structure is highly constrained, and fine-tuned mechanisms involving remodeling processes are required to expose the DNA to repair enzymes and to facilitate the damage removal. However, these nucleosome-specific mechanisms remain poorly understood, and computational methods emerged only recently as powerful tools to investigate DNA damages in such complex systems as the nucleosome. In this mini-review, we summarize the latest advances brought out by computational approaches in the field, opening new exciting perspectives for the study of DNA damage and repair in the nucleosome context.
Collapse
Affiliation(s)
- Natacha Gillet
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, 69342 Lyon, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| | | |
Collapse
|
3
|
Balu KE, Gulkis M, Almohdar D, Çağlayan M. Structures of LIG1 provide a mechanistic basis for understanding a lack of sugar discrimination against a ribonucleotide at the 3'-end of nick DNA. J Biol Chem 2024; 300:107216. [PMID: 38522520 PMCID: PMC11035063 DOI: 10.1016/j.jbc.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Human DNA ligase 1 (LIG1) is the main replicative ligase that seals Okazaki fragments during nuclear replication and finalizes DNA repair pathways by joining DNA ends of the broken strand breaks in the three steps of the ligation reaction. LIG1 can tolerate the RNA strand upstream of the nick, yet an atomic insight into the sugar discrimination mechanism by LIG1 against a ribonucleotide at the 3'-terminus of nick DNA is unknown. Here, we determined X-ray structures of LIG1/3'-RNA-DNA hybrids and captured the ligase during pre- and post-step 3 the ligation reaction. Furthermore, the overlays of 3'-rA:T and 3'-rG:C step 3 structures with step 2 structures of canonical 3'-dA:T and 3'-dG:C uncover a network of LIG1/DNA interactions through Asp570 and Arg871 side chains with 2'-OH of the ribose at nick showing a final phosphodiester bond formation and the other ligase active site residues surrounding the AMP site. Finally, we demonstrated that LIG1 can ligate the nick DNA substrates with pre-inserted 3'-ribonucleotides as efficiently as Watson-Crick base-paired ends in vitro. Together, our findings uncover a novel atomic insight into a lack of sugar discrimination by LIG1 and the impact of improper sugar on the nick sealing of ribonucleotides at the last step of DNA replication and repair.
Collapse
Affiliation(s)
- Kanal Elamparithi Balu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
4
|
Gulkis M, Martinez E, Almohdar D, Çağlayan M. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway. Nucleic Acids Res 2024; 52:3810-3822. [PMID: 38366780 DOI: 10.1093/nar/gkae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Base excision repair (BER) involves the tightly coordinated function of DNA polymerase β (polβ) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polβ to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polβ leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polβ to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polβ and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.
Collapse
Affiliation(s)
- Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ernesto Martinez
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Grasso L, Fonzino A, Manzari C, Leonardi T, Picardi E, Gissi C, Lazzaro F, Pesole G, Muzi-Falconi M. Detection of ribonucleotides embedded in DNA by Nanopore sequencing. Commun Biol 2024; 7:491. [PMID: 38654143 DOI: 10.1038/s42003-024-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Ribonucleotides represent the most common non-canonical nucleotides found in eukaryotic genomes. The sources of chromosome-embedded ribonucleotides and the mechanisms by which unrepaired rNMPs trigger genome instability and human pathologies are not fully understood. The available sequencing technologies only allow to indirectly deduce the genomic location of rNMPs. Oxford Nanopore Technologies (ONT) may overcome such limitation, revealing the sites of rNMPs incorporation in genomic DNA directly from raw sequencing signals. We synthesized two types of DNA molecules containing rNMPs at known or random positions and we developed data analysis pipelines for DNA-embedded ribonucleotides detection by ONT. We report that ONT can identify all four ribonucleotides incorporated in DNA by capturing rNMPs-specific alterations in nucleotide alignment features, current intensity, and dwell time. We propose that ONT may be successfully employed to directly map rNMPs in genomic DNA and we suggest a strategy to build an ad hoc basecaller to analyse native genomes.
Collapse
Affiliation(s)
- Lavinia Grasso
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Adriano Fonzino
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
| | - Caterina Manzari
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139, Milano, Italy
| | - Ernesto Picardi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy
| | - Carmela Gissi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy.
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy.
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
6
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
7
|
Kundnani DL, Yang T, Gombolay AL, Mukherjee K, Newnam G, Meers C, Mehta ZH, Mouawad C, Storici F. Distinct features of ribonucleotides within genomic DNA in Aicardi-Goutières syndrome (AGS)-ortholog mutants of Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560505. [PMID: 37873120 PMCID: PMC10592897 DOI: 10.1101/2023.10.02.560505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ribonucleoside monophosphates (rNMPs) are abundantly found within genomic DNA of cells. The embedded rNMPs alter DNA properties and impact genome stability. Mutations in ribonuclease (RNase) H2, a key enzyme for rNMP removal, are associated with the Aicardi-Goutières syndrome (AGS), a severe neurological disorder. Here, we engineered two AGS-ortholog mutations in Saccharomyces cerevisiae: rnh201-G42S and rnh203-K46W. Using the ribose-seq technique and the Ribose-Map bioinformatics toolkit, we unveiled rNMP abundance, composition, hotspots, and sequence context in these yeast AGS-ortholog mutants. We found higher rNMP incorporation in the nuclear genome of rnh201-G42S than in wild-type and rnh203-K46W-mutant cells, and an elevated rCMP content in both mutants. Moreover, we uncovered unique rNMP patterns in each mutant, highlighting a differential activity of the AGS mutants towards rNMPs embedded on the leading or on the lagging strand of DNA replication. This study guides future research on rNMP characteristics in human genomic samples carrying AGS mutations.
Collapse
Affiliation(s)
- Deepali L Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Bacterial Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Zeel H Mehta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Celine Mouawad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Pang J, Guo Q, Lu Z. The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H. Front Microbiol 2022; 13:1034811. [PMID: 36478866 PMCID: PMC9719913 DOI: 10.3389/fmicb.2022.1034811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2023] Open
Abstract
Ribonucleoside monophosphates are inevitably misincorporated into the DNA genome inside cells, and they need to be excised to avoid chromosome instability. Ribonucleases H (RNases H) are enzymes that specifically hydrolyze the RNA strand of RNA/DNA hybrids or the RNA moiety from DNA containing a stretch of RNA, they therefore are required for DNA integrity. Extensive studies have drawn a mostly clear picture of the mechanisms of RNase H catalysis, but some questions are still lacking definitive answers. This review summarizes three alternative models of RNase H catalysis. The two-metal model is prevalent, but a three-metal model suggests the involvement of a third cation in catalysis. Apparently, the mechanisms underlying metal-dependent hydrolyzation are more complicated than initially thought. We also discuss the metal choices of RNases H and analyze how chemically similar cations function differently. Substrate and cleavage-site specificities vary among RNases H, and this is explicated in detail. An intriguing phenomenon is that organisms have diverse RNase H combinations, which may provide important hints to how rnh genes were transferred during evolution. Whether RNase H is essential for cellular growth, a key question in the study of in vivo functions, is also discussed. This article may aid in understanding the mechanisms underlying RNase H and in developing potentially promising applications of it.
