1
|
Blatnik AJ, Sanjeev M, Slivka J, Pastore B, Embree CM, Tang W, Singh G, Burghes AHM. Sm-site containing mRNAs can accept Sm-rings and are downregulated in Spinal Muscular Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617433. [PMID: 39416143 PMCID: PMC11482833 DOI: 10.1101/2024.10.09.617433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sm-ring assembly is important for the biogenesis, stability, and function of uridine-rich small nuclear RNAs (U snRNAs) involved in pre-mRNA splicing and histone pre-mRNA processing. Sm-ring assembly is cytoplasmic and dependent upon the Sm-site sequence and structural motif, ATP, and Survival motor neuron (SMN) protein complex. While RNAs other than U snRNAs were previously shown to associate with Sm proteins, whether this association follows Sm-ring assembly requirements is unknown. We systematically identified Sm-sites within the human and mouse transcriptomes and assessed whether these sites can accept Sm-rings. In addition to snRNAs, Sm-sites are highly prevalent in the 3' untranslated regions of long messenger RNAs. RNA immunoprecipitation experiments confirm that Sm-site containing mRNAs associate with Sm proteins in the cytoplasm. In modified Sm-ring assembly assays, Sm-site containing RNAs, from either bulk polyadenylated RNAs or those transcribed in vitro , specifically associate with Sm proteins in an Sm-site and ATP-dependent manner. In cell and animal models of Spinal Muscular Atrophy (SMA), mRNAs containing Sm-sites are downregulated, suggesting reduced Sm-ring assembly on these mRNAs may contribute to SMA pathogenesis. Together, this study establishes that Sm-site containing mRNAs can accept Sm-rings and identifies a novel mechanism for Sm proteins in regulation of cytoplasmic mRNAs. GRAPHICAL ABSTRACT
Collapse
|
2
|
Kordala AJ, Stoodley J, Ahlskog N, Hanifi M, Garcia Guerra A, Bhomra A, Lim WF, Murray LM, Talbot K, Hammond SM, Wood MJA, Rinaldi C. PRMT inhibitor promotes SMN2 exon 7 inclusion and synergizes with nusinersen to rescue SMA mice. EMBO Mol Med 2023; 15:e17683. [PMID: 37724723 PMCID: PMC10630883 DOI: 10.15252/emmm.202317683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.
Collapse
Affiliation(s)
- Anna J Kordala
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Jessica Stoodley
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Nina Ahlskog
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | | | - Antonio Garcia Guerra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Amarjit Bhomra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Wooi Fang Lim
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
- Euan McDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | | | - Matthew JA Wood
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| | - Carlo Rinaldi
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| |
Collapse
|
3
|
Ma Z, Lyu X, Qin N, Liu H, Zhang M, Lai Y, Dong B, Lu P. Coactivator-associated arginine methyltransferase 1: A versatile player in cell differentiation and development. Genes Dis 2023; 10:2383-2392. [PMID: 37554200 PMCID: PMC10404874 DOI: 10.1016/j.gendis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification involved in the regulation of various cellular functions. Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that asymmetrically dimethylates histone H3 and non-histone proteins to regulate gene transcription. CARM1 has been found to play important roles in cell differentiation and development, cell cycle progression, autophagy, metabolism, pre-mRNA splicing and transportation, and DNA replication. In this review, we describe the molecular characteristics of CARM1 and summarize its roles in the regulation of cell differentiation and development in mammals.
