1
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Yellamaty R, Sharma S. Critical Cellular Functions and Mechanisms of Action of the RNA Helicase UAP56. J Mol Biol 2024; 436:168604. [PMID: 38729260 PMCID: PMC11168752 DOI: 10.1016/j.jmb.2024.168604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Posttranscriptional maturation and export from the nucleus to the cytoplasm are essential steps in the normal processing of many cellular RNAs. The RNA helicase UAP56 (U2AF associated protein 56; also known as DDX39B) has emerged as a critical player in facilitating and co-transcriptionally linking these steps. Originally identified as a helicase involved in pre-mRNA splicing, UAP56 has been shown to facilitate formation of the A complex during spliceosome assembly. Additionally, it has been found to be critical for interactions between components of the exon junction and transcription and export complexes to promote the loading of export receptors. Although it appears to be structurally similar to other helicase superfamily 2 members, UAP56's ability to interact with multiple different protein partners allows it to perform its various cellular functions. Herein, we describe the structure-activity relationship studies that identified protein interactions of UAP56 and its human paralog URH49 (UAP56-related helicase 49; also known as DDX39A) and are beginning to reveal molecular mechanisms by which interacting proteins and substrate RNAs may regulate these helicases. We also provide an overview of reports that have demonstrated less well-characterized roles for UAP56, including R-loop resolution and telomere maintenance. Finally, we discuss studies that indicate a potential pathogenic effect of UAP56 in the development of autoimmune diseases and cancer, and identify the association of somatic and genetic mutations in UAP56 with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan Yellamaty
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|
3
|
Bhattacharjee R, Jolly LA, Corbett MA, Wee IC, Rao SR, Gardner AE, Ritchie T, van Hugte EJH, Ciptasari U, Piltz S, Noll JE, Nazri N, van Eyk CL, White M, Fornarino D, Poulton C, Baynam G, Collins-Praino LE, Snel MF, Nadif Kasri N, Hemsley KM, Thomas PQ, Kumar R, Gecz J. Compromised transcription-mRNA export factor THOC2 causes R-loop accumulation, DNA damage and adverse neurodevelopment. Nat Commun 2024; 15:1210. [PMID: 38331934 PMCID: PMC10853216 DOI: 10.1038/s41467-024-45121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lachlan A Jolly
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark A Corbett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ing Chee Wee
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sushma R Rao
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alison E Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jacqueline E Noll
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide and Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Nazzmer Nazri
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Melissa White
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Dani Fornarino
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Kim M Hemsley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
4
|
Shelly S, Dubey D, Mills JR, Klein CJ. Paraneoplastic neuropathies and peripheral nerve hyperexcitability disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:239-273. [PMID: 38494281 DOI: 10.1016/b978-0-12-823912-4.00020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Peripheral neuropathy is a common referral for patients to the neurologic clinics. Paraneoplastic neuropathies account for a small but high morbidity and mortality subgroup. Symptoms include weakness, sensory loss, sweating irregularity, blood pressure instability, severe constipation, and neuropathic pain. Neuropathy is the first presenting symptom of malignancy among many patients. The molecular and cellular oncogenic immune targets reside within cell bodies, axons, cytoplasms, or surface membranes of neural tissues. A more favorable immune treatment outcome occurs in those where the targets reside on the cell surface. Patients with antibodies binding cell surface antigens commonly have neural hyperexcitability with pain, cramps, fasciculations, and hyperhidrotic attacks (CASPR2, LGI1, and others). The antigenic targets are also commonly expressed in the central nervous system, with presenting symptoms being myelopathy, encephalopathy, and seizures with neuropathy, often masked. Pain and autonomic components typically relate to small nerve fiber involvement (nociceptive, adrenergic, enteric, and sudomotor), sometimes without nerve fiber loss but rather hyperexcitability. The specific antibodies discovered help direct cancer investigations. Among the primary axonal paraneoplastic neuropathies, pathognomonic clinical features do not exist, and testing for multiple antibodies simultaneously provides the best sensitivity in testing (AGNA1-SOX1; amphiphysin; ANNA-1-HU; ANNA-3-DACH1; CASPR2; CRMP5; LGI1; PCA2-MAP1B, and others). Performing confirmatory antibody testing using adjunct methods improves specificity. Antibody-mediated demyelinating paraneoplastic neuropathies are limited to MAG-IgM (IgM-MGUS, Waldenström's, and myeloma), with the others associated with cytokine elevations (VEGF, IL6) caused by osteosclerotic myeloma, plasmacytoma (POEMS), and rarely angiofollicular lymphoma (Castleman's). Paraneoplastic disorders have clinical overlap with other idiopathic antibody disorders, including IgG4 demyelinating nodopathies (NF155 and Contactin-1). This review summarizes the paraneoplastic neuropathies, including those with peripheral nerve hyperexcitability.
Collapse
Affiliation(s)
- Shahar Shelly
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Department of Neurology, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - John R Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Christopher J Klein
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
5
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
6
|
Xie Y, Gao S, Zhang K, Bhat P, Clarke BP, Batten K, Mei M, Gazzara M, Shay JW, Lynch KW, Angelos AE, Hill PS, Ivey AL, Fontoura BMA, Ren Y. Structural basis for high-order complex of SARNP and DDX39B to facilitate mRNP assembly. Cell Rep 2023; 42:112988. [PMID: 37578863 PMCID: PMC10508174 DOI: 10.1016/j.celrep.2023.112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
mRNA in eukaryotic cells is packaged into highly compacted ribonucleoprotein particles (mRNPs) in the nucleus and exported to the cytoplasm for translation. mRNP packaging and export require the evolutionarily conserved transcription-export (TREX) complex. TREX facilitates loading of various RNA-binding proteins on mRNA through the action of its DDX39B subunit. SARNP (Tho1 [transcriptional defect of Hpr1 by overexpression 1] in yeast) is shown to interact with DDX39B and affect mRNA export. The molecular mechanism of how SARNP recognizes DDX39B and functions in mRNP assembly is unclear. Here, we determine the crystal structure of a Tho1/DDX39B/RNA complex, revealing a multivalent interaction mediated by tandem DDX39B interacting motifs in SARNP/Tho1. The high-order complex of SARNP and DDX39B is evolutionarily conserved, and human SARNP can engage with five DDX39B molecules. RNA sequencing (RNA-seq) from SARNP knockdown cells shows the most affected RNAs in export are GC rich. Our work suggests the role of the high-order SARNP/DDX39B/RNA complex in mRNP assembly and export.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Shengyan Gao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Menghan Mei
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Matthew Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexia E Angelos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Austin L Ivey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA.