Collapse
Affiliation(s)
| | | | - Zheng Lu
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
9
|
Clarke TL, Mostoslavsky R. DNA repair as a shared hallmark in cancer and ageing. Mol Oncol 2022; 16:3352-3379. [PMID: 35834102 PMCID: PMC9490147 DOI: 10.1002/1878-0261.13285] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence demonstrates that DNA damage and genome instability play a crucial role in ageing. Mammalian cells have developed a wide range of complex and well‐orchestrated DNA repair pathways to respond to and resolve many different types of DNA lesions that occur from exogenous and endogenous sources. Defects in these repair pathways lead to accelerated or premature ageing syndromes and increase the likelihood of cancer development. Understanding the fundamental mechanisms of DNA repair will help develop novel strategies to treat ageing‐related diseases. Here, we revisit the processes involved in DNA damage repair and how these can contribute to diseases, including ageing and cancer. We also review recent mechanistic insights into DNA repair and discuss how these insights are being used to develop novel therapeutic strategies for treating human disease. We discuss the use of PARP inhibitors in the clinic for the treatment of breast and ovarian cancer and the challenges associated with acquired drug resistance. Finally, we discuss how DNA repair pathway‐targeted therapeutics are moving beyond PARP inhibition in the search for ever more innovative and efficacious cancer therapies.
Collapse
Affiliation(s)
- Thomas L Clarke
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, 02114, Boston, MA, USA.,The Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, 02114, Boston, MA, USA.,The Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
| |
Collapse
|
10
|
Sui Y, Epstein A, Dominska M, Zheng DQ, Petes T, Klein H. Ribodysgenesis: sudden genome instability in the yeast Saccharomyces cerevisiae arising from RNase H2 cleavage at genomic-embedded ribonucleotides. Nucleic Acids Res 2022; 50:6890-6902. [PMID: 35748861 PMCID: PMC9262587 DOI: 10.1093/nar/gkac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Ribonucleotides can be incorporated into DNA during replication by the replicative DNA polymerases. These aberrant DNA subunits are efficiently recognized and removed by Ribonucleotide Excision Repair, which is initiated by the heterotrimeric enzyme RNase H2. While RNase H2 is essential in higher eukaryotes, the yeast Saccharomyces cerevisiae can survive without RNase H2 enzyme, although the genome undergoes mutation, recombination and other genome instability events at an increased rate. Although RNase H2 can be considered as a protector of the genome from the deleterious events that can ensue from recognition and removal of embedded ribonucleotides, under conditions of high ribonucleotide incorporation and retention in the genome in a RNase H2-negative strain, sudden introduction of active RNase H2 causes massive DNA breaks and genome instability in a condition which we term 'ribodysgenesis'. The DNA breaks and genome instability arise solely from RNase H2 cleavage directed to the ribonucleotide-containing genome. Survivors of ribodysgenesis have massive loss of heterozygosity events stemming from recombinogenic lesions on the ribonucleotide-containing DNA, with increases of over 1000X from wild-type. DNA breaks are produced over one to two divisions and subsequently cells adapt to RNase H2 and ribonucleotides in the genome and grow with normal levels of genome instability.
Collapse
Affiliation(s)
- Yang Sui
- State Key Laboratory of Motor Vehicle Biofuel Technology, Ocean College, Zhejiang University, Zhoushan 316021, China,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anastasiya Epstein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dao-Qiong Zheng
- State Key Laboratory of Motor Vehicle Biofuel Technology, Ocean College, Zhejiang University, Zhoushan 316021, China,Hainan Institute of Zhejiang University, Sanya 572000, China,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hannah L Klein
- To whom correspondence should be addressed. Tel: +1 212 263 5778;
| |
Collapse
|
11
|
Finelli R, Moreira BP, Alves MG, Agarwal A. Unraveling the Molecular Impact of Sperm DNA Damage on Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:77-113. [DOI: 10.1007/978-3-030-89340-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Ohashi S, Hashiya F, Abe H. Variety of Nucleotide Polymerase Mutants Aiming to Synthesize Modified RNA. Chembiochem 2021; 22:2398-2406. [PMID: 33822453 DOI: 10.1002/cbic.202100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Significant efforts have been made to develop therapeutic RNA aptamers that exploit synthetic RNA to capture target molecules. However, ensuring RNA aptamers are resistant against intrinsic nucleases remains an issue and restricts their use as therapeutics. Introduction of chemical modifications to the 2' sugar moiety of RNA improves their stability effectively and can be achieved by chemical synthesis using modified phosphoramidites; however, this approach is not suitable for preparing long RNA molecules. Although recombinant nucleotide polymerases can transcribe RNA, these polymerases cannot synthesize modified RNA because they do not recognize 2' modified nucleoside triphosphates. In this review, we focus on several polymerase mutants that tolerate substrates containing modifications of the 2' sugar moiety to synthesize RNA, and the problems that must be overcome to prepare chemically modified RNA with high efficacy by in vitro transcription.
Collapse
Affiliation(s)
- Sana Ohashi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Hiroshi Abe
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Research Center for Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
13
|
The PHP domain of PolX from Staphylococcus aureus aids high fidelity DNA synthesis through the removal of misincorporated deoxyribo-, ribo- and oxidized nucleotides. Sci Rep 2021; 11:4178. [PMID: 33603016 PMCID: PMC7893174 DOI: 10.1038/s41598-021-83498-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The X family is one of the eight families of DNA polymerases (dPols) and members of this family are known to participate in the later stages of Base Excision Repair. Many prokaryotic members of this family possess a Polymerase and Histidinol Phosphatase (PHP) domain at their C-termini. The PHP domain has been shown to possess 3'-5' exonuclease activity and may represent the proofreading function in these dPols. PolX from Staphylococcus aureus also possesses the PHP domain at the C-terminus, and we show that this domain has an intrinsic Mn2+ dependent 3'-5' exonuclease capable of removing misincorporated dNMPs from the primer. The misincorporation of oxidized nucleotides such as 8oxodGTP and rNTPs are known to be pro-mutagenic and can lead to genomic instability. Here, we show that the PHP domain aids DNA replication by the removal of misincorporated oxidized nucleotides and rNMPs. Overall, our study shows that the proofreading activity of the PHP domain plays a critical role in maintaining genomic integrity and stability. The exonuclease activity of this enzyme can, therefore, be the target of therapeutic intervention to combat infection by methicillin-resistant-Staphylococcus-aureus.
Collapse
|
14
|
Riva V, Garbelli A, Casiraghi F, Arena F, Trivisani CI, Gagliardi A, Bini L, Schroeder M, Maffia A, Sabbioneda S, Maga G. Novel alternative ribonucleotide excision repair pathways in human cells by DDX3X and specialized DNA polymerases. Nucleic Acids Res 2021; 48:11551-11565. [PMID: 33137198 PMCID: PMC7672437 DOI: 10.1093/nar/gkaa948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
Removal of ribonucleotides (rNMPs) incorporated into the genome by the ribonucleotide excision repair (RER) is essential to avoid genetic instability. In eukaryotes, the RNaseH2 is the only known enzyme able to incise 5' of the rNMP, starting the RER process, which is subsequently carried out by replicative DNA polymerases (Pols) δ or ϵ, together with Flap endonuclease 1 (Fen-1) and DNA ligase 1. Here, we show that the DEAD-box RNA helicase DDX3X has RNaseH2-like activity and can support fully reconstituted in vitro RER reactions, not only with Pol δ but also with the repair Pols β and λ. Silencing of DDX3X causes accumulation of rNMPs in the cellular genome. These results support the existence of alternative RER pathways conferring high flexibility to human cells in responding to the threat posed by rNMPs incorporation.