Collapse
Affiliation(s)
- Zhongrui Ma
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xinxing Lyu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ning Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haoyu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Mengrui Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongchao Lai
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Peiyuan Lu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
4
|
Adami R, Bottai D. NSC Physiological Features in Spinal Muscular Atrophy: SMN Deficiency Effects on Neurogenesis. Int J Mol Sci 2022; 23:ijms232315209. [PMID: 36499528 PMCID: PMC9736802 DOI: 10.3390/ijms232315209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022] Open
Abstract
While the U.S. Food and Drug Administration and the European Medicines Evaluation Agency have recently approved new drugs to treat spinal muscular atrophy 1 (SMA1) in young patients, they are mostly ineffective in older patients since many motor neurons have already been lost. Therefore, understanding nervous system (NS) physiology in SMA patients is essential. Consequently, studying neural stem cells (NSCs) from SMA patients is of significant interest in searching for new treatment targets that will enable researchers to identify new pharmacological approaches. However, studying NSCs in these patients is challenging since their isolation damages the NS, making it impossible with living patients. Nevertheless, it is possible to study NSCs from animal models or create them by differentiating induced pluripotent stem cells obtained from SMA patient peripheral tissues. On the other hand, therapeutic interventions such as NSCs transplantation could ameliorate SMA condition. This review summarizes current knowledge on the physiological properties of NSCs from animals and human cellular models with an SMA background converging on the molecular and neuronal circuit formation alterations of SMA fetuses and is not focused on the treatment of SMA. By understanding how SMA alters NSC physiology, we can identify new and promising interventions that could help support affected patients.
Collapse
|
5
|
Saber J, Rudnicki MA. Carm1 and the Epigenetic Control of Stem Cell Function. Stem Cells Transl Med 2022; 11:1143-1150. [PMID: 36103286 PMCID: PMC9672848 DOI: 10.1093/stcltm/szac068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/13/2022] [Indexed: 06/06/2024] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a methyltransferase whose function has been highly studied in the context of nuclear receptor signaling. However, CARM1 is known to epigenetically regulate expression of several myogenic genes involved in differentiation such as Myog and MEF2C. CARM1 also acts to regulate myogenesis through its influence on various cellular processes from embryonic to adult myogenesis. First, CARM1 has a crucial role in establishing polarity-regulated gene expression during an asymmetric satellite cell division by methylating PAX7, leading to the expression of Myf5. Second, satellite cells express the CARM1-FL and CARM1-ΔE15 isoforms. The former has been shown to promote pre-mRNA splicing through its interaction with CA150 and U1C, leading to their methylation and increased activity, while the latter displays a reduction in both metrics, thus, modulating alternative pre-mRNA splice forms in muscle cells. Third, CARM1 is a regulator of autophagy through its positive reinforcement of AMPK activity and gene expression. Autophagy already has known implications in ageing and disease, and CARM1 could follow suite. Thus, CARM1 is a central regulator of several important processes impacting muscle stem cell function and myogenesis.
Collapse
Affiliation(s)
- John Saber
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Lee J, An S, Lee SJ, Kang JS. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. Cells 2022; 11:364. [PMID: 35159176 PMCID: PMC8834056 DOI: 10.3390/cells11030364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular diseases (NMDs) are characterized by progressive loss of muscle mass and strength that leads to impaired body movement. It not only severely diminishes the quality of life of the patients, but also subjects them to increased risk of secondary medical conditions such as fall-induced injuries and various chronic diseases. However, no effective treatment is currently available to prevent or reverse the disease progression. Protein arginine methyltransferases (PRMTs) are emerging as a potential therapeutic target for diverse diseases, such as cancer and cardiovascular diseases. Their expression levels are altered in the patients and molecular mechanisms underlying the association between PRMTs and the diseases are being investigated. PRMTs have been shown to regulate development, homeostasis, and regeneration of both muscle and neurons, and their association to NMDs are emerging as well. Through inhibition of PRMT activities, a few studies have reported suppression of cytotoxic phenotypes observed in NMDs. Here, we review our current understanding of PRMTs' involvement in the pathophysiology of NMDs and potential therapeutic strategies targeting PRMTs to address the unmet medical need.