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
7
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Pacheco-Fiallos B, Vorländer MK, Riabov-Bassat D, Fin L, O'Reilly FJ, Ayala FI, Schellhaas U, Rappsilber J, Plaschka C. mRNA recognition and packaging by the human transcription-export complex. Nature 2023; 616:828-835. [PMID: 37020021 PMCID: PMC7614608 DOI: 10.1038/s41586-023-05904-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Newly made mRNAs are processed and packaged into mature ribonucleoprotein complexes (mRNPs) and are recognized by the essential transcription-export complex (TREX) for nuclear export1,2. However, the mechanisms of mRNP recognition and three-dimensional mRNP organization are poorly understood3. Here we report cryo-electron microscopy and tomography structures of reconstituted and endogenous human mRNPs bound to the 2-MDa TREX complex. We show that mRNPs are recognized through multivalent interactions between the TREX subunit ALYREF and mRNP-bound exon junction complexes. Exon junction complexes can multimerize through ALYREF, which suggests a mechanism for mRNP organization. Endogenous mRNPs form compact globules that are coated by multiple TREX complexes. These results reveal how TREX may simultaneously recognize, compact and protect mRNAs to promote their packaging for nuclear export. The organization of mRNP globules provides a framework to understand how mRNP architecture facilitates mRNA biogenesis and export.
Collapse
Affiliation(s)
- Belén Pacheco-Fiallos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Matthias K Vorländer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Daria Riabov-Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Laura Fin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Francis J O'Reilly
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Farja I Ayala
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ulla Schellhaas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
9
|
DDX39B drives colorectal cancer progression by promoting the stability and nuclear translocation of PKM2. Signal Transduct Target Ther 2022; 7:275. [PMID: 35973989 PMCID: PMC9381590 DOI: 10.1038/s41392-022-01096-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Metastasis is a major cause of colorectal cancer (CRC) mortality, but its molecular mechanisms are still not fully understood. Here, we show that upregulated DDX39B correlates with liver metastases and aggressive phenotypes in CRC. DDX39B is an independent prognostic factor associated with poor clinical outcome in CRC patients. We demonstrate that Sp1 potently activates DDX39B transcription by directly binding to the GC box of the DDX39B promoter in CRC cells. DDX39B overexpression augments the proliferation, migration, and invasion of CRC cells, while the opposite results are obtained in DDX39B-deficient CRC cells. Mechanistically, DDX39B interacts directly with and stabilizes PKM2 by competitively suppressing STUB1-mediated PKM2 ubiquitination and degradation. Importantly, DDX39B recruits importin α5 to accelerate the nuclear translocation of PKM2 independent of ERK1/2-mediated phosphorylation of PKM2, leading to the transactivation of oncogenes and glycolysis-related genes. Consequently, DDX39B enhances glucose uptake and lactate production to activate Warburg effect in CRC. We identify that Arg319 of DDX39B is required for PKM2 binding as well as PKM2 nuclear accumulation and for DDX39B to promote CRC growth and metastasis. In addition, blocking PKM2 nuclear translocation or treatment with glycolytic inhibitor 2-deoxy-D-glucose efficiently abolishes DDX39B-triggered malignant development in CRC. Taken together, our findings uncover a key role for DDX39B in modulating glycolytic reprogramming and aggressive progression, and implicate DDX39B as a potential therapeutic target in CRC.
Collapse
|
10
|
Qi X, Liu Z, Zhang Q, Yang M, Wan Y, Huang J, Xu L. Systematic analysis of the function and prognostic value of RNA binding proteins in Colon Adenocarcinoma. J Cancer 2021; 12:2537-2549. [PMID: 33854615 PMCID: PMC8040719 DOI: 10.7150/jca.50407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Abnormal expression of RNA-binding proteins (RBPs) is closely related to tumorigenesis, progression, and prognosis. This study performed systematic bioinformatic analysis of RBPs abnormally expressed in colon adenocarcinoma (COAD) using the Cancer Genome Atlas (TCGA) database to screen prognostic markers and potential therapeutic targets. Methods: First, the gene expression data from COAD samples were used to screen out differentially expressed RBPs for functional enrichment analysis and to visualize interaction relationships. Second, RBPs that were significantly related to prognosis were screened through univariate and multivariate Cox regression analysis to construct a prognostic model. The prediction performance of the prognostic model was evaluated by survival analysis and receiver operating characteristic (ROC) curve analysis. It addition, it was verified in the test cohort. The Human Protein Atlas (HPA) online database was used to verify the expression levels of RBPs in the prognostic model. Results: The study identified 181 differentially expressed RBPs and analyzed their interaction and functional enrichment, which were mainly related to non-coding RNA processing, ribosome biogenesis, RNA metabolic processes, RNA phosphodiester bond hydrolysis, and alternative mRNA splicing. Five RBPs related to prognosis were used to construct a prognostic model, and its predictive ability was verified by the test cohort. ROC curve analysis showed that the prognostic model had good sensitivity and specificity. Independent prognostic analysis showed that risk scores could be used as independent prognostic factors for COAD. Conclusion: This study constructed a reliable prognostic model by analyzing COAD differentially expressed RBPs, facilitating the screening of COAD prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xuewei Qi
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zeyu Liu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiaoli Zhang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxiang Wan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchang Huang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.,Institute of Acupuncture and Moxibustion in Cancer Care, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Xu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
11
|
Dubey D, Kryzer T, Guo Y, Clarkson B, Cheville JC, Costello BA, Leibovich BC, Algeciras-Schimnich A, Lucchinnetti C, Hammami MB, Knight AM, Howe C, Lennon VA, McKeon A, Pittock SJ. Leucine Zipper 4 Autoantibody: A Novel Germ Cell Tumor and Paraneoplastic Biomarker. Ann Neurol 2021; 89:1001-1010. [PMID: 33583072 DOI: 10.1002/ana.26050] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study was undertaken to describe a novel biomarker of germ cell tumor and associated paraneoplastic neurological syndrome (PNS). METHODS Archival sera from patients with germ cell tumor-associated PNS were evaluated. We identified a common autoantigen in a human testicular cancer cell line (TCam-2) by Western blot and mass spectrometry. Its identity was confirmed by recombinant-protein Western blot, enzyme-linked immunosorbent assay (ELISA), and cell-based assay. Autoantibody specificity was confirmed by analyzing assorted control sera/cerebrospinal fluid. RESULTS Leucine zipper 4 (LUZP4)-immunoglobulin G (IgG) was detected in 28 patients' sera, 26 of whom (93%) were men. The median age at neurological symptom onset was 45 years (range = 28-84). Median titer (ELISA) was 1:300 (1:50 to >1:6,400, normal value < 1:50). Coexistent kelchlike protein 11-IgG was identified in 18 cases (64%). The most common presenting phenotype was rhombencephalitis (17/28, 61%). Other presentations included limbic encephalitis (n = 5, 18%), seizures and/or encephalitis (n = 2, 7%), and motor neuronopathy/polyradiculopathy (n = 4, 14%). The most common malignancy among cancer-evaluated PNS patients was seminoma (21/27, 78%). Nine of the 21 seminomas detected by whole-body fluorodeoxyglucose positron emission tomography scan (43%) were extratesticular. Both female patients had ovarian teratoma. Regressed testicular germ cell tumors were found in 4 patients. Exposure of T-cell-dendritic-cell cocultures from chronic immunosuppression-naïve LUZP4-IgG-seropositive patients to recombinant LUZP4 protein evoked a marked increase in CD69 expression on both CD4+ and CD8+ T cells when compared to vehicle-exposed and healthy control cultures. INTERPRETATION LUZP4-IgG represents a novel serological biomarker of PNS and has high predictive value for germ cell tumors. The demonstrated antigen-specific T-cell responses support a CD8+ T-cell-mediated cytotoxic paraneoplastic and antitumor potential. ANN NEUROL 2021;89:1001-1010.