Collapse
Affiliation(s)
- Valentina Riva
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Federica Casiraghi
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Francesca Arena
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Claudia Immacolata Trivisani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. De Gasperi 2, I-53100 Siena, Italy
| | - Assunta Gagliardi
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100 Siena, Italy
| | - Luca Bini
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100 Siena, Italy
| | - Martina Schroeder
- Kathleen Lonsdale Institute for Human Health Research, Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Antonio Maffia
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
15
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
16
|
Zhou ZX, Williams JS, Lujan SA, Kunkel TA. Ribonucleotide incorporation into DNA during DNA replication and its consequences. Crit Rev Biochem Mol Biol 2021; 56:109-124. [PMID: 33461360 DOI: 10.1080/10409238.2020.1869175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ribonucleotides are the most abundant non-canonical nucleotides in the genome. Their vast presence and influence over genome biology is becoming increasingly appreciated. Here we review the recent progress made in understanding their genomic presence, incorporation characteristics and usefulness as biomarkers for polymerase enzymology. We also discuss ribonucleotide processing, the genetic consequences of unrepaired ribonucleotides in DNA and evidence supporting the significance of their transient presence in the nuclear genome.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Jessica S Williams
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Scott A Lujan
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Thomas A Kunkel
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| |
Collapse
|
17
|
El-Sayed WMM, Gombolay AL, Xu P, Yang T, Jeon Y, Balachander S, Newnam G, Tao S, Bowen NE, Brůna T, Borodovsky M, Schinazi RF, Kim B, Chen Y, Storici F. Disproportionate presence of adenosine in mitochondrial and chloroplast DNA of Chlamydomonas reinhardtii. iScience 2020; 24:102005. [PMID: 33490913 PMCID: PMC7809514 DOI: 10.1016/j.isci.2020.102005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 11/02/2022] Open
Abstract
Ribonucleoside monophosphates (rNMPs) represent the most common non-standard nucleotides found in the genome of cells. The distribution of rNMPs in DNA has been studied only in limited genomes. Using the ribose-seq protocol and the Ribose-Map bioinformatics toolkit, we reveal the distribution of rNMPs incorporated into the whole genome of a photosynthetic unicellular green alga, Chlamydomonas reinhardtii. We discovered a disproportionate incorporation of adenosine in the mitochondrial and chloroplast DNA, in contrast to the nuclear DNA, relative to the corresponding nucleotide content of these C. reinhardtii organelle genomes. Our results demonstrate that the rNMP content in the DNA of the algal organelles reflects an elevated ATP level present in the algal cells. We reveal specific biases and patterns in rNMP distributions in the algal mitochondrial, chloroplast, and nuclear DNA. Moreover, we identified the C. reinhardtii orthologous genes for all three subunits of the RNase H2 enzyme using GeneMark-EP + gene finder.
Collapse
Affiliation(s)
- Waleed M M El-Sayed
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Marine Microbiology Department, National Institute of Oceanography and Fisheries, Red Sea, 84517, Egypt
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Penghao Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Youngkyu Jeon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sijia Tao
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30309, USA
| | - Nicole E Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30309, USA
| | - Tomáš Brůna
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark Borodovsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30309, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30309, USA
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Ribonucleotide incorporation in yeast genomic DNA shows preference for cytosine and guanosine preceded by deoxyadenosine. Nat Commun 2020; 11:2447. [PMID: 32415081 PMCID: PMC7229183 DOI: 10.1038/s41467-020-16152-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the abundance of ribonucleoside monophosphates (rNMPs) in DNA, sites of rNMP incorporation remain poorly characterized. Here, by using ribose-seq and Ribose-Map techniques, we built and analyzed high-throughput sequencing libraries of rNMPs derived from mitochondrial and nuclear DNA of budding and fission yeast. We reveal both common and unique features of rNMP sites among yeast species and strains, and between wild type and different ribonuclease H-mutant genotypes. We demonstrate that the rNMPs are not randomly incorporated in DNA. We highlight signatures and patterns of rNMPs, including sites within trinucleotide-repeat tracts. Our results uncover that the deoxyribonucleotide immediately upstream of the rNMPs has a strong influence on rNMP distribution, suggesting a mechanism of rNMP accommodation by DNA polymerases as a driving force of rNMP incorporation. Consistently, we find deoxyadenosine upstream from the most abundant genomic rCMPs and rGMPs. This study establishes a framework to better understand mechanisms of rNMP incorporation in DNA. Ribonucleoside monophosphates are incorporated by DNA polymerases into double-stranded DNA. Here, the authors use ribose-seq and Ribose-Map techniques to reveal that signatures and patterns of ribonucleotide incorporation in yeast mitochondrial and nuclear DNA show preference for cytosine and guanosine preceded by deoxyadenosine.
Collapse
|
20
|
Johnson MK, Kottur J, Nair DT. A polar filter in DNA polymerases prevents ribonucleotide incorporation. Nucleic Acids Res 2020; 47:10693-10705. [PMID: 31544946 PMCID: PMC6846668 DOI: 10.1093/nar/gkz792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
The presence of ribonucleotides in DNA can lead to genomic instability and cellular lethality. To prevent adventitious rNTP incorporation, the majority of the DNA polymerases (dPols) possess a steric filter. The dPol named MsDpo4 (Mycobacterium smegmatis) naturally lacks this steric filter and hence is capable of rNTP addition. The introduction of the steric filter in MsDpo4 did not result in complete abrogation of the ability of this enzyme to incorporate ribonucleotides. In comparison, DNA polymerase IV (PolIV) from Escherichia coli exhibited stringent selection for deoxyribonucleotides. A comparison of MsDpo4 and PolIV led to the discovery of an additional polar filter responsible for sugar selectivity. Thr43 represents the filter in PolIV and this residue forms interactions with the incoming nucleotide to draw it closer to the enzyme surface. As a result, the 2’-OH in rNTPs will clash with the enzyme surface, and therefore ribonucleotides cannot be accommodated in the active site in a conformation compatible with productive catalysis. The substitution of the equivalent residue in MsDpo4–Cys47, with Thr led to a drastic reduction in the ability of the mycobacterial enzyme to incorporate rNTPs. Overall, our studies evince that the polar filter serves to prevent ribonucleotide incorporation by dPols.