Collapse
Affiliation(s)
- Jinwoo Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Subin An
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang-Jin Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
7
|
Ravel-Chapuis A, Haghandish A, Daneshvar N, Jasmin BJ, Côté J. A novel CARM1-HuR axis involved in muscle differentiation and plasticity misregulated in spinal muscular atrophy. Hum Mol Genet 2021; 31:1453-1470. [PMID: 34791230 DOI: 10.1093/hmg/ddab333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of alpha motor neurons in the spinal cord and a progressive muscle weakness and atrophy. SMA is caused by loss-of-function mutations and/or deletions in the survival of motor neuron (SMN) gene. The role of SMN in motor neurons has been extensively studied, but its function and the consequences of its loss in muscle has also emerged as a key aspect of SMA pathology. In this study, we explore the molecular mechanisms involved in muscle defects in SMA. First, we show in C2C12 myoblasts, that arginine methylation by CARM1 controls myogenic differentiation. More specifically, the methylation of HuR on K217 regulates HuR levels and subcellular localization during myogenic differentiation, and the formation of myotubes. Furthermore, we demonstrate that SMN and HuR interact in C2C12 myoblasts. Interestingly, the SMA-causing E134K point mutation within the SMN Tudor domain, and CARM1 depletion, modulate the SMN-HuR interaction. In addition, using the Smn2B/- mouse model, we report that CARM1 levels are markedly increased in SMA muscles and that HuR fails to properly respond to muscle denervation, thereby affecting the regulation of its mRNA targets. Altogether, our results show a novel CARM1-HuR axis in the regulation of muscle differentiation and plasticity as well as in the aberrant regulation of this axis caused by the absence of SMN in SMA muscle. With the recent developments of therapeutics targeting motor neurons, this study further indicates the need for more global therapeutic approaches for SMA.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amir Haghandish
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nasibeh Daneshvar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
9
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|
10
|
Yan S, Hu J, Li J, Wang P, Wang Y, Wang Z. PRMT4 drives post-ischemic angiogenesis via YB1/VEGF signaling. J Mol Med (Berl) 2021; 99:993-1008. [PMID: 33822264 DOI: 10.1007/s00109-021-02067-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Angiogenesis is an integral process in many ischemic disorders, and vascular endothelial growth factor (VEGF) plays an important role in it. Protein arginine methyltransferase 4 (PRMT4), a member of the type I PRMT family, is involved in various biological activities, but its role in endothelial cell (EC) remains elusive. Here, we aimed to investigate the role of PRMT4 in ischemic angiogenesis and explore the possible underlying mechanism. We found that PRMT4 was upregulated in ischemic muscles, and VEGF treatment potentiated its expression in ECs. In vitro, adenovirus-mediated PRMT4 overexpression promoted, while its gene disruption inhibited, EC proliferation, migration, and tube formation. In an in vivo hindlimb ischemia model, forced expression of PRMT4 in ECs showed accelerated blood flow recovery and increased capillary density, whereas its knockdown exhibited the opposite effect. Mechanistically, PRMT4 activated the transcription of VEGF via the interaction with Y-box binding protein-1 (YB1), leading to accelerated angiogenesis. Interestingly, the loss of YB1 partially abolished PRMT4-mediated angiogenesis in vitro. Collectively, our data revealed that PRMT4 promoted angiogenesis through interacting with YB1 and the consequential VEGF upregulation, suggesting that PRMT4 may present as a potential therapeutic target in ischemic angiogenesis. KEY MESSAGES: •PRMT4 is induced by VEGF and upregulated in a hindlimb ischemia model. •PRMT4 promotes angiogenesis both in vitro and in vivo. •PRMT4 regulates VEGF expression through interacting with YB1. •YB1 knockdown retards PRMT4-mediated angiogenic effects in vitro.
Collapse
Affiliation(s)
- Shu Yan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengchao Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
11
|
Hsieh MC, Ho YC, Lai CY, Wang HH, Yang PS, Cheng JK, Chen GD, Ng SC, Lee AS, Tseng KW, Lin TB, Peng HY. Blocking the Spinal Fbxo3/CARM1/K + Channel Epigenetic Silencing Pathway as a Strategy for Neuropathic Pain Relief. Neurotherapeutics 2021; 18:1295-1315. [PMID: 33415686 PMCID: PMC8423947 DOI: 10.1007/s13311-020-00977-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Many epigenetic regulators are involved in pain-associated spinal plasticity. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic regulator of histone arginine methylation, is a highly interesting target in neuroplasticity. However, its potential contribution to spinal plasticity-associated neuropathic pain development remains poorly explored. Here, we report that nerve injury decreased the expression of spinal CARM1 and induced allodynia. Moreover, decreasing spinal CARM1 expression by Fbxo3-mediated CARM1 ubiquitination promoted H3R17me2 decrement at the K+ channel promoter, thereby causing K+ channel epigenetic silencing and the development of neuropathic pain. Remarkably, in naïve rats, decreasing spinal CARM1 using CARM1 siRNA or a CARM1 inhibitor resulted in similar epigenetic signaling and allodynia. Furthermore, intrathecal administration of BC-1215 (a novel Fbxo3 inhibitor) prevented CARM1 ubiquitination to block K+ channel gene silencing and ameliorate allodynia after nerve injury. Collectively, the results reveal that this newly identified spinal Fbxo3-CARM1-K+ channel gene functional axis promotes neuropathic pain. These findings provide essential insights that will aid in the development of more efficient and specific therapies against neuropathic pain.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Soo-Cheen Ng
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11689, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan.