Collapse
Affiliation(s)
- Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, NY.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY
| | - Thomas Kryzer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY
| | - Benjamin Clarkson
- Department of Neurology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY
| | | | | | | | - Claudia Lucchinnetti
- Department of Neurology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY
| | - M Bakri Hammami
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY
| | - Andrew M Knight
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY
| | - Charles Howe
- Department of Neurology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY
| | - Vanda A Lennon
- Department of Neurology, Mayo Clinic, Rochester, NY.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY.,Department of Immunology, Mayo Clinic, Rochester, NY
| | - Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, NY.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, NY.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, NY
| |
Collapse
|
12
|
Abstract
While the processing of mRNA is essential for gene expression, recent findings have highlighted that RNA processing is systematically altered in cancer. Mutations in RNA splicing factor genes and the shortening of 3' untranslated regions are widely observed. Moreover, evidence is accumulating that other types of RNAs, including circular RNAs, can contribute to tumorigenesis. In this Review, we highlight how altered processing or activity of coding and non-coding RNAs contributes to cancer. We introduce the regulation of gene expression by coding and non-coding RNA and discuss both established roles (microRNAs and long non-coding RNAs) and emerging roles (selective mRNA processing and circular RNAs) for RNAs, highlighting the potential mechanisms by which these RNA subtypes contribute to cancer. The widespread alteration of coding and non-coding RNA demonstrates that altered RNA biogenesis contributes to multiple hallmarks of cancer.
Collapse
Affiliation(s)
- Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia.
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Zhang Z, Chen J, Zhu S, Zhu D, Xu J, He G. Construction and Validation of a Cell Cycle-Related Robust Prognostic Signature in Colon Cancer. Front Cell Dev Biol 2020; 8:611222. [PMID: 33304907 PMCID: PMC7701219 DOI: 10.3389/fcell.2020.611222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Colon cancer is one of the most common cancers, great progress was taken place in the treatment of colon cancer, however, the prognostic assessment system remains lagging. Cell cycle plays a vital role in the whole procedure of cancers. In this study, we firstly identified cell cycle-related genes specific in colon cancer. Functional enrichment analysis proved our analysis reliable. Furthermore, we constructed a robust signature based on the cell cycle-related genes. The AUC of the signature to predict the overall survival was 0.808, 0.807, and 0.831 of AUC at 1, 3, and 5 years, respectively. Internal and external validation proved the signature efficient. The 9 genes involved in the signature also showed a great job in molecular subgrouping which indicated the significant value of the 9 genes for further experimental research. In conclusion, the present research provided a novel robust signature predicting the prognosis of colon cancer.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingwen Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shichao Zhu
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guodong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Pühringer T, Hohmann U, Fin L, Pacheco-Fiallos B, Schellhaas U, Brennecke J, Plaschka C. Structure of the human core transcription-export complex reveals a hub for multivalent interactions. eLife 2020; 9:e61503. [PMID: 33191911 PMCID: PMC7744094 DOI: 10.7554/elife.61503] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
The export of mRNA from nucleus to cytoplasm requires the conserved and essential transcription and export (TREX) complex (THO-UAP56/DDX39B-ALYREF). TREX selectively binds mRNA maturation marks and licenses mRNA for nuclear export by loading the export factor NXF1-NXT1. How TREX integrates these marks and achieves high selectivity for mature mRNA is poorly understood. Here, we report the cryo-electron microscopy structure of the human THO-UAP56/DDX39B complex at 3.3 Å resolution. The seven-subunit THO-UAP56/DDX39B complex multimerizes into a 28-subunit tetrameric assembly, suggesting that selective recognition of mature mRNA is facilitated by the simultaneous sensing of multiple, spatially distant mRNA regions and maturation marks. Two UAP56/DDX39B RNA helicases are juxtaposed at each end of the tetramer, which would allow one bivalent ALYREF protein to bridge adjacent helicases and regulate the TREX-mRNA interaction. Our structural and biochemical results suggest a conserved model for TREX complex function that depends on multivalent interactions between proteins and mRNA.
Collapse
Affiliation(s)
- Thomas Pühringer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Ulrich Hohmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
| | - Laura Fin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Belén Pacheco-Fiallos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Ulla Schellhaas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
15
|
Wang Y, Chen Y, Xiao S, Fu K. Integrated Analysis of the Functions and Prognostic Values of RNA-Binding Proteins in Colorectal Cancer. Front Cell Dev Biol 2020; 8:595605. [PMID: 33224957 PMCID: PMC7674310 DOI: 10.3389/fcell.2020.595605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Selecting effective treatment for CRC patients, especially in the early stages, remains a challenge because of the lack of adequate biomarkers. Recent evidence suggests that RNA-binding proteins (RBPs) play a vital role in development and progression of carcinogenesis. However, their mechanisms in cancer progression are still limited. The role of RBPs in CRC has been poorly understood. There were 1,542 reported RBPs analyzed between CRC tissues and normal tissues using the Wilcoxon test to identify differentially expressed RBPs (DE RBPs). Then, the potential functions and the prognostic value of these DE RBPs were explored through systematic bioinformatics analysis. There were 177 DE RBPs identified between CRC tissues and normal tissues. A protein–protein interaction network was constructed based on DE RBPs, and critical modules were screened. A regulatory network between prognostic DE RBPs and differentially expressed transcription factors was constructed. Besides, a risk signature was built based on prognostic DE RBPs, which is able to predict overall survival of CRC patients with high accuracy. In conclusion, the results provided a comprehensive understanding of the functions of RBPs in CRC, as well as an RBP-related prognostic signature.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiao Chen
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Xiao
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
16
|
Cheng CC, Wooten J, Gibbs ZA, McGlynn K, Mishra P, Whitehurst AW. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. eLife 2020; 9:58108. [PMID: 32990599 PMCID: PMC7556868 DOI: 10.7554/elife.58108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer testis antigens (CTAs) are proteins whose expression is normally restricted to the testis but anomalously activated in human cancer. In sperm, a number of CTAs support energy generation, however, whether they contribute to tumor metabolism is not understood. We describe human COX6B2, a component of cytochrome c oxidase (complex IV). COX6B2 is expressed in human lung adenocarcinoma (LUAD) and expression correlates with reduced survival time. COX6B2, but not its somatic isoform COX6B1, enhances activity of complex IV, increasing oxidative phosphorylation (OXPHOS) and NAD+ generation. Consequently, COX6B2-expressing cancer cells display a proliferative advantage, particularly in low oxygen. Conversely, depletion of COX6B2 attenuates OXPHOS and collapses mitochondrial membrane potential leading to cell death or senescence. COX6B2 is both necessary and sufficient for growth of human tumor xenografts in mice. Our findings reveal a previously unappreciated, tumor-specific metabolic pathway hijacked from one of the most ATP-intensive processes in the animal kingdom: sperm motility.