Collapse
Affiliation(s)
- Mary K Johnson
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
21
|
Ghodke PP, Guengerich FP. Impact of 1, N 6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair. J Biol Chem 2020; 295:6092-6107. [PMID: 32213600 DOI: 10.1074/jbc.ra120.012829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
Incorporation of ribonucleotides into DNA can severely diminish genome integrity. However, how ribonucleotides instigate DNA damage is poorly understood. In DNA, they can promote replication stress and genomic instability and have been implicated in several diseases. We report here the impact of the ribonucleotide rATP and of its naturally occurring damaged analog 1,N 6-ethenoadenosine (1,N 6-ϵrA) on translesion synthesis (TLS), mediated by human DNA polymerase η (hpol η), and on RNase H2-mediated incision. Mass spectral analysis revealed that 1,N 6-ϵrA in DNA generates extensive frameshifts during TLS, which can lead to genomic instability. Moreover, steady-state kinetic analysis of the TLS process indicated that deoxypurines (i.e. dATP and dGTP) are inserted predominantly opposite 1,N 6-ϵrA. We also show that hpol η acts as a reverse transcriptase in the presence of damaged ribonucleotide 1,N 6-ϵrA but has poor RNA primer extension activities. Steady-state kinetic analysis of reverse transcription and RNA primer extension showed that hpol η favors the addition of dATP and dGTP opposite 1,N 6-ϵrA. We also found that RNase H2 recognizes 1,N 6-ϵrA but has limited incision activity across from this lesion, which can lead to the persistence of this detrimental DNA adduct. We conclude that the damaged and unrepaired ribonucleotide 1,N 6-ϵrA in DNA exhibits mutagenic potential and can also alter the reading frame in an mRNA transcript because 1,N 6-ϵrA is incompletely incised by RNase H2.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146.
| |
Collapse
|
22
|
Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. Int J Mol Sci 2020; 21:E1706. [PMID: 32131532 PMCID: PMC7084774 DOI: 10.3390/ijms21051706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| |
Collapse
|
23
|
Smith MR, Alnajjar KS, Hoitsma NM, Sweasy JB, Freudenthal BD. Molecular and structural characterization of oxidized ribonucleotide insertion into DNA by human DNA polymerase β. J Biol Chem 2020; 295:1613-1622. [PMID: 31892517 PMCID: PMC7008369 DOI: 10.1074/jbc.ra119.011569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/29/2019] [Indexed: 01/07/2023] Open
Abstract
During oxidative stress, inflammation, or environmental exposure, ribo- and deoxyribonucleotides are oxidatively modified. 8-Oxo-7,8-dihydro-2'-guanosine (8-oxo-G) is a common oxidized nucleobase whose deoxyribonucleotide form, 8-oxo-dGTP, has been widely studied and demonstrated to be a mutagenic substrate for DNA polymerases. Guanine ribonucleotides are analogously oxidized to r8-oxo-GTP, which can constitute up to 5% of the rGTP pool. Because ribonucleotides are commonly misinserted into DNA, and 8-oxo-G causes replication errors, we were motivated to investigate how the oxidized ribonucleotide is utilized by DNA polymerases. To do this, here we employed human DNA polymerase β (pol β) and characterized r8-oxo-GTP insertion with DNA substrates containing either a templating cytosine (nonmutagenic) or adenine (mutagenic). Our results show that pol β has a diminished catalytic efficiency for r8-oxo-GTP compared with canonical deoxyribonucleotides but that r8-oxo-GTP is inserted mutagenically at a rate similar to those of other common DNA replication errors (i.e. ribonucleotide and mismatch insertions). Using FRET assays to monitor conformational changes of pol β with r8-oxo-GTP, we demonstrate impaired pol β closure that correlates with a reduced insertion efficiency. X-ray crystallographic analyses revealed that, similar to 8-oxo-dGTP, r8-oxo-GTP adopts an anti conformation opposite a templating cytosine and a syn conformation opposite adenine. However, unlike 8-oxo-dGTP, r8-oxo-GTP did not form a planar base pair with either templating base. These results suggest that r8-oxo-GTP is a potential mutagenic substrate for DNA polymerases and provide structural insights into how r8-oxo-GTP is processed by DNA polymerases.
Collapse
Affiliation(s)
- Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Khadijeh S Alnajjar
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona 85724
| | - Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona 85724
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160.
| |
Collapse
|
24
|
Kellner V, Luke B. Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair. EMBO J 2020; 39:e102309. [PMID: 31833079 PMCID: PMC6996501 DOI: 10.15252/embj.2019102309] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
The duplication of the eukaryotic genome is an intricate process that has to be tightly safe-guarded. One of the most frequently occurring errors during DNA synthesis is the mis-insertion of a ribonucleotide instead of a deoxyribonucleotide. Ribonucleotide excision repair (RER) is initiated by RNase H2 and results in error-free removal of such mis-incorporated ribonucleotides. If left unrepaired, DNA-embedded ribonucleotides result in a variety of alterations within chromosomal DNA, which ultimately lead to genome instability. Here, we review how genomic ribonucleotides lead to chromosomal aberrations and discuss how the tight regulation of RER timing may be important for preventing unwanted DNA damage. We describe the structural impact of unrepaired ribonucleotides on DNA and chromatin and comment on the potential consequences for cellular fitness. In the context of the molecular mechanisms associated with faulty RER, we have placed an emphasis on how and why increased levels of genomic ribonucleotides are associated with severe autoimmune syndromes, neuropathology, and cancer. In addition, we discuss therapeutic directions that could be followed for pathologies associated with defective removal of ribonucleotides from double-stranded DNA.
Collapse
Affiliation(s)
- Vanessa Kellner
- Institute of Molecular Biology (IMB)MainzGermany
- Present address:
Department of BiologyNew York UniversityNew YorkNYUSA
| | - Brian Luke
- Institute of Molecular Biology (IMB)MainzGermany
- Institute of Developmental Biology and Neurobiology (IDN)Johannes Gutenberg UniversitätMainzGermany
| |
Collapse
|
25
|
Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate. Sci Rep 2020; 10:940. [PMID: 31969622 PMCID: PMC6976671 DOI: 10.1038/s41598-020-57886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023] Open
Abstract
DNA polymerase (pol) μ primarily inserts ribonucleotides into a single-nucleotide gapped DNA intermediate, and the ligation step plays a critical role in the joining of noncomplementary DNA ends during nonhomologous end joining (NHEJ) for the repair of double-strand breaks (DSBs) caused by reactive oxygen species. Here, we report that the pol μ insertion products of ribonucleotides (rATP or rCTP), instead of deoxyribonucleotides, opposite 8-oxo-2′-deoxyguanosine (8-oxodG) are efficiently ligated and the presence of Mn2+ stimulates this coupled reaction in vitro. Moreover, our results point to a role of pol μ in mediating ligation during the mutagenic bypass of 8-oxodG, while 3′-preinserted noncanonical base pairs (3′-rA or 3′-rC) on NHEJ repair intermediates compromise the end joining by DNA ligase I or the DNA ligase IV/XRCC4 complex.