| |
Collapse
|
12
|
Suresh S, Huard S, Dubois T. CARM1/PRMT4: Making Its Mark beyond Its Function as a Transcriptional Coactivator. Trends Cell Biol 2021; 31:402-417. [PMID: 33485722 DOI: 10.1016/j.tcb.2020.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), identified 20 years ago as a coregulator of transcription, is an enzyme that catalyzes arginine methylation of proteins. Beyond its well-established involvement in the regulation of transcription, the physiological functions of CARM1 are still poorly understood. However, recent studies have revealed novel roles of CARM1 in autophagy, metabolism, paraspeckles, and early development. In addition, CARM1 is emerging as an attractive therapeutic target and a drug response biomarker for certain types of cancer. Here, we provide a comprehensive overview of the structure of CARM1 and its post-translational modifications, its various functions, apart from transcriptional coactivation, and its involvement in cancer.
Collapse
Affiliation(s)
- Samyuktha Suresh
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France
| | - Solène Huard
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France
| | - Thierry Dubois
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France.
| |
Collapse
|
13
|
Bryant JP, Heiss J, Banasavadi-Siddegowda YK. Arginine Methylation in Brain Tumors: Tumor Biology and Therapeutic Strategies. Cells 2021; 10:cells10010124. [PMID: 33440687 PMCID: PMC7827394 DOI: 10.3390/cells10010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification that plays a pivotal role in cellular regulation. Protein arginine methyltransferases (PRMTs) catalyze the modification of target proteins by adding methyl groups to the guanidino nitrogen atoms of arginine residues. Protein arginine methylation takes part in epigenetic and cellular regulation and has been linked to neurodegenerative diseases, metabolic diseases, and tumor progression. Aberrant expression of PRMTs is associated with the development of brain tumors such as glioblastoma and medulloblastoma. Identifying PRMTs as plausible contributors to tumorigenesis has led to preclinical and clinical investigations of PRMT inhibitors for glioblastoma and medulloblastoma therapy. In this review, we discuss the role of arginine methylation in cancer biology and provide an update on the use of small molecule inhibitors of PRMTs to treat glioblastoma, medulloblastoma, and other cancers.
Collapse
|
14
|
Lu JX, Wang Y, Zhang YJ, Shen MF, Li HY, Yu ZQ, Chen G. Axonal mRNA localization and local translation in neurodegenerative disease. Neural Regen Res 2021; 16:1950-1957. [PMID: 33642365 PMCID: PMC8343310 DOI: 10.4103/1673-5374.308074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The regulation of mRNA localization and local translation play vital roles in the maintenance of cellular structure and function. Many human neurodegenerative diseases, such as fragile X syndrome, amyotrophic lateral sclerosis, Alzheimer's disease, and spinal muscular atrophy, have been characterized by pathological changes in neuronal axons, including abnormal mRNA translation, the loss of protein expression, or abnormal axon transport. Moreover, the same protein and mRNA molecules have been associated with variable functions in different diseases due to differences in their interaction networks. In this review, we briefly examine fragile X syndrome, amyotrophic lateral sclerosis, Alzheimer's disease, and spinal muscular atrophy, with a focus on disease pathogenesis with regard to local mRNA translation and axon transport, suggesting possible treatment directions.