Collapse
Affiliation(s)
- Chun-Chun Cheng
- Department of Pharmacology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, United States
| | | | - Zane A Gibbs
- Department of Pharmacology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, United States
| | - Kathleen McGlynn
- Department of Pharmacology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, United States
| | - Prashant Mishra
- Children's Research Institute, UT Southwestern Medical Center, Dallas, United States
| | - Angelique W Whitehurst
- Department of Pharmacology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
17
|
Gibbs ZA, Reza LC, Cheng CC, Westcott JM, McGlynn K, Whitehurst AW. The testis protein ZNF165 is a SMAD3 cofactor that coordinates oncogenic TGFβ signaling in triple-negative breast cancer. eLife 2020; 9:57679. [PMID: 32515734 PMCID: PMC7302877 DOI: 10.7554/elife.57679] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer/testis (CT) antigens are proteins whose expression is normally restricted to germ cells yet aberrantly activated in tumors, where their functions remain relatively cryptic. Here we report that ZNF165, a CT antigen frequently expressed in triple-negative breast cancer (TNBC), associates with SMAD3 to modulate transcription of transforming growth factor β (TGFβ)-dependent genes and thereby promote growth and survival of human TNBC cells. In addition, we identify the KRAB zinc finger protein, ZNF446, and its associated tripartite motif protein, TRIM27, as obligate components of the ZNF165-SMAD3 complex that also support tumor cell viability. Importantly, we find that TRIM27 alone is necessary for ZNF165 transcriptional activity and is required for TNBC tumor growth in vivo using an orthotopic xenograft model in immunocompromised mice. Our findings indicate that aberrant expression of a testis-specific transcription factor is sufficient to co-opt somatic transcriptional machinery to drive a pro-tumorigenic gene expression program in TNBC.
Collapse
Affiliation(s)
- Zane A Gibbs
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luis C Reza
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chun-Chun Cheng
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jill M Westcott
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kathleen McGlynn
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Angelique W Whitehurst
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
18
|
Phosphosite Analysis of the Cytomegaloviral mRNA Export Factor pUL69 Reveals Serines with Critical Importance for Recruitment of Cellular Proteins Pin1 and UAP56/URH49. J Virol 2020; 94:JVI.02151-19. [PMID: 31969433 DOI: 10.1128/jvi.02151-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) encodes the viral mRNA export factor pUL69, which facilitates the cytoplasmic accumulation of mRNA via interaction with the cellular RNA helicase UAP56 or URH49. We reported previously that pUL69 is phosphorylated by cellular CDKs and the viral CDK-like kinase pUL97. Here, we set out to identify phosphorylation sites within pUL69 and to characterize their importance. Mass spectrometry-based phosphosite mapping of pUL69 identified 10 serine/threonine residues as phosphoacceptors. Surprisingly, only a few of these sites localized to the N terminus of pUL69, which could be due to the presence of additional posttranslational modifications, like arginine methylation. As an alternative approach, pUL69 mutants with substitutions of putative phosphosites were analyzed by Phos-tag SDS-PAGE. This demonstrated that serines S46 and S49 serve as targets for phosphorylation by pUL97. Furthermore, we provide evidence that phosphorylation of these serines mediates cis/trans isomerization by the prolyl isomerase Pin1, thus forming a functional Pin1 binding motif. Surprisingly, while abrogation of the Pin1 motif did not affect the replication of recombinant cytomegaloviruses, mutation of serines next to the interaction site for UAP56/URH49 strongly decreased viral replication. This was correlated with a loss of UAP56/URH49 recruitment. Intriguingly, the critical serines S13 and S15 were located within a sequence resembling the UAP56 binding motif (UBM) of cellular mRNA adaptor proteins like REF and UIF. We propose that betaherpesviral mRNA export factors have evolved an extended UAP56/URH49 recognition sequence harboring phosphorylation sites to increase their binding affinities. This may serve as a strategy to successfully compete with cellular mRNA adaptor proteins for binding to UAP56/URH49.IMPORTANCE The multifunctional regulatory protein pUL69 of human cytomegalovirus acts as a viral RNA export factor with a critical role in efficient replication. Here, we identify serine/threonine phosphorylation sites for cellular and viral kinases within pUL69. We demonstrate that the pUL97/CDK phosphosites within alpha-helix 2 of pUL69 are crucial for its cis/trans isomerization by the cellular protein Pin1. Thus, we identified pUL69 as the first HCMV-encoded protein that is phosphorylated by cellular and viral serine/threonine kinases in order to serve as a substrate for Pin1. Furthermore, our study revealed that betaherpesviral mRNA export proteins contain extended binding motifs for the cellular mRNA adaptor proteins UAP56/URH49 harboring phosphorylated serines that are critical for efficient viral replication. Knowledge of the phosphorylation sites of pUL69 and the processes regulated by these posttranslational modifications is important in order to develop antiviral strategies based on a specific interference with pUL69 phosphorylation.
Collapse
|
19
|
Scott DD, Aguilar LC, Kramar M, Oeffinger M. It's Not the Destination, It's the Journey: Heterogeneity in mRNA Export Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:33-81. [PMID: 31811630 DOI: 10.1007/978-3-030-31434-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.