Collapse
|
26
|
Cerritelli SM, Crouch RJ. RNase H2-RED carpets the path to eukaryotic RNase H2 functions. DNA Repair (Amst) 2019; 84:102736. [PMID: 31761672 PMCID: PMC6936605 DOI: 10.1016/j.dnarep.2019.102736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022]
Abstract
Eukaryotic RNases H2 have dual functions in initiating the removal of ribonucleoside monophosphates (rNMPs) incorporated by DNA polymerases during DNA synthesis and in cleaving the RNA moiety of RNA/DNA hybrids formed during transcription and retrotransposition. The other major cellular RNase H, RNase H1, shares the hybrid processing activity, but not all substrates. After RNase H2 incision at the rNMPs in DNA the Ribonucleotide Excision Repair (RER) pathway completes the removal, restoring dsDNA. The development of the RNase H2-RED (Ribonucleotide Excision Defective) mutant enzyme, which can process RNA/DNA hybrids but is unable to cleave rNMPs embedded in DNA has unlinked the two activities and illuminated the roles of RNase H2 in cellular metabolism. Studies mostly in Saccharomyces cerevisiae, have shown both activities of RNase H2 are necessary to maintain genome integrity and that RNase H1 and H2 have overlapping as well as distinct RNA/DNA hybrid substrates. In mouse RNase H2-RED confirmed that rNMPs in DNA during embryogenesis induce lethality in a p53-dependent DNA damage response. In mammalian cell cultures, RNase H2-RED helped identifying DNA lesions produced by Top1 cleavage at rNMPs and led to determine that RNase H2 participates in the retrotransposition of LINE-1 elements. In this review, we summarize the studies and conclusions reached by utilization of RNase H2-RED enzyme in different model systems.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Zou Z, Xu W, Mi C, Xu Y, Du K, Li B, Ye Y, Ling Y, Zhang H. Ribonucleoside triphosphates promote T7 DNA replication and the lysis of T7-Infected Escherichia coli. Biochimie 2019; 167:25-33. [PMID: 31493471 DOI: 10.1016/j.biochi.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/01/2019] [Indexed: 11/19/2022]
Abstract
rNTPs are structurally similar to dNTPs, but their concentrations are much higher than those of dNTPs in cells. rNTPs in solutions or rNMP at the primer terminus or embedded in template always inhibit or block DNA replication, due to the reduced Mg2+ apparent concentration, competition of rNTPs with dNTPs, and the extra repulsive interaction of rNTP or rNMP with polymerase active site. In this work, unexpectedly, we found rNTPs can promote T7 DNA replication with the maximal promotion at rNTPs/dNTPs concentration ratio of 20. This promotion was not due to the optimized Mg2+ apparent concentration or the direct incorporation of extra rNMPs into DNA. This promotion was dependent on the concentrations and types of rNTPs. Kinetic analysis showed that this promotion was originated from the increased fraction of polymerase-DNA productive complex and the accelerated DNA polymerization. Further evidence showed that more polymerase-DNA complex was formed and their binding affinity was also enhanced in the presence of extra rNTPs. Moreover, this promotion in T7 DNA replication also accelerated the lysis of T7-infected host Escherichia coli. This work discovered that rNTPs could promote DNA replication, completely different from the traditional concept that rNTPs always inhibit DNA replication.
Collapse
Affiliation(s)
- Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Wendi Xu
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, 750021, China
| | - Chenyang Mi
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Du
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianbian Li
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Ye
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Yanjiang West Road 107, Guangzhou, Guangdong, 510120, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 510000, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Malfatti MC, Henneke G, Balachander S, Koh KD, Newnam G, Uehara R, Crouch RJ, Storici F, Tell G. Unlike the Escherichia coli counterpart, archaeal RNase HII cannot process ribose monophosphate abasic sites and oxidized ribonucleotides embedded in DNA. J Biol Chem 2019; 294:13061-13072. [PMID: 31300556 DOI: 10.1074/jbc.ra119.009493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
The presence of ribonucleoside monophosphates (rNMPs) in nuclear DNA decreases genome stability. To ensure survival despite rNMP insertions, cells have evolved a complex network of DNA repair mechanisms, in which the ribonucleotide excision repair pathway, initiated by type 2 RNase H (RNase HII/2), plays a major role. We recently demonstrated that eukaryotic RNase H2 cannot repair damage, that is, ribose monophosphate abasic (both apurinic or apyrimidinic) site (rAP) or oxidized rNMP embedded in DNA. Currently, it remains unclear why RNase H2 is unable to repair these modified nucleic acids having either only a sugar moiety or an oxidized base. Here, we compared the endoribonuclease specificity of the RNase HII enzymes from the archaeon Pyrococcus abyssi and the bacterium Escherichia coli, examining their ability to process damaged rNMPs embedded in DNA in vitro We found that E. coli RNase HII cleaves both rAP and oxidized rNMP sites. In contrast, like the eukaryotic RNase H2, P. abyssi RNase HII did not display any rAP or oxidized rNMP incision activities, even though it recognized them. Notably, the archaeal enzyme was also inactive on a mismatched rNMP, whereas the E. coli enzyme displayed a strong preference for the mispaired rNMP over the paired rNMP in DNA. On the basis of our biochemical findings and also structural modeling analyses of RNase HII/2 proteins from organisms belonging to all three domains of life, we propose that RNases HII/2's dual roles in ribonucleotide excision repair and RNA/DNA hydrolysis result in limited acceptance of modified rNMPs embedded in DNA.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Ghislaine Henneke
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kyung Duk Koh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Ryo Uehara
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Robert J Crouch
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy.
| |
Collapse
|
29
|
Su Y, Ghodke PP, Egli M, Li L, Wang Y, Guengerich FP. Human DNA polymerase η has reverse transcriptase activity in cellular environments. J Biol Chem 2019; 294:6073-6081. [PMID: 30842261 DOI: 10.1074/jbc.ra119.007925] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
Classical DNA and RNA polymerase (pol) enzymes have defined roles with their respective substrates, but several pols have been found to have multiple functions. We reported previously that purified human DNA pol η (hpol η) can incorporate both deoxyribonucleoside triphosphates (dNTPs) and ribonucleoside triphosphates (rNTPs) and can use both DNA and RNA as substrates. X-ray crystal structures revealed that two pol η residues, Phe-18 and Tyr-92, behave as steric gates to influence sugar selectivity. However, the physiological relevance of these phenomena has not been established. Here, we show that purified hpol η adds rNTPs to DNA primers at physiological rNTP concentrations and in the presence of competing dNTPs. When two rATPs were inserted opposite a cyclobutane pyrimidine dimer, the substrate was less efficiently cleaved by human RNase H2. Human XP-V fibroblast extracts, devoid of hpol η, could not add rNTPs to a DNA primer, but the expression of transfected hpol η in the cells restored this ability. XP-V cell extracts did not add dNTPs to DNA primers hybridized to RNA, but could when hpol η was expressed in the cells. HEK293T cell extracts could add dNTPs to DNA primers hybridized to RNA, but lost this ability if hpol η was deleted. Interestingly, a similar phenomenon was not observed when other translesion synthesis (TLS) DNA polymerases-hpol ι, κ, or ζ-were individually deleted. These results suggest that hpol η is one of the major reverse transcriptases involved in physiological processes in human cells.