Collapse
Affiliation(s)
- Jin-Xin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yi-Jie Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei-Fen Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zheng-Quan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Liu L, Li F, Wen Z, Li T, Lv M, Zhao X, Zhang W, Liu J, Wang L, Ma X. Preliminary investigation of the function of hsa_circ_0049356 in nonobstructive azoospermia patients. Andrologia 2020; 52:e13814. [PMID: 32894622 DOI: 10.1111/and.13814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023] Open
Abstract
Nonobstructive azoospermia (NOA), which is considered the most severe form of male infertility, has placed a heavy burden on families and society. As vital regulators of transcriptional and post-transcriptional levels, Noncoding RNAs (ncRNAs) are closely related to all the pathophysiological processes involved in infertility in males, especially spermatogenesis. Our study explored the expression levels of circ_0049356 in both the whole blood and seminal plasma samples of idiopathic NOA patients via quantitative real-time PCR. Furthermore, the relative expression of its host gene (CARM1) was also determined using the same methods. In addition, as circRNAs have been demonstrated to regulate gene expression as miRNAs sponge, we predicted a total of five miRNAs and 101 mRNAs as putative downstream targets and constructed a circRNA-miRNA-mRNA network. Based on the predictions, Gene Ontology and KEGG pathway analyses were performed for further bioinformatics analysis to explore the potential function and investigate the circ_0049356-miRNA-mRNA interactions. Our results show target mRNAs that have been predicted to regulate guanyl-nucleotide exchange factor activity to mediate the GTP/GDP exchange, and downstream targets possibly involved in the regulation of the actin cytoskeleton, which play a significant role in cytoskeleton rearrangement of germ cells during spermatogenesis.
Collapse
Affiliation(s)
- Lin Liu
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | | | - Zhen Wen
- Lanzhou University, Lanzhou, China
| | - Tao Li
- Lanzhou University, Lanzhou, China
| | - Meng Lv
- Lanzhou University, Lanzhou, China
| | - Xiaodong Zhao
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Wei Zhang
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Jing Liu
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Liyan Wang
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Xiaoling Ma
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| |
Collapse
|
16
|
Shorrock HK, Gillingwater TH, Groen EJN. Overview of Current Drugs and Molecules in Development for Spinal Muscular Atrophy Therapy. Drugs 2019; 78:293-305. [PMID: 29380287 PMCID: PMC5829132 DOI: 10.1007/s40265-018-0868-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily characterized by a loss of spinal motor neurons, leading to progressive paralysis and premature death in the most severe cases. SMA is caused by homozygous deletion of the survival motor neuron 1 (SMN1) gene, leading to low levels of SMN protein. However, a second SMN gene (SMN2) exists, which can be therapeutically targeted to increase SMN levels. This has recently led to the first disease-modifying therapy for SMA gaining formal approval from the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). Spinraza (nusinersen) is a modified antisense oligonucleotide that targets the splicing of SMN2, leading to increased SMN protein levels, capable of improving clinical phenotypes in many patients. In addition to Spinraza, several other therapeutic approaches are currently in various stages of clinical development. These include SMN-dependent small molecule and gene therapy approaches along with SMN-independent strategies, such as general neuroprotective factors and muscle strength-enhancing compounds. For each therapy, we provide detailed information on clinical trial design and pharmacological/safety data where available. Previous clinical studies are also discussed to provide context on SMA clinical trial development and the insights these provided for the design of current studies.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
17
|
Abeywardana T, Oh M, Jiang L, Yang Y, Kong M, Song J, Yang Y. CARM1 suppresses de novo serine synthesis by promoting PKM2 activity. J Biol Chem 2018; 293:15290-15303. [PMID: 30131339 PMCID: PMC6166735 DOI: 10.1074/jbc.ra118.004512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/01/2018] [Indexed: 11/06/2022] Open
Abstract
Glucose is a critical nutrient for cell proliferation. However, the molecular pathways that regulate glucose metabolism are still elusive. We discovered that co-activator-associated arginine methyltransferase 1 (CARM1) suppresses glucose metabolism toward serine biosynthesis. By tracing the 13C-labeled glucose, we found that Carm1 knockout mouse embryonic fibroblasts exhibit significantly increased de novo serine synthesis than WT cells. This is caused, at least in part, by the reduced pyruvate kinase (PK) activity in these cells. The M2 isoform of PK (PKM2) is arginine-methylated by CARM1, and methylation enhances its activity. Mechanistically, CARM1 methylates PKM2 at arginines 445 and 447, which enhances PKM2 tetramer formation. Consequently, Carm1 knockout cells exhibit significant survival advantages over WT cells when extracellular serine is limited, likely due to their enhanced de novo serine synthesis capacity. Altogether, we identified CARM1 as an important regulator of glucose metabolism and serine synthesis.