Collapse
Affiliation(s)
- Daniel D Scott
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Mathew Kramar
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada. .,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada. .,Faculté de Médecine, Département de Biochimie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
20
|
Viphakone N, Sudbery I, Griffith L, Heath CG, Sims D, Wilson SA. Co-transcriptional Loading of RNA Export Factors Shapes the Human Transcriptome. Mol Cell 2019; 75:310-323.e8. [PMID: 31104896 PMCID: PMC6675937 DOI: 10.1016/j.molcel.2019.04.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/25/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
During gene expression, RNA export factors are mainly known for driving nucleo-cytoplasmic transport. While early studies suggested that the exon junction complex (EJC) provides a binding platform for them, subsequent work proposed that they are only recruited by the cap binding complex to the 5′ end of RNAs, as part of TREX. Using iCLIP, we show that the export receptor Nxf1 and two TREX subunits, Alyref and Chtop, are recruited to the whole mRNA co-transcriptionally via splicing but before 3′ end processing. Consequently, Alyref alters splicing decisions and Chtop regulates alternative polyadenylation. Alyref is recruited to the 5′ end of RNAs by CBC, and our data reveal subsequent binding to RNAs near EJCs. We demonstrate that eIF4A3 stimulates Alyref deposition not only on spliced RNAs close to EJC sites but also on single-exon transcripts. Our study reveals mechanistic insights into the co-transcriptional recruitment of mRNA export factors and how this shapes the human transcriptome. 5′ cap binding complex CBC acts as a transient landing pad for Alyref Alyref is deposited upstream of the exon-exon junction next to the EJC Alyref can be deposited on introns and regulate splicing Chtop is mainly deposited on 3′ UTRs and influences poly(A) site choices
Collapse
Affiliation(s)
- Nicolas Viphakone
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | - Ian Sudbery
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Llywelyn Griffith
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Catherine G Heath
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David Sims
- MRC Computational Genomics Analysis and Training Programme (CGAT), MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
21
|
Ehrnsberger HF, Pfaff C, Hachani I, Flores-Tornero M, Sørensen BB, Längst G, Sprunck S, Grasser M, Grasser KD. The UAP56-Interacting Export Factors UIEF1 and UIEF2 Function in mRNA Export. PLANT PHYSIOLOGY 2019; 179:1525-1536. [PMID: 30700540 PMCID: PMC6446781 DOI: 10.1104/pp.18.01476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/18/2019] [Indexed: 06/01/2023]
Abstract
In eukaryotes, the regulated transport of mRNAs from the nucleus to the cytosol through nuclear pore complexes represents an important step in the expression of protein-coding genes. In plants, the mechanism of nucleocytosolic mRNA transport and the factors involved are poorly understood. The Arabidopsis (Arabidopsis thaliana) genome encodes two likely orthologs of UAP56-interacting factor, which acts as mRNA export factor in mammalian cells. In yeast and plant cells, both proteins interact directly with the mRNA export-related RNA helicase UAP56 and the interaction was mediated by an N-terminal UAP56-binding motif. Accordingly, the two proteins were termed UAP56-INTERACTING EXPORT FACTOR1 and 2 (UIEF1/2). Despite lacking a known RNA-binding motif, recombinant UIEF1 interacted with RNA, and the C-terminal part of UIEF1 mainly contributed to the RNA interaction. Mutation of UIEF1, UIEF2, or both in the double-mutant 2xuief caused modest growth defects. A cross between the 2xuief and 4xaly (defective in the four ALY1-4 mRNA export factors) mutants produced the sextuple mutant 4xaly 2xuief, which displayed more severe growth impairment than the 4xaly plants. Developmental defects including delayed bolting and reduced seed set were observed in the 4xaly but not the 2xuief plants. Analysis of the cellular distribution of polyadenylated mRNAs revealed more pronounced nuclear mRNA accumulation in 4xaly 2xuief than in 2xuief and 4xaly cells. In conclusion, the results indicate that UIEF1 and UIEF2 act as mRNA export factors in plants and that they cooperate with ALY1-ALY4 to mediate efficient nucleocytosolic mRNA transport.
Collapse
Affiliation(s)
- Hans F Ehrnsberger
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Christina Pfaff
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Ines Hachani
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - María Flores-Tornero
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Brian B Sørensen
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Gernot Längst
- Department of Biochemistry III, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Stefanie Sprunck
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Marion Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
22
|
Lesbirel S, Wilson SA. The m 6A‑methylase complex and mRNA export. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:319-328. [PMID: 30290229 PMCID: PMC6414750 DOI: 10.1016/j.bbagrm.2018.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022]
Abstract
During synthesis, mRNA undergoes a number of modifications such as capping, splicing and polyadenylation. These processes are coupled with the orderly deposition of the TREX complex on the mRNA and subsequent recruitment of the NXF1-P15 heterodimer which stimulates the nuclear export of mature mRNAs. mRNAs also undergo a number of internal modifications, the most common of which is the N6‑methyladenosine (m6A) modification. In this review we discuss the recent evidence of coupling between the m6A modification, RNA processing and export.
Collapse
Affiliation(s)
- Simon Lesbirel
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
23
|
Zhong S, Wen S, Qiu Y, Yu Y, Xin L, He Y, Gao X, Fang H, Hong D, Zhang J. Bilateral striatal necrosis due to homoplasmic mitochondrial 3697G>A mutation presents with incomplete penetrance and sex bias. Mol Genet Genomic Med 2019; 7:e541. [PMID: 30623604 PMCID: PMC6418351 DOI: 10.1002/mgg3.541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 12/28/2022] Open
Abstract
Background Heteroplasmic mitochondrial 3697G>A mutation has been associated with leber hereditary optic neuropathy (LHON), mitochondrial encephalopathy, lactic acidosis and stroke‐like episodes (MELAS), and LHON/MELAS overlap syndrome. However, homoplasmic m.3697G>A mutation was only found in a family with Leigh syndrome, and the phenotype and pathogenicity of this homoplasmic mutation still need to be investigated in new patients. Methods The clinical interviews were conducted in 12 individuals from a multiple‐generation inherited family. Mutations were screened through exome next‐generation sequencing and subsequently confirmed by PCR‐restriction fragment length polymorphism. Mitochondrial complex activities and ATP production rate were measured by biochemical analysis. Results The male offspring with bilateral striatal necrosis (BSN) were characterized by severe spastic dystonia and complete penetrance, while the female offspring presented with mild symptom and low penetrance. All offspring carried homoplasmic mutation of NC_012920.1: m.3697G>A, p.(Gly131Ser). Biochemical analysis revealed an isolated defect of complex I, but the magnitude of the defect was higher in the male patients than that in the female ones. The ATP production rate also exhibited a similar pattern. However, no possible modifier genes on the X chromosome were identified. Conclusion Homoplasmic m.3697G>A mutation could be associated with BSN, which expanded the clinical spectrum of m.3697G>A. Our preliminary investigations had not found the underlying modifiers to support the double hit hypothesis, while the high level of estrogens in the female patients might exert a potential compensatory effect on mutant cell metabolism.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Shumeng Wen
- Key Laboratory of Laboratory Medicine, College of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyan Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Xin
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, University, Mississippi
| | - Yang He
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Xuguang Gao
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, College of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Daojun Hong
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Jun Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
24
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Li YL, Wang H, Qi RQ, Hong YX, Zheng S, Xiao BH, An Q, Li JH, Chen HD, Gao XH. Proteomic Analysis of the Serum of Patients with Stable Vitiligo and Progressive Vitiligo. Chin Med J (Engl) 2018; 131:480-483. [PMID: 29451155 PMCID: PMC5830835 DOI: 10.4103/0366-6999.225055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yi-Lei Li
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hong Wang
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rui-Qun Qi
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yu-Xiao Hong
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Song Zheng
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Bi-Huan Xiao
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Qian An
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiu-Hong Li
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hong-Duo Chen
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
26
|
Gibbs ZA, Whitehurst AW. Emerging Contributions of Cancer/Testis Antigens to Neoplastic Behaviors. Trends Cancer 2018; 4:701-712. [PMID: 30292353 DOI: 10.1016/j.trecan.2018.08.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Tumors of nearly every origin activate the expression of genes normally restricted to gametogenic cells. These genes encode proteins termed cancer/testis (CT) antigens, since expression outside of their naturally immune-privileged site can evoke an immune response. Despite extensive efforts to exploit CT antigens as immunotherapeutic targets, investigation of whether these proteins participate in tumorigenic processes has lagged. Here, we discuss emerging evidence that demonstrates that CT antigens can confer a selective advantage to tumor cells by promoting oncogenic processes or permitting evasion of tumor-suppressive mechanisms. These advances indicate the inherent flexibility of tumor cell regulatory networks to engage aberrantly expressed proteins to promote neoplastic behaviors, which could ultimately present novel therapeutic entry points.