Collapse
Affiliation(s)
- Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Pratibha P Ghodke
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
30
|
Sassa A, Yasui M, Honma M. Current perspectives on mechanisms of ribonucleotide incorporation and processing in mammalian DNA. Genes Environ 2019; 41:3. [PMID: 30700998 PMCID: PMC6346524 DOI: 10.1186/s41021-019-0118-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Ribonucleotides, which are RNA precursors, are often incorporated into DNA during replication. Although embedded ribonucleotides in the genome are efficiently removed by canonical ribonucleotide excision repair (RER), inactivation of RER causes genomic ribonucleotide accumulation, leading to various abnormalities in cells. Mutation of genes encoding factors involved in RER is associated with the neuroinflammatory autoimmune disorder Aicardi–Goutières syndrome. Over the last decade, the biological impact of ribonucleotides in the genome has attracted much attention. In the present review, we particularly focus on recent studies that have elucidated possible mechanisms of ribonucleotide incorporation and repair and their significance in mammals.
Collapse
Affiliation(s)
- Akira Sassa
- 1Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522 Japan
| | - Manabu Yasui
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| | - Masamitsu Honma
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| |
Collapse
|
31
|
Shi K, Bohl TE, Park J, Zasada A, Malik S, Banerjee S, Tran V, Li N, Yin Z, Kurniawan F, Orellana K, Aihara H. T4 DNA ligase structure reveals a prototypical ATP-dependent ligase with a unique mode of sliding clamp interaction. Nucleic Acids Res 2018; 46:10474-10488. [PMID: 30169742 PMCID: PMC6212786 DOI: 10.1093/nar/gky776] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/18/2018] [Indexed: 01/07/2023] Open
Abstract
DNA ligases play essential roles in DNA replication and repair. Bacteriophage T4 DNA ligase is the first ATP-dependent ligase enzyme to be discovered and is widely used in molecular biology, but its structure remained unknown. Our crystal structure of T4 DNA ligase bound to DNA shows a compact α-helical DNA-binding domain (DBD), nucleotidyl-transferase (NTase) domain, and OB-fold domain, which together fully encircle DNA. The DBD of T4 DNA ligase exhibits remarkable structural homology to the core DNA-binding helices of the larger DBDs from eukaryotic and archaeal DNA ligases, but it lacks additional structural components required for protein interactions. T4 DNA ligase instead has a flexible loop insertion within the NTase domain, which binds tightly to the T4 sliding clamp gp45 in a novel α-helical PIP-box conformation. Thus, T4 DNA ligase represents a prototype of the larger eukaryotic and archaeal DNA ligases, with a uniquely evolved mode of protein interaction that may be important for efficient DNA replication.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Thomas E Bohl
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Jeonghyun Park
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Andrew Zasada
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Shray Malik
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team, Cornell University, Advanced Photon Source, Lemont, Illinois, 60439, USA
| | - Vincent Tran
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Na Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Zhiqi Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Fredy Kurniawan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Kayo Orellana
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6–155 Jackson Hall, 321 Church Street S.E. Minneapolis, MN 55455, USA,To whom correspondence should be addressed. Tel: +1 612 624 1491;
| |
Collapse
|
32
|
Affiliation(s)
- Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258; Inserm UMR1068, Aix Marseille Université U105; Institut Paoli Calmettes, 27 Boulevard Lei Roure CS30059, 13273 Marseille, Cedex 09, France
| |
Collapse
|
33
|
Zou Z, Chen Z, Cai Y, Yang H, Du K, Li B, Jiang Y, Zhang H. Consecutive ribonucleoside monophosphates on template inhibit DNA replication by T7 DNA polymerase or by T7 polymerase and helicase complex. Biochimie 2018; 151:128-138. [DOI: 10.1016/j.biochi.2018.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022]
|
34
|
Vaisman A, Woodgate R. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 2018; 53:382-402. [PMID: 29972306 DOI: 10.1080/10409238.2018.1483889] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The well-being of all living organisms relies on the accurate duplication of their genomes. This is usually achieved by highly elaborate replicase complexes which ensure that this task is accomplished timely and efficiently. However, cells often must resort to the help of various additional "specialized" DNA polymerases that gain access to genomic DNA when replication fork progression is hindered. One such specialized polymerase family consists of the so-called "translesion synthesis" (TLS) polymerases; enzymes that have evolved to replicate damaged DNA. To fulfill their main cellular mission, TLS polymerases often must sacrifice precision when selecting nucleotide substrates. Low base-substitution fidelity is a well-documented inherent property of these enzymes. However, incorrect nucleotide substrates are not only those which do not comply with Watson-Crick base complementarity, but also those whose sugar moiety is incorrect. Does relaxed base-selectivity automatically mean that the TLS polymerases are unable to efficiently discriminate between ribonucleoside triphosphates and deoxyribonucleoside triphosphates that differ by only a single atom? Which strategies do TLS polymerases employ to select suitable nucleotide substrates? In this review, we will collate and summarize data accumulated over the past decade from biochemical and structural studies, which aim to answer these questions.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
35
|
General misincorporation frequency: Re-evaluation of the fidelity of DNA polymerases. Biochem Biophys Res Commun 2018; 496:1076-1081. [DOI: 10.1016/j.bbrc.2018.01.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 01/07/2023]
|
36
|
Malfatti MC, Balachander S, Antoniali G, Koh KD, Saint-Pierre C, Gasparutto D, Chon H, Crouch RJ, Storici F, Tell G. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res 2017; 45:11193-11212. [PMID: 28977421 PMCID: PMC5737539 DOI: 10.1093/nar/gkx723] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoside 5′-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3′-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Kyung Duk Koh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,University of California, San Francisco, UCSF, School of Medicine, San Francisco, CA, USA
| | - Christine Saint-Pierre
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Didier Gasparutto
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Hyongi Chon
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
37
|
Kreisel K, Engqvist MKM, Clausen AR. Simultaneous Mapping and Quantitation of Ribonucleotides in Human Mitochondrial DNA. J Vis Exp 2017. [PMID: 29286447 PMCID: PMC5755389 DOI: 10.3791/56551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Established approaches to estimate the number of ribonucleotides present in a genome are limited to the quantitation of incorporated ribonucleotides using short synthetic DNA fragments or plasmids as templates and then extrapolating the results to the whole genome. Alternatively, the number of ribonucleotides present in a genome may be estimated using alkaline gels or Southern blots. More recent in vivo approaches employ Next-generation sequencing allowing genome-wide mapping of ribonucleotides, providing the position and identity of embedded ribonucleotides. However, they do not allow quantitation of the number of ribonucleotides which are incorporated into a genome. Here we describe how to simultaneously map and quantitate the number of ribonucleotides which are incorporated into human mitochondrial DNA in vivo by Next-generation sequencing. We use highly intact DNA and introduce sequence specific double strand breaks by digesting it with an endonuclease, subsequently hydrolyzing incorporated ribonucleotides with alkali. The generated ends are ligated with adapters and these ends are sequenced on a Next-generation sequencing machine. The absolute number of ribonucleotides can be calculated as the number of reads outside the recognition site per average number of reads at the recognition site for the sequence specific endonuclease. This protocol may also be utilized to map and quantitate free nicks in DNA and allows adaption to map other DNA lesions that can be processed to 5´-OH ends or 5´-phosphate ends. Furthermore, this method can be applied to any organism, given that a suitable reference genome is available. This protocol therefore provides an important tool to study DNA replication, 5´-end processing, DNA damage, and DNA repair.