Collapse
Affiliation(s)
| | - Myungeun Oh
- Molecular and Cellular Endocrinology, Beckman Research Institute, City of Hope Cancer Center, Duarte, California 91010
| | - Lei Jiang
- Molecular and Cellular Endocrinology, Beckman Research Institute, City of Hope Cancer Center, Duarte, California 91010
| | - Ying Yang
- the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, and
| | - Mei Kong
- the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, and
| | - Jikui Song
- the Department of Biochemistry, University of California, Riverside, California 92521
| | - Yanzhong Yang
- From the Departments of Cancer Genetics and Epigenetics and
| |
Collapse
|
18
|
Groen EJN, Talbot K, Gillingwater TH. Advances in therapy for spinal muscular atrophy: promises and challenges. Nat Rev Neurol 2018; 14:214-224. [PMID: 29422644 DOI: 10.1038/nrneurol.2018.4] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating motor neuron disease that predominantly affects children and represents the most common cause of hereditary infant mortality. The condition results from deleterious variants in SMN1, which lead to depletion of the survival motor neuron protein (SMN). Now, 20 years after the discovery of this genetic defect, a major milestone in SMA and motor neuron disease research has been reached with the approval of the first disease-modifying therapy for SMA by US and European authorities - the antisense oligonucleotide nusinersen. At the same time, promising data from early-stage clinical trials of SMN1 gene therapy have indicated that additional therapeutic options are likely to emerge for patients with SMA in the near future. However, the approval of nusinersen has generated a number of immediate and substantial medical, ethical and financial implications that have the potential to resonate beyond the specific treatment of SMA. Here, we provide an overview of the rapidly evolving therapeutic landscape for SMA, highlighting current achievements and future opportunities. We also discuss how these developments are providing important lessons for the emerging second generation of combinatorial ('SMN-plus') therapies that are likely to be required to generate robust treatments that are effective across a patient's lifespan.
Collapse
Affiliation(s)
- Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Generation of Cell Lines Stably Expressing a Fluorescent Reporter of Nonsense-Mediated mRNA Decay Activity. Methods Mol Biol 2017. [PMID: 29236260 DOI: 10.1007/978-1-4939-7540-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a mechanism of mRNA surveillance ubiquitous among eukaryotes. Importantly, NMD not only removes aberrant transcripts with premature stop codons, but also regulates expression of many normal genes. A recently introduced dual-color fluorescent protein-based reporter enables analysis of NMD activity in live cells. In this chapter we describe the method to generate stable transgenic cell lines expressing the splicing-dependent NMD reporter using consecutive steps of lentivirus transduction and Tol2 transposition.
Collapse
|
20
|
Stouth DW, vanLieshout TL, Shen NY, Ljubicic V. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders. Front Physiol 2017; 8:870. [PMID: 29163212 PMCID: PMC5674940 DOI: 10.3389/fphys.2017.00870] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.
Collapse
Affiliation(s)
- Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nicole Y Shen
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Blanc RS, Richard S. Arginine Methylation: The Coming of Age. Mol Cell 2017; 65:8-24. [PMID: 28061334 DOI: 10.1016/j.molcel.2016.11.003] [Citation(s) in RCA: 691] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells.