Collapse
Affiliation(s)
- Zane A Gibbs
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angelique W Whitehurst
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Lesbirel S, Viphakone N, Parker M, Parker J, Heath C, Sudbery I, Wilson SA. The m 6A-methylase complex recruits TREX and regulates mRNA export. Sci Rep 2018; 8:13827. [PMID: 30218090 PMCID: PMC6138711 DOI: 10.1038/s41598-018-32310-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNA. This modification has previously been shown to alter the export kinetics for mRNAs though the molecular details surrounding this phenomenon remain poorly understood. Recruitment of the TREX mRNA export complex to mRNA is driven by transcription, 5' capping and pre-mRNA splicing. Here we identify a fourth mechanism in human cells driving the association of TREX with mRNA involving the m6A methylase complex. We show that the m6A complex recruits TREX to m6A modified mRNAs and this process is essential for their efficient export. TREX also stimulates recruitment of the m6A reader protein YTHDC1 to the mRNA and the m6A complex influences the interaction of TREX with YTHDC1. Together our studies reveal a key role for TREX in the export of m6A modified mRNAs.
Collapse
Affiliation(s)
- Simon Lesbirel
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Nicolas Viphakone
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Matthew Parker
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Jacob Parker
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Catherine Heath
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Ian Sudbery
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA), Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
28
|
Kumar R, Gardner A, Homan CC, Douglas E, Mefford H, Wieczorek D, Lüdecke HJ, Stark Z, Sadedin S, Nowak CB, Douglas J, Parsons G, Mark P, Loidi L, Herman GE, Mihalic Mosher T, Gillespie MK, Brady L, Tarnopolsky M, Madrigal I, Eiris J, Domènech Salgado L, Rabionet R, Strom TM, Ishihara N, Inagaki H, Kurahashi H, Dudding-Byth T, Palmer EE, Field M, Gecz J. Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery. Hum Mutat 2018; 39:1126-1138. [PMID: 29851191 DOI: 10.1002/humu.23557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022]
Abstract
Highly conserved TREX-mediated mRNA export is emerging as a key pathway in neuronal development and differentiation. TREX subunit variants cause neurodevelopmental disorders (NDDs) by interfering with mRNA export from the cell nucleus to the cytoplasm. Previously we implicated four missense variants in the X-linked THOC2 gene in intellectual disability (ID). We now report an additional six affected individuals from five unrelated families with two de novo and three maternally inherited pathogenic or likely pathogenic variants in THOC2 extending the genotypic and phenotypic spectrum. These comprise three rare missense THOC2 variants that affect evolutionarily conserved amino acid residues and reduce protein stability and two with canonical splice-site THOC2 variants that result in C-terminally truncated THOC2 proteins. We present detailed clinical assessment and functional studies on a de novo variant in a female with an epileptic encephalopathy and discuss an additional four families with rare variants in THOC2 with supportive evidence for pathogenicity. Severe neurocognitive features, including movement and seizure disorders, were observed in this cohort. Taken together our data show that even subtle alterations to the canonical molecular pathways such as mRNA export, otherwise essential for cellular life, can be compatible with life, but lead to NDDs in humans.
Collapse
Affiliation(s)
- Raman Kumar
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Alison Gardner
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Claire C Homan
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Evelyn Douglas
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Heather Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington & Seattle Children's Hospital, Seattle, Washington
| | - Dagmar Wieczorek
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany.,Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Hermann-Josef Lüdecke
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany.,Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Simon Sadedin
- Murdoch Children's Research Institute, Melbourne, Australia.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | -
- Broad's Center for Mendelian Genomics, Cambridge, Massachusetts
| | - Catherine Bearce Nowak
- The Feingold Center for Children at the Department of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Jessica Douglas
- The Feingold Center for Children at the Department of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | | | - Paul Mark
- Spectrum Health Medical Genetics, Grand Rapids, Michigan
| | - Lourdes Loidi
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Gail E Herman
- Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | | | - Meredith K Gillespie
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Lauren Brady
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Canada
| | - Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (ISCIII), Barcelona, Spain
| | - Jesús Eiris
- Unidad de Neurología Pediátrica, Departamento de Pediatría, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Domènech Salgado
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra and CIBERESP, Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Raquel Rabionet
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra and CIBERESP, Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Tim M Strom
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, Aichi, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia.,University of Newcastle, Australia Grow-Up-Well Priority Research Center, Callaghan, Australia
| | - Elizabeth E Palmer
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Jozef Gecz
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
29
|
Yakimova AO, Golubkova EV, Sarantseva SV, Mamon LA. Ellipsoid Body and Medulla Defects and Locomotion Disturbances in sbr (small bristles) Mutants of Drosophila melanogaster. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418060145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Hautbergue GM. RNA Nuclear Export: From Neurological Disorders to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1007:89-109. [PMID: 28840554 DOI: 10.1007/978-3-319-60733-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- RNA Biology Laboratory, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
31
|
Su L, Wang C, Zheng C, Wei H, Song X. A meta-analysis of public microarray data identifies biological regulatory networks in Parkinson's disease. BMC Med Genomics 2018; 11:40. [PMID: 29653596 PMCID: PMC5899355 DOI: 10.1186/s12920-018-0357-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a long-term degenerative disease that is caused by environmental and genetic factors. The networks of genes and their regulators that control the progression and development of PD require further elucidation. METHODS We examine common differentially expressed genes (DEGs) from several PD blood and substantia nigra (SN) microarray datasets by meta-analysis. Further we screen the PD-specific genes from common DEGs using GCBI. Next, we used a series of bioinformatics software to analyze the miRNAs, lncRNAs and SNPs associated with the common PD-specific genes, and then identify the mTF-miRNA-gene-gTF network. RESULT Our results identified 36 common DEGs in PD blood studies and 17 common DEGs in PD SN studies, and five of the genes were previously known to be associated with PD. Further study of the regulatory miRNAs associated with the common PD-specific genes revealed 14 PD-specific miRNAs in our study. Analysis of the mTF-miRNA-gene-gTF network about PD-specific genes revealed two feed-forward loops: one involving the SPRK2 gene, hsa-miR-19a-3p and SPI1, and the second involving the SPRK2 gene, hsa-miR-17-3p and SPI. The long non-coding RNA (lncRNA)-mediated regulatory network identified lncRNAs associated with PD-specific genes and PD-specific miRNAs. Moreover, single nucleotide polymorphism (SNP) analysis of the PD-specific genes identified two significant SNPs, and SNP analysis of the neurodegenerative disease-specific genes identified seven significant SNPs. Most of these SNPs are present in the 3'-untranslated region of genes and are controlled by several miRNAs. CONCLUSION Our study identified a total of 53 common DEGs in PD patients compared with healthy controls in blood and brain datasets and five of these genes were previously linked with PD. Regulatory network analysis identified PD-specific miRNAs, associated long non-coding RNA and feed-forward loops, which contribute to our understanding of the mechanisms underlying PD. The SNPs identified in our study can determine whether a genetic variant is associated with PD. Overall, these findings will help guide our study of the complex molecular mechanism of PD.