Collapse
Affiliation(s)
- Katrin Kreisel
- Department for Medical Biochemistry and Cell Biology, University of Gothenburg
| | - Martin K M Engqvist
- Department for Medical Biochemistry and Cell Biology, University of Gothenburg; Department of Biology and Biological Engineering, Chalmers University of Technology
| | - Anders R Clausen
- Department for Medical Biochemistry and Cell Biology, University of Gothenburg;
| |
Collapse
|
38
|
Yang Z, Price NE, Johnson KM, Wang Y, Gates KS. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA. Nucleic Acids Res 2017; 45:6275-6283. [PMID: 28531327 PMCID: PMC5499897 DOI: 10.1093/nar/gkx394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 01/04/2023] Open
Abstract
Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Nathan E Price
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kevin M Johnson
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA.,Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| |
Collapse
|
39
|
Abstract
Multiple DNA repair pathways maintain genome stability and ensure that DNA remains essentially unchanged over the life of a cell. Various human diseases occur if DNA repair is compromised, and most of these impact the nervous system, in some cases exclusively. However, it is often unclear what specific endogenous damage underpins disease pathology. Generally, the types of causative DNA damage are associated with replication, transcription, or oxidative metabolism; other direct sources of endogenous lesions may arise from aberrant topoisomerase activity or ribonucleotide incorporation into DNA. This review focuses on the etiology of DNA damage in the nervous system and the genome stability pathways that prevent human neurologic disease.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
40
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1051] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
41
|
Abstract
This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.
Collapse
Affiliation(s)
- Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
42
|
Huang SYN, Williams JS, Arana ME, Kunkel TA, Pommier Y. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J 2016; 36:361-373. [PMID: 27932446 DOI: 10.15252/embj.201592426] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023] Open
Abstract
Ribonuclease activity of topoisomerase I (Top1) causes DNA nicks bearing 2',3'-cyclic phosphates at ribonucleotide sites. Here, we provide genetic and biochemical evidence that DNA double-strand breaks (DSBs) can be directly generated by Top1 at sites of genomic ribonucleotides. We show that RNase H2-deficient yeast cells displayed elevated frequency of Rad52 foci, inactivation of RNase H2 and RAD52 led to synthetic lethality, and combined loss of RNase H2 and RAD51 induced slow growth and replication stress. Importantly, these phenotypes were rescued upon additional deletion of TOP1, implicating homologous recombination for the repair of Top1-induced damage at ribonuclelotide sites. We demonstrate biochemically that irreversible DSBs are generated by subsequent Top1 cleavage on the opposite strand from the Top1-induced DNA nicks at ribonucleotide sites. Analysis of Top1-linked DNA from pull-down experiments revealed that Top1 is covalently linked to the end of DNA in RNase H2-deficient yeast cells, supporting this model. Taken together, these results define Top1 as a source of DSBs and genome instability when ribonucleotides incorporated by the replicative polymerases are not removed by RNase H2.
Collapse
Affiliation(s)
- Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
43
|
Williams JS, Lujan SA, Kunkel TA. Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat Rev Mol Cell Biol 2016; 17:350-63. [PMID: 27093943 PMCID: PMC5445644 DOI: 10.1038/nrm.2016.37] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The information encoded in DNA is influenced by the presence of non-canonical nucleotides, the most frequent of which are ribonucleotides. In this Review, we discuss recent discoveries about ribonucleotide incorporation into DNA during replication by the three major eukaryotic replicases, DNA polymerases α, δ and ε. The presence of ribonucleotides in DNA causes short deletion mutations and may result in the generation of single- and double-strand DNA breaks, leading to genome instability. We describe how these ribonucleotides are removed from DNA through ribonucleotide excision repair and by topoisomerase I. We discuss the biological consequences and the physiological roles of ribonucleotides in DNA, and consider how deficiencies in their removal from DNA may be important in the aetiology of disease.
Collapse
Affiliation(s)
- Jessica S. Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Scott A. Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A. Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| |
Collapse
|
44
|
The direct interaction of NME3 with Tip60 in DNA repair. Biochem J 2016; 473:1237-45. [DOI: 10.1042/bcj20160122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/04/2016] [Indexed: 11/17/2022]
Abstract
Cellular supply of dNTPs via RNR (ribonucleotide reductase) is crucial for DNA replication and repair. It has been shown that DNA-damage-site-specific recruitment of RNR is critical for DNA repair efficiency in quiescent cells. The catalytic function of RNR produces dNDPs. The subsequent step of dNTP formation requires the function of NDP kinase. There are ten isoforms of NDP kinase in human cells. In the present study, we identified NME3 as one specific NDP kinase that interacts directly with Tip60, a histone acetyltransferase, to form a complex with RNR. Our data reveal that NME3 recruitment to DNA damage sites depends on this interaction. Disruption of interaction of NME3 with Tip60 suppressed DNA repair in serum-deprived cells. Thus Tip60 interacts with RNR and NME3 to provide site-specific synthesis of dNTP for facilitating DNA repair in serum-deprived cells which contain low levels of dNTPs.
Collapse
|
45
|
Gilski M, Drozdzal P, Kierzek R, Jaskolski M. Atomic resolution structure of a chimeric DNA-RNA Z-type duplex in complex with Ba(2+) ions: a case of complicated multi-domain twinning. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:211-23. [PMID: 26894669 DOI: 10.1107/s2059798315024365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/17/2015] [Indexed: 11/10/2022]
Abstract
The self-complementary dCrGdCrGdCrG hexanucleotide, in which not only the pyrimidine/purine bases but also the ribo/deoxy sugars alternate along the sequence, was crystallized in the presence of barium cations in the form of a left-handed Z-type duplex. The asymmetric unit of the P21 crystal with a pseudohexagonal lattice contains four chimeric duplexes and 16 partial Ba(2+) sites. The chimeric (DNA-RNA)2 duplexes have novel patterns of hydration and exhibit a high degree of discrete conformational disorder of their sugar-phosphate backbones, which can at least partly be correlated with the fractional occupancies of the barium ions. The crystals of the DNA-RNA chimeric duplex in complex with Ba(2+) ions and also with Sr(2+) ions exhibit complicated twinning, which in combination with structural pseudosymmetry made structure determination difficult. The structure could be successfully solved by molecular replacement in space groups P1 and P21 but not in orthorhombic or higher symmetry and, after scrupulous twinning and packing analysis, was refined in space group P21 to an R and Rfree of 11.36 and 16.91%, respectively, using data extending to 1.09 Å resolution. With the crystal structure having monoclinic symmetry, the sixfold crystal twinning is a combination of threefold and twofold rotations. The paper describes the practical aspects of dealing with cases of complicated twinning and pseudosymmetry, and compares the available software tools for the refinement and analysis of such cases.
Collapse
Affiliation(s)
- Miroslaw Gilski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Pawel Drozdzal
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
46
|
Lujan SA, Williams JS, Kunkel TA. Eukaryotic genome instability in light of asymmetric DNA replication. Crit Rev Biochem Mol Biol 2015; 51:43-52. [PMID: 26822554 DOI: 10.3109/10409238.2015.1117055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eukaryotic nuclear genome is replicated asymmetrically, with the leading strand replicated continuously and the lagging strand replicated as discontinuous Okazaki fragments that are subsequently joined. Both strands are replicated with high fidelity, but the processes used to achieve high fidelity are likely to differ. Here we review recent studies of similarities and differences in the fidelity with which the three major eukaryotic replicases, DNA polymerases α, δ, and ɛ, replicate the leading and lagging strands with high nucleotide selectivity and efficient proofreading. We then relate the asymmetric fidelity at the replication fork to the efficiency of DNA mismatch repair, ribonucleotide excision repair and topoisomerase 1 activity.