Collapse
Affiliation(s)
- Roméo S Blanc
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada.
| |
Collapse
|
22
|
Bondy-Chorney E, Baldwin RM, Didillon A, Chabot B, Jasmin BJ, Côté J. RNA binding protein RALY promotes Protein Arginine Methyltransferase 1 alternatively spliced isoform v2 relative expression and metastatic potential in breast cancer cells. Int J Biochem Cell Biol 2017; 91:124-135. [PMID: 28733251 DOI: 10.1016/j.biocel.2017.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/09/2017] [Accepted: 07/15/2017] [Indexed: 01/24/2023]
Abstract
Aberrant expression of Protein Arginine Methyltransferases (PRMTs) has been observed in several cancer types, including breast cancer. We previously reported that the PRMT1v2 isoform, which is generated through inclusion of alternative exon 2, is overexpressed in breast cancer cells and promotes their invasiveness. However, the precise mechanism by which expression of this isoform is controlled and how it is dysregulated in breast cancer remains unknown. Using a custom RNA interference-based screen, we identified several RNA binding proteins (RBP) which, when knocked down, altered the relative abundance of the alternatively spliced PRMT1v2 isoform. Amongst the top hits were SNW Domain containing 1 (SNW1) and RBP-associated with lethal yellow mutation (RALY), which both associated with the PRMT1 pre-mRNA and upon depletion caused an increase or decrease in the relative abundance of PRMT1v2 isoform mRNA and protein. Most importantly, a significant decrease in invasion was observed upon RALY knockdown in aggressive breast cancer cells, consistent with targeting PRMT1v2 directly, and this effect was rescued by the exogenous re-expression of PRMT1v2. We show that SNW1 expression is decreased, while RALY expression is increased in breast cancer cells and tumours, which correlates with decreased patient survival. This work revealed crucial insight into the mechanisms regulating the expression of the PRMT1 alternatively spliced isoform v2 and its dysregulation in breast cancer. It also provides proof-of-concept support for the development of therapeutic strategies where regulators of PRMT1 exon 2 alternative splicing are targeted as an approach to selectively reduce PRMT1v2 levels and metastasis in breast cancer.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - R Mitchell Baldwin
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Andréanne Didillon
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Benoît Chabot
- Département de microbiologie et d'infectiologie, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1 K 2R1, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada.
| |
Collapse
|
23
|
Li S, Cheng D, Zhu B, Yang Q. The Overexpression of CARM1 Promotes Human Osteosarcoma Cell Proliferation through the pGSK3β/β-Catenin/cyclinD1 Signaling Pathway. Int J Biol Sci 2017; 13:976-984. [PMID: 28924379 PMCID: PMC5599903 DOI: 10.7150/ijbs.19191] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/16/2017] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma (OS) is a kind of malignant bone tumor that occurs frequently in the region surrounding the knee joint and poses a threat to the health of teenagers. Since the application of chemotherapy to treat OS, 5-year survival rate in patients has improved from 10% to 70%, but patient survival has not changed over the past four decades. Coactivator-associated arginine methyltransferase 1 (CARM1) is a member of the PRMT protein family; it acts as an oncogene in many cancers, but its function in OS is still unknown. In this study, we found that CARM1 is overexpressed in OS and its expression is correlated with the Enneking stage. CCK-8 and colony forming assays showed that proliferation in OS cell lines was downregulated when siRNA was used to knockdown CARM1 expression. The cell cycle was inhibited in S phase after si-CARM1 transfection in OS cell lines. An antibody array indicated that Erk1/2 (Thr202/Tyr204), PARS40 (Thr246), and GSK3β (Ser9) expression are affected by CARM1, and western blotting verified that CARM1 promotes OS cell proliferation via pGSK3β/β-catenin/cyclinD1 signaling. Accordingly, CARM1 is a crucial gene in OS and is a potential new treatment target.
Collapse
Affiliation(s)
- Shijie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Dongdong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Bin Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| |
Collapse
|
24
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
25
|
Donlin-Asp PG, Bassell GJ, Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 2016; 39:53-61. [PMID: 27131421 DOI: 10.1016/j.conb.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Localization and local translation of mRNA plays a key role in neuronal development and function. While studies in various systems have provided insights into molecular mechanisms of mRNA transport and local protein synthesis, the factors that control the assembly of mRNAs and mRNA binding proteins into messenger ribonucleoprotein (mRNP) transport granules remain largely unknown. In this review we will discuss how insights on a motor neuron disease, spinal muscular atrophy (SMA), is advancing our understanding of regulated assembly of transport competent mRNPs and how defects in their assembly and delivery may contribute to the degeneration of motor neurons observed in SMA and other neurological disorders.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|