Collapse
Affiliation(s)
- Lining Su
- Department of Biology of Basic Medical Science College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Chunjie Wang
- Department of Basic Medicine, Zhangjiakou University, Zhangjiakou, 75000, Hebei, China
| | - Chenqing Zheng
- Shenzhen RealOmics (Biotech) Co., Ltd, Shenzhen, 518081, Guangdong, China
| | - Huiping Wei
- Department of Biology of Basic Medical Science College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Xiaoqing Song
- Department of Biology of Basic Medical Science College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| |
Collapse
|
32
|
Williams T, Ngo LH, Wickramasinghe VO. Nuclear export of RNA: Different sizes, shapes and functions. Semin Cell Dev Biol 2018; 75:70-77. [DOI: 10.1016/j.semcdb.2017.08.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023]
|
33
|
Carey KT, Wickramasinghe VO. Regulatory Potential of the RNA Processing Machinery: Implications for Human Disease. Trends Genet 2018; 34:279-290. [PMID: 29329719 DOI: 10.1016/j.tig.2017.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Splicing and nuclear export of mRNA are critical steps in the gene expression pathway. While RNA processing factors can perform general, essential functions for intron removal and bulk export of mRNA, emerging evidence highlights that the core RNA splicing and export machineries also display regulatory potential. Here, we discuss recent insights into how this regulatory potential can selectively alter gene expression and regulate important biological processes. We also highlight the participation of RNA processing pathways in the cellular response to DNA damage at multiple levels. These findings have important implications for the contribution of selective mRNA processing and export to the development of human cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirstyn T Carey
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
34
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
35
|
Hautbergue GM, Castelli LM, Ferraiuolo L, Sanchez-Martinez A, Cooper-Knock J, Higginbottom A, Lin YH, Bauer CS, Dodd JE, Myszczynska MA, Alam SM, Garneret P, Chandran JS, Karyka E, Stopford MJ, Smith EF, Kirby J, Meyer K, Kaspar BK, Isaacs AM, El-Khamisy SF, De Vos KJ, Ning K, Azzouz M, Whitworth AJ, Shaw PJ. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat Commun 2017; 8:16063. [PMID: 28677678 PMCID: PMC5504286 DOI: 10.1038/ncomms16063] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How repeat transcripts get exported from the nucleus is unknown. Here, we show that depletion of the nuclear export adaptor SRSF1 prevents neurodegeneration and locomotor deficits in a Drosophila model of C9ORF72-related disease. This intervention suppresses cell death of patient-derived motor neuron and astrocytic-mediated neurotoxicity in co-culture assays. We further demonstrate that either depleting SRSF1 or preventing its interaction with NXF1 specifically inhibits the nuclear export of pathological C9ORF72 transcripts, the production of dipeptide-repeat proteins and alleviates neurotoxicity in Drosophila, patient-derived neurons and neuronal cell models. Taken together, we show that repeat RNA-sequestration of SRSF1 triggers the NXF1-dependent nuclear export of C9ORF72 transcripts retaining expanded hexanucleotide repeats and reveal a novel promising therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Lydia M. Castelli
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Claudia S. Bauer
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Jennifer E. Dodd
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Monika A. Myszczynska
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Sarah M. Alam
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Pierre Garneret
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Jayanth S. Chandran
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Matthew J. Stopford
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Emma F. Smith
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Kathrin Meyer
- Nationwide Children’s Research Institute, Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Rm. WA3022, Columbus, Ohio 43205, USA
| | - Brian K. Kaspar
- Nationwide Children’s Research Institute, Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Rm. WA3022, Columbus, Ohio 43205, USA
| | - Adrian M. Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Sherif F. El-Khamisy
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Kurt J. De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Alexander J. Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
36
|
Jovčevska I, Zupanec N, Urlep Ž, Vranič A, Matos B, Stokin CL, Muyldermans S, Myers MP, Buzdin AA, Petrov I, Komel R. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget 2017; 8:44141-44158. [PMID: 28498803 PMCID: PMC5546469 DOI: 10.18632/oncotarget.17390] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme is the most frequent primary malignancy of the central nervous system. Despite remarkable progress towards an understanding of tumor biology, there is no efficient treatment and patient outcome remains poor. Here, we present a unique anti-proteomic approach for selection of nanobodies specific for overexpressed glioblastoma proteins. A phage-displayed nanobody library was enriched in protein extracts from NCH644 and NCH421K glioblastoma cell lines. Differential ELISA screenings revealed seven nanobodies that target the following antigens: the ACTB/NUCL complex, VIM, NAP1L1, TUFM, DPYSL2, CRMP1, and ALYREF. Western blots showed highest protein up-regulation for ALYREF, CRMP1, and VIM. Moreover, bioinformatic analysis with the OncoFinder software against the complete "Cancer Genome Atlas" brain tumor gene expression dataset suggests the involvement of different proteins in the WNT and ATM pathways, and in Aurora B, Sem3A, and E-cadherin signaling. We demonstrate the potential use of NAP1L1, NUCL, CRMP1, ACTB, and VIM for differentiation between glioblastoma and lower grade gliomas, with DPYSL2 as a promising "glioma versus reference" biomarker. A small scale validation study confirmed significant changes in mRNA expression levels of VIM, DPYSL2, ACTB and TRIM28. This work helps to fill the information gap in this field by defining novel differences in biochemical profiles between gliomas and reference samples. Thus, selected genes can be used to distinguish glioblastoma from lower grade gliomas, and from reference samples. These findings should be valuable for glioblastoma patients once they are validated on a larger sample size.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Zupanec
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Vranič
- Department of Neurosurgery, Foundation Rothschild, Paris, France
| | - Boštjan Matos
- Department of Neurosurgery, University Clinical Center, Ljubljana, Slovenia
| | | | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael P. Myers
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Anton A. Buzdin
- First Oncology Research and Advisory Center, Moscow, Russia