Collapse
Affiliation(s)
- Scott A Lujan
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Jessica S Williams
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Thomas A Kunkel
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| |
Collapse
|
47
|
Ding J, Taylor MS, Jackson AP, Reijns MAM. Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq. Nat Protoc 2015; 10:1433-44. [PMID: 26313479 DOI: 10.1038/nprot.2015.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ribonucleotides are the most common noncanonical nucleotides incorporated into the genome of replicating cells. They are efficiently removed by ribonucleotide excision repair initiated by RNase H2 cleavage. In the absence of RNase H2, such embedded ribonucleotides can be used to track DNA polymerase activity in vivo. To determine their precise location in Saccharomyces cerevisiae, we developed embedded ribonucleotide sequencing (emRiboSeq), which uses recombinant RNase H2 to selectively create ligatable 3'-hydroxyl groups, in contrast to alternative methods that use alkaline hydrolysis. EmRiboSeq allows reproducible, strand-specific and potentially quantitative detection of embedded ribonucleotides at single-nucleotide resolution. For the genome-wide mapping of other noncanonical bases, RNase H2 can be replaced with specific nicking endonucleases in this protocol; we term this method endonuclease sequencing (EndoSeq). With the protocol taking <5 d to complete, these methods allow the in vivo study of DNA replication and repair, including the identification of replication origins and termination regions.
Collapse
Affiliation(s)
- James Ding
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin S Taylor
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew P Jackson
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin A M Reijns
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
48
|
Khan I, Sommers JA, Brosh RM. Close encounters for the first time: Helicase interactions with DNA damage. DNA Repair (Amst) 2015; 33:43-59. [PMID: 26160335 DOI: 10.1016/j.dnarep.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 01/17/2023]
Abstract
DNA helicases are molecular motors that harness the energy of nucleoside triphosphate hydrolysis to unwinding structured DNA molecules that must be resolved during cellular replication, DNA repair, recombination, and transcription. In vivo, DNA helicases are expected to encounter a wide spectrum of covalent DNA modifications to the sugar phosphate backbone or the nitrogenous bases; these modifications can be induced by endogenous biochemical processes or exposure to environmental agents. The frequency of lesion abundance can vary depending on the lesion type. Certain adducts such as oxidative base modifications can be quite numerous, and their effects can be helix-distorting or subtle perturbations to DNA structure. Helicase encounters with specific DNA lesions and more novel forms of DNA damage will be discussed. We will also review the battery of assays that have been used to characterize helicase-catalyzed unwinding of damaged DNA substrates. Characterization of the effects of specific DNA adducts on unwinding by various DNA repair and replication helicases has proven to be insightful for understanding mechanistic and biological aspects of helicase function in cellular DNA metabolism.
Collapse
Affiliation(s)
- Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
49
|
Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains. J Bacteriol 2015; 197:2489-98. [PMID: 25986906 DOI: 10.1128/jb.00268-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 05/06/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Mycobacterium smegmatis encodes several DNA repair polymerases that are adept at incorporating ribonucleotides, which raises questions about how ribonucleotides in DNA are sensed and removed. RNase H enzymes, of which M. smegmatis encodes four, are strong candidates for a surveillance role. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of M. smegmatis RnhC, a bifunctional RNase H and acid phosphatase. We report that (i) the RnhC nuclease is stringently specific for RNA:DNA hybrid duplexes; (ii) RnhC does not selectively recognize and cleave DNA-RNA or RNA-DNA junctions in duplex nucleic acid; (iii) RnhC cannot incise an embedded monoribonucleotide or diribonucleotide in duplex DNA; (iv) RnhC can incise tracts of 4 or more ribonucleotides embedded in duplex DNA, leaving two or more residual ribonucleotides at the cleaved 3'-OH end and at least one or two ribonucleotides on the 5'-PO4 end; (v) the RNase H activity is inherent in an autonomous 140-amino-acid (aa) N-terminal domain of RnhC; and (vi) the C-terminal 211-aa domain of RnhC is an autonomous acid phosphatase. The cleavage specificity of RnhC is clearly distinct from that of Escherichia coli RNase H2, which selectively incises at an RNA-DNA junction. Thus, we classify RnhC as a type I RNase H. The properties of RnhC are consistent with a role in Okazaki fragment RNA primer removal or in surveillance of oligoribonucleotide tracts embedded in DNA but not in excision repair of single misincorporated ribonucleotides. IMPORTANCE RNase H enzymes help cleanse the genome of ribonucleotides that are present either as ribotracts (e.g., RNA primers) or as single ribonucleotides embedded in duplex DNA. Mycobacterium smegmatis encodes four RNase H proteins, including RnhC, which is characterized in this study. The nucleic acid substrate and cleavage site specificities of RnhC are consistent with a role in initiating the removal of ribotracts but not in single-ribonucleotide surveillance. RnhC has a C-terminal acid phosphatase domain that is functionally autonomous of its N-terminal RNase H catalytic domain. RnhC homologs are prevalent in Actinobacteria.
Collapse
|
50
|
Tannous E, Kanaya E, Kanaya S. Role of RNase H1 in DNA repair: removal of single ribonucleotide misincorporated into DNA in collaboration with RNase H2. Sci Rep 2015; 5:9969. [PMID: 25951507 PMCID: PMC4423430 DOI: 10.1038/srep09969] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/24/2015] [Indexed: 01/09/2023] Open
Abstract
Several RNases H1 cleave the RNA-DNA junction of Okazaki fragment-like RNA-DNA/DNA substrate. This activity, termed 3’-junction ribonuclease (3’-JRNase) activity, is different from the 5’-JRNase activity of RNase H2 that cleaves the 5’-side of the ribonucleotide of the RNA-DNA junction and is required to initiate the ribonucleotide excision repair pathway. To examine whether RNase H1 exhibits 3’-JRNase activity for dsDNA containing a single ribonucleotide and can remove this ribonucleotide in collaboration with RNase H2, cleavage of a DNA8-RNA1-DNA9/DNA18 substrate with E. coli RNase H1 and H2 was analyzed. This substrate was cleaved by E. coli RNase H1 at the (5’)RNA-DNA(3’) junction, regardless of whether it was cleaved by E. coli RNase H2 at the (5’)DNA-RNA(3’) junction in advance or not. Likewise, this substrate was cleaved by E. coli RNase H2 at the (5’)DNA-RNA(3’) junction, regardless of whether it was cleaved by E. coli RNase H1 at the (5’)RNA-DNA(3’) junction in advance or not. When this substrate was cleaved by a mixture of E. coli RNases H1 and H2, the ribonucleotide was removed from the substrate. We propose that RNase H1 is involved in the excision of single ribonucleotides misincorporated into DNA in collaboration with RNase H2.
Collapse
Affiliation(s)
- Elias Tannous
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiko Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|