- National Research Center ‘Kurchatov Institute’, Center of Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| | - Ivan Petrov
- Center for Biogerontology and Regenerative Medicine, IC Skolkovo, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Radovan Komel
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
38
|
Ren Y, Schmiege P, Blobel G. Structural and biochemical analyses of the DEAD-box ATPase Sub2 in association with THO or Yra1. eLife 2017; 6. [PMID: 28059701 PMCID: PMC5218534 DOI: 10.7554/elife.20070] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023] Open
Abstract
mRNA is cotranscrptionally processed and packaged into messenger ribonucleoprotein particles (mRNPs) in the nucleus. Prior to export through the nuclear pore, mRNPs undergo several obligatory remodeling reactions. In yeast, one of these reactions involves loading of the mRNA-binding protein Yra1 by the DEAD-box ATPase Sub2 as assisted by the hetero-pentameric THO complex. To obtain molecular insights into reaction mechanisms, we determined crystal structures of two relevant complexes: a THO hetero-pentamer bound to Sub2 at 6.0 Å resolution; and Sub2 associated with an ATP analogue, RNA, and a C-terminal fragment of Yra1 (Yra1-C) at 2.6 Å resolution. We found that the 25 nm long THO clamps Sub2 in a half-open configuration; in contrast, when bound to the ATP analogue, RNA and Yra1-C, Sub2 assumes a closed conformation. Both THO and Yra1-C stimulated Sub2’s intrinsic ATPase activity. We propose that THO surveys common landmarks in each nuclear mRNP to localize Sub2 for targeted loading of Yra1. DOI:http://dx.doi.org/10.7554/eLife.20070.001
Collapse
Affiliation(s)
- Yi Ren
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Philip Schmiege
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Günter Blobel
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
39
|
de Anda-Jáuregui G, Velázquez-Caldelas TE, Espinal-Enríquez J, Hernández-Lemus E. Transcriptional Network Architecture of Breast Cancer Molecular Subtypes. Front Physiol 2016; 7:568. [PMID: 27920729 PMCID: PMC5118907 DOI: 10.3389/fphys.2016.00568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022] Open
Abstract
Breast cancer heterogeneity is evident at the clinical, histological and molecular level. High throughput technologies allowed the identification of intrinsic subtypes that capture transcriptional differences among tumors. A remaining question is whether said differences are associated to a particular transcriptional program which involves different connections between the same molecules. In other words, whether particular transcriptional network architectures can be linked to specific phenotypes. In this work we infer, construct and analyze transcriptional networks from whole-genome gene expression microarrays, by using an information theory approach. We use 493 samples of primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue (61 samples) is also inferred and analyzed. Transcriptional networks present particular architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We find substantial differences between the non-tumor network and those networks inferred from cancer samples, in both structure and gene composition. More importantly, we find specific network architectural features associated to each breast cancer subtype. Based on breast cancer networks' centrality, we identify genes previously associated to the disease, either, generally (i.e., CNR2) or to a particular subtype (such as LCK). Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in transcriptional networks with subtype-specific relevance. With this approach we observe architectural differences between cancer and non-cancer at network level, as well as differences between cancer subtype networks which might be associated with breast cancer heterogeneity. The centrality measures of these networks allow us to identify genes with potential biomedical implications to breast cancer.
Collapse
Affiliation(s)
| | | | - Jesús Espinal-Enríquez
- Computational Genomics, National Institute of Genomic MedicineMexico City, Mexico
- Complejidad en Biología de Sistemas, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics, National Institute of Genomic MedicineMexico City, Mexico
- Complejidad en Biología de Sistemas, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| |
Collapse
|
40
|
Müller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K, Neugebauer KM. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 2016; 30:553-66. [PMID: 26944680 PMCID: PMC4782049 DOI: 10.1101/gad.276477.115] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, Müller-McNicoll et al. investigate how export machinery assembles on mRNA and how it senses mRNA maturity before exporting mRNAs from the nucleus. They show that SR proteins act as NXF1 adaptors by connecting alternative splicing and 3′ end formation to mRNA export in vivo and propose that SR proteins and NXF1 form a ternary complex on mRNAs, particularly in last exons, and shuttle together to the cytoplasm. Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends.
Collapse
Affiliation(s)
- Michaela Müller-McNicoll
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Oliver D Schwich
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany; Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt/Main, Germany
| | - Michaela C Steiner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kathi Zarnack
- Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt/Main, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
41
|
Järvelin AI, Noerenberg M, Davis I, Castello A. The new (dis)order in RNA regulation. Cell Commun Signal 2016; 14:9. [PMID: 27048167 PMCID: PMC4822317 DOI: 10.1186/s12964-016-0132-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important insights into RNA regulation in cellular homeostasis and disease.
Collapse
Affiliation(s)
- Aino I. Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
42
|
Tran DDH, Saran S, Koch A, Tamura T. mRNA export protein THOC5 as a tool for identification of target genes for cancer therapy. Cancer Lett 2016; 373:222-6. [DOI: 10.1016/j.canlet.2016.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
|
43
|
Gromadzka AM, Steckelberg AL, Singh KK, Hofmann K, Gehring NH. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Res 2016; 44:2348-61. [PMID: 26773052 PMCID: PMC4797287 DOI: 10.1093/nar/gkw009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs.
Collapse
Affiliation(s)
| | | | - Kusum K Singh
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
44
|
Delaleau M, Borden KLB. Multiple Export Mechanisms for mRNAs. Cells 2015; 4:452-73. [PMID: 26343730 PMCID: PMC4588045 DOI: 10.3390/cells4030452] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed.
Collapse
Affiliation(s)
- Mildred Delaleau
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
45
|
Nuclear export of messenger RNA. Genes (Basel) 2015; 6:163-84. [PMID: 25836925 PMCID: PMC4488659 DOI: 10.3390/genes6020163] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022] Open
Abstract
Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex.
Collapse
|